

Roll No.											
----------	--	--	--	--	--	--	--	--	--	--	--

PRESIDENCY UNIVERSITY

BENGALURU

Mid - Term Examinations – October 2025

Date: 07-10-2025

Time: 09.30am to 11.00am

School: SOE	Program: B.Tech. (ECE)	
Course Code: ECE3022	Course Name: Fundamentals of Photonics	
Semester: V	Max Marks: 50	Weightage: 25%

CO - Levels	CO1	CO2	CO3	CO4	CO5
Marks	26	24			

Instructions:

- (i) *Read all questions carefully and answer accordingly.*
- (ii) *Do not write anything on the question paper other than roll number.*

Part A

Answer ALL the Questions. Each question carries 2marks.

5Q x 2M=10M

1	What is Huygen's hypothesis on the nature of light.	2 Marks	L1	CO1
2	What is the difference between Fresnel and Fraunhofer diffraction?	2 Marks	L1	CO1
3	List the active and passive components in photonic integrated circuits.	2 Marks	L1	CO1
4	Write the wave equation for a simple travelling wave propagating along the z-direction.	2 Marks	L1	CO2
5	Define acceptance angle.	2 Marks	L1	CO2

Part B

Answer the Questions.

Total Marks 40M

6.	a.	With neat diagrams, explain the diffraction and interference as per the wave optics. (You do not have to derive expressions related to diffraction and interference)	10 Marks	L2	CO1
	b.	<p>A ray of light is travelling from one medium to another medium. The speed of light in the first medium and the second medium is 2×10^8 m/s and 2.3×10^8 m/s respectively. The speed of light in free space is 3×10^8 m/s.</p> <p>(i) If the light is incident on the interface at an angle 60°, calculate the angle of reflection and the angle of refraction at the interface.</p> <p>(ii) If the angle of refraction is 90°, calculate the minimum angle of incidence.</p>	10 Marks	L3	CO1

Or

7.	a.	Explain the advantages of optical detectors. Also, describe the three types of optical detectors.	10 Marks	L2	CO1
	b.	<p>Two slits are placed 0.2mm apart. The slits are kept at 1.2m from the screen. The slits are illuminated with a light of 620nm.</p> <p>(i) Calculate the width of the central bright fringe?</p> <p>(ii) Calculate the distance between the second and third dark fringe?</p>	10 Marks	L3	CO1

8.	a.	With neat diagrams, explain all five types of non-planar waveguides.	10 Marks	L2	CO2
	b.	<p>A waveguide with a core of refractive index 1.5 is enclosed in a cladding to ensure total internal reflection. The light is incident on the core from air medium at an angle 45°.</p> <p>(i) Calculate the angle at which the light is incident on the core-cladding interface.</p> <p>(ii) Calculate the refractive index of the cladding to ensure total internal reflection.</p>	10 Marks	L3	CO2

Or

9.	a.	Define guided mode of a waveguide. Describe the total resonance condition that must be satisfied to achieve guided mode.	10 Marks	L2	CO2
-----------	-----------	--	-----------------	-----------	------------

	<p>b. The acceptance angle of a waveguide in 40° when kept in water medium with refractive index 1.33. If the same waveguide is kept in 70% ethanol with refractive index 1.36,</p> <p>(i) Calculate the acceptance angle of the waveguide in 70% ethanol</p> <p>(ii) Calculate the numerical aperture of the waveguide in both the medium.</p>	10 Marks	L3	CO2
--	--	-----------------	-----------	------------