

Roll No.											
----------	--	--	--	--	--	--	--	--	--	--	--

PRESIDENCY UNIVERSITY

BENGALURU

Mid - Term Examinations – October 2025

Date: 11-10-2025

Time: 11.45am to 01.15pm

School: SOE	Program: B.Tech in Civil	
Course Code : CIV2501	Course Name: Transportation Engineering	
Semester: III	Max Marks: 50	Weightage: 25%

CO - Levels	CO1	CO2	CO3	CO4	CO5
Marks	22	28	-	-	-

Instructions:

- (i) *Read all questions carefully and answer accordingly.*
- (ii) *Do not write anything on the question paper other than roll number.*

Part A

Answer ALL the Questions. Each question carries 2marks.

5Q x 2M=10M

1	Define highway alignment and list any two disadvantages of improper highway alignment	2 Marks	L1	CO1
2	Write any two factors controlling highway alignment	2 Marks	L1	CO1
3	List any four desirable properties of an aggregates used for road construction	2 Marks	L1	CO2
4	Define the following a) Flakiness index b) Elongation index	2 Marks	L1	CO2
5	Write any four tests can be conducted in laboratory to assess the property of bitumen used for road construction	2 Marks	L1	CO2

Part B

Answer the Questions.

Total Marks 40M

6.	a.	Define obligatory points in highway alignment. With the help of neat sketch explain any two obligatory points through which highway alignment should pass	5 Marks	L2	CO1
	b.	Identify the test and explain the test procedure, which is used to determine the toughness of an aggregates used for road construction in a laboratory	5 Marks	L2	CO2

Or

7.	a.	List and explain the requirements of an highway alignment	5 Marks	L2	CO1
	b.	Identify the test and explain the test procedure, which is used to determine the crushing strength of an aggregates used for road construction in a laboratory	5 Marks	L2	CO2

8.	a.	With the help of neat sketch explain the procedure of Ductility test which is used to determine the ductility value of a bitumen used for road construction.	7 Marks	L2	CO2
	b.	Explain the below mentioned stages in engineering surveys need to be conducted, to finalize the location for highway alignment. a) Map study b) Reconnaissance survey	8 Marks	L2	CO1

Or

9.	a.	With the help of neat sketch explain the procedure of penetration test which is used to determine the hardness or softness of a bitumen used for road construction	7 Marks	L2	CO2
	b.	Explain the below mentioned stages in engineering surveys need to be conducted, to finalize the location for highway alignment. a) Preliminary survey b) final location and detailed survey	8 Marks	L2	CO1

10.	a.	Explain Soundness test on aggregates which is used to	5 Marks	L2	CO2
------------	-----------	---	----------------	-----------	------------

		determine the resistance of aggregates against weathering action																																					
	b.	Which project would you give more preference among the road projects listed below	10 marks	L3	CO1																																		
<table border="1"> <thead> <tr> <th rowspan="2">Road</th> <th rowspan="2">Length (km)</th> <th colspan="3">No. of villages served with population of</th> <th colspan="2">Productivity (in 1000 tonnes)</th> </tr> <tr> <th><1000</th> <th>1000-3000</th> <th>> 3000</th> <th>Agricultural</th> <th>Industrial</th> </tr> </thead> <tbody> <tr> <td>A</td> <td>20</td> <td>40</td> <td>10</td> <td>5</td> <td>25</td> <td>0.8</td> </tr> <tr> <td>B</td> <td>35</td> <td>50</td> <td>20</td> <td>8</td> <td>15</td> <td>0.6</td> </tr> <tr> <td>C</td> <td>30</td> <td>20</td> <td>10</td> <td>3</td> <td>30</td> <td>1.2</td> </tr> </tbody> </table> <p>Make your choice using the maximum utility value principle.</p> <p>Adopt a utility unit of 1.0 for serving a village with population <1000, a utility unit of 2.0 for serving a village with population range 1000 to 3000 and a utility unit of 5.0 for serving a village with population >3000. Also, adopt a utility unit of 1.0 for catering 1000t of agricultural products/100t of industrial products.</p>	Road	Length (km)	No. of villages served with population of			Productivity (in 1000 tonnes)		<1000	1000-3000	> 3000	Agricultural	Industrial	A	20	40	10	5	25	0.8	B	35	50	20	8	15	0.6	C	30	20	10	3	30	1.2	Or					
Road			Length (km)	No. of villages served with population of			Productivity (in 1000 tonnes)																																
	<1000	1000-3000		> 3000	Agricultural	Industrial																																	
A	20	40	10	5	25	0.8																																	
B	35	50	20	8	15	0.6																																	
C	30	20	10	3	30	1.2																																	
11.	a.	Explain the below mentioned desirable properties of aggregates used for road construction. a) Adhesion with bitumen b) Durability	5 Marks	L2	CO2																																		
	b.	Select the best route among the options listed based on the principle of maximum utility:	10 marks	L3	CO1																																		
<table border="1"> <thead> <tr> <th rowspan="2">Route</th> <th rowspan="2">Length (km)</th> <th colspan="3">No. of villages served with population of</th> <th colspan="2">Productivity (in 1000 tonnes)</th> </tr> <tr> <th><1000</th> <th>1000-2000</th> <th>> 2000</th> <th>Agricultural</th> <th>Industrial</th> </tr> </thead> <tbody> <tr> <td>Route 1</td> <td>20</td> <td>20</td> <td>12</td> <td>15</td> <td>15</td> <td>1.0</td> </tr> <tr> <td>Route 2</td> <td>23</td> <td>14</td> <td>18</td> <td>10</td> <td>18</td> <td>1.7</td> </tr> <tr> <td>Route 3</td> <td>19</td> <td>10</td> <td>15</td> <td>20</td> <td>20</td> <td>2.0</td> </tr> </tbody> </table> <p>Adopt a utility unit of 1.0 for serving a village with population <1000, a utility unit of 1.5 for serving a village with population range 1000 to 2000 and a utility unit of 2.0 for serving a village with population >2000. Also, adopt a utility unit of 2.5 for catering 1000t of agricultural products/ 1 for 100t of industrial products.</p>	Route	Length (km)	No. of villages served with population of			Productivity (in 1000 tonnes)		<1000	1000-2000	> 2000	Agricultural	Industrial	Route 1	20	20	12	15	15	1.0	Route 2	23	14	18	10	18	1.7	Route 3	19	10	15	20	20	2.0						
Route			Length (km)	No. of villages served with population of			Productivity (in 1000 tonnes)																																
	<1000	1000-2000		> 2000	Agricultural	Industrial																																	
Route 1	20	20	12	15	15	1.0																																	
Route 2	23	14	18	10	18	1.7																																	
Route 3	19	10	15	20	20	2.0																																	