

sRoll No.											
-----------	--	--	--	--	--	--	--	--	--	--	--

PRESIDENCY UNIVERSITY

BENGALURU

Mid - Term Examinations – October 2025

Date: 09-10-2025

Time: 02.00pm to 03.30pm

School: SOE	Program: B.Tech	
Course Code : ECE3006	Course Name: Digital Control Systems	
Semester: V	Max Marks: 50	Weightage: 25%

CO - Levels	CO1	CO2	CO3	CO4	CO5
Marks	24	14	12		

Instructions:

- (i) *Read all questions carefully and answer accordingly.*
- (ii) *Do not write anything on the question paper other than roll number.*

Part A

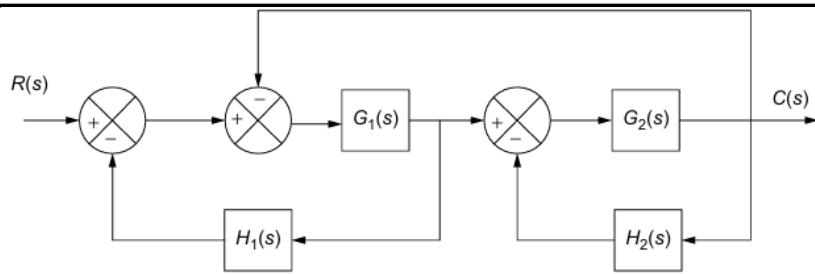
Answer ALL the Questions. Each question carries 2marks.

5Q x 2M=10M

1	A negative feedback system has a forward gain of 10 and feedback gain of 1. Determine the overall gain of the system.	2 Marks	L2	CO1
2	What are the basic elements used for mechanical rotational system?	2 Marks	L2	CO1
3	How do analog control systems and digital control systems differ in terms of stability analysis	2 Marks	L2	CO2
4	State the pole-mapping equation used in bilinear transformation for converting an analog transfer function into a digital transfer function.	2 Marks	L2	CO2
5	What is the steady-state value of the step response in a first-order system?	2 Marks	L2	CO3

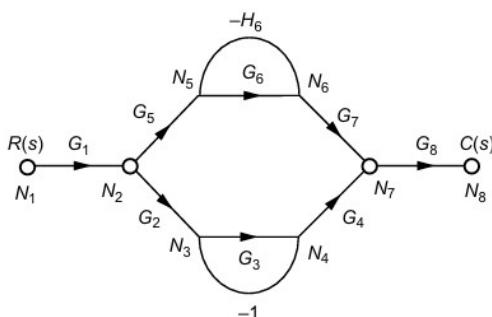
Part B

Answer the Questions.


Total Marks 40M

6.	a.	<p>Consider the linear time-invariant electrical circuit shown below:</p> <ul style="list-style-type: none"> The input is a voltage source $v_1(t)$. The circuit consists of resistor and capacitor connected in a specified configuration given in figure The output voltage $v_2(t)$ is measured across the designated element. <p>For the circuit shown, write the differential equations and hence find the transfer function $\frac{V_1(s)}{V_2(s)}$?</p>	10 Marks	L3	CO 1
----	----	---	----------	----	------

Or


7.	a.	<p>Derive the transfer function for the given mechanical system</p>	10 Marks	L3	CO 1
----	----	---	----------	----	------

8.	a.	<p>For the block diagram of the system as shown in Fig., determine the transfer function using the block diagram reduction technique.</p>	10 Marks	L3	CO 1
----	----	---	----------	----	------

Or

9. a. The signal flow diagram for a particular system is shown in Fig., Determine the transfer function of the system using Mason's gain formula.

10 Marks L3 CO 1

10. a. Using Bilinear transformation, find the transfer function of the digital filter for

$$H(s) = \frac{5}{(s+1)(s+2)}$$

10 Marks L3 CO 2

Or

11. a. Using Bilinear transformation, find the transfer function of the digital filter for $H(s) = \frac{1}{(s^2 + 2s + 1)}$ for $T=0.1\text{Sec.}$

10 Marks L3 CO 2

12. a. A first-order linear time-invariant (LTI) system is described by the transfer function

$$H(s) = \frac{1}{\tau s + 1}$$

If the input applied to this system is a impulse function $\delta(t)$, determine the complete response of the system in the time domain. Discuss the physical interpretation of this response.

10 Marks L3 CO 3

Or

13. a. A first-order linear time-invariant (LTI) system is described by

10 Marks L3 CO

	<p>the transfer function</p> $H(s) = \frac{1}{\tau s + 1}$ <p>If the input applied to this system is a ramp function $r(t)$, determine the complete response of the system in the time domain. Discuss the physical interpretation of this response.</p>			3
--	---	--	--	----------