

Roll No.											
----------	--	--	--	--	--	--	--	--	--	--	--

PRESIDENCY UNIVERSITY

BENGALURU

Mid - Term Examinations – October 2025

Date: 08-10-2025

Time: 11.45am to 01.15pm

School: SOCSE	Program: B. Tech	
Course Code: CAI2502	Course Name: Deep Learning	
Semester: V	Max Marks: 50	Weightage: 25%

CO - Levels	CO1	CO2	CO3	CO4	CO5
Marks	26	24			

Instructions:

- (i) *Read all questions carefully and answer accordingly.*
- (ii) *Do not write anything on the question paper other than roll number.*

Part A

Answer ALL the Questions. Each question carries 2marks.

5Q x 2M=10M

1	List any 2 Deep Learning architectures.	2 Marks	L1	CO1
2	Define Pooling with respect to CNN.	2 Marks	L1	CO2
3	Write the syntax to compile the model with ‘optimizer’, ‘loss’ and ‘metrics’ hyperparameters set to values of your choice.	2 Marks	L1	CO1
4	What is zero padding with respect to convolutional neural networks.	2 Marks	L1	CO2
5	Write the syntax to fit the keras model on the dataset with 50 epochs and batch size of 15.	2 Marks	L1	CO1

Part B

Answer the Questions.

Total Marks 40M

6.	a.	Different weight initialization schemes are used according to the activation function on each layer of a Deep neural network. Distinguish between Zero Initialization and He Initialization techniques.	10 Marks	L2	CO1
-----------	-----------	---	-----------------	-----------	------------

	b.	Use python packages and libraries to perform the following tasks on house-prices dataset:	10 Marks	L3	CO1
		<ul style="list-style-type: none"> • Import necessary packages • Load Dataset • Define MLP Model • Compile Model • Evaluate the model 			

Or

7.	a.	Different weight initialization schemes are used according to the activation function on each layer of a Deep neural network. Distinguish between Random Initialization and Xavier Initialization techniques.	10 Marks	L2	CO1
	b.	Use python packages and libraries to perform the following tasks: <ul style="list-style-type: none"> • Import necessary packages • Split into input(X) and output(y) variables • Define the keras model • Compile the keras model and specify the training parameters of the architecture • Fit the keras model on the dataset 	10 Marks	L3	CO1

8.	a.	Explain with the help of diagrams, typical CNN architecture.	10 Marks	L2	CO2
	b.	Write the python code to design a CNN model using TensorFlow/Keras to classify images from the CIFAR-10 dataset (10 categories like airplane, dog, car, etc.).	10 Marks	L3	CO2

Or

9.	a.	Explain the concept of feature learning and classification layers with respect to convolutional neural networks.	10 Marks	L2	CO2
	b.	Give the python code to design a Convolutional Neural Network (CNN) model using TensorFlow/Keras to classify images from the MNIST dataset (handwritten digits 0-9).	10 Marks	L3	CO2