

PRESIDENCY UNIVERSITY

BENGALURU

Mid - Term Examinations - October 2025

Date: 07-10-2025

Time: 02.00pm to 03.30pm

School: SOE	Program: B. Tech	
Course Code: ECE3029	Course Name: Digital Image Processing	
Semester: V	Max Marks: 50	Weightage: 25%

CO - Levels	CO1	CO2	CO3	CO4	CO5
Marks	6	32	12	--	--

Instructions:

- (i) *Read all questions carefully and answer accordingly.*
- (ii) *Do not write anything on the question paper other than roll number.*

Part A

Answer ALL the Questions. Each question carries 2marks.

$$5Q \times 2M = 10M$$

Part B

Answer the Questions.

Total Marks 40M

<p>6. In Digital Image Processing, there are various Set and Logical Operations. While dealing with Binary Images, the Foreground (1-Valued) and Background(0-Valued) sets of Pixels, we refer to Union, Intersection, and Compliment (Set Operations), and OR, AND, and NOT are Logical Operations respectively. Considering the two Regions (Sets) A and B as shown in the figure, perform the following Logical Operations. Given that:</p> <ul style="list-style-type: none"> i. NOT (A) ii. (A) AND (B) iii. (A) OR (B) iv. A \cap B v. A-B 	10 Marks	L3	CO2
--	-----------------	-----------	------------

Or

<p>7A c A Common measure of transmission for digital data is the baud rate, defined as the number of bits transmitted per second. Generally, transmission is accomplished in packets consisting of a start bit, a byte (8 bits) of information, and a stop bit. Using these facts, answer the following:</p> <p>(i) How many minutes would it take to transmit a 1024 X 1024 image with 256 gray levels using a 56K baud modem?</p> <p>(ii) What would the time be at 750K baud, a representative speed of a phone DSL (digital subscriber line) connection?</p>	10 Marks	L3	CO2
---	-----------------	-----------	------------

<p>8. Consider a square with vertices (-1,1) (1,1) (-1,-1) (1,-1) is translated with vector (2,2). The translated object is then scaled by (2,2). Draw the new transformed figures and the original square figure.</p>	10 Marks	L3	CO2
---	-----------------	-----------	------------

Or

<p>9. Consider the image segment shown. Let $V=\{1,2\}$ and compute the lengths of the shortest 4, 8 and m path between p and q. If a particular path does not exist between these two points explain why.</p> <p>Repeat the same problem for $V=\{2,3,4\}$</p>	10 Marks	L3	CO2
--	-----------------	-----------	------------

3 4 1 2 0
0 1 0 4 2 (q)
2 2 3 1 4
(p) 3 0 4 2 1
1 2 0 3 4

10.	Pixel values are integers composed of bits. Values in a 256-level gray scale image is composed of 8 bits (one byte). A gray scale image segment with 4*4 pixels is shown below. Perform a suitable transformation that can show the contribution of only S8, S6, S4, and S2 planes. Also list the advantages of this transformation.	10 Marks	L3	CO3																
<table border="1" style="margin: auto;"> <tr><td>132</td><td>14</td><td>38</td><td>232</td></tr> <tr><td>129</td><td>64</td><td>78</td><td>33</td></tr> <tr><td>32</td><td>155</td><td>198</td><td>126</td></tr> <tr><td>129</td><td>164</td><td>178</td><td>233</td></tr> </table>					132	14	38	232	129	64	78	33	32	155	198	126	129	164	178	233
132	14	38	232																	
129	64	78	33																	
32	155	198	126																	
129	164	178	233																	

Or

11.	(i) Given $f_1 = \begin{bmatrix} 0 & 2 \\ 2 & 3 \end{bmatrix}$, $f_2 = \begin{bmatrix} 6 & 5 \\ 4 & 7 \end{bmatrix}$, $a_1=1$ $a_2= -1$ and $H= \max$. Determine whether it is a Linear operation or non-Linear operation (ii) Let p and q are two pixels at co-ordinates (10,15) and (15,25) respectively. Compute i) Euclidean distance ii) Chessboard distance and iii) City Block distance.	10 Marks	L3	CO2
-----	--	----------	----	-----

12.	Histogram is a graphical representation of the intensity distribution of an image. In simple terms, it represents the number of pixels for each intensity value considered. Consider a gray-scale image in matrix form, perform histogram equalization on this image and scale the intensity to 1:20. $\begin{bmatrix} 3 & 2 & 4 & 5 \\ 7 & 7 & 8 & 2 \\ 3 & 1 & 2 & 3 \\ 5 & 4 & 6 & 7 \end{bmatrix}$	10 Marks	L3	CO3
Or				

13.	For a given 5x5 gray scale image, perform the following transformations. a. Thresolding with $T=128$ b. Intensity level slicing $r_1=100$ and $r_2=200$ (without background)	10 Marks	L3	CO3															
<table border="1" style="margin: auto;"> <tr><td>101</td><td>255</td><td>30</td><td>102</td><td>155</td></tr> <tr><td>132</td><td>14</td><td>38</td><td>232</td><td>198</td></tr> <tr><td>129</td><td>64</td><td>78</td><td>33</td><td>126</td></tr> </table>					101	255	30	102	155	132	14	38	232	198	129	64	78	33	126
101	255	30	102	155															
132	14	38	232	198															
129	64	78	33	126															

		32	155	198	126	127				
		129	164	178	233	126				