

PRESIDENCY UNIVERSITY

BENGALURU

End - Term Examinations - MAY 2025

School: SOCSE	Program: B. TECH- CAI/CBC/CBD/CCS/CDV/CIT/COM/CSD/CSE/CSG/ISE/IST					
Course Code :MAT2031	Course Name: OPTIMIZATION TECHNIQUES					
Semester: VI	Max Marks: 100	Weightage: 50%				

CO - Levels	CO1	CO2	CO3	CO4
Marks	29	21	26	24

Instructions:

- (i) Read all questions carefully and answer accordingly.
- (ii) Do not write anything on the question paper other than roll number.

Part A

Answer ALL the Questions. Each question carries 2marks.

10Q x 2M=20M

1	Convert tl	he followin	ıg Unbalaı	nced TP to	Balance	d TP	2 m	arks	L1	CO1
		I								
		II								
		Supply								
2		Standard f		e given LP	P		2 M	arks	L1	CO2
		ubject To (6x ₁ +								

3	Covert the follow problem into mi	_	_	nent pi	roblen	n from	n maxim	nizatio	on		2 Marks	L1	CO1
		A	E	3	C		D		1				
	1	32	3	88	4	0	28						
	2	40	2	24	28	8	21	21					
	3	41	2	27		3	30						
	4	22	3	88	4	1	36						
4	Define Slack and	Surpl	em.	2 Marks	L1	CO2							
5	In LPP, For Whic	h Cond		2 Marks	L1	CO2							
6	What are the 3 f	oats in	CPM	?							2 Marks	L1	CO3
7	Develop a netwo	2 Marks	L1	CO3									
	Activity	A	В	С	D	Е	F	G	Н	I			
	Immediate Predecessor	-	-	-	A	A	B,D	С	В	F,G			
8	problem to N job	What is the condition for converting N Jobs 3 machine sequencing problem to N job 2 machine Sequencing Problem? and if condition satisfies then what is the conversion formula?											CO3
9	What is a Strateg		2 Marks	L1	CO4								
10	Define strictly do	etermi		2 Marks	L1	CO4							

Answer the Questions.

Total Marks 80M

	11. a. Determine Initial Basic Feasible solution by North West Corner rule Method 10 L3 C01													
11.	a.	Determine Initia	ıl Basi	c Feasib	ole solut	tion by l	North V	West Corner rule Method	10	L3	CO1			
		and apply MODI	meth	od to fir	nd Optii	mum Ba	isic fea	sible Solution.	Marks					
				I	II	III	IV	Availability						
			250											
		From	350											
			400											
		Requirement	_											
	Or													
12.		10	L3	CO1										
		situated in the	differ	ent citie	s. All o	f a sud	den, th	ere is a demand for the	Marks					
		product in five r	nore (cities tha	at do no	t have a	any age	ency of the company. The						
		•	company is faced with the problem of deciding on how to assign the exis											
			cities in such a way that											
		•												
		the travelling d	เรเลท(e is ini	mmzec	ı. rne (ustanc	es (in km) between the						

Part B

deficit cities	I	II	III	IV	V		
surplus cities							
A	160	130	175	190	200		
В	135	120	130	160	175		
C	140	110	155	170	185		
D	50	50	80	80	110		
Е	55	35	70	80	105]	

13.	a.	Solve the following games by using dominance property	10	L3	CO4
		Player B	Marks		
		Player A $\begin{bmatrix} 4 & 2 & 0 & 2 & 1 & 1 \\ 4 & 3 & 1 & 3 & 2 & 2 \\ 4 & 3 & 7 & -5 & 1 & 2 \\ 4 & 3 & 4 & -1 & 2 & 2 \\ 4 & 3 & 3 & -2 & 2 & 2 \end{bmatrix}$			
		4 3 4 -1 2 2			
		L4 3 3 -2 2 2J			
		Or			
14.	a.	The following games have saddle point solutions. Determine the	10	L3	CO4
		saddle point and optimum strategies for each player.	Marks		
		Player B			
		$A_1 = \begin{bmatrix} B_1 & B_2 & B_3 & B_4 & B_5 \\ A_1 = 2 & 0 & 0 & 5 & 3 \end{bmatrix}$			
		a) Player $A_{A_2}^{A_1} \begin{bmatrix} -2 & 0 & 0 & 5 & 3 \\ 3 & 2 & 1 & 2 & 2 \\ -4 & -3 & 0 & -2 & 6 \\ 5 & 3 & -4 & 2 & -6 \end{bmatrix}$ b)			
		$\begin{vmatrix} a_1 + a_2 + A_3 \\ -4 & -3 & 0 & -2 & 6 \end{vmatrix}^{0}$			
		$A_4 \begin{bmatrix} 5 & 3 & -4 & 2 & -6 \end{bmatrix}$			
		Player $A_{A_2}^{A_2}$ $\begin{bmatrix} B_1 & B_2 & B_3 & B_4 \\ 20 & 15 & 12 & 35 \\ 25 & 14 & 8 & 10 \\ 40 & 2 & 10 & 5 \\ -5 & 4 & 11 & 0 \end{bmatrix}$			
		Player $A_A^{A_2} \begin{bmatrix} 25 & 14 & 8 & 10 \\ 40 & 2 & 10 & 5 \end{bmatrix}$			
		$\begin{bmatrix} A_3 & 40 & 2 & 10 & 5 \\ A_4 & -5 & 4 & 11 & 0 \end{bmatrix}$			
		114 6 1 11 6 1			1

15.	a.	Solve the following 6 X 2 game graphically.	10 Marks	L3	CO2
13.		Player A $\begin{bmatrix} 1 & -3 \\ 3 & 5 \\ -1 & 6 \\ 4 & 1 \\ 2 & 2 \\ -5 & 0 \end{bmatrix}$	10 Marks		002
		0r			
16.	a.	Solve the following payoff matrices, determine the the optimal strategies and the value of games	10 Marks	L3	CO2

		a) Player A $\begin{bmatrix} 5 & 1 \\ 3 & 4 \end{bmatrix}$ b) Player A $\begin{bmatrix} 4 & -4 \\ -4 & 4 \end{bmatrix}$			
17.	a.	Find Initial Basic Feasible solution for the transportation methods using a) Least Cost Method b) Vogel's Approximation method. D1 D2 D3 D4 Supply	15 Marks	L3	C01
		01			
		03 42 8 70 20 18 Demand 5 8 7 14			
		Demand 5 8 7 14 Or			
18.		A travelling salesman has to visit five cities. He wishes to start from a particular city, visit each city once and then return to his starting point. The travelling times for each city from a particular city is given below	15 Marks	L3	C01
19.	a.	Solve the following LPP by Two Phase Method Minimize $Z=\frac{15}{2}x_1-3x_2$ Subjected to the constraints $3x_1-x_2-x_3\geq 3\\ x_1-x_2+x_3\geq 2\\ \text{and }x_1,x_2\geq 0.$	15 Marks	L3	C02
		0r			

20				enalty rammi				Big	M n	neth	nod to	solv	e Li	near				15 Mark	S	L3	CO2
			Maxi Subje	imize 2 ect to	Z = x	_		x_1	:1 -		≤ 10										
21	a	The fo		ing tal	ole sh	ows	s the	e jol	bs c	of ne	etwor	k alo	ng v	vith t	heii	r time		12 Marks	L3	C(
		Act	ivity	1-	2 1	L-6	2	-3	2	-4	3-5	4-	5	6-7	į	5-8	7-8	-			
		_	nistic ays)	1	-	2		2		2	7	5	5	5		3	8				
		Most	likely ays)	7 7	,	5	1	.4		5	10	5	;	8		3	17				
		Pessi		c 1:	3	14	2	26		8	19	1	7	29		9	32				
	b	Find	the se	proba p(0.8)	$\mathbf{c} = 0$. 28 t mi	81] nim	nize	s th	e to	otal el	apse	d tin	ne (ir				8Mark	L3	CC	
	•	requi	reu u	comp Ta:		ine i	A	В	C	D	E		Н	IIIe.	1			S		3	
					chine	e I	2	5	4	9		3 7	5	4							
				Ma	chine	e II	6	8	7	4	3	9 3	8	11							
	1										0r	I.		ı							
22	a	A pro	ject s	chedu	le has	s the	e fol	llow	ing	cha	aracte	eristic	CS					12 Marks	L3	C(
		Activity	1-2	1-3	2- 4	3-4	4	3-5	4	9	5-6	5-7	6-8	. 7		8-10	9- 10	-			
		Time (days)	4	1	1	1		6		5	4	8	1		2	5	7				
	(a) Draw an arrow diagram representing the project.(b) Find the total float for each activity.(c) Find the critical path and the total project duration.																				

b	A readymade	e garment	s manufa	cturer has	s to proce	ss items	through	ı two	8Mark	L3	CO
	stages of pro	duction na	amely cut	ting, sewi	ng and Pa	cking. Tl	ne time t	aken	S	S	3
	for each of t	these at tl	ne differe	ent stages	are give	n below	approp	riate			
	units. Deterr	nine the se) .								
	Item	7									
	Cutting	5	7	3	4	6	7	12			
	Sewing	8									
	Packing	11									
