

Roll No.											
----------	--	--	--	--	--	--	--	--	--	--	--

PRESIDENCY UNIVERSITY

BENGALURU

Mid - Term Examinations – October 2025

Date: 08-10-2025

Time: 11.45am to 01.15pm

School: SOCSE	Program: B.Tech. (EEE)	
Course Code: EEE1200	Course Name: Basics of Electrical and Electronics Engineering	
Semester: I	Max Marks: 50	Weightage: 25%

CO - Levels	C01	C02	C03	C04	C05
Marks	24	26	-	-	-

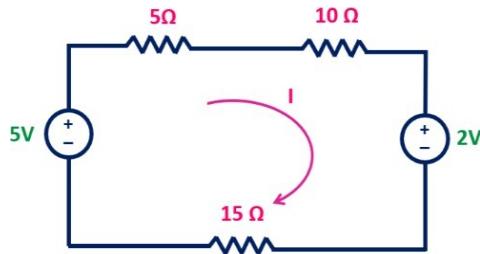
Instructions:

- (i) *Read all questions carefully and answer accordingly.*
- (ii) *Do not write anything on the question paper other than roll number.*

Part A

Answer ALL the Questions. Each question carries 2marks.

5Q x 2M=10M


1	Mention the various types of circuits used in the electrical system.	2 Marks	L1	C01
2	Write the equivalent resistance when two resistors are connected in series?	2 Marks	L1	C01
3	With a neat waveform, define i) Frequency, ii) Time period.	2 Marks	L1	C02
4	Outline the differences between the RMS value and the peak value in an AC supply.	2 Marks	L1	C02
5	List out the advantages of an AC supply over a DC supply.	2 Marks	L1	C02

Part B

Answer the Questions.


Total Marks 40M

6.	a.	State and explain Ohm's law with a neat diagram. Mention its limitations.	06 Marks	L2	C01
-----------	-----------	---	-----------------	-----------	------------

	b. Find the current (I) and the voltage drop across a 15Ω resistor.	04 Marks	L3	CO1

Or

7.	a. State and explain Kirchhoff's Voltage Law with a neat circuit diagram and equation.	06 Marks	L2	CO1
	b. For the given circuit, find the current I_6 .	04 Marks	L3	CO1

8.	a. Apply Kirchhoff's Current Law at a circuit point, determine the current flows in each branch with a neat diagram.	06 Marks	L3	CO1
	b. Explain that a circuit consists of two resistors connected in parallel.	04 Marks	L2	CO1
Or				
9.	a. Determine the coefficient of coupling between the two coils.	06 Marks	L3	CO1
	b. Explain the self-inductance of a coil?	04 Marks	L2	CO1

10.	a. Produce an AC waveform when a coil is placed in a magnetic field with a neat diagram.	06 Marks	L3	CO2
	b. Determine the voltage and current relations in a three-phase star-connected network.	04 Marks	L3	CO2
Or				

11.	a.	Determine the voltage, current, and power in a pure resistive circuit with a diagram and waveforms.	06 Marks	L3	CO2
	b.	A 60 Hz voltage of 115V (rms) is impressed on a 100Ω resistance. Determine i) V_m , ii) I_m , and iii) ω .	04 Marks	L3	CO2

12.	a.	Determine the voltage, current, and power in a series RL circuit with a diagram and waveforms.	06 Marks	L3	CO2
	b.	The equation for an alternating current is given by $i=28.28 \sin(314t+30^\circ) A$. Find its rms value, frequency, and phase angle.	04 Marks	L3	CO2
Or					
13.	a.	Determine the voltage, current, and power in a three-phase delta-connected network.	06 Marks	L3	CO2
	b.	A 400V, 3- ϕ supply is connected across a balanced load of three impedances, each consisting of a 32Ω resistance and 24Ω inductive reactance in series. Determine the current drawn from the power mains if the three impedances are in a Y-connected network.	04 Marks	L3	CO2