

Roll No.											
----------	--	--	--	--	--	--	--	--	--	--	--

PRESIDENCY UNIVERSITY

BENGALURU

Mid - Term Examinations – October 2025

Date: 08-10-2025

Time: 02.00pm to 03.30pm

School: SOE	Program: Electronics and Communication Engineering	
Course Code : ECE2021	Course Name: Digital Electronics	
Semester: III	Max Marks: 50	Weightage: 25%

CO - Levels	CO1	CO2	CO3	CO4	CO5	CO6
Marks	12	14	12	-	-	12

Instructions:

- (i) *Read all questions carefully and answer accordingly.*
- (ii) *Do not write anything on the question paper other than roll number.*

Part A

Answer ALL the Questions. Each question carries 2marks.

5Q x 2M=10M

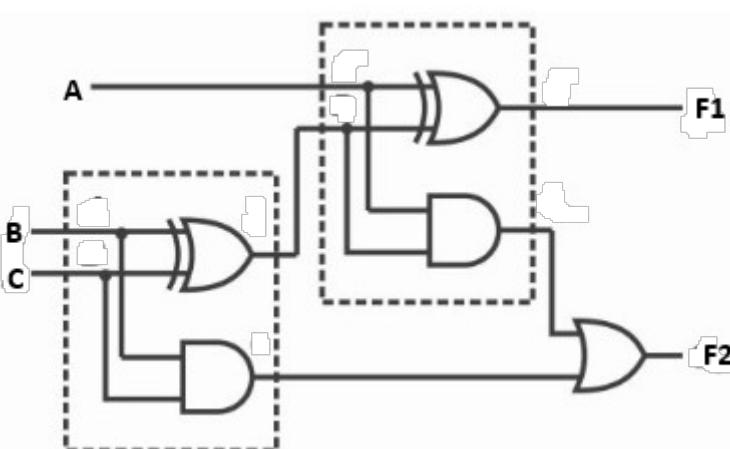
1	Illustrate the 7 th and 14 th Minterm for the 4 bit resolution	2 Marks	L3	CO1
2	Implement the two input EX-NOR logic using NOR gate.	2 Marks	L3	CO2
3	Estimate the Boolean Function of the CARRY output for the Half adder circuit	2 Marks	L3	CO3
4	Identify the equivalent gray code for the decimal numbers 0,1,3,4,7	2 Marks	L2	CO2
5	Utilize the below Logic Diagram to drive the Truth Table.	2 Marks	L3	CO6

Part B

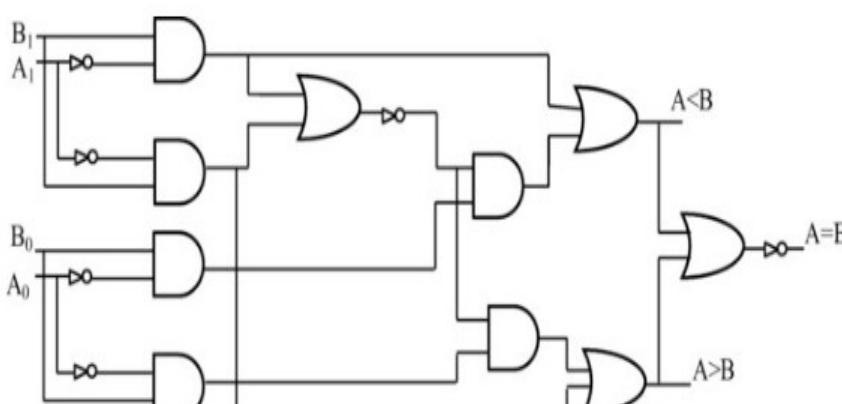
Answer the Questions.

Total Marks 40M

6.	a.	Solve the following function as a sum of min-terms and as a product of max-terms with logic diagram i. $F(A, B, C, D) = B'D + A'D + BD$ ii. $Y = (CD + B'C + BD')(B + D)$ iii. $Z = BD' + ACD' + AB'C + A'C'$ iv. $P = (C' + D)(B + C')$	10 Marks	L3	CO1
-----------	-----------	--	-----------------	-----------	------------


Or

7.	a.	Employ the NAND gate for the following Boolean functions (a) $F(w, x, y, z) = \sum m (0, 2, 5, 7, 8, 10, 12, 13, 14, 15)$ (b) $F(A, B, C, D) = \sum m (0, 2, 3, 5, 7, 8, 10, 11, 14, 15)$	10 Marks	L3	CO1
-----------	-----------	---	-----------------	-----------	------------


8.	a.	Develop the optimized Boolean Function for the following i. $Y = \sum m (1, 2, 3, 7, 8, 10, 12, 13, 15)$ ii. $F = W'Z + XZ + X'Y + WX'Z$	10 Marks	L2	CO2
-----------	-----------	--	-----------------	-----------	------------

Or

9.	a.	Implement the following Boolean function F, together with the don't-care conditions d . (i) $F(W, X, Y, Z) = \sum (0, 1, 2, 7, 9, 11) + d = \sum (3, 4, 8)$ (ii) $F(A, B, C) = A'C + A'B + AB'C + BC$	10 Marks	L3	CO2
-----------	-----------	---	-----------------	-----------	------------

10.	a.	Examine the following logic diagram to identify the design statement 	10 Marks	L4	CO6
------------	-----------	--	-----------------	-----------	------------

Or

11.	a.	Analysis the below circuit to prove that the digital circuit is a 2 bit comparator	10 Marks	L4	CO6

12.	a.	Apply the concept of truth table to draw the logic circuit diagram of a full adder using basic logic gates.	10 Marks	L3	CO3
-----	----	---	----------	----	-----

Or

13.	a.	Develop the Logical Circuit which has a 3-bit digital system which rings a buzzer whenever the number of ones in an input combination is ODD.	10 Marks	L3	CO3
-----	----	---	----------	----	-----