

Roll No.											
----------	--	--	--	--	--	--	--	--	--	--	--

PRESIDENCY UNIVERSITY

BENGALURU

Mid - Term Examinations – October 2025

Date: 07-10-2025

Time: 09.30am to 11.00am

School: SOE	Program: B. Tech	
Course Code: ECE3025	Course Name: Artificial Intelligence using Python	
Semester: V	Max Marks: 50	Weightage: 25%

CO - Levels	CO1	CO2	CO3	CO4	CO5	CO6
Marks	30	20	0	0	0	0

Instructions:

- (i) *Read all questions carefully and answer accordingly.*
- (ii) *Do not write anything on the question paper other than roll number.*

Part A

Answer ALL the Questions. Each question carries 2marks.

5Q x 2M=10M

1	Explain the concepts of supervised and unsupervised learning. Illustrate your answer with one suitable example for each type of learning approach.	2 Marks	L1	CO1
2	What are the libraries used for Data Visualization and Data preprocessing in Python.	2 Marks	L2	CO1
3	Deep learning and Machine Learning are under the umbrella of artificial intelligence. How does deep learning differ from machine learning?	2 Marks	L1	CO1
4	Differentiate between classification and regression problems in machine learning, and provide one real-world example for each to demonstrate their application.	2 Marks	L2	CO1
5	A confusion matrix is used in evaluating the performance of a classification model. Define "Accuracy" and "Precision" with an example.	2 Marks	L2	CO1

Part B

Answer the Questions.

Total Marks 40M

6.	a.	<p>Label encoding refers to the process of transforming the word labels into numerical form. How does label encoding perform if the input labels.</p> <p>i) <code>input_labels = ['red', 'black', 'red', 'green', 'black', 'yellow', 'white']</code> and ii) <code>input_labels = (1, 2, 0, 3)</code>.</p>	5 Marks	L2	CO 1
	b.	<p>Data preprocessing plays a crucial role in machine learning. Let us assume that the data set we are working with is $([-1.9, 2.3, 2.1, 0.8], [-2.9, 1.5, -0.8, 2.0], [3.2, -2.5, 2.7, 0.9])$.</p> <p>This data set needs to be binarized with a threshold of 2.5 for preprocessing. Then what is binarized data for the given data set?</p>	5 Marks	L2	CO 1

Or

7.	a.	<p>Assume the classifier for odds of passing course $\text{Log (odds)} = -64 + 2 * \text{hours}$. the given data sets are as</p> <table border="1" style="margin-left: auto; margin-right: auto;"> <thead> <tr> <th>Hours</th><th>Pass(1)/Fail(0)</th></tr> </thead> <tbody> <tr> <td>29</td><td>0</td></tr> <tr> <td>15</td><td>0</td></tr> <tr> <td>33</td><td>1</td></tr> <tr> <td>28</td><td>1</td></tr> <tr> <td>45</td><td>1</td></tr> </tbody> </table> <p>i) Calculate the probability of pass who studied 32 hours ii) How many hours student should study that makes he will pass the course with the probability of more than 90%</p>	Hours	Pass(1)/Fail(0)	29	0	15	0	33	1	28	1	45	1	5 Marks	L2	CO 1
Hours	Pass(1)/Fail(0)																
29	0																
15	0																
33	1																
28	1																
45	1																
	b.	<p>Consider the provided confusion matrix. Calculate the specified performance metrics.</p> <p>(i) Accuracy (ii) Precision (iii) Recall (iv) F1 Score</p> <table border="1" style="margin-left: auto; margin-right: auto;"> <tr> <td style="width: 15%;"></td> <td style="width: 25%; text-align: center;">Predicted: NO</td> <td style="width: 25%; text-align: center;">Predicted: YES</td> </tr> <tr> <td style="width: 15%; text-align: center;">n=165</td> <td style="width: 25%; text-align: center;">50</td> <td style="width: 25%; text-align: center;">10</td> </tr> <tr> <td style="width: 15%; text-align: center;">Actual: NO</td> <td style="width: 25%; text-align: center;">5</td> <td style="width: 25%; text-align: center;">100</td> </tr> <tr> <td style="width: 15%; text-align: center;">Actual: YES</td> <td style="width: 25%;"></td> <td style="width: 25%;"></td> </tr> </table>		Predicted: NO	Predicted: YES	n=165	50	10	Actual: NO	5	100	Actual: YES			5 Marks	L2	CO 1
	Predicted: NO	Predicted: YES															
n=165	50	10															
Actual: NO	5	100															
Actual: YES																	

8.	a.	<p>A regression model is used to predict sales data of a company (in thousands) for five weeks as shown below:</p> <p>Apply the Linear regression algorithm to predict 7th and 10th weeks sales.</p> <table border="1" data-bbox="295 339 1160 615"> <thead> <tr> <th data-bbox="295 339 684 384">Week (X)</th><th data-bbox="684 339 1160 384">Sales (Y)</th></tr> </thead> <tbody> <tr> <td data-bbox="295 384 684 428">1</td><td data-bbox="684 384 1160 428">1.2</td></tr> <tr> <td data-bbox="295 428 684 473">2</td><td data-bbox="684 428 1160 473">1.8</td></tr> <tr> <td data-bbox="295 473 684 518">3</td><td data-bbox="684 473 1160 518">2.6</td></tr> <tr> <td data-bbox="295 518 684 563">4</td><td data-bbox="684 518 1160 563">3.2</td></tr> <tr> <td data-bbox="295 563 684 608">5</td><td data-bbox="684 563 1160 608">3.8</td></tr> </tbody> </table>	Week (X)	Sales (Y)	1	1.2	2	1.8	3	2.6	4	3.2	5	3.8	10	Marks	L2	CO1
Week (X)	Sales (Y)																	
1	1.2																	
2	1.8																	
3	2.6																	
4	3.2																	
5	3.8																	

Or

9.	a.	<p>A linear regression model is used to predict the Marks of six students as shown below:</p> <p>Apply the Linear Regression algorithm and find the best fit Regressor of the model. Show all steps involved in your calculations and interpret the significance of the results.</p> <table border="1" data-bbox="295 945 1160 1228"> <thead> <tr> <th data-bbox="295 945 684 990">Hours Studied (X)</th><th data-bbox="684 945 1160 990">Marks Obtained (Y)</th></tr> </thead> <tbody> <tr> <td data-bbox="295 990 684 1035">2</td><td data-bbox="684 990 1160 1035">60</td></tr> <tr> <td data-bbox="295 1035 684 1080">3</td><td data-bbox="684 1035 1160 1080">65</td></tr> <tr> <td data-bbox="295 1080 684 1125">4</td><td data-bbox="684 1080 1160 1125">75</td></tr> <tr> <td data-bbox="295 1125 684 1170">5</td><td data-bbox="684 1125 1160 1170">80</td></tr> <tr> <td data-bbox="295 1170 684 1215">6</td><td data-bbox="684 1170 1160 1215">85</td></tr> </tbody> </table>	Hours Studied (X)	Marks Obtained (Y)	2	60	3	65	4	75	5	80	6	85	10 Marks		L2	CO1
Hours Studied (X)	Marks Obtained (Y)																	
2	60																	
3	65																	
4	75																	
5	80																	
6	85																	

10.	a.	<p>A spam email detection system was tested on 100 emails, and the results are summarized as below:</p> <p>Actual Values:</p> <p>There are 100 emails. 70 are not spam, and 30 are spam.</p> <p>Predictions:</p> <p>Your model predicted 80 as not spam and 20 as spam.</p> <p>Out of the 30 spam emails:</p> <p>The model correctly classified 18 as spam (True Positives).</p> <p>The model classified 12 spam emails as not spam (False Negatives).</p> <p>Out of the 70 non-spam emails:</p> <p>The model correctly classified 62 as not spam (True Negatives).</p> <p>The model classified 8 non-spam emails as spam (False</p>	10	Marks	L2	CO2
-----	----	--	----	-------	----	-----

	<p>Positives).</p> <table border="1"> <thead> <tr> <th></th><th>PREDICTED</th><th>PREDICTED</th><th>Total</th></tr> </thead> <tbody> <tr> <td>ACTUAL</td><td>18</td><td>12</td><td>30</td></tr> <tr> <td>ACTUAL</td><td>8</td><td>62</td><td>70</td></tr> <tr> <td>Total</td><td>26</td><td>74</td><td>100</td></tr> </tbody> </table> <p>Using the given confusion matrix, apply classification performance metrics to calculate the following: Accuracy, Precision, Recall (Sensitivity), Specificity, and F1-Score. Interpret the significance of these metrics in evaluating the model's performance.</p>		PREDICTED	PREDICTED	Total	ACTUAL	18	12	30	ACTUAL	8	62	70	Total	26	74	100	
	PREDICTED	PREDICTED	Total															
ACTUAL	18	12	30															
ACTUAL	8	62	70															
Total	26	74	100															

Or

11.	a.	Differentiate between supervised learning and unsupervised learning in terms of data, objectives, and applications.	10 Marks	L2	CO 2
------------	-----------	---	-----------------	-----------	-------------

12.	a.	Illustrate the working principle of the Support Vector Machine (SVM) algorithm in detail. Include a labeled diagram to explain concepts such as hyperplane, support vectors, and margin, and describe how SVM performs classification on linearly and non-linearly separable data.	10 Marks	L3	CO 2
------------	-----------	--	-----------------	-----------	-------------

Or

13.	a.	How do you draw the 'HYPERPLANE' in given data points? The points (4,1), (4, -1) and (6,0) are belongs to positive class and points (1,0), (0,1) and (0, -1) are belongs to negative class	10 Marks	L3	CO 2
------------	-----------	--	-----------------	-----------	-------------