Roll No.						

PRESIDENCY UNIVERSITY

BENGALURU

End - Term Examinations - MAY/JUNE 2025

School: SOEProgram: B. TechCourse Code: MEC3063Course Name: CONTROL ENGINEERINGSemester: VIMax Marks: 100Weightage: 50%

CO - Levels	CO1	CO2	СО3	CO4	CO5
Marks	14	14	28	44	-

Instructions:

- (i) Read all questions carefully and answer accordingly.
- (ii) Do not write anything on the question paper other than roll number.

Part A

Answer ALL the Questions. Each question carries 2marks.

 $10Q \times 2M = 20M$

1.	Define control engineering.	2 Marks	L1	CO1
2.	What is disturbance?	2 Marks	L1	CO1
3.	What is Mathematical Model?	2 Marks	L1	CO2
4.	What is feedback control system?	2 Marks	L1	CO2
5.	What is Node in SFG?	2 Marks	L1	CO3
6.	Write Mason's gain formula.	2 Marks	L1	CO3
7.	Write the block diagram of closed loop system and name the terms.	2 Marks	L1	CO3
8.	Write the Transfer function for negative feedback system.	2 Marks	L1	CO3
9.	Define Root Locus.	2 Marks	L1	CO4
10.	What is break in point in Root Locus?	2 Marks	L1	CO4

Answer the Questions.

Total Marks 80M

11.	a.	List the advantages and disadvantages of open and closed loop	10 Marks	L2	CO
		control system			1
		0r			
12.	a.	What are the characteristics of an integral control system?	10 Marks	L2	CO 1
13.	a.	Obtain the equivalent spring constant for the system a)	10 Marks	L3	CO 2
14.	a.	Obtain the transfer function Q2(s)/Q(s) for the hydraulic system shown in fig where q - flow rate C - Hydraulic capacitance R - Hydraulic resistance h - Head	10 Marks	L3	CO 2
15.	a.	Obtain the over all transfer function of the block diagram shown in fig. by reduction technique.	10 Marks	L3	CO 3

	b	The characteristic equation of the control system is using R-H criterion to ascertain its stability $S^3+9s^2+25s+21=0$	10 Marks	L3	CO 4
21.	a.	Draw the complete root locus diagram for the system with open-loop transfer function, hence determine the range of variation of K over which the system remain stable. $G(s) \ H(s) = \frac{K(s+1)}{s^2(s+3)(s+5)}$	20 Marks	L3	CO 4
		0r		•	
22.	a.	Construct a Root Locus for the open-loop transfer function. $G(s)H(s) = \frac{K}{s(s+2)(s^2+8s+20)}.$	20 Marks	L3	CO 4