



# PRESIDENCY UNIVERSITY

## BENGALURU

### Mid - Term Examinations – October 2025

**Date:** 09-10-2025

**Time:** 11.45am to 01.15pm

|                             |                                       |                       |
|-----------------------------|---------------------------------------|-----------------------|
| <b>School:</b> SOE          | <b>Program:</b> B. Tech. in ECE       |                       |
| <b>Course Code:</b> ECE2508 | <b>Course Name:</b> Signal Processing |                       |
| <b>Semester:</b> III        | <b>Max Marks:</b> 50                  | <b>Weightage:</b> 25% |

| <b>CO - Levels</b> | <b>CO1</b> | <b>CO2</b> | <b>CO3</b> | <b>CO4</b> | <b>CO5</b> |
|--------------------|------------|------------|------------|------------|------------|
| <b>Marks</b>       | <b>26</b>  | <b>24</b>  |            |            |            |

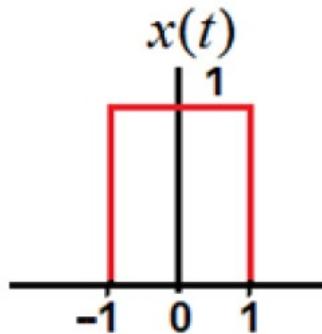
**Instructions:**

- (i) Read all questions carefully and answer accordingly.
- (ii) Do not write anything on the question paper other than roll number.

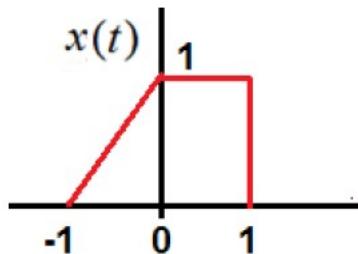
#### Part A

**Answer ALL the Questions. Each question carries 2marks.**

**5Q x 2M=10M**


|          |                                                                                                             |                |           |            |
|----------|-------------------------------------------------------------------------------------------------------------|----------------|-----------|------------|
| <b>1</b> | Differentiate among causal, anti-causal, and non-causal signals, providing an example of each.              | <b>2 Marks</b> | <b>L3</b> | <b>CO2</b> |
| <b>2</b> | Describe each term involved in the equation $A\sin(\Omega_0 t + \Phi)$ for a sinusoidal signal.             | <b>2 Marks</b> | <b>L3</b> | <b>CO2</b> |
| <b>3</b> | Explain the difference between deterministic and random signals, and give an example of each.               | <b>2 Marks</b> | <b>L2</b> | <b>CO1</b> |
| <b>4</b> | Differentiate between discrete time and digital signals with neat examples of some signal diagrams.         | <b>2 Marks</b> | <b>L2</b> | <b>CO1</b> |
| <b>5</b> | Differentiate between continuous time and discrete time signals with neat examples of some signal diagrams. | <b>2 Marks</b> | <b>L2</b> | <b>CO1</b> |

#### Part B


**Answer the Questions.**

**Total Marks 40M**

|           |           |                                                                                                                                                                                                  |                 |           |            |
|-----------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------|------------|
| <b>6.</b> | <b>a.</b> | Apply time shifting, time scaling, and amplitude scaling operations to the rectangular pulse $x(t)$ as depicted in the figure below to obtain $y(t)=2x(2t+3)$ , and sketch the resulting signal. | <b>10 Marks</b> | <b>L3</b> | <b>CO2</b> |
|-----------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------|------------|



**b.** Apply time shifting and amplitude scaling operations to the signal  $x(t)$  as depicted in the figure below to obtain  $y(t)=2x(t-2)$  and  $y(t)=2x(t+2)$ . Also, sketch the resulting signals.



**Or**

**7.** **a.** Determine whether the following systems are linear or nonlinear:

(i)  $y(t) = x(2t)$   
(ii)  $y(t) = 2x(t) + 3$

**b.** Determine whether the following systems are time-invariant or time-variant:

(i)  $y(t) = x(-t)$   
(ii)  $y(t) = x(t) \sin 3t$

**8.** **a.** Describe whether the signal is periodic or not. If it is periodic, compute its fundamental period.

$$x(t) = 3 \sin \left( 200\pi t - \frac{\pi}{4} \right)$$

**b.** Describe whether the following signals are periodic or not. If it is periodic, compute its fundamental period.

(i)  $x(t) = e^{\cos(2t)}$   
(ii)  $x(t) = t \cdot e^{\cos(2t)}$

**Or**

**9.** **a.** Describe whether the signal  $x(t)=A \sin (t)$  is an energy signal or a power signal, and compute its power.

**b.** Describe whether the signal  $x(t)=A \cos (t)$  is an energy signal or a power signal, and compute its power.

