

Roll No.											
----------	--	--	--	--	--	--	--	--	--	--	--

PRESIDENCY UNIVERSITY

BENGALURU

Mid - Term Examinations – October 2025

Date: 09-10-2025

Time: 02.00pm to 03.30pm

School: SOCSE	Program: CSE, CBC, CCS, CIT, CBD, CDV, CSN, CSI	
Course Code: CSE2264	Course Name: Essentials of AI	
Semester: V	Max Marks: 50	Weightage: 25%

CO - Levels	CO1	CO2	CO3	CO4	CO5
Marks	20	30	-	-	-

Instructions:

- (i) Read all questions carefully and answer accordingly.
- (ii) Do not write anything on the question paper other than roll number.

Part A

Answer ALL the Questions. Each question carries 2marks.

5Q x 2M=10M

1	State true or false. For a given branching factor b, and a solution at a depth d, the number of operations for Iterative Deepening DFS is $\sum_{i=0}^d (d-i)*b^i$	2 Marks	L1	CO1
2	A generalized cost function for heuristic searches is given by $f(n) = a^*g(n) + b^*h(n)$. State the values of a and b for weighted A* search, where w = 2.	2 Marks	L1	CO1
3	State the minimum number of variables in the N Queen's Problem.	2 Marks	L1	CO1
4	State the recurrence T(m) for alpha-beta pruning if there is maximum pruning.	2 Marks	L1	CO1
5	State Yes or No. In the water jug problem, with 2 jugs of 3 litres and 5 litres, we can measure out 4 litres of water, such that we will be having 2 litres in each of the 2 jugs.	2 Marks	L1	CO1

Part B

Answer the Questions.

Total Marks 40M

6.	Consider a graph which has a depth $d = 5$, and a branching factor $b = 10$. Compute the number of nodes visited using Breadth First Search and Iterative Deepening Depth First Search starting from the root node. Assume that the root node is at a depth of 0.	10 Marks	L2	CO1
----	---	----------	----	-----

Or

7.	Consider the following graph, where we have 7 nodes (A, B, C, D, E, F, and G), with bidirectional edges (i.e. AB is same as BA) – AB (2), AC (1), BD (2), CD (1), DE (2), DF (1), EG (2), and FG (1). The heuristic values of the nodes are: $h(A) = 9$, $h(B) = 4$, $h(C) = 8$, $h(D) = 4$, $h(E) = 1$, $h(F) = 1$, and $h(G) = 0$. Compute the path predicted by the A^* search and its length	10 Marks	L2	CO1
----	---	----------	----	-----

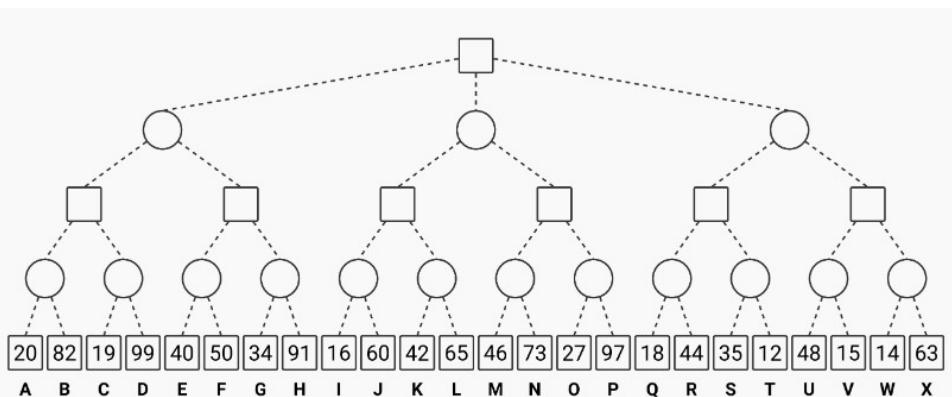

8.	<p>This is an abstraction showing cities in southern Germany and the distances between them.</p> <p>Demonstrate Dijkstra's SSSP starting from Erfurt to visit every other city.</p>	15 Marks	L3	CO2
----	---	----------	----	-----

Or

9.	Given a 6 litre jug and a 9 litre jug, solve the water jug problem to fill out all integral volumes of water from 1 litre to 15 litres. State which	15 Marks	L3	CO2
----	---	----------	----	-----

	volumes of water cannot be filled as well.		
--	--	--	--

10. Consider a **10 Queen's Problem** where we have to arrange 10 queens on a 10×10 chessboard. We plan to solve this using local search by having a fitness function $F(c)$, where c is the configuration of the chessboard, represented as a 10-dimension vector where each number is the row-number of the queen on the chessboard.



For example, in the above figure the configuration, $C = [1,8,2,9,6,3,10,4,7,5]$. Our fitness function $F(C) = 45 - P$, where P is the number of **distinct attacking pairs of queens** (NOTE: Queen 1 attacking Queen 2 is considered the same as Queen 2 attacking Queen 1). The given figure shows $P = 0$ (since no queen is attacking another), so the fitness function $F([1,8,2,9,6,3,10,4,7,5]) = 45 - 0 = 45$.

Calculate the fitness function of **[1,3,5,7,9,4,2,6,8,10]**.

Or

11. For the game tree given below (circles are min nodes and squares are max nodes):

- Calculate the expected utility at the root.
- Perform alpha-beta pruning
- Perform ideal ordering

	d) Perform alpha-beta pruning of the ideal ordered tree.			
--	--	--	--	--