Roll No.
PRESIDENCY UNIVERSITY

BENGALURU

SCHOOL OFINFORMATION SCIENCE

> TEST-1

Sem \& AY: Odd Sem 2019-20
Course Code: MAT 110
Course Name: APPLIED MATHEMATICS
Program \& Sem: BCA \& 1

Date: 27.09.2019
Time: 9.30AM to 10.30AM
Max Marks: 30
Weightage: 15%

Instructions:

(i) Read the question properly and answer accordingly.
(ii) Question paper consists of 3 parts.
(iii) Scientific and Non-programmable calculators are permitted.

Part A [Memory Recall Questions]

Answer all the Questions. Each Question carries two marks

1. A tree of 50 ft tall casts a shadow 138 ft long. Identify the angle of elevation of the sun. (C.O.NO.1) [Comprehension]
2. State Maclaurin's theorem for a function $f(x)$.
(C.O.NO.2) [Knowledge]
3. State Cauchy's mean value theorem.
(C.O.NO.2) [knowledge]

Part B [Thought Provoking Questions]

Answer all the Questions. Each Question carries four marks.
4. Solve the triangle ABC , given $\mathrm{c}=25, \angle A=35$ and $\angle B=68$ as in the figure below (C.O.NO.2) [Application]

5. Verify Lagrange's mean value theorem for e^{x} in (0,1). (C.O.NO.2) [Comprehension]
6. Express $\log (\cos x)$ as Maclaurin's series up to third degree term.
(C.O.NO.2) [Comprehension]

Part C [Problem Solving Questions]

Answer both the Questions. Each Question carries six marks.
7. Verify Rolle's mean value theorem for the function $f(x)=(x+2)^{3}(x-3)^{4}$ in $(-2,3)$
(C.ONO.2) [Comprehension]
8. Express $4 x^{3}+7 x^{2}+3 x-4$ as a Taylor series expansion in the powers of $(x-2)$.
(C.O.NO.2) [Comprehension]

PRESIDENCY UNIVERSITY
 BENGALURU

SCHOOL OF INFORMATION SCIENCE

TEST - 1

Semester I sem

Course Code: MAT 110

Course Name:Applied Mathematics

Date 27.09.2019
Time. 1 Hr
Max Marks 30 Marks
Weightage: 15%

Extract of question distribution [outcome wise \& level wise]

| 6 | 6 | Module 2
 Calculus | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

$K=$ Knowledge Level $C=$ Comprehension Level $A=$ Application Level

Note: While setting all types of questions the general guideline is that about 60%
Of the questions must be such that even a below average students must be able to attempt, About 20% of the questions must be such that only above average students must be able to attempt and finally 20% of the questions must be such that only the bright students must be able to attempt

Il hereby certify that All the questions are set as per the above guide lines. Mr. Sandeep Kumar]

Reviewers' Comments

SCHOOL OP INFORMATION SCIENCE

SOLUMON
Semester: 1 Sem
Course Code: MAT 110
Course Name: Applied Mathematics
Date 20.09.2019
Time 1 hr
Max Marks 30 Marks
Weightage: 15%

	Part A	$(\mathrm{Q} \times \mathrm{M}=\mathrm{Marks}$)	
Q No	Solution	Scheme of Marking	Max. Time required for each Question
1	Recalling $\tan \theta$ Toget the answeras $\theta=20$	$\begin{aligned} & 1 \mathrm{M} \\ & \mathrm{M} \end{aligned}$	+ Mins
2	Statement: $\begin{aligned} & f(x)=f(0)+\frac{x}{1!} f^{\prime}(0)+\frac{(x)^{2}}{2!} f^{\prime \prime}(0)+ \\ & \frac{(x)^{3}}{3!} f^{\prime \prime \prime}(0)+\cdots \end{aligned}$	2 M	4 Mins
3	If $f(x)$ and $g(x)$ is continuous in [a.b]. differentiable in (ab), then there exists $c \in(a, b) \lambda \quad f^{\prime}(c)=\frac{f(b)-1(a)}{g(b)-a(a)}$	2 M	4 Mins

		Part $\mathrm{B}(\mathrm{Q} \times \mathrm{M}$-. Marks)	
Q No	Solution	Scheme of Marking	Men. Time required for each Question
4	To calculate $\mathrm{C}=77$ Sine rule Fomula To find $a=15$ To find $b=24$	$\begin{aligned} & 1 \mathrm{M} \\ & 1 \mathrm{M} \\ & 1 \mathrm{M} \\ & 1 \mathrm{M} \end{aligned}$	8 Mins
5	To state Lagrange's theorem To find $\mathrm{c}=\frac{a+b}{2}$	$\begin{aligned} & 2 \mathrm{M} \\ & 2 \mathrm{M} \end{aligned}$	8 Mins
6	Series formula Finding four derivatives Writing the final series	$\begin{aligned} & 1 \mathrm{M} \\ & 2 \mathrm{M} \\ & 1 \mathrm{M} \end{aligned}$	8 Mins

PariC
(Q. M Marks)

| QNo | Solution | Scheme of MarkingMax. Time
 required for
 each Question |
| :---: | :---: | :---: | :---: |

PRESIDENCY UNIVERSITY

BENGALURU

SCHOOL OF INFORMATION SCIENCE

TEST-2

Sem \& AY: Odd Sem. 2019-20
Course Code: MAT 110
Course Name: APPLIED MATHEMATICS
Program \& Sem: $B C A \& 1$

Date: 16.11 .2019
Time: 9:30 AM to 10:30 AM
Max Marks: 30
Weightage: 15%

instructions:

1. Read the question properly and answer accordingly.
II. Question paper consists of 3 paris.
iII. Scientific and Non-programmable calculators are permitted.

Part A [Remory Recall Questions]
Answer both the Questions. Each Question carries two marks.
$(20 \times 2 M=4 M)$

1. Derive the $n^{t h}$ derivative of $y=e^{a x}$. (C.O.NO.2) [Comprehension]
2. Find $\frac{\partial u}{\partial x}$ and $\frac{\partial u}{\partial y}$ for the function $u=x^{3}+e^{x} \sin y$. (C.O.NO.2) [Knowledge]

Part B [Thought Provoking Questions]

Answer both the Questions. Each Question carries five marks. $\quad(20 \times 5 M=10 \mathrm{M})$
3. If $U=\frac{x^{3}+y^{3}}{x-y}$ show that $x \frac{\partial U}{\partial x}+y \frac{\partial U}{\partial y}=2 U$
(C.ONO.2) [Knowledge]
4. Evaluate $\lim _{x \rightarrow 0} \frac{x e^{x}-\log (x+3)}{x^{2}}$.
(C.O.NO.2) [Comprehension]

Part C [Problem Solving Questions]

Answer both the Questions. Each Question carries eight marks. (20x8Mm6M)
5. If $y=e^{m \cos ^{-1} x}$ show that
(C.O.NO.2) [Application]

$$
\left(1-x^{2}\right) y_{n+2}-(2 n-1) x y_{n-1}-\left(n^{2}+m^{2}\right) y_{n}=0
$$

6. Find Jacobian of $U=x y^{2}, V=y z^{2}, W=x^{2} z \quad$ (C.O.NO.2) [Comprehension]

PRESIDENCY UNIVERSITY BENGALURU

SCHOOL OF INFORMATION SCIENCE

TEST - 2

Date: 16.11.2019
Time: 1 Hr
Max Marks: 30 Marks
Weightage: 15\%
Extract of question distribution [outcome wise \& level wise]

Q.NO	C.O.NO	Unit/Module Number/Unit /Module Title	Memory recall type [Marks allotted] Bloom's Levels			Thought provoking type [Marks allotted] Bloom's Levels			Problem Solving type [Marks allotted]			Total Marks
			K	C	A	K	C	A	K	C	A	
1	2	Module 2 / Calculus		2								2
2	2	Module 2 / Calculus	2									2
3	2	Module 2 I Calculus				5						5
4	2	Module 2 / Calculus					5					5
5	2	Module 2 / Calculus									8	8
6	6	Module 21 Calculus								8		8
	Total Marks		2	2	0	5	5	0	0	8	8	30

$K=$ Knowledge Level $C=$ Comprehension Level, $A=$ Application Level
Note: While setting all types of questions the general guideline is that about 60%
Of the questions must be such that even a below average students must be able to attempt, About 20% of the questions must be such that only above average students must be able to attempt and finally 20% of the questions must be such that only the bright students must be able to attempt.

SCHOOL OF INFORMATION SCIENCE
SOLUTION

Semester: 1 Sem
Course Code: MAT 110
Course Name: Applied Mathematics

Date: 20.09.2019
Time: 1 hr
Max Marks:30 Marks
Weightage: 15%

Part A $\quad(2 \mathrm{Q} \times 2 \mathrm{M}=4$ Marks)

Q No	Solution	Scheme of Marking	Max. Time required for each Question
1	Differentiating two times Concluding to standard form	$\begin{gathered} 1 \mathrm{M} \\ 1 \mathrm{M} \end{gathered}$	4 Mins
2	Finding partial derivative wrt x Finding partial derivative wrt y	$\begin{gathered} 1 \mathrm{M} \\ 1 \mathrm{M} \end{gathered}$	4 Mins

Part B(2Q x5 M = 10 Marks)

Q No	Solution	Scheme of Marking	Max. Time required for each Question
3	Finding partial derivative wrt x Finding partial derivative wrt y Evaluating and simplifying	$\begin{aligned} & 1 \mathrm{M} \\ & 1 \mathrm{M} \\ & 3 \mathrm{M} \end{aligned}$	10 Mins
4	To state the given problem is indeterminate Applying L'Hopital's rule for 2 times to get the answer as 1/2	$\begin{gathered} \hline 1 \mathrm{M} \\ 2+2 \mathrm{M} \end{gathered}$	10 Mins

Part C
(2Q x8 M = 16 Marks)

Q No	Solution	Scheme of Marking	Max. Time required for each Question
$\mathbf{5}$	To find the 2		

SCHOOL OF INFORMATION SCIENCE

END TERM FINAL EXAMINATION

Semester: Odd Semester: 2019-20
Course Code: MAT110
Course Name: APPLIED MATHEMATICS
Program \&Sem: BCA \& I

Date: 30 December 2019
Time: 1:00 PM to 4.00 PM
Max Marks: 100
Weightage: 50%

Instructions:

(i) Read the all questions carefully and answer accordingly.
(ii) Scientific and Non-programmable calculators are permitted.

Part A [Memory Recall Questions]

Answer all the Questions. Each Question carries 2 marks.
(10Q×2M=20M)

1. By law of cosines $a^{2}=$ \qquad $b^{2}=$ \qquad
(C.O.No.1) [Knowledge]
2. In an equilateral triangle, sum of all angles is \qquad and all sides are \qquad (C.O.No.1) [Knowledge]
3. Rolle's mean value theorem states that if (i) $f(x)$ is continuous in \qquad (ii). differentiable in \qquad (iii) \qquad then there exists at least one value ' c ' in (a, b) such that \qquad
(C.O.No.2) [Knowledge]
4. $\lim _{x \rightarrow 0} \frac{\cos x-1}{2 x^{2}}=$ \qquad (C.O.No.2) [Comprehension]
5. If $z=e^{x} \sin y$ then $\frac{\partial z}{\partial x}=\quad$ and $\frac{\partial z}{\partial y}=$
(C.O.No.2) [Knowledge]
6. If $u=\frac{x^{4}+y^{4}}{x^{2}+y^{2}}$, then by Euler's theorem $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=$ \qquad
(C.O.No.2) [Knowledge]
7. $\int_{0}^{\pi / 2} \sin ^{4} x d x=$ \qquad (C.O.No.3) [Knowledge]
8. Rark of $\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 6 & 9\end{array}\right]=$
(C.O.No.4) [Knowledge]
9. Eigen values of a matrix $\left[\begin{array}{ll}-1 & 3 \\ -2 & 4\end{array}\right]$ are
(C. O.No.4) [Knowledge]
10. Characteristic equation of the matrix $\left[\begin{array}{ll}1 & 4 \\ 2 & 3\end{array}\right]$ is (C.O.No.4) [Knowledge]

Part B [Thought Provoking Questions]

Answer all the Questions. Each Question carries 10 marks
11. (i). Using Taylor's expansion expand $\tan x$ in powers of $\left(x-\frac{\pi}{2}\right)$
[6M] (C.O.No.2) [Knowledge]
(ii). Using Maclaurin's series expand $\cos 2 x$
[4M] (C.O.No.2) [Knowledge]
12. Find the $J\left(\frac{u, v, w}{x, y, z}\right)$ for the function $u=\frac{x}{y}, v=\frac{y}{z}, w=\frac{z}{x}$
(C.O.No.2) [Knowledge]
13. Evaluate $\lim _{x \rightarrow 0} \frac{2 \sin x-\sin 2 x}{x^{3}}$
14. Verify Cayley Hamilton theorem and find A^{-1} for the matrix
$\left[\begin{array}{ll}1 & 4 \\ 2 & 3\end{array}\right]$
(C.O.No.2) [Knowledge]
(C.O.No.4) [Comprehension]
15. Solve the following system of equations using Gauss elimination method and Gauss Jordan method

$$
x+y+z=9, \quad x-2 y+3 z=8, \quad 2 x+y-z=3
$$

(C.O.No.4) [Comprehension]

Part C [Problem Solving Questions]

Answer both the Questions. Each Question carries 15 marks.
(2Q×15M=30M)
16. (i) Evaluate $\int \frac{5}{(x-2)(x+3)} d x$ [8M] (C.O.No.3) [Comprehension]
(ii) Evaluate $\int x^{2} \sin x d x$
[7M](C.O.No.3) [Comprehension]
17. Find ail the eigen values and the corresponding eigen vectors of the matrix $\left[\begin{array}{lll}1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1\end{array}\right]$
(C.O.No.4) [Knowledge]

SCHOOL OFENGINEERING

END TERM FINAL EXAMINATION

Extract of question distribution [outcome wise \& level wise

$\begin{aligned} & \text { Q.N } \\ & 0 . \end{aligned}$	$\begin{aligned} & \text { C.ON } \\ & 0 \\ & \text { (\% age } \end{aligned}$	UnitModule Number/Unit Module Title	Mem [Ma Bloo	ry re pe allo s Le		Th provo [Mark Bloom	ught ing typ allotte Leve		Pro Solvin [all	olem g typ arks tted]		Total Marks
			K	C	A	K	C	A	K	C	A	
1	1	1	2M									2M
2	1	1		2 M								2M
3	2	2	2 M									2 M
4	2	2	2M									2M
5	3	3		2M								2M
6	3	3	2M									2M
7	4	4	2M									2 M
8	4	4	2M									2M
9	5	5	2M									2M
10	5	5	2M									2Mi
11	1	1				10M						10M
12	2	2				10M						10M
13	3	3				10 M						10M
14	4	4					10M					10M
15	5	5					10M					10M
16	3	3								15 M		15 M
17	5	5							15M			15M
Total Marks			16M	4M		30M	20M		15M	15M		100M

$K=K$ nowledge Level $C=$ Comprehension Level, $A=$ Application Level

Note: While setting all types of questions the general guideline is that about 60%
Of the questions must be such that even a below average students must be able to attempt, About 20% of the questions must be such that only above average students must be able to attempt and finally 20% of the questions must be such that only the bright students must be able to attempt.

I hereby certify that all the questions are set as per the above guidelines.

Faculty Signature:

Reviewer Commend:

Format of Answer Scheme

SCHOOL OFENGINEERING

SOLUTION

Semester:
Odd Sem. 2019-20
Course Code: MAT110
Course Name: APPLIED MATHEMATICS
Program \&Sem: BCA (All Programs) \& 1

Date: 03.01.2020
Time: $\quad 3$ HRS
Max Marks: 100
Weightage: 50\%
$\operatorname{Part} \mathrm{A}$
$(10 \mathrm{Q} \times 2 \mathrm{M}=20 \mathrm{Marks})$

Q No	Solution	Scheme of Marking	Max. Time required for each Question
1	$a^{2}=b^{2}+c^{2}-2 b c \cos A, b^{2}=a^{2}+c^{2}-2 a c \cos B$,	2 M	4 Minutes
2	180, equal	2 M	4 Minutes
3	$[\mathrm{a}, \mathrm{b}],(\mathrm{a}, \mathrm{b}), \mathrm{f}(\mathrm{a})=\mathrm{f}(\mathrm{b}), \mathrm{f}(\mathrm{c})=0$	2 M	4 Minutes
4	$-1 / 4$	2 M	4 Minutes
5	$e^{x} \sin y, e^{x} \cos y$	2 M	4 Minutes
6	$2 z$	2 M	3 Minutes
7	$\frac{3 \sqrt{\pi}}{8}$	2 M	4 Minutes
8	2	2 M	4 Minutes

9	1,2	2 M	4 Minutes
10	$\lambda^{2}-3 \lambda-10=0$	2 M	4 Minutes

Part B
(5Q $\times 10 \mathrm{M}=50$ Marks)

Q No	Solution	Scheme of Marking	Max. Time required for each Question
11 (i)	i). Taylor's series about the point $x=1$ $\begin{aligned} & f(x)=f\left(\frac{\pi}{4}\right)+(x-1) f^{\prime}(1)+\frac{(x-1)^{2}}{2!} f^{\prime}(1)+\ldots . . \\ & f(1)=0, f^{\prime}(1)=1, f^{\prime \prime}(1)=-1, f^{\prime \prime \prime}(1)=2 \\ & f(x)=(x-1)+\frac{1}{2}(x-1)^{2}+\frac{1}{6}(x-1)^{3} \end{aligned}$	2 Marks 3 Marks 1 Marks	6Minutes
11 (ii)	b. Maclaurin's series $\begin{aligned} & f(x)=f(0)+x f^{\prime}(0)+\frac{x^{2}}{2!} f^{\prime \prime}(0)+\ldots . \\ & f(0)=0, f^{\prime}(0)=2, f^{\prime \prime}(0)=-4, f^{\prime \prime \prime}(0)=-8, f^{i v}(0)=16 \ldots \\ & f(x)=2 x-2 x^{2}-\frac{4 x^{3}}{3}+\frac{16 x^{4}}{24} \end{aligned}$	1 Mark 2 Marks 1 Mark	4 Minutes
12	Finding partial derivatives Writing the detereminate Expanding the determinate to get the answer 0	3 Marks 2 Marks 5 Marks	15 Minutes
13	Showing the problem as (0/0) form Differentiating 3 times Final substitution and getting the answer as $4 / 3$	1 marks 6 marks 3marks	15 Minutes
14	Verification of Caley Hamilton theorem Finding inverse of A	5 Mark 5 Marks	15 Minutes
15	$\begin{aligned} & {[A: B]=\left[\begin{array}{cccc} 1 & 1 & 9 & : 9 \\ 1 & -2 & 3 & : 8 \\ 2 & 1 & -1 & : 3 \end{array}\right],\left[\begin{array}{ccc} 1 & 1 & 9 \\ 0 & -3 & 2 \\ 0 & :-1 \\ 0 & -1 & -3 \\ :-15 \end{array}\right]} \\ & \left.\square\left[\begin{array}{cccc} 1 & 1 & 9 & : 9 \\ 0 & -3 & 2 & :-1 \\ 0 & 0 & -11 & :-44 \end{array}\right], \begin{array}{l} x+y+z=9 \\ -3 y+2 z=-1 \\ -11 z=-44 \end{array}\right\} \\ & x=2, y=3, z=4 \\ & {\left[\begin{array}{cccc} 3 & 0 & 9 & : 9 \\ 0 & -3 & 2 & :-1 \\ 0 & 0 & 1 & : 4 \end{array}\right] \square\left[\begin{array}{cccc} 3 & 0 & 0 & : 6 \\ 0 & -3 & 0 & :-9 \\ 0 & 0 & 1 & : 4 \end{array}\right] \begin{array}{l} x=2, \\ y=3, \\ z=4 \end{array}} \end{aligned}$	1 Mark + 2 Marks 1 Mark + 1 Mark 1 Mark 2 Marks + 2 Marks	15 Minutes

Part C

($2 \mathrm{Q} \times 15 \mathrm{M}=30 \mathrm{Marks}$)

Q No	Solution	Scheme of Marking	Max. Time required for each Question
16	(i) Applying partial fraction to get $A=2, B=-3$ Evaluating individually to get answer as $2 \log (x-3)-3 \log (x-5)$ (ii) Evaluating twice by integration by parts Simplification and Conclusion	4 Mark 4 Mark 4 Marks 3 Marks	25 Minutes
17	Characteristic equation $\left\|\begin{array}{ccc}1-\lambda & 1 & 3 \\ 1 & 5-\lambda & 1 \\ 3 & 1 & 1-\lambda\end{array}\right\|=0$ Applying limits $\lambda^{3}-7 \lambda^{2}+36=0$ Eigen values are $\lambda=-2,3,6$ $\begin{aligned} & \quad(1-\lambda) x+y+z=0 \\ & \text { System of equations are } x+(5-\lambda) y+z=0 \\ & 3 x+y+(1-\lambda) z=0 \\ & \lambda_{1}=0 \quad X_{1}=[1,2,2]^{T} \\ & \lambda_{1}=3 \quad X_{2}=[2,1,-2]^{T} \\ & \lambda_{1}=15 \quad X_{3}=[2,-2,1]^{T} \end{aligned}$	1 Mark 3 Marks 1 Mark 1 Mark 3 Marks 3 Marks 3 Marks	25 Minutes

