

Roll No.											
----------	--	--	--	--	--	--	--	--	--	--	--

PRESIDENCY UNIVERSITY

BENGALURU

Mid - Term Examinations – October 2025

Date: 09-10-2025

Time: 09.30am to 11.00am

School: SOE	Program: B.Tech. (PET)	
Course Code: PET2005	Course Name: Fundamentals of Instrumentation and Control Engineering	
Semester: V	Max Marks: 50	Weightage: 25%

CO - Levels	CO1	CO2	CO3	CO4	CO5	CO6
Marks	14	12	14	10	-	-

Instructions:

- (i) *Read all questions carefully and answer accordingly.*
- (ii) *Do not write anything on the question paper other than roll number.*

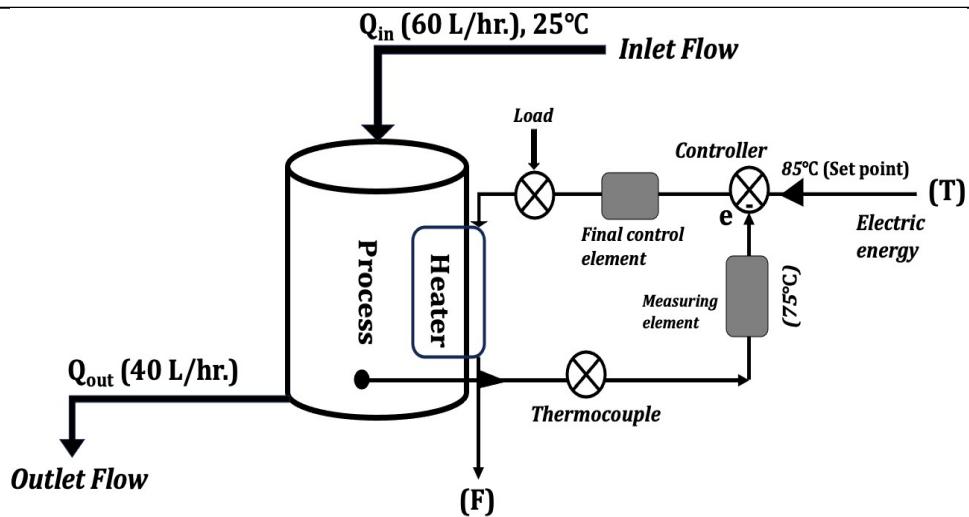
Part A

Answer ALL the Questions. Each question carries 2 marks.

5Q x 2M=10M

1	Differentiate between feedback control system and cascade control system (4 points only).	2 Marks	L2	CO1
2	Explain the purposes of a measuring element in a control system.	2 Marks	L2	CO1
3	Describe the transfer function of the transportation lag.	2 Marks	L2	CO2
4	Summarize the transfer function for a single tank liquid system (only write the characteristic equation).	2 Marks	L2	CO3
5	Summarize the transfer function for a two-tank interacting system (only write the characteristic equation).	2 Marks	L2	CO3

Part B


Answer the Questions.

Total Marks 40M

6.	<p>Consider you have five different types of system with you like timed washing machine, Basic flow or level control in a tank system, maintaining liquid level in a tank where flow rate changes, Temperature control in an oven or chemical reactor, and adjusting the fuel feed in a combustion process based on changes in load demand. For each case take suitable control system and summarize them.</p>	10 Marks	L2	CO1
Or				
7.	<p>In one room, a washing machine runs without a regulator (Case 1). In another room, a washing machine runs with an automatic controller that adjusts speed by comparing actual speed with the set point (Case 2).</p> <p>(a) Illustrate both the process with flow diagram. (b) Examine the transfer function for both the system.</p>	5+5 Marks	L3	CO1

8.	<p>“Examine the working of a cascade control system by breaking down its structure with the help of a suitable diagram and example.” (Clearly sketch the diagram)</p>	5+5 Marks	L4	CO2
----	---	-----------	----	-----

9.	<p>The figure is shown below represents a reactor heating process in a petroleum refinery industry. The inlet and outlet feed rate of the process is 60 and 40 L/hr., respectively. The process needs 70°C to get a desired product. Suppose, you set a heater inside the tank (see figure) by applying electric energy and fixed the set point at 85°C by using a controller. After some time, the inside tank temperature was found at 75°C from the measuring element (as shown in figure below).</p> <p>Some standard symbols for the variables as given below:</p> <p>Set point: T</p> <p>Load: U</p> <p>Transfer function of controller: G_c</p> <p>Transfer function of final control element: G_1</p> <p>Transfer function of process: G_2</p> <p>Transfer function of measuring element: F</p> <p>(a) Identify the process with block diagram according the figure. (b) From the loop system calculate the “error (e)” of this process.</p>	5+5 Marks	L4	CO2
----	---	-----------	----	-----

10.	"Apply the concept of control systems to sketch a single-tank liquid-level system with constant flow rate and determine its transfer function."	2+8 Marks	L3	CO3
Or				
11.	Examine the overall transfer function for two-tank non-interacting system with a suitable diagram.	8+2 Marks	L3	CO3

12.	<p>The above figure shows an unsteady-state mercury glass thermometer system. Examine the transfer function of the above system.</p>	10 Marks	L4	CO4
Or				
13.	Examine the overall transfer function for two-tank interacting system with a suitable diagram. (Do not skip any step)	8+2 Marks	L4	CO4