

Roll No.											
----------	--	--	--	--	--	--	--	--	--	--	--

PRESIDENCY UNIVERSITY

BENGALURU

Mid - Term Examinations - October 2025

Date: 07-10-2025

Time: 02.00pm to 03.30pm

School: SOE	Program: B.Tech. (PET)	
Course Code: PET2031	Course Name: Overview of Material Science	
Semester: V	Max Marks: 50	Weightage: 25%

CO - Levels	C01	C02	C03	C04	C05	C06
Marks	14	14	12	10	-	-

Instructions:

- (i) Read all questions carefully and answer accordingly.
- (ii) Do not write anything on the question paper other than roll number.

Part A

Answer ALL the Questions. Each question carries 2 marks.

5Q x 2M=10M

1.	Explain the role and significance of Material Science in Petroleum Refining Engineering with suitable examples.	2 Marks	L2	C01
2.	Summarize the physical characteristics of a brittle type material.	2 Marks	L2	C01
3.	Explain the term "Defect" of a ceramic or metal type material.	2 Marks	L2	C02
4.	Locate the (1 0 1) crystalline plane in a unit cell.	2 Marks	L2	C02
5.	Explain coordination number of a metal.	2 Marks	L2	C03

Part B

Answer the Questions.

Total Marks 40M

	a.	Describe the key factors to be considered while selecting the right material from the many available options (five points only).	10 Marks	L2	CO1
6.	b.	Imagine you are tasked with designing a material for a smartphone screen that needs to be transparent, have mechanical strength, and have high thermal resistance. Recognize the best-fitted or suitable material type from the following: crystalline, semi-crystalline, and amorphous material. Also, explain the reasons behind not selecting the other types of material available here very clearly.	10 Marks	L2	CO1

Or

	a.	Solve that a Hexagonal Closed Pack (HCP) crystal lattice has 26% void space. (Do not skip any step)	10 Marks	L3	CO2
7.	b.	Calculate the equilibrium number of vacancy per cubic meter for copper at 1000°C. The energy for vacancy is 0.9 eV/atom; the atomic weight and density (at 1000°C) for copper are 63.5 g/mol and 8.4 g/cm ³ , respectively. [Boltzman's constant (K) = 8.62×10^{-5} eV/atom.K] (Do not skip any step)	10 Marks	L3	CO2

	a.	Employ the concept of stress-strain relationships to examine the mechanical behavior of brittle, ductile, and elastic materials using suitable stress-strain curves.	10 Marks	L3	CO3
8.	b.	Apply the concept of stress-strain behavior to justify the selection of suitable materials for drilling operations.	10 Marks	L3	CO3

Or

	a.	Analyze how the concept of safety factors influences decision-making in mechanical design under uncertain loading and material variability.	10 Marks	L4	CO4
9.	b.	Breakdown the role of property variability in determining the suitability of engineering materials for critical applications.	10 Marks	L4	CO4