

Roll No.											
----------	--	--	--	--	--	--	--	--	--	--	--

PRESIDENCY UNIVERSITY

BENGALURU

Mid - Term Examinations – October 2025

Date: 08-10-2025

Time: 09.30am to 11.00am

School: SOE	Program: B. Tech-EEE	
Course Code: EEE2500	Course Name: Network Theory	
Semester: III	Max Marks: 50	Weightage: 25%

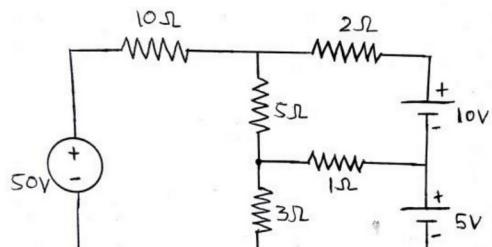
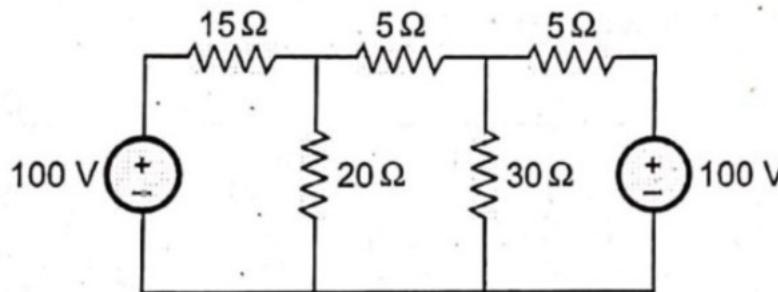
CO - Levels	CO1	CO2	CO3	CO4	CO5
Marks	26	24	-	-	-

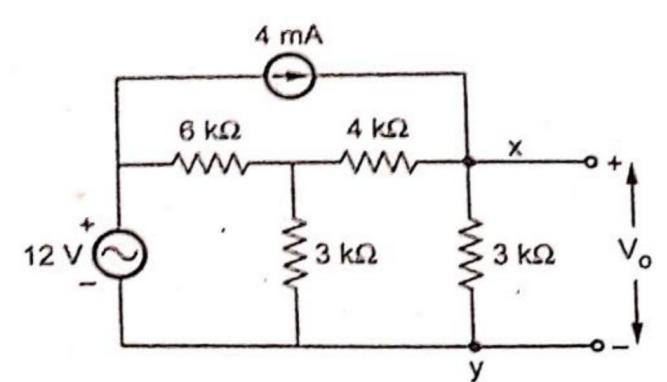
Instructions:

- (i) *Read all questions carefully and answer accordingly.*
- (ii) *Do not write anything on the question paper other than roll number.*

Part A

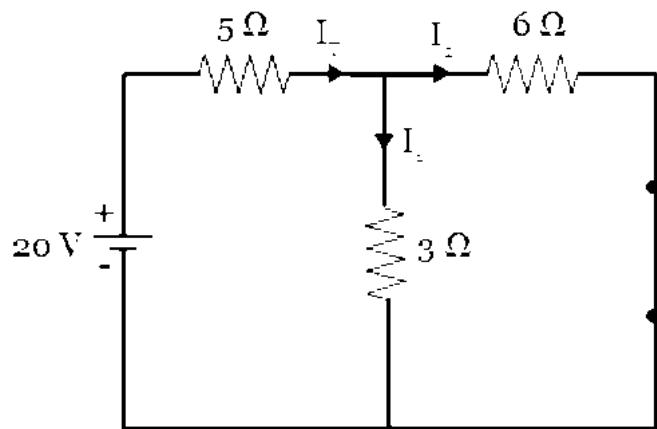
Answer ALL the Questions. Each question carries 2 marks.



5Q x 2M=10M


1	Define Active and Passive circuit elements. Give an example of each.	2 Marks	L3	CO1
2	What is the current in a mesh with only one loop containing a 5Ω resistor connected to a 20V battery.	2 Marks	L3	CO1
3	A 10V voltage source is in series with a 2Ω resistor. Transform this into an equivalent current source.	2 Marks	L3	CO1
4	State Thevenin's Theorem and mention one practical use for simplifying circuits.	2 Marks	L3	CO2
5	State the Maximum Power Transfer Theorem for DC circuits.	2 Marks	L3	CO2

Part B

Answer the Questions.


Total Marks 40M

<p>6. Compute the current passing through all the resistors for the circuit below.</p>	<p>20 Marks</p>	<p>L3</p>	<p>CO1</p>
<p>OR</p>			
<p>7. For the circuit shown below, Compute the following parameters using mesh analysis.</p> <ol style="list-style-type: none"> i. Voltage across 15Ω resistance ii. Current passing through 20Ω resistance iii. Power delivered by $100V$ source iv. Power dissipated in 30Ω resistance v. Current delivered by $100 V$ Source 	<p>20 Marks</p>	<p>L3</p>	<p>CO1</p>

<p>8. State Thevenin's Theorem and Obtain Thevenin's equivalent network shown in fig below, between terminals X and Y. Assume a Load resistance of 5Ω across X&Y terminals and Compute power dissipated in 5Ω resistance.</p>	<p>20 Marks</p>	<p>L3</p>	<p>CO2</p>

OR

9. Write the statement for superposition Theorem with steps and find the current through $3\ \Omega$ resistor using superposition theorem shown in fig below.

20 Marks**L3****CO2**