

Roll No.												
----------	--	--	--	--	--	--	--	--	--	--	--	--

PRESIDENCY UNIVERSITY

BENGALURU

Mid - Term Examinations – October 2025

Date: 07-10-2025

Time: 02.00pm to 03.30pm

School: SOE	Program: B. Tech. (Mechanical)	
Course Code: MEC3062	Course Name: Hydraulics and Pneumatics	
Semester: V	Max Marks: 50	Weightage: 25%

CO - Levels	CO1	CO2	CO3	CO4	CO5
Marks	20	30	-	-	-

Instructions:

- (i) **Read all questions carefully and answer accordingly.**
- (ii) **Do not write anything on the question paper other than roll number.**
- (iii) **Use of Design Data Handbook permitted.**

Part A

Answer ALL the Questions. Each question carries 2marks.			2Mx5Q=10M		
1	Define Pascal's Law with example.		2 Marks	L1	CO1
2	Write two advantages Pneumatics System		2 Marks	L1	CO2
3	State any two limitations of Hydraulic System		2 Marks	L1	CO1
4	Mention Four components of Hydraulic system.		2 Marks	L1	CO2
5	Sketch the symbol of double acting cylinder spring return.		2 Marks	L1	CO1

Part B

Answer ALL Questions. Each question carries 10 marks.

4QX10M=40M

6	a	A pump supplies oil at 0.0016 cubic meter per second to a 40 mm diameter double acting hydraulic cylinder. If the load is 5000 N (extending and retracting) and rod diameter is 20 mm. Calculate the following in SI units.	10 Marks	L3	CO1
or					

7	b	A gear pump is a type of positive displacement (PD) pump. Gear pumps use the actions of rotating gears to transfer fluids. With a neat sketch, explain the construction and working principle of an external gear pump. Explain the working principle of external gear pump.	10 Marks	L2	CO1
or					

8	a	Distinguish between balanced vane pump and unbalanced vane pump with a neat diagram.	10 Marks	L2	CO1
or					
	b	Explain the construction and working of a vane motor with a neat diagram.	10 Marks	L2	CO1

9	a	In the hydraulic press shown below, a force of 100 N exerted on the small piston. Determine the upward force on the large piston. The diameter of smaller piston is 50 mm and the diameter of the large piston is 145 mm. Also find the distance moved by the large piston if the small piston moves by 100 mm.	10 Marks	L3	CO2
or					

	b	Explain Tandem center 1/2-way direction control valve (mid-position) with a neat diagram and its symbol.	10 Marks	L2	CO2
or					
	b	An actuator is a component of a machine that is responsible for moving and controlling a mechanism or system, for example the opening a valve. State any four differences between linear and rotary actuators. Give examples for each actuator.	10 Marks	L2	CO2