

Roll No.											
----------	--	--	--	--	--	--	--	--	--	--	--

PRESIDENCY UNIVERSITY

BENGALURU

Mid - Term Examinations – October 2025

Date: 08-10-2025

Time: 09.30am to 11.00am

School: SOE	Program: B.Tech	
Course Code : ECE2502	Course Name: Analog Communication	
Semester: III	Max Marks: 50	Weightage: 25%

CO - Levels	CO1	CO2	CO3	CO4	CO5
Marks	12	38			

Instructions:

- (i) *Read all questions carefully and answer accordingly.*
- (ii) *Do not write anything on the question paper other than roll number.*

Part A

Answer ALL the Questions. Each question carries 2marks.

5Q x 2M=10M

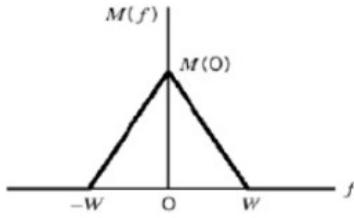
1	In most of the analog communication systems, the carrier is a sinusoidal signal. What are the different characteristics that can be varied for the carrier signal so as it can accommodate the message signal?	2 Marks	L1	CO1
2	In a Communication system , modulation is an inevitable process. Which type of modulation varies the amplitude of a high-frequency carrier wave in proportion to the instantaneous value of the message signal, while keeping frequency and phase constant?	2 Marks	L1	CO2
3	In amplitude modulation systems used for radio transmission, which scheme consumes less total power for the same message signal transmission: Double Sideband Full Carrier (DSB-FC) or Double Sideband Suppressed Carrier (DSB-SC)? Justify your answer in terms of carrier power contribution.	2 Marks	L1	CO2
4	Which modulation technique is most suitable for television broadcasting, where efficient bandwidth utilization is required while still allowing easy demodulation of video signals?	2 Marks	L1	CO2
5	Which modulation method is preferred in long-distance telephony and HF communication to minimize bandwidth usage and power	2 Marks	L1	CO2

consumption?

Part B

Answer the Questions.

Total Marks 40M


6.	a.	To design a radio broadcasting system for transmitting voice signals over long distances, which fundamental communication model should be used? Draw and explain the block diagram of that analog communication system.	10 Marks	L2	CO 1
	b.	A communication engineer is designing a system and has to choose between DSB-FC, DSB-SC, and SSB modulation schemes. Considering both bandwidth efficiency and transmitted power requirement, compare these three schemes in detail	10 Marks	L2	CO 2

Or

7.	a.	Why is it not practical to transmit low-frequency audio signals (like human voice in the range of 20 Hz – 20 kHz) directly over long distances in radio communication systems? State the need for modulation.	10 Marks	L2	CO 1
	b.	A communication engineer is tasked with designing three types of amplitude modulation systems—DSB-FC, DSB-SC, and SSB—to transmit an audio signal $m(t)$ over a carrier of frequency fc . Explain the time-domain and frequency-domain representation of Amplitude Modulated signal with frequency spectrum for the same. Mention the advantages and disadvantages of Amplitude Modulation.	10 Marks	L3	CO 2

8.	a.	As a radio engineer working , with transmitting an audio signal using amplitude modulation, explain the working of any one AM modulator (DSB-FC) along with its corresponding demodulator, describe how the original message signal is recovered, and draw a neat block diagram showing the modulator, demodulator, and signal flow from the message signal to the output.	10 Marks	L2	CO 2
	b.	As an engineer setting up an AM radio link, explain the operation of any one AM modulator (DSB-SC) along with the corresponding demodulator, discuss how the transmitted message is recovered, and provide a neat block diagram showing the modulation-demodulation process from input to output.	10 Marks	L2	CO 2

Or

9.	<p>a. One input to AM is 500 kHz fc with $A_c = 32V$. Second input is 12 kHz fm, $A_m = 14V_{p-p}$. Determine:</p> <p>USB, LSB</p> <p>b) μ, %μ</p> <p>c) V_{max}, V_{min}</p> <p>d) Draw o/p envelope</p> <p>e) Draw o/p frequency spectrum</p>	10 Marks	L2	CO 2
	<p>b. A message signal $m(t)$ with spectrum as described in fig (1) is applied to a P.M with $c(t) = A_c \cos(2\pi f_c t)$ producing the DSB-SC wave $s(t)$. This modulated wave is next applied to a Coherent detector. Assuming a perfect coherence between Transmitter and Receiver. Determine the spectrum of detector output when:</p> <p>(i) $f_c = 1.25k$</p> <p>(ii) $f_c = 0.75k$</p> <p>(iii) Lowest f_c so that $m(t)$ is uniquely determined from $s(t)$.</p> <p>Fig 1</p> <p>A triangular spectrum for $m(t)$ centered at $f = 0$, extending from $-f$ to $+f$, where $f = 1\text{kHz}$. The peak amplitude is $M(f)$ at $f = 0$.</p>	10 Marks	L3	CO 2