

Roll No.											
----------	--	--	--	--	--	--	--	--	--	--	--

PRESIDENCY UNIVERSITY

BENGALURU

Mid - Term Examinations – October 2025

Date: 07-10-2025

Time: 11.45am to 01.15pm

School: SOE	Program: Mechanical Engineering	
Course Code: MEC2517	Course Name: Basic Thermodynamics	
Semester: III	Max Marks: 50	Weightage: 25%

CO - Levels	CO1	CO2	CO3	CO4	CO5
Marks	28	22			

Instructions:

- (i) *Read all questions carefully and answer accordingly.*
- (ii) *Do not write anything on the question paper other than roll number.*

Part A

Answer ALL the Questions. Each question carries 2marks.

5Q x 2M=10M

1	compare between closed system and open system	2 Marks	L3	CO1
2	Define thermal equilibrium.	2 Marks	L1	CO1
3	State First law of Thermodynamics for cyclic process	2 Marks	L1	CO2
4	A chemical reaction takes place inside a sealed and insulated container. Analyze whether this system is truly isolated and identify any factors that could cause a loss of isolation	2 Marks	L1	CO1
5	Consider a pressure cooker on a stove with safety valve in closed position. Identify the type of system with reason	2 Marks	L1	CO1

Part B

Answer the Questions.

Total Marks 40M

6.	Prove that Internal Energy is path function (Property)	10 Marks	L4	CO2
Or				
7.	Derive an expression for first law of Thermodynamics for open system Steady Flow Energy Equation	10 Marks	L4	CO2

8.	A gas initially at 100 kPa and 6000 cm ³ . The final volume is 2000 cm ³ . Determine the moving boundary work for each of the following processes: (i) p is proportional to V, (ii) p is inversely proportional to V and	10 Marks	L3	CO1
Or				
9.	A non-flow system executes four different thermodynamic process in sequence continuously as followed 1-2 Adiabatic compression 2-3 Iso baric heat addition 3-4 Adiabatic expansion 4-1 Constant Volume Heat rejection The temperature at four salient points 1,2,3,4 are separately 300K , 700K, 1500K and 600K. The working substance is 1 kg mass of air for which $C_p = 1.005 \text{ kJ/kgK}$, $C_v = 0.718 \text{ kJ/kgK}$ Determine i) Heat Transfer, ii) Change in internal Energy iv) Network and heat transfer for the cycle and internal energy for the cycle	10 Marks	L3	CO1

10.	In 1709, Sir Issac Newton proposed a new temperature scale. On this scale, the temperature was a linear function on Celsius scale. The reading on this at ice point (0°C) and normal human body temperature (36°C) were 0°N and 12°N, respectively. Obtain the relation between the Newton scale and the Celsius scale	10 Marks	L3	CO1
Or				
11.	The e.m.f. in a thermocouple with the test junction at t°C on the gas thermometric scale and reference junction at ice point is given by $\varepsilon = 0.20 t - 5 \times 10^{-4} t^2$ mV. The mili-volt meter is calibrated at the ice and steam points. What will be the thermocouple read in a place where the gas thermometer reads 50°C?	10 Marks	L3	CO1

12.	A steam turbine develops 550 kW of power with a steam flow rate of 5000 kg/h. If the heat loss from the casing and bearings are negligible, find (a) change in enthalpy across the turbine for a negligible inlet velocity and 360 m/s of exit velocity. Also change in potential energy are negligible.	10 Marks	L3	CO2
------------	--	-----------------	-----------	------------

Or

13.	Air enters a convergent nozzle with velocity of 40m/s. The enthalpy decreases by 180kJ/kg. Determine the exit velocity. Assume adiabatic conditions in the nozzle output in kJ/kg. Take internal energy as a function of temperature only and $C_v = 0.7 \text{ kJ/kgK}$	10 Marks	L3	CO2
------------	--	-----------------	-----------	------------