

Roll No.											
----------	--	--	--	--	--	--	--	--	--	--	--

PRESIDENCY UNIVERSITY

BENGALURU

Mid - Term Examinations – October 2025

Date: 07-10-2025

Time: 09.30am to 11.00am

School: SOE	Program: B.Tech. (PET)	
Course Code : PET3006	Course Name: Advanced Petroleum Reservoir Engineering	
Semester: V	Max Marks: 50	Weightage: 25%

CO - Levels	CO1	CO2	CO3	CO4	CO5
Marks	24	26	-	-	-

Instructions:

- (i) Read all questions carefully and answer accordingly.
- (ii) Do not write anything on the question paper other than roll number.

Part A

Answer ALL the Questions. Each question carries 2marks.

5Q x 2M=10M

1	List the classification of aquifers based on boundary conditions.	2 Marks	L1	CO1
2	State the principle of the Schilthuis steady-state water influx model.	2 Marks	L1	CO1
3	Match the Pot Aquifer model with the Schilthuis model by highlighting differences.	2 Marks	L1	CO2
4	Recognize how aquifer geometry influences water influx.	2 Marks	L1	CO2
5	Outline the assumptions made by van Everdingen and Hurst regarding aquifer properties.	2 Marks	L1	CO2

Part B

Answer the Questions.

Total Marks 40M

6.	<p>a. Calculate the cumulative water influx using Pot Aquifer model that results from a pressure drop of 200 psi at the oil-water contact with an encroachment angle of 80°. The reservoir-aquifer system is characterized by the following properties:</p> <table style="width: 100%; border-collapse: collapse;"> <thead> <tr> <th style="width: 50%; text-align: center;">Reservoir</th><th style="width: 50%; text-align: center;">Aquifer</th></tr> </thead> <tbody> <tr> <td style="text-align: center;">radius, ft</td><td style="text-align: center;">2600</td></tr> <tr> <td style="text-align: center;">porosity</td><td style="text-align: center;">0.18</td></tr> <tr> <td style="text-align: center;">c_f, psi^{-1}</td><td style="text-align: center;">4×10^{-6}</td></tr> <tr> <td style="text-align: center;">c_w, psi^{-1}</td><td style="text-align: center;">5×10^{-6}</td></tr> <tr> <td style="text-align: center;">h, ft</td><td style="text-align: center;">20</td></tr> <tr> <td></td><td style="text-align: center;">25</td></tr> </tbody> </table>	Reservoir	Aquifer	radius, ft	2600	porosity	0.18	c_f, psi^{-1}	4×10^{-6}	c_w, psi^{-1}	5×10^{-6}	h, ft	20		25	10 Marks	L3	CO1
Reservoir	Aquifer																	
radius, ft	2600																	
porosity	0.18																	
c_f, psi^{-1}	4×10^{-6}																	
c_w, psi^{-1}	5×10^{-6}																	
h, ft	20																	
	25																	
	<p>b. Use the above data given [Question (6a)] and Calculate Schilthuis' water influx constant.</p> <p>Given</p> <p>$\pi_i = 3500 \text{ psi}$; $p = 3000 \text{ psi}$; $Q_o = 32,000 \text{ STB/day}$ $B_o = 1.4 \text{ bbl/STB}$; $GOR = 900 \text{ scf/STB}$; $R_s = 700 \text{ scf/STB}$ $B_g = 0.00082 \text{ bbl/scf}$; $Q_w = 0$; $B_w = 1.0 \text{ bbl/STB}$</p>	10 Marks	L3	CO1														
Or																		
7.	<p>The pressure history of a water-drive oil reservoir is given below:</p> <table style="width: 100%; border-collapse: collapse;"> <thead> <tr> <th style="width: 50%; text-align: center;">t, days</th><th style="width: 50%; text-align: center;">p, psi</th></tr> </thead> <tbody> <tr> <td style="text-align: center;">0</td><td style="text-align: center;">3500 (p_i)</td></tr> <tr> <td style="text-align: center;">100</td><td style="text-align: center;">3450</td></tr> <tr> <td style="text-align: center;">200</td><td style="text-align: center;">3410</td></tr> <tr> <td style="text-align: center;">300</td><td style="text-align: center;">3380</td></tr> <tr> <td style="text-align: center;">400</td><td style="text-align: center;">3340</td></tr> </tbody> </table> <p>The aquifer is under a steady-state flowing condition with an estimated water influx constant of 130 bbl/day/psi. Calculate the cumulative water influx after 100, 200, 300, and 400 days using the steady-state model.</p>	t, days	p, psi	0	3500 (p_i)	100	3450	200	3410	300	3380	400	3340	20 Marks	L3	CO1		
t, days	p, psi																	
0	3500 (p_i)																	
100	3450																	
200	3410																	
300	3380																	
400	3340																	

8.	<p>The following data, as presented by Craft and Hawkins (1959), documents the reservoir pressure as a function of time for a water-drive reservoir. Using the reservoir historical data, Craft and Hawkins</p>	20 Marks	L3	CO2
----	---	---------------------------	-----------	------------

calculated the water influx by applying the material balance equation. The rate of water influx was also calculated numerically at each time period

Time days	Pressure psi	W_e M bbl	e_w bbl/day
0	3793	0	0
182.5	3774	24.8	389
365.0	3709	172.0	1279
547.5	3643	480.0	2158
730.0	3547	978.0	3187
912.5	3485	1616.0	3844
1095.0	3416	2388.0	4458

Assuming that the boundary pressure would drop to 3,379 psi after 1,186.25 days of production, calculate cumulative water influx at that time (Use Hurst's Modified Steady state Model).

Or

9. Calculate water influx at the end of 1, 2, and 5 years into a circular reservoir with an aquifer of infinite extent. The initial and current reservoir pressures are 2,500 and 2,490 psi, respectively. The reservoir-aquifer system has the following properties (Use van Everdingen-Hurst Unsteady-State Model).

	Reservoir	Aquifer
radius, ft	2000	∞
h, ft	20	25
k, md	50	100
ϕ , %	15	20
μ_w , cp	0.5	0.8
c_w , psi^{-1}	1×10^{-6}	0.7×10^{-6}
c_f , psi^{-1}	2×10^{-6}	0.3×10^{-6}

20
Marks

L3

CO2