

Roll No.											
----------	--	--	--	--	--	--	--	--	--	--	--

PRESIDENCY UNIVERSITY

BENGALURU

Mid - Term Examinations – October 2025

Date: 08-10-2025

Time: 09.30am to 11.00am

School: SOE	Program: B. Tech. (Mechanical)	
Course Code: MEC2502	Course Name: Fluid Mechanics and Machinery	
Semester: III	Max Marks: 50	Weightage: 25%

CO - Levels	CO1	CO2	CO3	CO4	CO5
Marks	20	30	-	-	-

Instructions:

- (i) **Read all questions carefully and answer accordingly.**
- (ii) **Do not write anything on the question paper other than roll number.**
- (iii) **Use of Design Data Handbook permitted.**

Part A

Answer ALL the Questions. Each question carries 2marks.

5Q x 2M=10M

1	If a person studies about a fluid which is in motion considering forces acting on them, what will you call his domain of study?	2 Marks	L1	CO1
2	Define the term viscosity.	2 Marks	L1	CO1
3	What is microscopic approach of fluid?	2 Marks	L1	CO1
4	Write the relationship between dynamic and Kinematic viscosity.	2 Marks	L1	CO1
5	Define specific gravity.	2 Marks	L1	CO1

Part B

Answer ALL Questions. Each question carries 10 marks.

4QX10M=40M

6	a.	Explain the capillarity effect and provide the equations for capillary rise and fall.	5 Marks	L2	CO1
	b.	Explain Newtons law of viscosity with a neat sketch.	5 Marks	L2	CO1

or

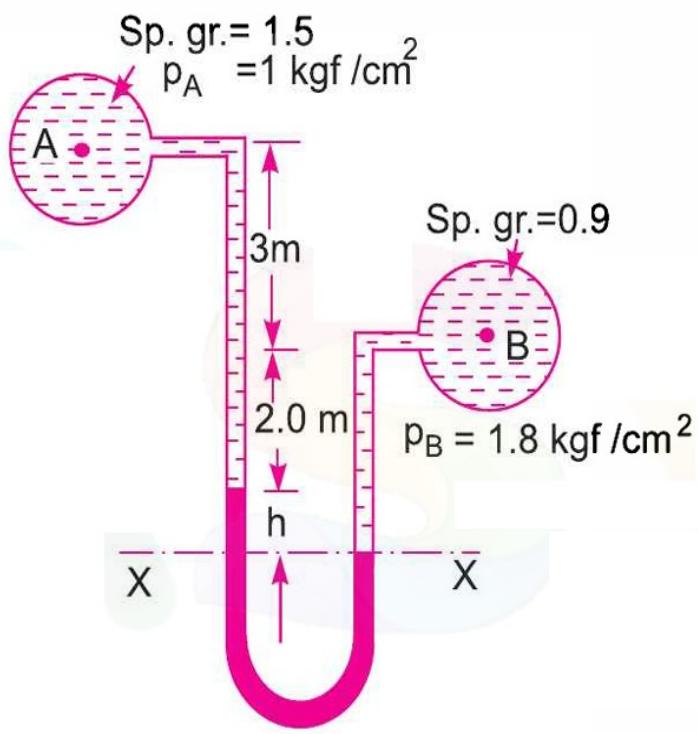
7	a.	Explain Pascals law and its applications.	5 Marks	L2	CO1
	b.	If 5m^3 of certain oil weighs 30kN . Calculate specific weight, specific gravity and mass density of the oil.	5 Marks	L2	CO1

8	Explain the relationship between Absolute, Gauge, Atmosphere and Vacuum pressure with a neat sketch.	10 Marks	L2	CO2
----------	--	-----------------	-----------	------------

or

9	Deduce the relationship between bulk modulus and compressibility.	10 Marks	L2	CO2
----------	---	-----------------	-----------	------------

10	Assume a cubical block of 30 cm side of 30 kg weight is allowed to slide down along a plane incline at 40 degrees to the horizontal on which there is a film of oil having viscosity of $2.16 \times 10^{-3} \text{ N}\cdot\text{s}/\text{m}^2$. What will be the terminal velocity of the block if the film thickness is 0.3mm	10 Marks	L3	CO1
-----------	---	-----------------	-----------	------------


or

11	Assume a hydraulic lift consists of a 40 cm diameter ram and slides in a cylinder of diameter 50 cm , while the annular space is being filled up with oil having kinematic viscosity of $0.03\text{cm}^2/\text{s}$ and specific gravity of 0.85 . If the rate of travel of the ram is 9.15m/min , find the frictional resistance when 3.85 m of ram is engaged in the cylinder.	10 Marks	L3	CO1
-----------	---	-----------------	-----------	------------

12	A U-tube differential manometer is used to measure the pressure difference between two points A and B in a pipeline. The manometer contains mercury and water. The left limb of the manometer, connected to point A, contains water up to a height of 0.6 m . The right limb, connected to point B, contains mercury with a height difference 0.2m between the two limbs. Calculate the pressure difference between the pipe A and B.	10 Marks	L3	CO2
-----------	---	-----------------	-----------	------------

or

13

10
Marks

L3 CO2