

Roll No.								
----------	--	--	--	--	--	--	--	--

PRESIDENCY UNIVERSITY

BENGALURU

Mid - Term Examinations – October 2025

Date: 09-10-2025

Time: 09.30am to 11.00am

School: SOCSE	Program: B.Tech	
Course Code : CSE2500	Course Name: DATA ANALYTICS	
Semester: V	Max Marks: 50	Weightage: 25%

CO - Levels	CO1	CO2	CO3	CO4	CO5
Marks	26	24	-	-	-

Instructions:

- (i) *Read all questions carefully and answer accordingly.*
- (ii) *Do not write anything on the question paper other than roll number.*

Part A

Answer ALL the Questions. Each question carries 2marks.

5Q x 2M=10M

1	Briefly explain about Nominal scale with an example.	2 Marks	L1	CO1
2	What are the machine generated unstructured data with examples?	2 Marks	L1	CO1
3	Write a short note on any two packages in R programming?	2 Marks	L6	CO1
4	How sparse matrix is useful in R programming? Justify with code.	2 Marks	L1	CO2
5	Explain briefly about the data manipulation in R.	2 Marks	L2	CO2

Part B

Answer the Questions.

Total Marks 40M

6.	a.	<p>i. Compressive strength (MPa) of 10 concrete samples: Strength = 30, 32, 35, 30, 34, 32, 36, 30, 35, 34. Find the Mean, Median and Mode. (5 marks)</p> <p>ii. Distinguish between Data vs Information with an example. (5 marks)</p>	10 Marks	L1, L2	CO1
	b.	Describe briefly about the Data Analytics and its types.	10 Marks	L2	CO1

Or

7.	a.	<p>i. Rainfall (mm) over 6 days: Rainfall = 5, 12, 8, 20, 15, 10. Use Min-Max Normalization to normalize rainfall values between 0 and 1. (5 marks)</p> <p>ii. Explain briefly about any 5 V's of data. (5 marks)</p>	10 Marks	L1, L2	CO1
	b.	Describe the role of data preprocessing in a data analysis pipeline. Why is it considered a critical step?	10 Marks	L2	CO1

8.	a.	Demonstrate the techniques to handle the missing values in the dataset.	10 Marks	L3	CO2												
	b.	<p>A team collects strain data (microstrain) from 3 sensors on a bridge under two load conditions (Light Load, Heavy Load):</p> <table border="1" style="margin-left: 20px;"> <thead> <tr> <th>Sensor</th> <th>Light Load</th> <th>Heavy Load</th> </tr> </thead> <tbody> <tr> <td>S1</td> <td>250</td> <td>400</td> </tr> <tr> <td>S2</td> <td>220</td> <td>350</td> </tr> <tr> <td>S3</td> <td>270</td> <td>420</td> </tr> </tbody> </table> <p>Tasks (2 marks each):</p> <ol style="list-style-type: none"> i. Store the numerical values only in a matrix. ii. Create a data frame including Sensor names along with Light Load and Heavy Load. iii. Add a new variable Condition = "Bridge Test" into the data 	Sensor	Light Load	Heavy Load	S1	250	400	S2	220	350	S3	270	420	10 Marks	L2	CO2
Sensor	Light Load	Heavy Load															
S1	250	400															
S2	220	350															
S3	270	420															

	<p>frame.</p> <p>iv. Create a list containing both (i) the matrix and (ii) the modified data frame.</p> <p>v. Using R code, compute the average strain under Heavy Load from the data frame (extract from the list).</p>		
--	--	--	--

Or

9.	<p>a. Illustrate the use of the ggplot2 package in R for data visualization. Explain its layered structure and create two suitable plots (a bar chart and a scatter plot) with example data.</p>	10 Marks	L3	CO2																					
	<p>b. Given, Tensile strength (MPa) of two types of steel (Mild Steel, High Strength Steel) under three heat treatment conditions (Normal, Quenched, Tempered):</p> <table border="1"> <thead> <tr> <th>Steel</th> <th>Heat Treatment</th> <th>Strength (MPa)</th> </tr> </thead> <tbody> <tr> <td>Mild</td> <td>Normal</td> <td>400</td> </tr> <tr> <td>Mild</td> <td>Quenched</td> <td>550</td> </tr> <tr> <td>Mild</td> <td>Tempered</td> <td>500</td> </tr> <tr> <td>High</td> <td>Normal</td> <td>600</td> </tr> <tr> <td>High</td> <td>Quenched</td> <td>750</td> </tr> <tr> <td>High</td> <td>Tempered</td> <td>700</td> </tr> </tbody> </table> <p>i. Create the dataset as a data frame in R.</p> <p>ii. Plot a bar chart showing Steel type vs Strength, grouped by HeatTreatment.</p> <p>iii. Create a boxplot comparing the strength distribution of Mild Steel and High Strength Steel.</p> <p>iv. Explain the aesthetics used (x, y, fill, group) in ggplot2.</p> <p>v. State one engineering insight gained from these plots.</p>	Steel	Heat Treatment	Strength (MPa)	Mild	Normal	400	Mild	Quenched	550	Mild	Tempered	500	High	Normal	600	High	Quenched	750	High	Tempered	700	10 Marks	L2	CO2
Steel	Heat Treatment	Strength (MPa)																							
Mild	Normal	400																							
Mild	Quenched	550																							
Mild	Tempered	500																							
High	Normal	600																							
High	Quenched	750																							
High	Tempered	700																							