

Roll No.											
----------	--	--	--	--	--	--	--	--	--	--	--

PRESIDENCY UNIVERSITY

BENGALURU

Mid - Term Examinations – October 2025

Date: 11-10-2025

Time: 02.00pm to 03.30pm

School: SOCSE/SOE	Program: B.Tech	
Course Code : PHY2501	Course Name: Optoelectronics and Quantum Physics	
Semester: I	Max Marks: 50	Weightage: 25%

CO - Levels	CO1	CO2	CO3	CO4	CO5	CO6
Marks	53	32	-	-	-	5

Instructions:

- (i) Read all questions carefully and answer accordingly.
- (ii) Do not write anything on the question paper other than roll number.
- (iii) Given : Planck's constant $h = 6.625 \times 10^{-34} \text{ Js}$; Boltzmann's constant $k_B = 1.38 \times 10^{-23} \text{ J/K}$, Speed of light $c = 3 \times 10^8 \text{ m/s}$, Mass of the electron $m = 9.1 \times 10^{-31} \text{ kg}$, Charge of the electron $e = 1.6 \times 10^{-19} \text{ C}$

Part A

Answer ALL the Questions. Each question carries 2marks.

5Q x 2M=10M

1	Differentiate between conductors, semiconductors, and insulators based on band gap	2 Marks	L2	CO1
2	Define superconductivity and mention one important application.	2 Marks	L2	CO1
3	Superconductivity disappears above the critical temperature. what happens to Cooper pairs as the material returns to normal state.	2 Marks	L2	CO1
4	An electron is accelerated through potential difference V such that the final momentum becomes twice the initial momentum. Determine how the De-broglie wavelength changes.	2 Marks	L2	CO2
5	An LED emits light of wavelength $\lambda=620 \text{ nm}$. Calculate the band gap energy of the semiconductor in eV.	2 Marks	L2	CO1

Part B

Answer the Questions.

Total Marks 40M

6.	a. Define Fermi energy and represent the position of Fermi level in intrinsic, n-type, and p-type semiconductors. (5 Marks) b. The Intrinsic carrier density at room temperature in Ge is $2.37 \times 10^{19} \text{ m}^{-3}$. If the electron and hole mobilities are $0.38 \text{ m}^2 \text{ V}^{-1} \text{ s}^{-1}$ and $0.18 \text{ m}^2 \text{ V}^{-1} \text{ s}^{-1}$ respectively, estimate the resistivity. (5 Marks)	10 Marks	L2	CO1
----	---	-----------------	-----------	------------

Or

7.	a. Define superconductivity and explain the Meissner effect. (5 Marks) b. A superconductor has a critical temperature of 7.2 K at zero magnetic field. If the critical field at 0 K is 0.3 T, calculate the critical field at 4 K. (5 Marks)	10 Marks	L2	CO1
----	---	-----------------	-----------	------------

8.	a. State the de-Broglie hypothesis and derive the expression for de-Broglie wavelength. (5 Marks) b. The trotting speed of an elephant is 10 m/s. Calculate the associated de Broglie wavelength. (Mass of the elephant = 1000 kg). (5 Marks)	10 Marks	L2	CO2
----	--	-----------------	-----------	------------

Or

9.	a. Derive the de Broglie wavelength of a free particle in terms kinetic energy and for an electron accelerated through a potential difference V. (5 Marks) b. Calculate the de-Broglie wavelength of an electron accelerated by a potential difference of 200 V. (5 Marks)	10 Marks	L2	CO2
----	---	-----------------	-----------	------------

10.	a. Explain the principle, construction and working of a solar cell. (5 Marks) b. A solar cell has $I_{sc} = 40\text{mA}$, $V_{oc} = 0.6\text{V}$, and maximum power point at $V_{max} = 0.5\text{V}$, $I_{Max} = 30\text{mA}$ calculate fill factor. (5 Marks)	10 Marks	L2	CO1
-----	--	-----------------	-----------	------------

Or

11.	a. Explain Hall effect and analyze how the Hall effect can be used to identify the given semiconductor type. (5 Marks) b. Calculate the Hall voltage when a conductor carrying a current of 100 A, is placed in a magnetic field of 1.5 T. The conductor has a thickness of 1 cm, and the number density of charges	10 Marks	L2	CO1
-----	---	-----------------	-----------	------------

		inside the conductor is $5.9 \times 10^{28} / \text{m}^3$. (5 Marks)			
--	--	---	--	--	--

12.	a.	Explain the Characteristics of Matter waves. (5 Marks)	10 Marks	L2	CO2
	b.	Compare the energy of a photon with that of a neutron when both are associated with a de Broglie wavelength of 1 Å. Given mass of neutron is $1.674 \times 10^{-27} \text{ kg}$. (5 Marks)		L3	

Or

13.	a.	Differentiate between n-type and p-type semiconductors and why n-type conductivity slightly higher compare to p-type? (5 Marks)	10 Marks	L2	CO1
	b	Analyze the differences between Type-I and Type-II superconductors. Which type of superconductor should be used to create high magnetic field and why? (5 Marks)		L4	CO6