



|          |  |  |  |  |  |  |  |  |  |  |  |
|----------|--|--|--|--|--|--|--|--|--|--|--|
| Roll No. |  |  |  |  |  |  |  |  |  |  |  |
|----------|--|--|--|--|--|--|--|--|--|--|--|

# PRESIDENCY UNIVERSITY

## BENGALURU

### Mid - Term Examinations – October 2025

**Date:** 09-10-2025

**Time:** 02.00pm to 03.30pm

|                              |                                                   |                       |
|------------------------------|---------------------------------------------------|-----------------------|
| <b>School:</b> SOIS          | <b>Program:</b> BCA, BCA(DS), BCA(AIML)           |                       |
| <b>Course Code :</b> CSA1200 | <b>Course Name:</b> Digital Computer Fundamentals |                       |
| <b>Semester:</b> I           | <b>Max Marks:</b> 50                              | <b>Weightage:</b> 25% |

| <b>CO – Levels</b> | <b>CO1</b> | <b>CO2</b> | <b>CO3</b> | <b>CO4</b> | <b>CO5</b> |
|--------------------|------------|------------|------------|------------|------------|
| <b>Marks</b>       | <b>36</b>  | <b>14</b>  | -          | -          | -          |

**Instructions:**

- (i) *Read all questions carefully and answer accordingly.*
- (ii) *Do not write anything on the question paper other than roll number.*

### Part A

**Answer ALL the Questions. Each question carries 2marks.**

**5Q x 2M=10M**

|          |                                        |                |           |            |
|----------|----------------------------------------|----------------|-----------|------------|
| <b>1</b> | State absorption law.                  | <b>2 Marks</b> | <b>L1</b> | <b>CO1</b> |
| <b>2</b> | What is Boolean algebra?               | <b>2 Marks</b> | <b>L1</b> | <b>CO1</b> |
| <b>3</b> | Show that $(A'(A'+1))' = A$            | <b>2 Marks</b> | <b>L1</b> | <b>CO1</b> |
| <b>4</b> | Compare multiplexer and demultiplexer. | <b>2 Marks</b> | <b>L1</b> | <b>CO2</b> |
| <b>5</b> | Define combinational circuits.         | <b>2 Marks</b> | <b>L1</b> | <b>CO2</b> |

## Part B

### Answer the Questions.

**Total Marks 40M**

|           |           |                                                                                                                              |                 |           |             |
|-----------|-----------|------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------|-------------|
| <b>6.</b> | <b>a.</b> | Determine sum of product terms from the given Boolean expression $F(A, B, C, D) = (A'+B+D). (A+C'+D). (A'+B'+C'). (A+B+C)$ . | <b>15 Marks</b> | <b>L3</b> | <b>CO 1</b> |
|           | <b>b.</b> | Implement XOR and XNOR using NAND gates                                                                                      | <b>5 Marks</b>  | <b>L2</b> | <b>CO 1</b> |

**Or**

|           |           |                                                                                        |                 |           |             |
|-----------|-----------|----------------------------------------------------------------------------------------|-----------------|-----------|-------------|
| <b>7.</b> | <b>a.</b> | Compute simplified product of sum from the Boolean expression $F(A, B, C, D) = AC+B'D$ | <b>15 Marks</b> | <b>L3</b> | <b>CO 1</b> |
|           | <b>b.</b> | Discuss in detail about 3 variable k-map.                                              | <b>5 Marks</b>  | <b>L2</b> | <b>CO 1</b> |

|           |           |                                                                                                |                 |          |             |
|-----------|-----------|------------------------------------------------------------------------------------------------|-----------------|----------|-------------|
| <b>8.</b> | <b>a.</b> | State and prove De morgan's law.                                                               | <b>10 Marks</b> | <b>L</b> | <b>CO 1</b> |
|           | <b>b.</b> | Describe about Full adder. How full adder can be constructed using half adders?                | <b>10 Marks</b> | <b>L</b> | <b>CO 2</b> |
| <b>Or</b> |           |                                                                                                |                 |          |             |
| <b>9.</b> | <b>a.</b> | Compute equivalent value of hexadecimal, decimal and binary for the octal number $(456)_8$ .   | <b>10 Marks</b> | <b>L</b> | <b>CO 1</b> |
|           | <b>b.</b> | Describe about Full subtractor. How full subtractor can be constructed using half subtractors? | <b>10 Marks</b> | <b>L</b> | <b>CO 2</b> |