

Roll No.								
----------	--	--	--	--	--	--	--	--

PRESIDENCY UNIVERSITY

BENGALURU

Mid - Term Examinations – October 2025

Date: 07-10-2025

Time: 09.30am to 11.00am

School: SOCSE	Program: B.Tech Computer Science and Engineering (AI & ML)	
Course Code: ISE2504	Course Name: Image Processing and Computer Vision	
Semester: V	Max Marks: 50	Weightage: 25%

CO - Levels	CO1	CO2	CO3	CO4	CO5
Marks	26	24	0	0	0

Instructions:

- (i) *Read all questions carefully and answer accordingly.*
- (ii) *Do not write anything on the question paper other than roll number.*

Part A

Answer ALL the Questions. Each question carries 2marks.

5Q x 2M=10M

1	Define digital image and mention the steps involved in image digitization.	2 Marks	L	CO1
2	Explain image sampling and quantization.	2 Marks	L	CO1
3	State four sources of noise in digital images.	2 Marks	L	CO1
4	Define image segmentation.	2 Marks	L	CO2
5	List morphological operations in image processing.	2 Marks	L	CO2

Part B

Answer the Questions.

Total Marks 40M

6.	a.	<p>Apply split and merge segmentation algorithm on given 2D image matrix. T=4</p> $\begin{bmatrix} 50 & 52 & 51 & 200 & 202 & 201 & 198 & 199 \\ 49 & 53 & 50 & 203 & 205 & 202 & 197 & 200 \\ 52 & 50 & 51 & 201 & 204 & 200 & 199 & 198 \\ 48 & 51 & 49 & 202 & 203 & 199 & 200 & 201 \\ 150 & 152 & 149 & 100 & 102 & 99 & 98 & 101 \\ 151 & 153 & 150 & 101 & 99 & 100 & 102 & 98 \\ 149 & 150 & 148 & 99 & 101 & 100 & 102 & 103 \\ 152 & 151 & 150 & 98 & 100 & 99 & 101 & 102 \end{bmatrix}$	10 Marks	L3	CO 2
Or					
7.	a.	<p>Explain watershed segmentation algorithm with neat diagram.</p>	10 Marks	L3	CO 2

8.	a.	<p>Given Data: 3x3 Image Matrix:</p> $I = \begin{bmatrix} 10 & 20 & 10 \\ 20 & 50 & 20 \\ 10 & 20 & 10 \end{bmatrix}$ <p>Gaussian Kernel:</p> $K = \frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$ <p>Apply the Gaussian filter for noise reduction.</p>	10 Marks	L3	CO 1
Or					

9.	a.	<p>Given Data: 3x3 Image Matrix:</p>	10 Marks	L3	CO 1
----	----	---	----------	----	------

$$I = \begin{bmatrix} 10 & 20 & 10 \\ 20 & 50 & 20 \\ 10 & 20 & 10 \end{bmatrix}$$

Apply Mean filter for noise reduction

10.	a.	Explain the significance of morphological operations.	10 Marks	L2	CO 2
-----	----	---	----------	----	------

Or

11.	a.	Explain opening and closing morphological operations with an example	10 Marks	L2	CO 2
-----	----	--	----------	----	------

12.	a.	Apply a power-law (gamma) transformation on the given 2D image matrix to enhance its contrast. Use $c=1$ and $\gamma=0.5$.	10 Marks	L3	CO 1
-----	----	---	----------	----	------

$$\begin{bmatrix} 25 & 50 & 75 & 100 \\ 125 & 150 & 175 & 200 \\ 225 & 100 & 50 & 25 \\ 75 & 125 & 175 & 225 \end{bmatrix}$$

Or

13.	a.	Apply a logarithmic transformation on the given 2D grayscale image matrix to enhance details in darker regions. Use $c=1$ and base-e logarithm.	10 Marks	L3	CO 1
-----	----	---	----------	----	------

$$\begin{bmatrix} 5 & 10 & 15 & 20 \\ 25 & 30 & 35 & 40 \\ 45 & 50 & 55 & 60 \\ 65 & 70 & 75 & 80 \end{bmatrix}$$

