

Roll No.									
----------	--	--	--	--	--	--	--	--	--

PRESIDENCY UNIVERSITY

BENGALURU

Mid - Term Examinations – October 2025

Date 10-10-2025

Time: 09.30am to 11.00am

School: SOCSE	Program: B. Tech IoT	
Course Code: CIT2400	Course Name: Cyber Physical Systems	
Semester: III	Max Marks: 50	Weightage: 25%

CO - Levels	CO1	CO2	CO3	CO4	CO5
Marks					

Instructions:

- (i) Read all questions carefully and answer accordingly.
- (ii) Do not write anything on the question paper other than roll number.

Part A

Answer ALL the Questions. Each question carries 2marks.

5Q x 2M=10M

1	Define Industry 4.0 in one sentence.	2 Marks	L1	CO1
2	Mention any two applications of CPS in Smart Cities.	2 Marks	L1	CO1
3	Why is cybersecurity important in CPS?	2 Marks	L1	CO1
4	What is the function of actuators in CPS? Give one example.	2 Marks	L1	CO2
5	State the difference between continuous and discrete dynamics in CPS.	2 Marks	L1	CO2

Part B

Answer the Questions.

Total Marks 40M

6.	a.	Explain the principles of CPS (integration, feedback, real-time processing) with examples.	10 Marks	L2	CO1
Or					

7.	a.	Illustrate the reliability and safety issues in CPS with relevant case studies.	10 Marks	L2	CO 1
-----------	-----------	---	-----------------	-----------	-------------

8.	a.	Describe CPS applications in Smart Grids and Energy Management.	10 Marks	L2	CO 1
-----------	-----------	---	-----------------	-----------	-------------

Or

9.	a.	Demonstrate CPS concepts to explain Autonomous Vehicle systems.	10 Marks	L2	CO 1
-----------	-----------	---	-----------------	-----------	-------------

10.	a.	Compare MCUs and MPUs in terms of architecture, performance, and applications in CPS.	10 Marks	L2	CO 2
------------	-----------	---	-----------------	-----------	-------------

Or

11.	a.	Discuss the role of hybrid MCU-MPU systems in drones with examples.	10 Marks	L2	CO 2
------------	-----------	---	-----------------	-----------	-------------

12.	a.	Explain stability, controllability, and observability in CPS dynamic behaviors with examples.	10 Marks	L2	CO 2
------------	-----------	---	-----------------	-----------	-------------

Or

13.	a.	<p>IoT-enabled sensors detect contamination in a city water supply, but false positives occur frequently due to sensor noise.</p> <ul style="list-style-type: none"> i. Discuss how robustness and fault tolerance requirements can address this. ii. Propose a machine learning-based solution to improve accuracy. 	10 Marks	L2	CO 2
------------	-----------	--	-----------------	-----------	-------------