Roll No.						

PRESIDENCY UNIVERSITY

BENGALURU

End - Term Examinations - MAY/ JUNE 2025

School: SOE	Program: B. Tech. Petroleum Engineering						
Course Code: MAT2030	Course Name: Fundamentals of Operation Research						
Semester: IV	Max Marks: 100	Weightage: 50%					

CO - Levels	CO1	CO2	CO3	CO4
Marks	26	26	56	12

Instructions:

- (i) Read all questions carefully and answer accordingly.
- (ii) Do not write anything on the question paper other than roll number.

Part A

Answ	er ALL the Questions. Each question carries 2 marks.	100	2 x 2M=	20M
1	Define Operations Research?	2 Marks	L1	CO1
2	Write the equation to find the coordinates of the constraints in LPP using Graphical Method?	2 Marks	L1	CO1
3	List two major applications of OR in decision making.	2 Marks	L1	CO1
4	Define Transportation Problem.	2 Marks	L1	CO2
5	What is the assignment problem, and how is it different from the transportation problem?	2 Marks	L1	CO2
6	Explain travelling salesman problem in assignment problem.	2 Marks	L1	CO2
7	What are the three phases of networking?	2 Marks	L1	CO3
8	List the time estimates in the PERT.	2 Marks	L1	CO3
9	Define Merge and Burst Events.	2 Marks	L1	CO3
10	Define saddle point.	2 Marks	L1	CO4

Part B

Answer the Questions. Question No. 11 is compulsory.

Marks 1x10M= 10M

11.	Stat	e vario	ous phases of		10 Marks	L3	C01					
					P	art C						
Ans	swert	the Qu	iestion.							Total 1	Marks:	= 70M
12.	usin	g raw	cturer produce materials A this problem	and B.	The fo	llowing	table giv	•				
			Raw Materia		rement p	per Unit						
			Raw Materia	I	II	III	- Availabili	У		10	L3	CO1
			А	A 2 3 5 4000								COI
			В	4	2	7	6000					
			Min Demand	200	200	150						
			Profit / Unit	30	20	50						
						Or						
13.	30, 2 in n	20, and ninute	y manufacture d 40. Company es for each r y on each mac	has two	machin on eac	ies M1 a h prod	nd M2. Pro uct on th	cessing e total	time			
		N/I	achine	Machine	minute	s requir	ed Tota	ıl Time				
		IVI	acilile		10 Marks	L3	C01					
			M1	4	3	5	2	000				
			M2	2	2	4	5	000				
			nust manufactu re than 150P1'	0P3's								

14.	Find the i	nitial solutio	em by any								
	two metho										
			D1	D2	D3	D4	Supply				
		01	11	13	17	14	250		10	L3	CO2
		02	16	18	14	10	300		Marks		
		03	21	24	13	10	400				
		Demand	200	225	275	250					
	•			•							

15.	_	timal solution your choice	n for th	e trans	sportat	ion me	ethods usi	ng any two			
			D1	D2	D3	D4	Supply				
		01	6	1	9	3	70		10	L3	CO2
		02	11	5	2	8	55		Marks		
		03	10	12	4	7	70				
		Demand	85	35	50	45					

16.	Find the Opti	mal sol	ution u	sing A	Assig	nmer	nt Prob	lem.			
			A	В		С	D	Е			
		P	160	130) [175	190	200			
		Q	135	120) [130	160	175	10 Marks	L3	CO2
		R	140	110) (155	170	185	Maiks		
		S	50	50		80	80	110			
		T	55	35		70	80	105			
						()r				
17.	Solve the assi	gnmen	t proble	em by	Hui	ngaria	an met	hod			
				Α	В	С	D				
			P	8	26	17	11		10	* 0	200
			Q	13	28	4	26		Marks	L3	CO2
			R	38	19	18	15				
			S	19	26	24	10				

18.	A company h	as six jobs A t	to F.	All t	he j	obs	hav	e to	go	through two			
	machine M1	and M2. The ti	me r	equii	red f	or t	he jo	obs	on e	each machine			
	in hours is giv	en below. Find	the	ptin	num	seq	uen	ce tł	nat r	ninimizes the			
	total elapsed	time.									10	L3	CO3
			Α	В	С	D)	Е	F		Marks	ЦЭ	603
		Machine I 1 4 6 3 5 2											
		Machine II	3	6	8	8	3	1	5				
19.	We have five	jobs each of wh	ich n	nust	go tł	ırou	ıgh t	he n	nacł	nines A, B and			
	in the order A	ABC. Determine	the	sequ	ence	tha	at wi	ll m	ini i	mise the total			
	elapsed time.										10	L3	CO3
			Marks	ЦЭ	003								

	Machine B	2	1	4	5	3
	Machine C	3	7	5	6	7

20.	Solve the following pa and the value of game	optimal strategies						
			Play	er B		10	L3	CO4
		Dlavon A	6	-3		Marks		
		Player A	-3	0				
				or				
21.	Solve the following ga	ame and det	ermine	the valu	e of the game			
			Play	er B		10		
		Player A	Playor A 2			Marks	L3	CO4
		Flayel A	4	1				

22.	A small n	naintena	nce proje	ct co	nsist	s of	the	follo	wing	jobs	whose			
	precedenc	ce relatio	nships are	e give	n bel	low								
	Activity	1-2 1-3	2-4 3-4	3-5	4-9	5-6	5-7	6-8	7-8	8-10	9-10			
	Time (Days)	4 1	1 1	6	5	4	8	1	2	5	7	20	L3	CO3
	From the	followin	g informat	ion, y	ou a	re re	quire	ed to		II.		Marks	ПО	dos
	a)	Constru	ct a netwo	ork di	agra	m.								
	b)	Comput	e the earli	est ar	nd la	test e	event	tim	e.					
	c)	Determ	ine the cri											
	d)	d) Compute total and free float for each activity.												
23.	Four jobs	1, 2, 3 ar	d 4 are to	be pr	oces	sed c	n ea	ch o	f the fi	ve ma	chines			
	A, B, C, D,	and E ir	the order	ABC	DE. I	Find	the t	otal	minir	num e	lapsed			
	time if no	passing	of jobs is	perm	itted	, Also	o fino	l the	idle t	ime fo	r each			
	machine													
		Jol	Machin os	e A	E	3 (\mathbf{C}	D	Е			20 Marks	L3	CO3
	1 7 5 2 3 9													
			2	6	6	j 4	1	5	10					
			3	5	4	ļ [5	6	8					
			4	8	3	3	3	2	6					