

Roll No.											
----------	--	--	--	--	--	--	--	--	--	--	--

PRESIDENCY UNIVERSITY

BENGALURU

Mid-Term Examinations – October 2025

Date: 08-10-2025

Time: 09.30am to 11.00am

School: SOE	Program: B.Tech. (PET)	
Course Code: PET2105	Course Name: Fundamentals of Oil and Gas Well Drilling Technology	
Semester: III	Max Marks: 50	Weightage: 25%

CO - Levels	C01	C02	C03	C04	C05	C06
Marks	26	24	-	-	-	-

Instructions:

- (i) Read all questions carefully and answer accordingly.
- (ii) Do not write anything on the question paper other than roll number.

Part A

Answer ALL the Questions. Each question carries 2 marks.

5Q x 2M=10M

1.	Select the correct option: Which component both provides engagement of the Kelly drive bushing with the rotary table and provides the tapered seating for the slips? A) Kelly bushing B) Master bushing C) Swivel D) Rotary hose	2 Marks	L1	C01
2.	Select the correct option: The total derrick load is not equally distributed over all four derrick legs due to the placement of: a) Drilling line b) Drawworks c) Crown block d) Traveling block	2 Marks	L1	C01
3.	Select the correct option: Match the following: (i) Traveling Block – (a) Measures weight (ii) Draw works – (b) Moving pulleys	2 Marks	L1	C01

	<p>(iii) Hook – (c) Heavy load lifting (iv) Weight Indicator (d) Winch for drilling line</p> <p>Options:</p> <p>A) i-b, ii-d, iii-c, iv-a B) i-c, ii-a, iii-d, iv-b C) i-d, ii-c, iii-a, iv-b D) i-b, ii-c, iii-d, iv-a</p>		
4.	<p>Outline the common Kelly shapes and choose which shape has the stronger drive section:</p> <p>a) Square b) Hexagonal c) Round d) Octagonal</p>	2 Marks	L1 CO2
5.	<p>State the function of a Kelly accessory used in drilling operations.</p>	2 Marks	L1 CO2

Part B

Answer the Questions.

Total Marks 40M

6.	a.	Explain the main components and functions of the hoisting system in a drilling rig.	10 Marks	L2	CO1
	b.	<p>Given: string weight in mud = 350,000 lb, block + hook = 20,000 lb, number of lines = 8, efficiency factor = 0.88.</p> <p>Estimate the following:</p> <p>(i) Fast Line Load (FLL) in lb (ii) Hook Load (HL). (iii) Dead Line Load (DLL).</p>	10 Marks	L2	CO1
Or					
7.	a.	Distinguish between kick indicators and kick warning signs, and state the major causes of kicks encountered during drilling operations.	10 Marks	L2	CO1
	b.	Describe the major differences between onshore drilling rigs and offshore drilling systems with suitable examples.	10 Marks	L2	CO1

8.	a.	Examine the grades of drill pipe specified by API. How many grades are there, how is each grade specified, and which grade would you predict to be best suited for ultra-deep wells with high loading conditions?	10 Marks	L3	CO2
	b.	Classify different drill string accessories (HWDP, drilling jar, stabilizers, reamers, shock subs) and illustrate their specific functions in drilling operations.	10 Marks	L3	CO2
Or					
9.	a.	Apply the buoyancy factor (BF) concept to determine the effective weight of a 25,000 lb drill string immersed in mud of	10 Marks	L3	CO2

	specific gravity 1.20.			
b.	Apply the given formulas to calculate the tool joint weight and the effective weight per foot of a 5" OD, 16.02 ppf, Grade X95 drill pipe joint. If the wall thickness is reduced by 30% due to wear, classify the pipe according to API standards.	10 Marks	L3	CO2

Formulas to use:

1. Tool joint weight:

$$W_{tj} = \frac{\pi}{4} \times L \times (D^2 - d^2) \times \rho$$

2. Adjusted tool joint length (ft):

$$L_{adj} = \frac{L + 2.253(D - D_{TE})}{12}$$

3. Assembly weight per foot:

$$W_{assembly_ppf} = \frac{(pipe\ weight\ ppf \times 29.4) + W_{tj}}{29.4 + L_{adj}}$$