Roll No.												
----------	--	--	--	--	--	--	--	--	--	--	--	--

PRESIDENCY UNIVERSITY

BENGALURU

End - Term Examinations - MAY 2025

School: SOE/SOCSE	Program: B. Tech - CAI/CBC/CCS/CDV/CIT/COM/CSD/CSE/CSG/CSI/CSN/ISE/IST/CBD/CIV/ECE/EEE/MEC/PET/VLSI				
Course Code: MAT2003	Course Name: NUMERICAL METHODS FOR ENGINEERS				
Semester: IV	Max Marks: 100	Weightage: 50%			

CO - Levels	CO1	CO2	СО3
Marks	34	33	33

Instructions:

- (i) Read all questions carefully and answer accordingly.
- (ii) Do not write anything on the question paper other than roll number.

Part A

Answer ALL the Questions. Each question carries 2marks.

100 x 2M=20M

	er field the Questions, Each question curries emarks.	10Q A 2111-2011				
1.	Define algebraic equation and give an example.	2 Marks	L1	CO1		
2.	State the truncation error and its order in Simpson's 1/3 rd rule.	2 Marks	L1	CO2		
3.	State the formula for Taylor's series expansion of the function $y(x)$ about the point x_0	2 Marks	L1	CO3		
4.	Outline the steps and identify the range in which the root of the equation $e^x - 4sinx = 0$ lies.	2 Marks	L1	CO1		
5.	Define Interpolation.	2 Marks	L1	CO2		
6.	List any two numerical methods to solve initial value problem.	2 Marks	L1	CO3		
7.	Write the second divided difference formula.	2 Marks	L1	CO2		
8.	Describe Milne's predictor and corrector formulae.	2 Marks	L1	CO3		
9.	State Newton's backward interpolation formula.	2 Marks	L1	CO2		
10.	Name two numerical methods to solve one dimensional heat equation.	2 Marks	L1	CO3		

Part B

-				1	Answer th	1e Questi	ons.		Total Marks 80M		
11.	a.	Use Regula-falsi method to find the real root of the equation $x^3 - 3x + 4 = 0$ correct to four decimal places. Carry out 4 iterations.							10 Marks	L3	CO1
	•	•				Or				•	
12.	a.	Find the approximate root of the equation $x \log_{10} x = 1.2$ using Newton-Raphson method correct to four decimal places.							10 Marks	L3	CO1
13.	a.		the valuation for	10 Marks	L3	CO2					
		x	10	20	30	40	50				
		У	20	65	180	390	505				
						Or					
14.	a.		ynomial f and henc		_	ing Lagra	nge's inte	erpolation	10 Marks	L3	CO2
		x	0	1	2	5					
		f(x)	2	3	12	147					
15.	a.	Use Tayl	or's serie	es metho	d to find y	y at $x = 0$	1 consid	lering	10 Marks	L3	CO3
		_			ven that $\frac{dy}{dx}$			_			
						Or					
16.	a.	Apply Adams-Bashforth predictor and corrector formula to compute y at $x = 0.4$ given $\frac{dy}{dx} + y + xy^2 = 0$, $y(0) = 1$, $y(0.1) = 0.9008$, $y(0.2) = 0.8066$, $y(0.3) = 0.7220$. Apply corrector formula twice.						10 Marks	L3	C03	
]	<u> </u>								<u> </u>	
17.	a.		ezoidal ru		g seven or mpson's 1				15 Marks	L3	CO2
	<u> </u>	<u> </u>				Or				<u> </u>	
18.	a.	Evaluate $\int_0^{0.6} e^{-x^2} dx$ taking six subintervals by applying (i) Trapezoidal rule (ii) Simpson's 3/8 th rule (iii) Weddle's rule.							15 Marks	L3	CO2

19.		Haing Modified Euler's method find an approximate value of a	8 Marks	L3	CO3
19.	a.	Using Modified Euler's method, find an approximate value of y	o Marks	LS	CUS
		when $x = 0.3$ given that $\frac{dy}{dx} = x + y$, $y(0) = 1$, taking $h = 0$			
		0.3			
	b.	Using Runge-Kutta method of fourth order, find $y(0.2)$ for the	7 Marks	L3	CO3
		equation $\frac{dy}{dx} = \frac{y-x}{y+x}$, $y(0) = 1$. taking $h = 0.2$			
	1	Or		1	
20.	a.	Solve $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial t^2}$ in $0 < x < 5$, $t \ge 0$ given that $u(x, 0) = 20$,	15 Marks	L3	CO3
		u(0,t) = 0, $u(5,t) = 100$. Compute u for the time step with			
		h = 1 by Crank-Nicholson method.			
		h = 1 by Grank Menoison method.			
21.	a.	Using Jacobi's method, find all the eigenvalues and the	10 Marks	L3	CO1
		eigenvectors of the matrix $\begin{bmatrix} 1 & \sqrt{2} & 2 \\ \sqrt{2} & 3 & \sqrt{2} \\ 2 & \sqrt{2} & 1 \end{bmatrix}$			
		eigenvectors of the matrix $ \sqrt{2} 3 \sqrt{2} $			
		$\begin{bmatrix} 2 & \sqrt{2} & 1 \end{bmatrix}$			
	b.	Solve the following system of equations using Gauss-Seidel	10 Marks	L3	CO1
	D.	iterative method correct it to three decimal places, carry out 3	10 Marks	LJ	COI
		iterations.			
		iterations.			
		8x + 3y + 2z = 13, $x + 5y + z = 7$, $2x + y + 6z = 9$.			
	I	Or	<u>I</u>	1	
22.	a.	Solve $2x + 3y + z = 9$, $x + 2y + 3z = 6$ and $3x + y + 2z = 8$	20 Marks	L3	CO1
		using LU-decomposition method.			
