

Roll No.								
----------	--	--	--	--	--	--	--	--

PRESIDENCY UNIVERSITY

BENGALURU

Mid - Term Examinations – October 2025

Date: 10-10-2025

Time: 02.00pm to 03.30pm

School: SOE/SOCSE	Program: B. Tech.	
Course Code: MAT2501	Course Name: INTEGRAL TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS	
Semester: III	Max Marks: 50	Weightage: 25%

CO - Levels	C01	C02	C03	C04	C05
Marks	26	24			

Instructions:

- (i) Read all questions carefully and answer accordingly.
- (ii) Do not write anything on the question paper other than roll number.

Part A

Answer ALL the Questions. Each question carries 2marks.

5Q x 2M=10M

1	Find the Laplace transform of (i) $\sin 2t$ (ii) $\cosh 3t$.	2 Marks	L1	C01
2	Express the function $f(t) = \begin{cases} f_1(t), & 0 < t < a \\ f_2(t), & t \geq a \end{cases}$ in terms of unit step function.	2 Marks	L1	C01
3	Find the inverse Laplace transform of i) $\frac{2}{s+3}$ ii) $\frac{s}{s^2+9}$.	2 Marks	L1	C01
4	Verify whether the function $f(x) = \frac{\pi - x}{2}$ defined in the interval $[0, 2\pi]$ is even or odd.	2 Marks	L1	C02
5	Write the formula of Fourier sine series over the interval $[0, \pi]$.	2 Marks	L1	C02

Part B

Answer the Questions.

Total Marks 40M

6	a	Find the Laplace transform of $\sin 3t \cos 4t$.	5 Marks	L2	CO1
	b	Find the Laplace transform of $t^2 \sin at$.	5 Marks	L2	CO1
Or					
7		Find the Laplace transform of below function by expressing it in terms of unit step function $f(t) = \begin{cases} 1, & 0 < t \leq 1 \\ t, & 1 < t \leq 2 \\ t^2, & t > 2 \end{cases}$	10 Marks	L2	CO1

8	a	Find the inverse Laplace transform of $\tan^{-1}\left(\frac{1}{s}\right)$.	4 Marks	L3	CO1
	b	Find the inverse Laplace transform of $\frac{1}{(s^2+1)(s^2+9)}$ by using the concept of convolution theorem.	6 Marks	L3	CO1
Or					
9		Apply the concept of Laplace transform to solve the equation $\frac{d^2y}{dt^2} + 4\frac{dy}{dt} + 3y = e^{-t}$ with $y(0) = y'(0) = 0$.	10 Marks	L3	CO1

10		Obtain the Fourier series for the function $f(x) = x + x^2$ in $[-\pi, \pi]$.	10 Marks	L3	CO2
Or					
11		Find the Fourier series for $f(x) = \pi x$ in $-1 \leq x \leq 1$ and hence deduce that $\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots$	10 Marks	L3	CO2

12		Obtain half range Fourier sine series of $f(x) = x$ in $(0, \pi)$ and hence deduce that $\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots$	10 Marks	L3	CO2
Or					
13		Find Fourier series of y in $(0, 6)$ up to second harmonic for the following data	10 Marks	L3	CO2

x	0	1	2	3	4	5
y	4	8	15	7	6	2