

Roll No.											
----------	--	--	--	--	--	--	--	--	--	--	--

PRESIDENCY UNIVERSITY

BENGALURU

Mid - Term Examinations – October 2025

Date: 07-10-2025

Time: 02.00pm to 03.30pm

School: SOCSE	Program: B.Tech	
Course Code: IST2502	Course Name: Foundations of Cryptography and Information Security	
Semester: V	Max Marks: 50	Weightage: 25%

CO - Levels	CO1	CO2	CO3	CO4
Marks	24	26		

Instructions:

- (i) *Read all questions carefully and answer accordingly.*
- (ii) *Do not write anything on the question paper other than roll number.*

Part A

Answer ALL the Questions. Each question carries 2marks.

5Q x 2M=10M

1	Define Cryptanalysis.	2 Marks	L1	CO1
2	List the two types of Passive Attacks.	2 Marks	L1	CO1
3	Name the AES transformation which performs a bitwise XOR operation with the round key.	2 Marks	L1	CO2
4	State two key issues that Public-Key Cryptography was developed to address.	2 Marks	L1	CO2
5	Define the purpose of the Diffie-Hellman key exchange algorithm.	2 Marks	L1	CO2

Part B

Answer the Questions.

Total Marks 40M

6.	a.	Classify the Classical Encryption Techniques of Substitution and Transposition Ciphers with suitable examples.	10 Marks	L3	CO1
Or					

7.	a.	Decrypt the following cipher text using Hill Cipher. Key: $\begin{bmatrix} C & D \\ D & G \end{bmatrix}$ Ciphertext: FKMFIO	10 Marks	L3	CO 1
----	----	---	----------	----	------

8.	a.	a) State Euler's Theorem and check the equality for $a=3; n=10$; $\phi(10)=4$. b) Demonstrate Euler Totient Function $\phi(n)$	10 Marks	L3	CO 1
----	----	---	----------	----	------

Or

9.	a.	a) Encrypt the following text using the PLAYFAIR CIPHER. Keyword: COMPARE Plaintext: HIDDEN b) Encrypt the following text using the Rail Fence cipher $d = 3$ Plaintext: CRYPTOGRAPHY IS THE STUDY OF SECURE COMMUNICATION TECHNIQUES	10 Marks	L3	CO 1
----	----	--	----------	----	------

10.	a.	Alice and Bob use the Diffie-Hellman key exchange technique with a common prime $q = 23$ and a primitive root $a = 5$. If Bob has a public key $Y_B = 10$, calculate Bob's private key X_B ?	10 Marks	L3	CO 2
-----	----	--	----------	----	------

Or

11.	a.	Classify Single DES, 2-key Triple DES, and 3-key Triple DES.	10 Marks	L3	CO 2
-----	----	--	----------	----	------

12.	a.	Demonstrate the overall structure of the AES algorithm.	10 Marks	L3	CO 2
-----	----	---	----------	----	------

Or

13.	a.	Perform RSA encryption and decryption for the given values: $p = 7$, $q = 13$, $e = 11$, $M = 2$	10 Marks	L3	CO 2
-----	----	---	----------	----	------