

Roll No.											
----------	--	--	--	--	--	--	--	--	--	--	--

PRESIDENCY UNIVERSITY

BENGALURU

Mid - Term Examinations – October 2025

Date: 08-10-2025

Time: 09.30am to 11.00am

School: SOE	Program: ECE (3VLSI01)	
Course Code : ECE2517	Course Name: Communication Systems	
Semester: III	Max Marks: 50	Weightage: 25%

CO - Levels	CO1	CO2	CO3	CO4	CO5
Marks	16	17	17	---	---

Instructions:

- (i) *Read all questions carefully and answer accordingly.*
- (ii) *Do not write anything on the question paper other than roll number.*

Part A

Answer ALL the Questions. Each question carries 2marks.

5Q x 2M=10M

1	Define modulation index in the context of amplitude modulation.	2 Marks	L1	CO1
2	Describe the main advantage of Double Sideband Suppressed Carrier AM over Full Carrier AM.	2 Marks	L2	CO1
3	Identify the main components of a ring modulator.	2 Marks	L1	CO1
4	Find the frequency deviation in an FM signal if the modulation index is 3 and the modulating frequency is 8 kHz.	2 Marks	L1	CO3
5	Find the transmitted power if the carrier power is 50 KW and the modulation index is 0.6	2 Marks	L1	CO2

Part B

Answer the Questions.

Total Marks 40M

6.	Describe the role of the diode and how the switching modulator produces AM signals.	10 Marks	L2	CO1
Or				
7.	Discuss how carrier suppression is achieved in a balanced modulator.	10 Marks	L2	CO1
8.	<p>Given an amplitude modulated wave expressed as $s(t) = [25(1+0.8\cos 16000t)\cos 3 \times 10^5 t]$ volts</p> <p>Apply your understanding of amplitude modulation to answer the following:</p> <ul style="list-style-type: none"> (a) Identify the frequency components contained in the AM wave. (b) Calculate the minimum and maximum amplitudes of the AM wave. (c) Determine the amplitude of the carrier signal, the message signal, and the AM wave. (d) Calculate the transmission efficiency during AM wave transmission. (e) Calculate the bandwidth required for transmission of the AM wave. 	15 Marks	L3	CO2
Or				
9.	<p>An audio frequency signal $35\sin(2\pi \times 20 \times 10^3 t)$ volts modulates a carrier signal $75\sin(2\pi \times 12 \times 10^6 t)$ volts. Calculate:</p> <ul style="list-style-type: none"> (a) Modulation Index (b) Sideband frequencies (c) Amplitude of each sideband frequency (d) Bandwidth required (e) Total power delivered to the load of 1K ohms (f) Efficiency of the modulation 	15 Marks	L3	CO2
10.	Describe the process for generating narrowband frequency modulation (NBFM) and include the relevant equation and block diagram in your explanation.	15 Marks	L2	CO3
Or				
11.	Derive the mathematical expression for a single-tone sinusoidal frequency modulated (FM) wave and explain the characteristics of its frequency spectrum.	15 Marks	L2	CO3