"Planta
Children and China
GREE MORE KILOWLEDCE
さんがたい むないがい さいたいにおやう

PRESIDENCY UNIVERSITY BENGALURU

SCHOOL OF MANAGEMENT

MID TERM EXAMINATIONS

Semester: Odd Sem. 2019-20

Course Code: MGT 213

Course Name: BUSINESS STATISTICS

Program & Sem: MBA & I

Date: 17.10.2019 Time: 9:30AM to 11:00AM Max Marks: 40 Weightage: 20%

Instructions:

- i. Scientific calculators can be used
- ii. Graph sheets will be provided on request

Part A [Memory Recall Questions]

Answer all the Questions. Each Question carries two marks. (3Qx2M=6M)

- 1. Define a variable and give an example. (C.O.NO.1) [Knowledge]
- 2. What are inclusive type of class intervals? Give an example.
- 3. Mention any two merits of median.(C.O.NO.1) [Knowledge](C.O.NO.2) [Knowledge]

Part B [Thought Provoking Questions]

Answer all the Questions. Each Question carries five marks. (4Qx5M=20M)

- 4. Mention the different measurement scales and briefly explain any two of them with suitable examples. (C.O.NO.1) [Comprehension]
- The following table shows the frequency distribution of the lifetimes of 400 radio tubes tested at L&M Company. Draw less than cumulative frequency curve and locate the median. (C.O.NO.1) [Comprehension]

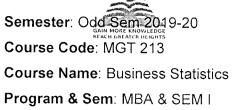
Lifetime : 300-400 400-500 500-600 600-700 700-800 800-900 900-1000 1000-1100 Freq : 14 46 58 76 70 64 50 22 6. For the following frequency distribution regarding the weights (in pounds) of 100 persons, compute the mode. (C.O.NO.1) [Comprehension]

Weight	130-140	140-150	150-160	160-170	170-180	180-190
No. of persons	10	20	30	20	10	10

7. The number of telephone calls received in 245 successive one-minute intervals at an exchange are shown in the following frequency distribution. Compute P_{30} and P_{60} . (C.O.NO.2) [Comprehension]

No of calls	: 0	dana	2	3	4	5	6	7
No of intervals	:14	21	25	43	51	40	39	12

Part C [Problem Solving Questions]


Answer the Question. The Question carries fourteen marks. (1Qx14M=14M)

8. The manager of the Cottonwood Grille recently selected a random sample of 18 customers and kept track of how long the customers were required to wait from the time they arrived at the restaurant until they were actually served dinner. This study resulted from several complaints the manager had received from customers saying that their wait time was unduly long and that it appeared that the objective was to keep people waiting in the lounge for as long as possible to increase the lounge business. The following data were recorded, with time measured in minutes: 34 24 43 56 74 20 19 33 55 43 54 34 27 34 36 24 54 39

(C.O.NO.2) [Application]

- a. Compute the mean waiting time for this sample of customers. [3M]
- b. Compute the median waiting time for this sample of customers. [3M]
- c. Compute the standard deviation of waiting time for this sample of customers. [5M]
- d. The manager is considering giving a complementary drink to customers whose waiting time is longer than the third quartile. Determine the minimum number of minutes a customer would have to wait in order to receive a complementary drink.

Date: 17.10.2019 Time: 9:30 – 11:00 Max Marks: 40 Weightage: 20

Extract of question distribution [outcome wise & level wise]

Q.NO	C.O.NO (%age of CO)	Unit/Module Number/Unit /Module Title		Thought provoking type [Marks allotted] Bloom's Levels C	Problem Solving type [Marks allotted] A	Total Marks
1	1 (70%)	Module:1 Data Presentation	2			2
2	1(70%)	Module: 1 Data Presentation	2			2
3	2 (60%)	Module: 2 Measures of Central Tendency and variation	2			2
4	1(70%)	Module: 1 Data Presentation		5		5
5	2 (60%)	Module: 2 Measures of Central Tendency and variation		5		5
6	2(60%)	Module: 2 Measures of		5		5

		Central Tendency and variation				
7	2 (60%)	Module: 2 Measures of Central Tendency and variation		5		5
8	2 (60%)	Module: 2 Measures of Central Tendency and variation			14	14
	Total Marks		6	20	14	40

K =Knowledge Level C = Comprehension Level, A = Application Level

Note: While setting all types of questions the general guideline is that about 60%

Of the questions must be such that even a below average students must be able to attempt, About 20% of the questions must be such that only above average students must be able to attempt and finally 20% of the questions must be such that only the bright students must be able to attempt.

I hereby certify that all the questions are set as per the above guidelines. [Name of faculty]

Reviewer's Comments:

Annexure- II: Format of Answer Scheme

SOLUTION

Semester: Odd Sem 2019-20 Course Code: MGT 213 Course Name: Business Statistics Program & Sem: MBA & SEM I Date: 17.10.2019 Time: 9:30 – 11:00 Max Marks: 40 Weightage: 20%

Q No	Solution	Scheme of Marking	Max. Time required for each Question
1	Definition and	Definition 1 mark	5
	example	Example 1 mark	
2	Explanation and	Explanation 1 mark	5
	example	Example 1 mark	
3	Two merits	Two merits 1 mark each	5

Part	B
------	---

 $(4Q \times 5M = 20Marks)$

Q No	Solution	Scheme of Marking	Max. Time required for each Question
4	Names of measurement scales and explanation of any two of them	List of measurement scales 1 mark Explanation of two measurement scales 2 marks each	10
5	Less than cumulative frequency curve and median =708.5	Less than cumulative frequency 1 mark Graph 3 marks Median 1 mark	10
6	Mode =155	Formula 1 mark Calculations 3 marks Mode value 1 mark	10
7	$P_{30} = 3$ $P_{60} = 4$	Less than cumulative frequency =1 mark P_{30} formula 1 mark and answer 1 mark P_{60} formula 1 mark and answer 1 mark	10

Part C

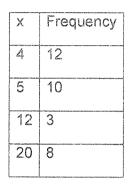
 $(1Q \times 14M = 14 \text{ Marks})$

Q No	Solution	Scheme of Marking	Max. Time required for each Question
8	Mean =39.05 Median = 35 SD = 14.38 3 rd quartile = 54 54 minutes	Mean – formula 1 mark calculations 2 marks Median – formula 1 mark calculations 2 marks SD – formula 1 mark calculations 4 marks 3 rd quartile – formula 1 mark calculations 2 marks	35

Roll No.	
PRESIDENCY UNIVERSITY	
	SEC: F TO K
Barray Barra U Wi Natir at 3 Jan Natir 4 & Natir	ಳುವಳಿಸಿದವಾಳವಾಗ ಕ ಇಂ∿ಹಾ ಒಂ.
SCHOOL OF MANAGEMENT	SET A
MID TERM EXAMINATIONS	
Sem & AY: Odd Sem 2019-20	Date: 16.11.2019
Course Code: MGT 213	Time: 9.30 AM to 11.00 AM
Course Name: BUSINESS STATISTICS	Max Marks: 40
Program & Sem: MBA & I	Weightage: 20%
(i) While solving questions, you need to write formula/formulae indicating the variables under co Part A [Memory Recall Questions]	-
· ·	
Answer all the Questions. Each Question carries two marks	(3Qx2M=6M)
h	C.O.NO.1) [Knowledge] C.O.NO.1) [Knowledge]
(C.O.NO.1) [Knowledge]
Part B [Thought Provoking Questions]	
Answer all the Questions. Each Question carries five marks.	(4Qx5M=20M)
4. What are the different types of measurement scale used in sta (C.O.	itistics? Give examples. NO.1) [Comprehension]
5. A doctor's office staff studied the waiting times for patients whe	
with a request for emergency service. The following data with minutes were collected over a one-month period:	waning unles in
2, 5, 10, 12, 4, 6, 6, 5, 17, 11, 8, 9, 12, 21, 6, 8, 7, 13, 18, 3	
Use classes of 0-4, 5-9, and so on in the following:	
(a) Show the frequency distribution	

(a) Show the frequency distribution (b) What proportion of patients needing emergency service wait 9 minutes or less?

(C.O.NO.1) [Comprehension]


2 ⊕ 2 € 1 | 2

6. Draw histogram for the following frequency distribution:

Class Intervals	0-500	500-1000	1000-2500	2500-3500	3500-4500
Frequency	3	42	288	150	51

(C.O.NO.2) [Comprehension]

7. Find out the arithmetic mean from the following frequency distribution

(C.O. NO.2) [Comprehension]

Part C [Problem Solving Questions]

Answer the Question: The Question carries fourteen marks. (1Qx14M=14M)

- 8. The Hillcrest Golf and Country Club manager selected a random sample of the members and recorded the number of rounds of golf they played last season. The reason for his interest in this data is that the club is thinking of applying a discount to members who golf more than a specified number of rounds per year. The sample of eight people produced the following number of rounds played: 13 32 12 9 16 17 16 12
 - (a) Compute the mean for these sample data.
 - (b) Compute the median for these sample data.
 - (c) Compute the mode for these sample data.
 - (d) Note that one person in the sample played 32 rounds. What effect, if any, does this large value have on each of the three measures of location? Discuss.
 - (e) Given this sample data, suppose the manager wishes to give discounts to golfers in the top quartile. What should the minimum number of rounds played be to receive a discount? (C.O.NO.2) [Application]

 $\mathbb{P}_{|\mathcal{E}| \in \mathcal{E}} \in \left[2 \right] \left[2 \right]$

SCHOOL OF MANAGEMENT

Semester: Odd Sem 2019-20

Course Code: MGT 213

Course Name: Business Statistics Branch & Sem:

Date: 17.10.2019 Time: 1 hour 30 minutes Max Marks: 40 Weightage: 20%

Extract of question distribution [outcome wise & level wise]

Q.NO	C.O.NO (%age of CO)	Unit/Module Number/Unit /Module Title	Memory recall type [Marks allotted] Bloom's Levels K	•	Problem Solving type [Marks allotted] A	Total Marks
1	(CO-	1	2			2
	1)70%					2
2	(CO- 1)70%	1	2			2
3	(CO- 1)70%	1	2			2
4	(CO- 1)70%	1		5		5
5	(CO- 1)70%	1		5		5
6	(CO- 2)70%	2		5		5
	(CO- 2)70%	2		5		5
	(CO- 2)70%	2			14	14

		0			
	Total	6	20	14	40
	Marks			•••	40
l					

K =Knowledge Level C = Comprehension Level, A = Application Level

Note: While setting all types of questions the general guideline is that about 60%

Of the questions must be such that even a below average students must be able to attempt, About 20% of the questions must be such that only above average students must be able to attempt and finally 20% of the questions must be such that only the bright students must be able to attempt.

I hereby certify that all the questions are set as per the above guidelines. [Anirban Kundu]

Reviewer's Comments:

Annexure- II: Format of Answer Scheme

SCHOOL OF MANAGEMENT

SOLUTION

Semester: |

Course Code: MGT 213

Course Name:

Date: 17.10.2019 Time: 1 hour 30 minutes Max Marks: 40 Weightage: 20%

Part A

 $(Q \times M = Marks)$

Q No	Solution	Scheme of Marking	Max. Time required for
1	Definition and any one example	Definition =1+ example=1	each Question 3 minutes
2	Definition and any one example	Definition =1+ example=1	3 minutes
3	Definition and one example	Definition =1+ example=1	3 minutes

Part B

 $(Q \times M = Marks)$

ON			
Q No		Scheme of Marking	Max. Time
	Solution		required for
L			each Question

•

4	Definition of nominal scale, ordinal scale, interval scale and ratio scale with examples	Each definition carries 1 marksX 4 = 4 and example carries 1 marks (=4+1)	11 minutes
5	Arrange the data from lowest value to highest values and count the numbers; proportion= 60%	Q.no. 5.a = 4 + Q. no.5.b =1	11 minutes
6	Calculation: Area of each rectangle = width of class X frequency density = width of class X (class frequency/width of class)	Definition of area of each rectangle = 1+computing frequency table = 3 + drawing diagram = 1	12 minutes
7	AM= 7.09	Definition of $AM = 1 + computation of mean = 4$	8 minutes

		I alt C (Q X M	= Marks)
Q No	Solution	Scheme of Marking	Max. Time required for
8	Mean = 15.875, median = 14.5, mode =12; Mean will get affected by extreme value; but median and mode will get affected.	Q.no.8-a = 3+ Q.no.8b = 3+Q.no.8.c =1+Q.no-d =3 and Q.no.e=4	each Question 7 minute each for marks =3, 1 minute for marks =1, 9 minute for marks =4

Part C

 $(O \times M = Marks)$

Roll No.				
GRUM MODE MODIFIED OF REACHY GREATER RECEIPS BENGALURU	SEC: F TO K			
SCHOOL OF MANAGEMEN	T SET B			
MID TERM EXAMINATIONS				
Sem & AY: Odd Sem 2019-20	Date: 16.11.2019			
Course Code: MGT 213	Time: 9.30 AM to 11.00 AM			
Course Name: BUSINESS STATISTICS	Max Marks: 40			
Program & Sem: MBA & I	Weightage: 20%			
Instructions: (i) Read the Questions carefully and answer all the que	estions.			
Part A [Memory Recall Question	S m			
Answer all the Questions. Each Question carries two ma	rks. (3Qx2N=6N)			
1. Define Discrete Variable with an example	(C.O.NO.1) [Knowledge]			
2. What is Range?	(C.O.NO.1) [Knowledge]			
3. What is meant by dispersion? List any two measures of di	spersion.			

(C.O.NO.1) [Knowledge]

Part B [Thought Provoking Questions]

Answer all the Questions. Each Question carries five marks. (4Qx5M=20M)

4. Consider the following data, which relates the age distribution of 1,000 workers in an Automobile industry. Compute the median age. (C.O.NO.2) [Comprehension]

Age(Years)	20-25	25-30	30-35	35-40	40-45	45-50	50-55	55-60
No of workers	120	125	180	160	150	140	100	25

5. The distribution of number of holding of shares of a manufacturing company by its shareholders is presented below. Obtain the mode from this data.

(C.O.NO.2)	[Compreh	ension]
------------	----------	---------

No of Months Holding	of	0-2	2-4	4-6	6-8	8-10	10-12	12-14	14-16	16-18	18-20
No	of	5	8	10	7	9	6	20	12	9	2
Shareholders ('000)						ne la contra de la c					

6. Delta Tiers employed 159 employees for a factory located at Kanpur. The Company's management is worried about the high absenteeism rate in the organization. Before taking any corrective action, the management has decided to calculate the percentile from the below information. Compute the P₆₅. (C.O.NO.2) [Comprehension]

Variations availed	0-10	10-20	20-30	30-40	40-50	50-60	60-70	70-80
in a year								
No. of Employees	2	18	30	45	35	20	6	3

7. Explain the primary scales of measurement of data with examples

(C.O.NO.1) [Knowledge]

Part C [Problem Solving Questions]

Answer the Question. The Question carries fourteen marks. (1Qx14M=14M)

8. Pfizer, Inc., a major U.S. pharmaceutical company, is developing a new drug aimed at reducing the pain associated with migraine headaches. Two drugs are currently under development. One consideration in the evaluation of the medication is how long the painkilling effects of the drugs last. A random sample of 12 tests for each drug revealed the following times (in minutes) until the effects of the drug were neutralized. The random samples are as follows: (C.O.NO.2) [Application]

Drug A258214243227235222240245245234243211Drug B219283291277258273289260286265284266

a. Calculate the mean and standard deviation for each of the two drugs [10M].

b. Calculate the coefficient of variation for the two drugs. Based on the coefficient of variation, which drug has the greater variability in its time until the effect is neutralized? [4M].

SCHOOL OF MANAGEMENT

Semester: Odd Sem 2019-2020 Course Code: MGT 213 Course Name: Business Statistics Program & Sem: MBA & I

Date: 17/10/2019, Thursday Time: 9.30 AM to 11.00 AM Max Marks: 40 Weightage: 20%

Extract of question distribution [outcome wise & level wise]

					1	·
Q.NO	C.O.NO (%age of CO)	Unit/Module Number/Unit /Module Title		Bloom's Levels	Problem Solving type [Marks allotted]	Total Marks
			К	С	A	
1		1	2			2
2		2	2			2
3		2	2			2
4		2		5		5
5		2		5		5
6		2		5		
7		1	5	J		5
8		2				5
		۷			14	14
	Total Marks		6	20	14	40
<u>.</u>						

K =Knowledge Level C = Comprehension Level, A = Application Level

Note: While setting all types of questions the general guideline is that about 60%

Of the questions must be such that even a below average students must be able to attempt, About 20% of the questions must be such that only above average students must be able to attempt and finally 20% of the questions must be such that only the bright students must be able to attempt.

I hereby certify that all the questions are set as per the above guidelines. [Dr. P. Srinivasan]

Reviewer's Comments:

Annexure- II: Format of Answer Scheme

SOLUTION

Semester: Odd Sem 2019-2020 Course Code: MGT 213 Course Name: Business Statistics Program & Sem: MBA & I

Date: 17/10/2019, Thursday Time: 9.30 AM to 11.00 AM Max Marks: 40 Weightage: 20%

Part A

 $(3 \times 2 = 6 \text{ Marks})$

Q No			$(3 \times 2 = 6 \text{ Marks})$
	Solution	Scheme of Marking	Max. Time required for
1	Discrete variable	2	each Question
	take values which	-	5 Mins.
	are finite and		
	distinct numbers.		
	No of children in a		
	family- Discrete		
2	Difference between	2	
	the highest and the	<u> </u>	5 Mins.
	lowest value in the		
	distribution		
3	Deviation from the	2	
	mean. Range,	2	5 Mins.
	Quartile, SD and		
	CV		

 $(4 \times 5 = 20 \text{ Marks})$

·

Q No	Solution	Scheme of Marking	Max. Time required for each Question
4	Median = 37.34	5	15 Mins
5	Mode = 13.27	5	15 Mins
6	$\begin{array}{l} P_{65} \ Class = 103.35 \\ P_{65} \ = 40.9257 \end{array}$	5	15 Mins
7	Nominal (Gender), Ordinal (Ranking), Interval (Temperature) & Ratio (Sales)	5	10 Mins

Part C

 $(1 \times 14M = 14 \text{ Marks})$

Q No	Solution	Scheme of Marking	Max. Time required for each Question
8	a) Drug A: Mean 234.75 Population: Standard Deviation, σ : 13.329947486768 Sample: Standard Deviation, s: 13.922676075055 Drug B: Mean: 270.916666666667 Population: Standard Deviation, σ : 19.054563466238 Sample: Standard Deviation, s: 19.901842460771	10	15 Mins
	b) CV Drug A for Population = 5.6783 CV Drug A for Sample = 5.9308	4	5 Mins

CV Drug B for	
Population =	
7.0333	
CV Drug B for	
Sample = 7.3461	
Drug B has the greater variability	
greater variability	

X

	Roll No										
GAIN MORE KNOWLENGE REACH GREATER HEIGHTS BENGAI		SITY									
SCHOOL OF M	ANAGEN	/IENT									
END TERM FINAL	EXAMINA										
Semester: Odd Semester: 2019 - 20				Da	ate:	31	Dec	201	9		
Course Code: MGT213				Ti	me:	9.3	0 -1	2.30	D PN	Л	
Course Name: Business Statistics				M	ax N	larl	(S : ′	100			
Program & Sem: MBA & I				W	eigł	ntag	je: {	50 %	Ď		

Instructions:

- (i) Read the all questions carefully and answer accordingly.
- (ii) Carry the printout of Normal Distribution Table
- (iii) Use scientific calculator

Part A [Memory Recall Questions]

Answer all the Questions. Each Question carries 05 marks.

(6Qx 5M = 30M)

1. The following table gives the life times of 400 Neon lamps:

Life time (in hours)	Lamps
300-400	14
400-500	56
500-600	60
600-700	86
700-800	74
800-900	62
900-1000	48

(a) Represent the given information with the help of a histogram.

(b) How many lamps have a life time of more than 700 hours.

(C.O.No.1) [Comprehension]

2. Define ordinal scale of measurement. What is the level of measurement for each of the following variables?

(a) Fahrenheit scale of temperature

(b) Sales

(C.O.No.1) [Knowledge]

3. The following table gives the daily profits (in Rs) of 195 shops of a town. Calculate median.

Profits	50-60	60-70	70-80	80-90	90-100	100-110	110-120	120-130	130-140
No. of	15	20	32	35	33	22	20	10	8
Shops									

(C.O.No.2) [Application]

(C.O.No.3) [Knowledge]

4. Define the following concepts.

a) Mutually exclusive event

b) Complementary event

5. The day's sales figures (in Rs.) for the last 15 days at Nirula's ice-cream counter, arranged in ascending order of magnitude, are recorded as follows: 2000, 2000, 2500, 2500, 2500, 3500, 4000, 5300, 9000, 12500, 13500, 24500, 27100, 30900 and 41000. Compute Q3 for this sample data.

(C.O.No.2) [Knowledge]

6. What are the properties of Normal Distribution? Show how the distribution looks like?

(C.O.No.4) [Knowledge]

Part B [Thought Provoking Questions]

Answer all the Questions. Each Question carries 10 marks.

7. The following are the values of exports of raw cotton (X) and the values of imports of manufactured cotton goods (Y) in crores of Rs. Compute Karl Pearson's coefficient of correlation between X & Y.

X	2	12	3	6	11	19	18	9
Y	5	8	18	20	22	30	10	7

(C.O.No.2) [Comprehension]

8. Following are the observations of 40 workers working in a Whole sale center. Find the quartile deviation.

Wages (1,000s)	0-5	5-10	10-15	15-20	20-25	25-30
Number of Workers	4	6	3	8	12	7

(C.O.No.2) [Comprehension]

9. A random variable (X) has the following probability distribution. Find the missing probability in the following distribution and then compute mean and variance of the random variable X.

X	4	6	7	8
P(x)	0.2		0.3	0.2

(4Qx10M=40M)

(C.O.No.3) [Application]

10. A bag contains 20 balls, 3 are coloured red, 6 are coloured green, 4 are coloured blue, 2 are coloured white and 5 are coloured yellow. One ball is selected at random. Find the probabilities of the following events.

(a) the ball is either red or green

(b) the ball is not blue

(c) the ball is either red or white or blue. (Hint: Consider the complementary event)

(d) the balls are red and green

(C.O.No.3) [Comprehension]

Part C [Problem Solving Questions]

Answer bothl the Questions. Each Question carries 15 marks. (2Qx15M=30M)

11. For borrowers with good credit scores, the mean debt for revolving and installment accounts is \$15,015 (BusinessWeek, March 20, 2006). Assume the standard deviation is \$3540 and that debt amounts are normally distributed.

(a) What is the probability that the debt for a borrower with good credit is more than \$18,000?

(b) What is the probability that the debt for a borrower with good credit is less than \$10,000?

(c) What is the probability that the debt for a borrower with good credit is between \$12,000 and \$18,000?

(d) What is the probability that the debt for a borrower with good credit is no more than \$14,000?

(C.O.No.2) [Application]

12.

(a) What do you understand by Coefficient of Variation? Discuss its importance in business problems.

(b) The weekly sales of two products A and B were recorded as given below.

Product A	59	75	27	63	27	28	56
Product B	150	200	125	310	330	250	225

Compute Coefficient of Variation and show which of the two has greater fluctuations in sales.

(C.O.No.3) [Application]

SCHOOL OF MANAGEMENT

END TERM FINAL EXAMINATION

Q.NO	C.O.NO	Unit/Module Number/Unit	Memory recall type [Marks allotted]	Thought provoking type [Marks allotted]	Problem Solving type	Total Marks
•	(% age of CO)	/Module Title	Bloom's Levels		[Marks allotted]	marko
					[marite directed]	
			К	С	A	
1	1	1		5		5
2	1	1	5			5
3	2	2			5	5
4	3	3	5			5
5	2	2	5			5
6	4	4	5			5
7	2	2		10		10
8	2	2		10		10
9	4	4			10	10
10	3	3		10		10
11	2	2			15	15
12	3	4			15	15
	Total Ma	arks	20	35	45	100

Extract of question distribution [outcome wise & level wise]

K =Knowledge Level C = Comprehension Level, A = Application Level

Note: While setting all types of questions the general guideline is that about 60% Of the questions must be such that even a below average students must be able to attempt, About 20% of the questions must be such that only above average students must be able to attempt and finally 20% of the questions must be such that only the bright students must be able to attempt.

I hereby certify that all the questions are set as per the above guidelines.

Faculty Signature:

Reviewer Commend:

Format of Answer Scheme

SCHOOL OF ENGINEERING

GAIN MORE KNOWLEDGE REACH GREATER HEIGHTS

SOLUTION

Semester:	Odd Sem. 2019-20
Course Code:	MGT213
Course Name:	BUSINESS STATISTICS
Program & Sem:	MBA & I

Date:	31.12.2019
Time:	3 HRS
Max Marks:	100
Weightage:	50%

Part A

 $(6Q \times 5M = 30Marks)$

Q No	Solution	Max. Time required for each Question	
1	(a)	2	10 Mins
	(b) Number of lamps having life time more than 700 hours = 74 + 62 + 48 = 184.	3	

SCHOOL OF MANAGEMENT

END TERM FINAL EXAMINATION

Extract of question distribution [outcome wise & level wise]

Q.NO.	C.O.NO (% age of CO)	Unit/Module Number/Unit /Module Title	Memory recall type [Marks allotted] Bloom's Levels K	Thought provoking type [Marks allotted] Bloom's Levels C	Problem Solving type [Marks allotted] A	Total Marks
PART A Q. NO1 to Q. NO6	CO 01 CO 01 CO 02 CO 03 CO 02	All the 4 modules	20 [5+5+5+5]	5 [5]	5 [5]	30
PART B Q.NO.7	CO 04 CO 02	MODULE 02 Central Tendency & Variation	_	10	_	10
PART B Q.NO.8	CO 02	MODULE 02 Central Tendency & Variation	-	10	-	10
PART B Q.NO.9	CO 04	MODULE 04 Probability Distribution	-	-	10	10
PART B Q.NO.10	CO 03	MODULE 03 Probability	-	10	-	10

PART C	CO 02	MODULE 02	-	-	15	15
Q.NO.11		Central Tendency & Variation				
PARTC	CO 03	MODULE 04	-		15	15
Q.NO.12		Probability Distribution				
	Total Ma	arks	20	35	45	100

K =Knowledge Level C = Comprehension Level, A = Application Level

C.O WISE MARKS DISTRIBUTION:

CO 01: 10 MARKS, CO 02: 45 MARKS, CO 03: 30 MARKS, CO 04:15 MARKS

Note: While setting all types of questions the general guideline is that about 60% of the questions must be such that even a below average students must be able to attempt, About 20% of the questions must be such that only above average students must be able to attempt and finally 20% of the questions must be such that only the bright students must be able to attempt.

I hereby certify that all the questions are set as per the above guidelines.

Faculty Signature:

Reviewer Commend:

2	An ordinal scale is a scale (of measurement) that uses labels to classify cases (measurements) into ordered classes. a) Interval b) Ratio	3 1 1	10 Mins
3	Rs.88.71	5	10 Mins
4	Mutually exclusive events, also called disjoint events, are two or more outcomes of an event that cannot occur at the same time. Complementary events are two outcomes of an event that are the only two possible outcomes.	5	10 Mins
5	Q3 = 12 th item. Ans. 24500	5	10 Mins
6	Properties of Normal Distributions	5	10 Mins
	The mean, median, and mode are equal.		
	2. The normal curve is bell-shaped and symmetric about the mean.		
	3. The total area under the curve is equal to one.		
	 The normal curve approaches, but never touches the x-axis as it extends farther and farther away from the 		
	$\begin{array}{c} \text{mean.} \\ \hline \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $		

Part B

(4Q x 10M = 40 Marks)

		$(40 \times 100) = 40 \text{ Marks})$				
Q No	Solution	Scheme of Marking	Max. Time required for each Question			
7	r = 0.345. There is a positive relationship between x and y. The relationship is not very strong.	10	15 Mins			
8	Quartile deviation (Q.D.) = 6.87	10	15 Mins			
9	P(x) = 0.3 Mean=6.3 and Variance = 1.81	10	15 Mins			
10	Answer Note that a ball has only one colour, designated by the letters R, G, B, W, Y . (a) $P(R \cup G) = P(R) + P(G) = \frac{3}{20} + \frac{6}{20} = \frac{9}{20}$. (b) $P(B') = 1 - P(B) = 1 - \frac{4}{20} = \frac{16}{20} = \frac{4}{5}$. (c) The complementary event is $G \cup Y$, $P(G \cup Y) = \frac{6}{20} + \frac{5}{20} = \frac{11}{20}$. Hence $P(R \cup W \cup B) = 1 - \frac{11}{20} = \frac{9}{20}$	10	15 Mins			

	Part C (2Q x 15M = 30Marks)			
Q No	Solution	Scheme of Marking	Max. Time required for each Question		
	Given:	15	30Mins		
11	$\mu = 15015$				
	$\sigma=3540$				
	The z-value is the sample mean decreased by the population mean, divided by the standard deviation:				
	$z = rac{\overline{x} - \mu}{\sigma} = rac{18000 - 15015}{3540} pprox 0.84$				
	$z = rac{\overline{x} - \mu}{\sigma} = rac{10000 - 15015}{3540} pprox -1.42$				
	$z = \frac{\overline{x} - \mu}{\sigma} = \frac{12000 - 15015}{3540} \approx -0.85$				
	$z = rac{\overline{x} - \mu}{\sigma} = rac{14000 - 15015}{3540} pprox -0.29$				
	Determine the corresponding probability using table 1 in the appendix:				
	a. $P(z > 0.84) = 1 - P(z < 0.84) = 1 - 0.7995 = 0.2005$				
	b. $P(z < -1.42) = 0.0778$				
	c. $P(-0.85 < z < 0.84) = P(z < 0.84) - P(z < -0.85) = 0.7995 - 0.1977 = 0.6018$				
	d. $P(z < -0.29) = 0.3859$				
12	 a. The coefficient of variation (CV) is the ratio of the standard deviation to the mean. The higher the coefficient of variation, the greater the level of dispersion around the mean. In finance, the coefficient of variation allows investors to determine how much volatility, or risk, is assumed in comparison to the amoun of return expected from investments. The lower the ratio of the standard deviation to mean return, the better risk-return trade-off. b. Product A: µ=47.8571428571/ σ=18.5966861213/CV=0.419722439907 Product B: µ=227.142857143/ σ=70.804415866/CV=0.336693439906 	n 10 5 t	30Mins		

No. 1	Roll No												
GAIN MORE RAGWLEDGE REACH GREATER HEIGHTS PRESIDENCY BENGA		SIT	Y										
SCHOOL OF MANAGEMENT													
END TERM FINAL		ΑΤΙΟ	ON										
Semester: Odd Semester: 2019 - 20						Da	ate:	31 I	Dec	201	19		
Course Code: MGT213			Time: 9.30 -12.30 PM										
Course Name: Business Statistics						Ma	ax N	lari	(S: ´	100			
Program & Sem: MBA & I						W	eigl	ntag	je : 5	50 %	, D		

Instructions:

- (i) Read the all questions carefully and answer accordingly.
- (ii) Carry the printout of Normal Distribution Table
- (iii) Use scientific calculator

Part A [Memory Recall Questions]

Answer all the Questions. Each Question carries 05 marks.

(6Qx 5M = 30M)

1. The following table gives the life times of 400 Neon lamps:

Life time (in hours)	Lamps
300-400	14
400-500	56
500-600	60
600-700	86
700-800	74
800-900	62
900-1000	48

(a) Represent the given information with the help of a histogram.

(b) How many lamps have a life time of more than 700 hours.

(C.O.No.1) [Comprehension]

2. Define ordinal scale of measurement. What is the level of measurement for each of the following variables?

(a) Fahrenheit scale of temperature

(b) Sales

(C.O.No.1) [Knowledge]

(C.O.No.3) [Application]

10. A bag contains 20 balls, 3 are coloured red, 6 are coloured green, 4 are coloured blue, 2 are coloured white and 5 are coloured yellow. One ball is selected at random. Find the probabilities of the following events.

(a) the ball is either red or green

(b) the ball is not blue

(c) the ball is either red or white or blue. (Hint: Consider the complementary event)

(d) the balls are red and green

(C.O.No.3) [Comprehension]

Part C [Problem Solving Questions]

Answer both the Questions. Each Question carries 15 marks. (2Qx15M=30M)

11. For borrowers with good credit scores, the mean debt for revolving and installment accounts is \$15,015 (BusinessWeek, March 20, 2006). Assume the standard deviation is \$3540 and that debt amounts are normally distributed.

(a) What is the probability that the debt for a borrower with good credit is more than \$18,000?

(b) What is the probability that the debt for a borrower with good credit is less than \$10,000?

(c) What is the probability that the debt for a borrower with good credit is between \$12,000 and \$18,000?

(d) What is the probability that the debt for a borrower with good credit is no more than \$14,000?

(C.O.No.2) [Application]

12.

(a) What do you understand by Coefficient of Variation? Discuss its importance in business problems.

(b) The weekly sales of two products A and B were recorded as given below.

Product A	59	75	27	63	27	28	56
Product B	150	200	125	310	330	250	225

Compute Coefficient of Variation and show which of the two has greater fluctuations in sales.

(C.O.No.3) [Application]

END TERM FINAL EXAMINATION

Q.NO	C.O.NO		Memory recall type	Thought provoking type	Problem Solving	Total
•	(% age	Number/Unit	[Marks allotted]	[Marks allotted]	type	Marks
	of CO)	/Module Title	Bloom's Levels	Bloom's Levels	[Marks allotted]	
			К	С	А	
1	1	1		5		5
2	1	1	5			5
3	2	2			5	5
4	3	3	5			5
5	2	2	5			5
6	4	4	5			5
7	2	2		10		10
8	2	2		10		10
9	4	4			10	10
10	3	3		10		10
11	2	2			15	15
12	3	4			15	15
	Total Ma	irks	20	35	45	100

Extract of question distribution [outcome wise & level wise]

K =Knowledge Level C = Comprehension Level, A = Application Level

Note: While setting all types of questions the general guideline is that about 60% Of the questions must be such that even a below average students must be able to attempt, About 20% of the questions must be such that only above average students must be able to attempt and finally 20% of the questions must be such that only the bright students must be able to attempt.

SCHOOL OF MANAGEMENT

END TERM FINAL EXAMINATION

Extract of question distribution [outcome wise & level wise]

Q.NO.	C.O.NO (% age of CO)	Unit/Module Number/Unit /Module Title	Memory recall type [Marks allotted] Bloom's Levels K	Thought provoking type [Marks allotted] Bloom's Levels C	Problem Solving type [Marks allotted] A	Total Marks
PART A	CO 01	All the 4	20	5	5	30
Q. NO1	CO 01	modules	[5+5+5+5]	[5]	[5]	
to	CO 02					
Q. NO6	CO 03					
	CO 02					
	CO 04					
PART B	CO 02	MODULE 02		10	-	10
Q.NO.7		Central Tendency & Variation				
PART B	CO 02	MODULE 02	-	10	-	10
Q.NO.8		Central Tendency & Variation				
PART B	CO 04	MODULE 04		-	10	10
Q.NO.9		Probability Distribution				
PART B Q.NO.10	CO 03	MODULE 03 Probability	-	10	-	10

An ordinal scale is a scale (of measurement) that uses labels to classify cases (measurements) into ordered classes. a) Interval b) Ratio Rs.88.71 Mutually exclusive events, also called disjoint events, are two or more outcomes of an event that cannot occur at the same time. Complementary events are two outcomes of an event that are the only two possible outcomes. Q3 = 12 th item. Ans. 24500 Properties of Normal Distributions	3 1 1 5 5 5 5	10 Mins 10 Mins 10 Mins 10 Mins 10 Mins
Rs.88.71 Mutually exclusive events, also called disjoint events, are two or more outcomes of an event that cannot occur at the same time. Complementary events are two outcomes of an event that are the only two possible outcomes. Q3 = 12 th item. Ans. 24500	5	10 Mins 10 Mins
more outcomes of an event that cannot occur at the same time. Complementary events are two outcomes of an event that are the only two possible outcomes. Q3 = 12 th item. Ans. 24500	5	10 Mins
Q3 = 12 th item. Ans. 24500		
Properties of Normal Distributions	5	10 Mins
The mean, median, and mode are equal.		
2 The normal curve is bell-shaped and symmetric about the mean.		
3. The total area under the curve is equal to one.		
The normal curve approaches, but never touches the <i>x</i> -axis as it extends farther and farther away from the		
mean. Total area = 1		
	<i>x</i> -axis as it extends farther and farther away from the mean.	<i>x</i> -axis as it extends farther and farther away from the mean.

Part B

(4Q x 10M = 40 Marks)

		(io manoj
Q No	Solution	Scheme of Marking	Max. Time required for each Question
7	r = 0.345. There is a positive relationship between x and y. The relationship is not very strong.	10	15 Mins
8	Quartile deviation (Q.D.) = 6.87	10	15 Mins
9	P(x) = 0.3 Mean=6.3 and Variance = 1.81	10	15 Mins
10	Answer Note that a ball has only one colour, designated by the letters R, G, B, W, Y . (a) $P(R \cup G) = P(R) + P(G) = \frac{3}{20} + \frac{6}{20} = \frac{9}{20}$. (b) $P(B') = 1 - P(B) = 1 - \frac{4}{20} = \frac{16}{20} = \frac{4}{5}$. (c) The complementary event is $G \cup Y$, $P(G \cup Y) = \frac{6}{20} + \frac{5}{20} = \frac{11}{20}$. Hence $P(R \cup W \cup B) = 1 - \frac{11}{20} = \frac{9}{20}$	10	15 Mins