

Roll No.									
----------	--	--	--	--	--	--	--	--	--

PRESIDENCY UNIVERSITY

BENGALURU

Mid - Term Examinations – October 2025

Date: 09-10-2025

Time: 09.30am to 11.00am

School: SOE	Program: B. Tech	
Course Code : CHE2503	Course Name: Applied Chemistry for Engineers	
Semester: I	Max Marks: 50	Weightage: 25%

CO - Levels	CO1	CO2	CO3	CO4	CO5
Marks	24	26	--	--	--

Instructions:

- (i) *Read all questions carefully and answer accordingly.*
- (ii) *Do not write anything on the question paper other than roll number.*

Part A

Answer ALL the Questions. Each question carries 2 marks.

5Q x 2M=10M

1	What is an intrinsic semiconductor?	2 Marks	L1	CO1
2	Write any two examples for compound semiconductors.	2 Marks	L1	CO1
3	Give an example of organic molecule, which behaves as p-type semiconductor along with structure.	2 Marks	L1	CO1
4	What is thermotropic liquid crystal?	2 Marks	L1	CO2
5	Write any four advantages of LED.	2 Marks	L1	CO2

Part B

Answer the Questions.

4Q X 10M = 40M

6.		List out the differences between metal, insulator and semiconductor considering different parameters.	10 Marks	L2	CO1
Or					

7.		Describe chemical, electronic properties and applications of Indium Phosphide (InP).	10 Marks	L2	CO1
----	--	--	----------	----	-----

8.		Explain the Float Zone (FZ) for the synthesis of monocrystalline Silicon.	10 Marks	L2	CO1
----	--	---	----------	----	-----

Or

9.		Assuming that the number of electrons near the top of the valence band available for conduction is $6 \times 10^{25}/\text{m}^3$ and the number of electrons excited to conduction band is $4.5 \times 10^{19}/\text{m}^3$, calculate the energy gap of Ge at 298K.	10 Marks	L3	CO1
----	--	--	----------	----	-----

10.		Discuss in detail the organic - inorganic hybrid materials used in memory systems along with suitable examples.	10 Marks	L3	CO2
-----	--	---	----------	----	-----

Or

11.		Explain the criteria for organic and polymeric semiconductor materials in memory systems.	10 Marks	L2	CO2
-----	--	---	----------	----	-----

12.		Explain in detail the working principle of LCD.	10 Marks	L2	CO2
-----	--	---	----------	----	-----

Or

13.		What are OLEDs? Mention the properties and applications of OLEDs.	10 Marks	L2	CO2
-----	--	---	----------	----	-----