

Roll No.											
----------	--	--	--	--	--	--	--	--	--	--	--

PRESIDENCY UNIVERSITY

BENGALURU

Mid - Term Examinations – October 2025

Date: 09-10-2025

Time: 02.00pm to 03.30pm

School: SOE	Program: B. Tech	
Course Code : ECE3122	Course Name: Microelectronics	
Semester: V	Max Marks: 50	Weightage: 25%

CO - Levels	CO1	CO2	CO3	CO4	CO5
Marks	29	14	7		

Instructions:

- (i) *Read all questions carefully and answer accordingly.*
- (ii) *Do not write anything on the question paper other than roll number.*

Part A

Answer ALL the Questions. Each question carries 2marks.

5Q x 2M=10M

1	What is an energy band diagram and what does it show in a semiconductor?	2 Marks	L1	CO1
2	Sketch the graph showing how mobility varies with dopant concentration.	2 Marks	L1	CO1
3	Given that a silicon wafer is doped with acceptors with $Na = 10^{14} \text{ cm}^{-3}$ along with a donor with concentration of $Nd = 7.5 \times 10^{13} \text{ cm}^{-3}$ to a particular region. (a) What type is the region (n or p)? (b) What is the electron concentration n_0 (cm^{-3}) in the region?	2 Marks	L1	CO2
4	The current in a PN junction diode is measured to be $0.3 \mu\text{A}$ for a forward bias voltage of $VD = 720 \text{ mV}$. Find the saturation current I_0 .	2 Marks	L1	CO2
5	Why is a Schottky diode faster than a regular p-n junction diode?	2 Marks	L1	CO3

Part B

Answer the Questions.

Total Marks 40M

6.	a.	Derive an expression for drift current density in p-region as function of concentration gradient.	10 Marks	L2	CO1
-----------	-----------	---	-----------------	-----------	------------

Or

7.	a.	Derive an expression for diffusion current density in n-region with necessary analysis.	10 Marks	L2	CO1
-----------	-----------	---	-----------------	-----------	------------

8.	a.	Explain the difference between n-type and p-type doping in semiconductors with bond model and acceptor and donor concentration equation.	10 Marks	L2	CO1
	b.	Assuming the fundamentals constants and physical parameter for silicon at room temperature. Compute the concentration of electrons n_0 and concentration of hole p_0 for $N_d = 10^{17} \text{ cm}^{-3}$ and $N_A = 10^{16} \text{ cm}^{-3}$ at thermal equilibrium.	5 Marks	L2	CO1

Or

9.	a.	Describe the various processes such as generation, recombination, and thermal equilibrium that occur in an intrinsic semiconductor.	10 Marks	L2	CO1
	b.	In a silicon region with donor concentration $N_d = 10^{16} \text{ cm}^{-3}$ when an electric field is applied in the $+x$ direction with a magnitude of 10^3 V/cm . (a) What is the electron drift velocity (magnitude and sign)? (b) What is the electron drift current density (magnitude and sign)?	5 Marks	L2	CO1

10.	a.	Obtain an expression for the current flowing through a PN junction diode when it is reverse biased.	10 Marks	L3	CO2
	b.	Describe the working principle of solar cell which helps to convert sunlight into electrical energy.	5 Marks	L2	CO3

Or

11.	a.	Explain briefly about Qualitative Carrier Transport under Applied Bias in PN junction diode.	10 Marks	L3	CO2
	b.	With neat sketch, explain the working of opto-couplers works.	5 Marks	L2	CO3