

Roll No.											
----------	--	--	--	--	--	--	--	--	--	--	--

PRESIDENCY UNIVERSITY

BENGALURU

Mid - Term Examinations – October 2025

Date: 07-10-2025

Time: 09.30am to 11.00am

School: SOE	Program: B.Tech	
Course Code : ECE3020	Course Name: Computational Intelligence and Machine Learning	
Semester: V	Max Marks: 50	Weightage: 25%

CO - Levels	CO1	CO2	CO3	CO4	CO5	CO6
Marks	24	26	0	0	0	0

Instructions:

- (i) *Read all questions carefully and answer accordingly.*
- (ii) *Do not write anything on the question paper other than roll number.*

Part A

Answer ALL the Questions. Each question carries 2marks.

5Q x 2M=10M

1	Overfitting is an undesirable machine learning behavior. What is overfitting in machine learning and mention 1 point to avoid it.	2 Marks	L1	CO1
2	In supervised machine learning, we use different techniques for classification and regression. Differentiate between decision tree and random forest in classification with proper diagram.	2 Marks	L2	CO2
3	In machine learning different error metrics are used for evaluating performance of the model. Define MAE, MSE, or RMSE .	2 Marks	L1	CO2
4	There are different types of machine learning. Differentiate between Unsupervised and reinforcement learning. Give one example of each.	2 Marks	L2	CO1
5	R-squared is a statistical measure used in machine learning. Define R-square? Why is it important in evaluating classification models?	2 Marks	L2	CO2

Part B

Answer the Questions.

Total Marks 40M

6.	a.	<p>A college professor believes that if the grade for internal examination is high in a class, the grade for external examination will also be high. A random sample of 6 students in that class was selected, and the data is given below:</p> <table border="1" data-bbox="298 354 1176 898"> <thead> <tr> <th>Student</th><th>Internal exam marks</th><th>External exam marks</th></tr> </thead> <tbody> <tr> <td>1</td><td>30</td><td>45</td></tr> <tr> <td>2</td><td>20</td><td>25</td></tr> <tr> <td>3</td><td>30</td><td>31</td></tr> <tr> <td>4</td><td>27</td><td>29</td></tr> <tr> <td>5</td><td>35</td><td>38</td></tr> <tr> <td>6</td><td>15</td><td>17</td></tr> </tbody> </table> <p>Derive a linear regression equation to model the above data.</p>	Student	Internal exam marks	External exam marks	1	30	45	2	20	25	3	30	31	4	27	29	5	35	38	6	15	17	10 Marks	L3	CO 1
Student	Internal exam marks	External exam marks																								
1	30	45																								
2	20	25																								
3	30	31																								
4	27	29																								
5	35	38																								
6	15	17																								
7.	a.	<p>Or</p> <p>A confusion matrix is a table that summarizes the performance of a machine learning classification model, showing the counts of correctly and incorrectly classified instances across different classes. A person predicts the winning or losing chances of a particular team in IPL out of 100 matches played. Here are the results given as a Confusion Matrix:</p> <table border="1" data-bbox="298 1365 1176 1740"> <thead> <tr> <th></th><th>ACTUAL win</th><th>ACTUAL loss</th><th>Total</th></tr> </thead> <tbody> <tr> <td>PREDICTED win</td><td>60</td><td>20</td><td>80</td></tr> <tr> <td>PREDICTED loss</td><td>15</td><td>5</td><td>20</td></tr> <tr> <td>Total</td><td>75</td><td>25</td><td>100</td></tr> </tbody> </table> <p>Calculate the Accuracy, Precision, Recall (Sensitivity), Specificity and F1-Score.</p>		ACTUAL win	ACTUAL loss	Total	PREDICTED win	60	20	80	PREDICTED loss	15	5	20	Total	75	25	100	10 Marks	L3	CO 2					
	ACTUAL win	ACTUAL loss	Total																							
PREDICTED win	60	20	80																							
PREDICTED loss	15	5	20																							
Total	75	25	100																							

8.	a.	<p>In Machine learning, R-squared is used for model performance evaluation. Calculate R-squared coefficient for a regression problem to evaluate how well a regression model predicting</p>	10 Marks	L3	CO1
----	----	---	-----------------	-----------	------------

		house prices (in thousands)			
		House	Actual Price	Predicted Price	
	1	230	245		
	2	180	200		
	3	300	310		
	4	275	295		
	5	350	385		
	6	150	170		

Or

9.	a.	Model evaluation is the process of assessing how well a machine learning model performs on unseen data using different metrics and techniques. Explain k-fold cross-validation and its importance in model evaluation.	10 Marks	L3	CO2
----	----	--	-----------------	-----------	------------

10.	a.	It is important to assess how well a machine learning model performs on unseen data using different metrics and techniques. It is required to ensure that the model not only memorizes training data but also generalizes to new situations. Analyze the concepts of overfitting and underfitting in machine learning models.	10 Marks	L4	CO1
-----	----	---	-----------------	-----------	------------

Or

11.	a.	Error analysis in machine learning is the systematic process of examining and understanding the errors made by a machine learning model. Calculate the Mean Squared Error (MSE) and Mean Absolute Error (MAE) for a linear regression model predicting student scores:	10 Marks	L2	CO2															
		<table border="1"> <tr> <td>Student</td> <td>Actual Score</td> <td>Predicted Score</td> </tr> <tr> <td>1</td> <td>75</td> <td>80</td> </tr> <tr> <td>2</td> <td>80</td> <td>95</td> </tr> <tr> <td>3</td> <td>78</td> <td>70</td> </tr> <tr> <td>4</td> <td>85</td> <td>90</td> </tr> </table>	Student	Actual Score	Predicted Score	1	75	80	2	80	95	3	78	70	4	85	90			
Student	Actual Score	Predicted Score																		
1	75	80																		
2	80	95																		
3	78	70																		
4	85	90																		

12.	a.	Classification in machine learning is a supervised learning task where an algorithm categorizes data points into discrete, predefined classes or labels. Use Random Forest algorithm to	10 Marks	L3	CO2
-----	----	---	-----------------	-----------	------------

predict the price of a flat with 1400 square feet of carpet area, 3 bedrooms and 2 bathrooms.

Flat	Number of bedrooms	Number of bathrooms	Carpet area	Price (in \$)
1	5	4	2500	300
2	4	2	1700	210
3	2	1	850	125
4	4	3	200	240
5	3	3	1600	200
6	2	2	1000	150

Or

13. a. Machine learning (ML) is a field of artificial intelligence that teaches computers to learn from data without explicit programming, enabling them to improve performance over time by identifying patterns and making informed decisions. Compare supervised and unsupervised learning tasks. Give 5 differences.

10 Marks **L1** **CO 1**