

Roll No.									
----------	--	--	--	--	--	--	--	--	--

PRESIDENCY UNIVERSITY

BENGALURU

Mid - Term Examinations – October 2025

Date: 10-10-2025

Time: 11.45am to 01.15pm

School: SOE	Program: Electronics and Communication Engineering		
Course Code : ECE3043	Course Name: Mixed Signal Circuit Design		
Semester: V	Max Marks: 50	Weightage: 25%	

CO - Levels	C01	C02	C03	C04	C05
Marks	12	24	14		

Instructions:

- (i) Read all questions carefully and answer accordingly.
- (ii) Do not write anything on the question paper other than roll number.

Part A

Answer ALL the Questions. Each question carries 2marks.

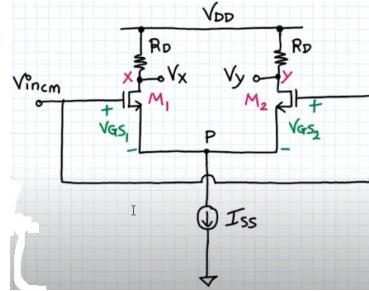
5Q x 2M=10M

1	In MOSFET amplifier, a small change within gate voltage will generate a large change within drain current. For an NMOS, 3V is applied between gate and source and the threshold voltage is 0.8V. Calculate the value of V_{DS} for MOSFET to operates in saturation.	2 Marks	L1	C01
2	A cascade amplifier is a two-port network designed with amplifiers which are connected in series when every amplifier transmits its output to the second amplifiers input in a daisy chain. Mention the advantages and disadvantages of cascade amplifier.	2 Marks	L2	C02
3	Compensation techniques are used to improve stability and prevent oscillation by controlling the frequency response. List the advantages and disadvantages of pole zero compensation.	2 Marks	L1	C02
4	A Schmitt trigger is a comparator with positive feedback that creates hysteresis, using two distinct thresholds. In a Schmitt circuit, $R_2=100$ Ohm, $R_1=50$ KOhm, $V_{ref} = 0V$, $V_i=1V_{pp}$ sinewave and saturation voltage $\pm 14V$. Determine the hysteresis voltage.	2 Marks	L2	C03
5	A PLL is a control system that generates an output signal whose phase	2 Marks	L1	C03

is fixed relative to the phase of an input signal. Mention the purpose of the phase detector and LPF in PLL.

Part B

Answer the Questions.


Total Marks 40M

6.	a.	MOSFET is a type of FET with an insulated gate that is assembled by the controlled oxidation of that semiconductor. Explain the Drain and transfer characteristics of N Channel Enhancement type MOSFET. Also mention the difference between N-Channel and P-Channel MOSFET.	10 Marks	L2	CO1
Or					
7.	a.	MOSFET is known as a voltage-driven device and requires simple gate control circuit. Mention the MOSFET current equation in triode region, saturation region, and cut-off-region.	10 Marks	L2	CO1

8.	a.	A common-source amplifier is used for high voltage amplification and high input impedance. Derive the expression for voltage gain and output impedance for Common Source Amplifier with PMOS as Load.	10 Marks	L3	CO2
Or					

9.	a.	<p>The CS amplifier provides the voltage gain of 10 with a bias current of 0.5mA. Assume $\lambda_1=0.1V^{-1}$, $\lambda_2=0.15V^{-1}$, $\mu_nC_{ox}=200\mu A/V^2$, $\mu_pC_{ox}=100\mu A/V^2$, $V_{th}=0.4V$ for NMOS and $V_{th}=-0.4V$ for PMOS.</p> <p>Calculate (a) the required $(w/L)_1$ (b) If $(W/L)_1=20/0.18$, calculate the value of V_B.</p>	10 Marks	L3	CO2

10.	a.	<p>A differential amplifier's ability is to reject common signals to both inputs, known as common-mode signals, rather than amplifying them. In a MOS differential amplifier as shown in figure, $V_{inCM}=1V$, $I_{ss}=1mA$ and $R_D=1K\Omega$. Evaluate the minimum allowable supply voltage if the transistors will remain in saturation. Assume V_{th} for NMOS = 0.5V.</p>	10 Marks	L3	CO2
------------	-----------	---	-----------------	-----------	------------

Or

11.	a.	An astable multivibrator, also called a free-running multivibrator, is a circuit that continuously produces square waves or pulses without the use of an external trigger. Explain the working of Astable Multivibrator with output waveform.	10 Marks	L2	CO2
------------	-----------	---	-----------------	-----------	------------

12.	a.	A phase detector is a circuit that compares two input signals and generates an output signal that reflects the phase difference between them. Analog Phase detector in PLL using input and output waveform for $\phi=0^\circ$, $\phi=90^\circ$, $\phi=180^\circ$.	10 Marks	L3	CO3
------------	-----------	--	-----------------	-----------	------------

Or

13.	a.	PLL generates an output frequency which is based on a reference input clock. The output frequency can be either higher or lower than the input. Explain the working of Frequency translation in PLL with figure.	10 Marks	L3	CO3
------------	-----------	--	-----------------	-----------	------------