

Roll No.									
----------	--	--	--	--	--	--	--	--	--

PRESIDENCY UNIVERSITY

BENGALURU

Mid - Term Examinations – October 2025

Date: 08-10-2025

Time: 11.45am to 01.15pm

School: SOCSE AND SOIS	Program: B.TECH	
Course Code : CAI3400	Course Name: IMAGE PROCESSING AND ANALYSIS	
Semester: V	Max Marks: 50	Weightage: 25%

CO - Levels	C01	C02	C03	C04	C05
Marks					

Instructions:

- (i) *Read all questions carefully and answer accordingly.*
- (ii) *Do not write anything on the question paper other than roll number.*

Part A

Answer ALL the Questions. Each question carries 2marks.

5Q x 2M=10M

1	Define spatial resolution	2 Marks	L	C01
2	Define brightness adaptation.	2 Marks	L	C01
3	Define Gray level slicing.	2 Marks	L	C02
4	Explain Bit plane slicing	2 Marks	L	C02
5	Define Histogram Specification.	2 Marks	L	C02

Part B

Answer the Questions.

Total Marks 40M

6.	a.	Explain sampling and quantization in digital image processing with diagrams	10 Marks	L	C01
	b.	Explain the fundamental steps in a digital image processing system with a neat diagram.	10 Marks	L	C01

Or

7.	a.	Explain color fundamentals and models (RGB, CMY/CMYK, HIS).	10 Marks	L	CO1
	b.	Explain adjacency, connectivity, and region properties in images with examples.	10 Marks	L	CO1

8.	a.	Explain the Basic Gray Level Transformations functions	10 Marks	L	CO2
	b.	Perform Histogram Equalization and Histogram Matching non a 3 bit image ($L=8$) of size 64×64 pixels. The intensity distribution of the image is given below and find the actual value of the given $P(z)$ using histogram matching	10 Marks	L	CO2

Gray level	0	1	2	3	4	5	6	7
No of pixel	790	1023	850	656	329	245	122	81
$P(z)$	0	0	0	0.15	0.20	0.30	0.20	0.15

Or

9.	a.	i. Explain Homomorphic Filtering ii. Perform Histogram Equalization of the image	10 Marks	L	CO2
	b.	Explain the following i. Smoothing Spatial Filters ii. Spatial Averaging	10 Marks	L	CO2