

Roll No.									
----------	--	--	--	--	--	--	--	--	--

PRESIDENCY UNIVERSITY

BENGALURU

Mid - Term Examinations – October 2025

Date: 07-10-2025

Time: 02.00pm to 03.30pm

School: SOE	Program: B.Tech EEE	
Course Code : EEE3046	Course Name: Sensors And Transducers	
Semester: V	Max Marks: 50	Weightage: 25%

CO - Levels	CO1	CO2	CO3	CO4	CO5
Marks	26	24			

Instructions:

- (i) *Read all questions carefully and answer accordingly.*
- (ii) *Do not write anything on the question paper other than roll number.*

Part A

Answer ALL the Questions. Each question carries 2marks.

5Q x 2M=10M

1	Mention two parameters of light that change in a fibre-optic sensor.	2 Marks	L1	CO1
2	State the working principle of LVDT.	2 Marks	L1	CO1
3	What does “aneroid” mean in aneroid gauges?	2 Marks	L1	CO1
4	What is luminous flux?	2 Marks	L2	CO2
5	What is the principle of a photoresistor (LDR)?	2 Marks	L2	CO2

Part B

Answer the Questions.

Total Marks 40M

6.	a.	A resistance strain gauge is attached to a cantilever beam under a load. Explain how the change in resistance is used to calculate the applied strain using the concept of gauge factor.	10 Marks	L2	CO1
	b.	Explain how a load cell converts mechanical force into an electrical signal using strain gauges. Apply this principle to describe its use in electronic weighing machines.	10 Marks	L3	CO1

Or

7.	a.	In fibre-optic sensors, explain how strain or stress alters the properties of light in the optical fibre. Illustrate its application in aircraft or space systems.	10 Marks	L3	CO1
	b.	An ionization gauge is used in semiconductor fabrication. Explain how it measures vacuum by relating the ion current with pressure.	10 Marks	L3	CO1

8.	a.	Explain the concept of color temperature and its importance in lighting applications with suitable examples.	10 Marks	L2	CO2
	b.	Explain the construction, working, and characteristics of a photoresistor (LDR).	10 Marks	L2	CO2

or

9.	a.	Describe solid-state transducers with suitable examples and their advantages over conventional types.	10 Marks	L3	CO2
	b.	Explain the principle and applications of photovoltaic devices with neat sketches.	10 Marks	L3	CO2