

Roll No.											
----------	--	--	--	--	--	--	--	--	--	--	--

PRESIDENCY UNIVERSITY

BENGALURU

Mid - Term Examinations – October 2025

Date: 07-10-2025

Time: 09.30am to 11.00am

School: SOE	Program: B. Tech. (Mechanical)	
Course Code: MEC3004	Course Name: Design of Machine Elements-I	
Semester: V	Max Marks: 50	Weightage: 25%

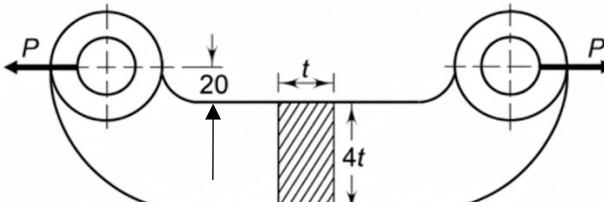
CO - Levels	CO1	CO2	CO3	CO4	CO5
Marks	20	30	-	-	-

Instructions:

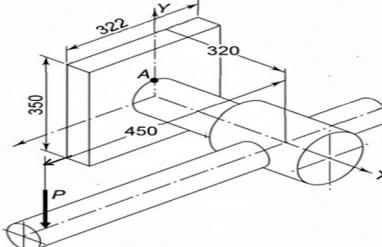
- (i) Read all questions carefully and answer accordingly.
- (ii) Do not write anything on the question paper other than roll number.
- (iii) Use of Design Data Handbook permitted.

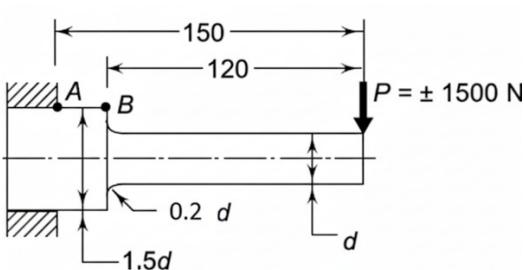
Part A

Answer ALL the Questions. Each question carries 2marks.


5Q x 2M=10M

1	What is endurance limit?	2 Marks	L1	CO1
2	What is the maximum Principal stress theory?	2 Marks	L1	CO1
3	What is the surface finish factor for a cylindrical component subjected to torsion, having sharp circular grooves & having an ultimate tensile strength of 300 MPa?	2 Marks	L1	CO1
4	What is the theoretical stress concentration factor (Kt)?	2 Marks	L1	CO1
5	What are the key elements of a machine?	2 Marks	L1	CO1

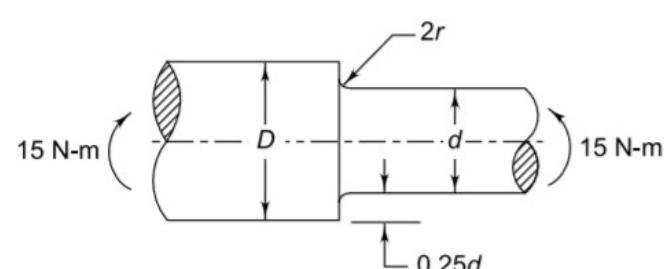
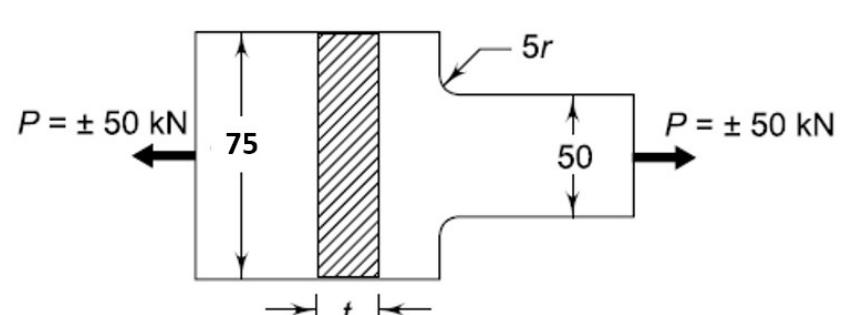

Part B


Answer the Questions.

Total Marks 40M

6.	a.	<p>An offset link subjected to a force of 75 kN is shown in Fig. It is made of grey cast iron FG300 and the factor of safety is 2.5. Solve for the cross-section of the link.</p>	10 Marks	L3	CO1
----	----	--	----------	----	-----

Or



7.	a.	<p>The shaft of an overhang crank subjected to a force P of 3 kN is shown in Fig. The shaft is made of plain carbon steel 45C8 and the tensile yield strength is 500 MPa. The factor of safety is 2.5. Solve for the diameter of the shaft using the maximum shear stress theory</p>	10 Marks	L3	CO1
----	----	---	----------	----	-----

8.	a.	<p>A cantilever beam made from hot rolled steel 20C8 ($S_{ut} = 540 \text{ N/mm}^2$) is subjected to a completely reversed load of 1000 N as shown in Fig. The notch sensitivity factor q at the fillet can be taken as 0.85 and the expected reliability is 90%. Solve for the diameter d of the beam for a life of 8000 cycles.</p>	15 Marks	L3	CO2
----	----	---	----------	----	-----

Or

9.	a.	<p>Hot rolled steel bar, 50 mm in diameter, is subjected to a reversed bending stress of 300 N/mm^2. The bar is made of steel 40C8 ($\sigma_{ut} = 600 \text{ N/mm}^2$). Solve for the life of the bar</p>	15 Marks	L3	CO2
----	----	--	----------	----	-----

for a reliability of 90%.

10.	a.	<p>A round shaft made of a brittle material and subjected to a bending moment of 15 N-m is shown in Fig. The stress concentration factor at the fillet is 1.5 and the ultimate tensile strength of the shaft material is 200 N/mm². Solve for the diameter d.</p>	15 Marks	L3	CO2
Or					
11.	a.	<p>A component Rough finished made of steel 45C8 ($\sigma_{ut} = 530$ N/mm²) is shown in Fig. It is subjected to a completely reversed axial force of 50 kN. The expected reliability is 90% and the factor of safety is 2. The size factor is 0.85. Solve for the plate thickness t for infinite life, if the notch sensitivity factor is 0.8.</p>	15 Marks	L3	CO2