

PRESIDENCY UNIVERSITY

BENGALURU

Mid - Term Examinations – October 2025

Date: 11-10-2025

Time: 09.30am to 11.00am

School: SOCSE	Program: B. Tech	
Course Code : CBC2502	Course Name: Distributed Ledger Technologies	
Semester: V	Max Marks: 50	Weightage: 25 %

CO - Levels	CO1	CO2	CO3	CO4	CO5
Marks	26	24	-	-	-

Instructions:

- (i) Read all questions carefully and answer accordingly.
- (ii) Do not write anything on the question paper other than roll number.

Part A

Answer ALL the Questions. Each question carries 2marks.

5Q x 2M=10M

1	How Blockchain differ from Distributed Ledger Technologies?	2 Marks	L1	CO1
2	Define Hash function and give examples of hash used in block chain.	2 Marks	L1	CO1
3	Explain the structure of a Merkle tree with the help of a diagram.	2 Marks	L2	CO1
4	How do Permissioned and Permissionless Distributed Ledger Technologies differ? Explain with suitable examples.	2 Marks	L2	CO2
5	List the different consensus protocols used in Distributed Ledger Technologies.	2 Marks	L1	CO2

Part B

Answer the Questions.

Total Marks 40M

6.	a.	Apply your knowledge to illustrate a Block with its features and types, and demonstrate the Merkle tree structure with an example.	10 Marks	L3	CO1
-----------	-----------	--	-----------------	-----------	------------

Or

7.	a.	Demonstrate your understanding of Distributed Ledger Technologies (DLT) by illustrating its features and types with suitable real-world examples.	10 Marks	L3	CO1
----	----	---	----------	----	-----

8.	a.	Compare the role of cryptographic primitives in blockchain by examining Hash functions and Digital Signatures, highlighting their similarities, differences, and use cases with suitable examples.	10 Marks	L4	CO1
----	----	--	----------	----	-----

Or

9.	a.	Analyze the role of cryptographic primitives in blockchain by comparing Hash functions and Public Key Cryptography, and evaluate their significance with suitable examples.	10 Marks	L4	CO1
----	----	---	----------	----	-----

10.	a.	Illustrate with suitable examples the application of consensus protocol following four rules for a single node in permissioned blockchains.	10 Marks	L3	CO2
-----	----	---	----------	----	-----

Or

11.	a.	Demonstrate how consensus mechanisms are applied in permissioned blockchains with suitable examples.	10 Marks	L3	CO2
-----	----	--	----------	----	-----

12.	a.	Describe how Proof of Stake (PoS), Delegated Proof of Stake (DPoS), and Practical Byzantine Fault Tolerance (PBFT) consensus algorithms select a miner for the next block generation.	10 Marks	L2	CO2
-----	----	---	----------	----	-----

Or

13.	a.	How do Proof of Work (PoW), Proof of Burn (PoB), and Proof of Elapsed Time (PoET) consensus algorithms function to select a miner for the next block generation? Explain with suitable interpretation.	10 Marks	L2	CO2
-----	----	--	----------	----	-----