

PRESIDENCY UNIVERSITY

BENGALURU

Mid - Term Examinations – October 2025

Date: 09-10-2025

Time: 09.30am to 11.00am

School: SOIS/SOE	Program: BCA, BCAD, BCAAIML	
Course Code : MAT1201	Course Name: Applied Mathematics	
Semester: I	Max Marks: 50	Weightage: 25%

CO - Levels	CO1	CO2	CO3	CO4	CO5
Marks			-	-	-

Instructions:

- (i) Read all questions carefully and answer accordingly.
- (ii) Do not write anything on the question paper other than roll number.

Part A

Answer ALL the Questions. Each question carries 2marks.

5Q x2M=10M

1	Write the set of vowels in English alphabet using set-builder form.	2 Marks	L2	CO1
2	If $A = \{1, 2, 3, 4\}$, find all proper subsets of A.	2 Marks	L2	CO1
3	Write any two applications of sets in computer science.	2 Marks	L2	CO1
4	If A and B are inputs of AND gate, find its output.	2 Marks	L2	CO2
5	State De Morgan's first law.	2 Marks	L2	CO2

Part B

Answer the Questions.

Total Marks 40M

6.	a.	If $A = \{x \in \mathbb{N} \mid x < 5\}$, $B = \{x \in \mathbb{N} \mid x \text{ is even and } x \leq 10\}$, find i). $A \cup B$ ii). $A \cap B$ iii). $A - B$ iv). $B - A$ v). $A \Delta B$	10Marks	L3	CO1
-----------	-----------	--	----------------	-----------	------------

Or

7.	a.	In a class of 50 students: 25 study Math (M) , 20 study Physics (P), 15 study Chemistry (C), 10 study Math and Physics, 8 study Physics and Chemistry, 5 study Math and Chemistry, 3 study all three subjects. Using Inclusion-Exclusion principle, find how many study only Math and how many study none of these subjects?	10 Marks	L3	CO 1
-----------	-----------	--	-----------------	-----------	-------------

8.	a.	If $A = \{1, 2, 3\}$, $B = \{3, 4, 5\}$, $U = \{1, 2, 3, 4, 5, 6\}$, verify De Morgan's first and second law.	10 Marks	L3	CO 1
-----------	-----------	--	-----------------	-----------	-------------

Or

9.	a.	Prove De Morgan's first and second law using a Venn diagram.	10 Marks	L3	CO 1
-----------	-----------	--	-----------------	-----------	-------------

10.	a.	i) Construct truth table for the expression $(A + \bar{B}) \cdot C$ (4 marks) ii) Show that $A \cdot (B + C) = (A \cdot B) + (A \cdot C)$ using truth table (6 marks)	10 Marks	L3	CO 2
------------	-----------	--	-----------------	-----------	-------------

Or

11.	a.	State and prove De Morgan's first and second law using truth table.	10 Marks	L3	CO 2
------------	-----------	---	-----------------	-----------	-------------

12.	a.	Using Boolean algebra techniques, simplify this expression: $(A + B)(A + C) = A + BC$ and draw logic circuit of it.	10 Marks	L3	CO 2
------------	-----------	---	-----------------	-----------	-------------

Or

13.	a.	Using Boolean algebra techniques, simplify this expression: $AB + A(B + C) + B(B + C)$ and draw logic circuit of it.	10 Marks	L3	CO 3
------------	-----------	--	-----------------	-----------	-------------