

Roll No.											
----------	--	--	--	--	--	--	--	--	--	--	--

PRESIDENCY UNIVERSITY

BENGALURU

Mid - Term Examinations – October 2025

Date: 11-10-2025

Time: 09.30am to 11.00am

School: SOE	Program: B.Tech. (PET)	
Course Code: PET2019	Course Name: Oil and Gas Well Test Analysis	
Semester: V	Max Marks: 50	Weightage: 25%

CO - Levels	C01	C02	C03	C04	C05
Marks	16	12	22		

Instructions:

- (i) *Read all questions carefully and answer accordingly.*
- (ii) *Do not write anything on the question paper other than roll number.*

Part A

Answer ALL the Questions. Each question carries 2marks.

5Q x 2M=10M

1.	Outline the Radius of Investigation in a finite-acting reservoir.	2 Marks	L1	C01
2.	Describe the uses of the Ideal Reservoir Model.	2 Marks	L1	C01
3.	Recognize the situation under which the reservoir flow geometry will be spherical and hemispherical in nature.	2 Marks	L1	C01
4.	List the different principles of superposition to find the CTR and CTP solutions to the diffusivity equation.	2 Marks	L1	C02
5.	State the Interference test and the DST.	2 Marks	L1	C03

Part B

Answer the Questions.

Total Marks 40M

6.	a.	Describe which phase of an exploratory well the well-test analysis is conducted. Generalize the transient state for an infinite acting reservoir and pseudo-steady state conditions for a bounded reservoir.	10 Marks	L2	C01
			(3+7)		

	b.	Demonstrate the linear diffusivity equation for transient flow in a porous medium using partial differential equations, where the total time is considered in hours.	10 Marks	L3	CO2
--	-----------	--	-----------------	-----------	------------

Or

7.	a.	Review whether BHP and sandface pressure are the same. Distinguish the radius of investigation under different pressure disturbances as a function of time across a reservoir: i) Constant flow rate, ii) Constant bottomhole pressure, iii) Shut-in	10 Marks (2+8)	L2	CO1
	b.	Well completion has taken place in a reservoir, and its properties have been calculated: - Oil Formation volume factor, B_o : 1.32 RB/STB - Total compressibility, c_t : 18×10^{-6} psi $^{-1}$ - Porosity, φ : 16% - Initial reservoir pressure, p_i : 2,500 psia - Oil viscosity, μ : 0.44 cp - Permeability, k : 25 md - Thickness, h : 43 ft Calculate the pressure drop in the shut-in well, which is 500 ft from the flowing well, when the flowing well has been shut in for 1 day following a flow period of 5 days at 300STB/day?	10 Marks	L3	CO2
8.	a.	A new oil well produced 500 STB/D for 3 days before being shut in for a pressure buildup test, during which the pressure data in the table below were recorded.	10 Marks (7+3)	L4	CO3

Time After Shut-In Δt (hr)	pws (psig)
0	1150
2	1794
4	1823
8	1850
16	1876
24	1890
48	1910

	<p>For this well, the following reservoir and fluid properties are known:</p> <ul style="list-style-type: none"> Net sand thickness, $h = 22$ ft Formation volume factor, $B_o = 1.3$ RB/STB Porosity, $\varphi = 0.20$ Total compressibility, $c_t = 20 \times 10^{-6}$ psi$^{-1}$ Oil viscosity, $\mu_o = 1.0$ cp Wellbore radius, $r_w = 0.3$ ft <p>Analyze the Horner semi-log plot to determine the slope of the straight-line fit, estimate the reservoir static pressure, and calculate the reservoir pressure 1-hour after shut-in.</p>			
	<p>b. From the given data and plot generated in Question no 8a, calculate the following:</p> <ol style="list-style-type: none"> Formation permeability Skin factor Pressure drop due to skin Formation capacity Damage ratio 	10 Marks (2X5)	L4	CO3
Or				
9.	<p>a. Graphically examine how the pressure build-up test works. Analyse mathematically the pressure behaviour in the well during the shut-in period using Horner's correlations.</p>	10 Marks (5+5)	L4	CO3
	<p>b. Differentiate between wellbore storage and wellbore damage, and identify the types of skin that can develop in the reservoir. Using the Horner plot from the actual build-up test, graphically differentiate the early-time, mid-time region, and late-time regions.</p>	10 Marks (5+5)	L4	CO3