

Roll No.											
----------	--	--	--	--	--	--	--	--	--	--	--

PRESIDENCY UNIVERSITY

BENGALURU

Mid - Term Examinations – October 2025

Date: 08-10-2025

Time: 02.00pm to 03.30pm

School: SOE	Program: PHY	
Course Code : PHY1001	Course Name: Material Physics	
Semester: III	Max Marks: 50	Weightage: 25%

CO - Levels	CO1	CO2	CO3	CO4	CO5
Marks					

Instructions:

- (i) *Read all questions carefully and answer accordingly.*
- (ii) *Do not write anything on the question paper other than roll number.*

Part A

Answer ALL the Questions. Each question carries 2marks.

5Q x 2M=10M

1	Define a crystalline and an amorphous solid with an example for each.	2 Marks	L1	CO1
2	Explain ionic bonding with an example.	2 Marks	L1	CO1
3	A plane in a cubic crystal has intercepts at (2,3,4) along the x, y, and z axes, respectively. Determine the Miller indices of this plane.	2 Marks	L3	CO1
4	What is shear stress and how is it different from normal stress?	2 Marks	L1	CO2
5	Define hardness and mention the tests used to determine the hardness.	2 Marks	L1	CO2

Part B

Answer the Questions.

Total Marks 40M

6.	a.	<p>a. Describe the seven types of crystal structure with their lattice parameters.</p> <p>b. Derive the relation between atomic radius and lattice constant for SC. If the lattice constant is 0.4 nm. Determine the atomic radius.</p>	10 Marks (5+5)	L1 and L3	CO 1
----	----	---	-------------------	-----------------	---------

Or

7.	a.	Derive expressions for the atomic packing fraction and coordination number for BCC structure.	10 Marks	L2	CO 1
----	----	---	----------	----	---------

8.	a.	Explain about different types of point defects in detail.	10 Marks	L1	CO 1
----	----	---	----------	----	---------

Or

9.	a.	Derive Bragg's law and explain its significance in X-ray diffraction. A beam of X-rays of wavelength 0.071 nm is diffracted by the (110) plane of a cubic crystal with a lattice constant of 0.28 nm. Find the second-order diffraction angle.	10 Marks	L3	CO 1
----	----	--	----------	----	---------

10.	a.	<p>a. Explain ductility and brittleness in materials. How are they measured experimentally?</p> <p>b. An elastic spring, designed for high-impact vehicles, is subjected to a load of 102 kg distributed over a surface area of 2000 cm^2. Your supervisor requires the stress to be calculated in kilopascals (kPa) to align with the company's standard reporting format. Can you determine the stress accurately? ($g = 9.8 \text{ m/s}^2$, $1 \text{ kg}\cdot\text{m/s}^2 = 1 \text{ Newton (N)}$, $1 \text{ Pascal (Pa)} = 1 \text{ N/m}^2$)</p>	10 Marks (5+5)	L1 and L3	CO 2
-----	----	---	-------------------	-----------------	---------

Or

11.	a.	Explain the concept of engineering stress and discuss its various classifications with diagrams.	10 Marks	L1	CO 2
-----	----	--	----------	----	---------

12.	a.	Explain Young's modulus, Bulk modulus, Shear modulus, and Poisson's ratio.	10 Marks	L1	CO 2
-----	----	--	----------	----	---------

Or

13.	a.	Discuss the concepts of ductility and brittleness in materials, and illustrate their characteristics using a stress-strain curve.	10 Marks	L1	CO 2
-----	----	---	----------	----	---------