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Preface

As practicing petroleum engineers and geoscientists, we have long been fascinated by
the myriad applications of statistical methods in characterizing, monitoring, and forecasting
the behavior of subsurface fluid-bearing geosystems. Statistics has been a quintessential tool
in our arsenal for fundamental tasks such as describing and modeling data from well logs,
core samples, and injection/production tests. It has improved our designs of laboratory,
field, and numerical experiments to understand the relationship between geologic inputs
(e.g., porosity, permeability, and well-log attributes) and state variables (e.g., pressure and
production rates). Statistical techniques have also helped improve estimates of uncertainty in
static and dynamic reservoir model predictions arising from the underlying model input uncer-
tainty. Ourjourney has taken us from basic exploratory data analysis and regression modeling to
more advanced multivariate analysis, nonlinear and nonparametric regression modeling,
experimental design and response surface analysis, and uncertainty quantification methods.
Lately, we have been intrigued by the promise of big data analytics for oil and gas projects
based on its success in other problem domains and have been exploring machine-learning
techniques to develop data-driven insights for understanding and optimizing the performance
of petroleum reservoirs.

During this “random walk” along the road of applied statistics, we have studied many
research papers on the subject from fellow petroleum engineers and geoscientists and have
also contributed to the growing literature. We have consulted several books on statistical
modeling and data analytics that target both specialized and broad audiences. Through
serendipity, we have come to realize that there is no single textbook or reference volume
currently in the market that addresses the theory and practice of these topics from the per-
spective of petroleum engineering or geoscience applications.

This book is our humble attempt to fill the void. It seeks to provide a practical guide, via
theoretical background and practical examples, to many of the classical and modern statistical
techniques that have become, or are becoming, mainstream for oil and gas professionals. It is
intended to serve as a “how to” reference for the practicing petroleum engineer or geoscientist
interested in applying statistical modeling and data analytics techniques in formation
evaluation, reservoir characterization, reservoir modeling and management, and production
operations.

This is a book on the application of statistics, written by practitioners, for practitioners.
As such, we have tried to strike a judicious balance between statistical rigor and formalism
and practical considerations regarding the fundamentals and applicability of various relevant
concepts. Beginning with a foundational discussion of exploratory data analysis (Chapter 2),
probability distributions (Chapter 3), and linear regression modeling (Chapter 4), the book
focuses on fundamentals and practical examples of such key topics as multivariate analysis
(Chapter 5), uncertainty quantification (Chapter 6), experimental design and response surface

ix
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analysis (Chapter 7), and data-driven modeling (Chapter 8). Datasets from the petroleum
geosciences are extensively used to demonstrate the applicability of these techniques. We
have chosen not to discuss topics related to geostatistics or time series analysis, as there are
several excellent practical references available on the subject.

Although this book is primarily organized in the form of a ready reference guide for prac-
titioners in the petroleum geosciences, it can also be used as a textbook for an upper division
or graduate-level course on the subject. To that end, we have added several pedagogical
examples and exercise problems to each chapter. The book will also be useful for profes-
sionals dealing with subsurface flow problems in hydrogeology, geologic carbon sequestra-
tion, and nuclear waste disposal. The material in the book has been collated from class
notes of graduate and undergraduate courses that we have taught and short courses and
workshops that we have offered at professional society meetings and client locations.

We view statistical modeling and data analytics as both an established and an emerging
field, where basic concepts from classical statistics provide the building blocks for applying
newly developed algorithms from the computer and data science domains. We hope this
book will empower petroleum engineers and geoscientists with a greater appreciation of rele-
vant principles and tools for converting data into information—particularly the actionable
kind that lead to better decisions.
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1.1 BACKGROUND AND SCOPE

We introduce the reader to some fundamental concepts of classical statistics such as prob-
ability and random variables, along with basic concepts from the emerging field of data
analytics and big-data technologies. We also list some typical applications of the relevant
techniques for data analysis in the petroleum geosciences.

1.1.1 What Is Statistics?

Statistics is the science of acquiring and utilizing data. It provides us with the tools for data
collection, summarization, and interpretation—with the goal of identifying the underlying
structure, trends, and relationships inherent in the data. This is how we convert data into
information.

Fundamental to statistics are the concepts of population and sample. A population is the
universe of all possible outcomes and events, whereas a sample is a finite subset extracted

Applied Statistical Modeling and Data Analytics 1 (© 2018 Elsevier Inc. All rights reserved.
https://doi.org/10.1016/B978-0-12-803279-4.00001-8
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Population
(entire reservoir) Sample
(250 core plugs)

Data Exploratory
sampling (1) data analysis (2)

Inference (3)

FIG. 1.1  Schematic showing population—sample relationship.

from the population. Statistical analyses are performed on the sampled data to draw inference
about the characteristics of the population, without having to study the entire population.
The population is exhaustive and is characterized by its parameters. The sample is limited
and is characterized by the statistic that is related to the population parameters.

Fig. 1.1 shows a schematic of the relationship between population and sample. Here, the
population represents permeability values for an entire oil reservoir at the scale of a small core
plug. To learn more about the distribution of permeability values, in step (1), we randomly
sample this population using a finite number of core plugs (e.g., 250). In step (2), we analyze
these permeability values to determine the proportion of plugs with permeability greater than
10 mD (e.g., 65%). Finally, in step (3), we determine the representativeness of this result for
the entire population (e.g., 95% certain that margin of error is £6%).

Application of statistics to any dataset generally begins with exploratory data analysis.
Here, the goal is to quantify and visualize the range of values a given variable can take, sum-
mary attributes such as averages and spread, and the nature and strength of correlation
between two or more variables (Chapter 2). In the next step, the distribution of the variable
is examined to understand the relative likelihood of various values within the observed range
and the possibility of describing the distribution using a compact mathematical form
(Chapter 3). Another common task involves exploring how the relationship between two
variables can be described using a linear regression model or variants thereof (Chapter 4).
When multiple variables are included in the dataset, it is useful to identify the degree of
redundancy among different variables and if the dataset can be partitioned into any statisti-
cally homogeneous subpopulations (i.e., clusters). This is the scope of multivariate analysis
(Chapter 5).

The broad classes of techniques described above fall within the realm of classical statistics
and have been employed by petroleum engineers and geoscientists for many years (see Stan-
ley, 1973 and references therein). Recent contributions (e.g., Davis, 2002; Jensen et al., 2000)
discuss the geoscience-oriented application of these techniques in greater detail, including
other topics not covered in this book such as geostatistics and time series analysis.

Statistical methods are also relevant in the context of uncertainty analysis, where the goal is
to translate the uncertainty in the inputs of a model into uncertainty in corresponding model
predictions (Chapter 6). Here, the concepts mentioned in the previous paragraph are funda-
mental to characterizing the uncertainty both in the model inputs and the model results and
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building predictive models that relate the specified uncertain inputs to the computed uncertain
outputs. Another important application is with respect to design of experiments, both physical
and computational (Chapter 7). Statistical approaches are useful for determining how to con-
struct a limited number of experiments that properly span the design space and how to fit a
response surface to the experimental results that can be used as a surrogate model.

1.1.2 What Is Big Data Analytics?

The terms “big data” and “data analytics” have become quite the buzzword in recent years,
especially because of many reported applications in areas such as consumer marketing,
health and life sciences, and national security. This has led to the perception that big data an-
alytics has the potential to be a game changer for oil and gas applications (Holdaway, 2014).
The industry is beginning to explore the possibilities of “mining” large volumes of data about
the subsurface, physical infrastructure, and flows to obtain new insights about the reservoir
that can help increase operational efficiencies.

Big data generally refers to large, multivariate datasets characterized by the three V’s: vol-
ume, variety, and velocity (Fig. 1.2). Volume refers to the size of the data, where we are increas-
ingly dealing with ~10°-10* independent variables and ~10°-10° observations or data
records, each collected at multiple temporal and/or spatial locations. Variety refers to data
in multiple formats such as numbers, video, and text, which can be both structured and un-
structured, and requires a combination of numerical methods, image analysis, and /or natural
language processing. Velocity refers to the growing ubiquity of real-time streaming data from
downhole sensors or surface gauges, which adds to the size of the dataset with additional
considerations such as data archival, resampling, and redundancy analysis.

As shown in Fig. 1.2, data analytics is the process of (a) examining the data,
(b) understanding what the data say and “learning” from the data, and (c) making predictions
based on these data-driven insights that (hopefully) lead to better decisions (Hastie et al.,
2008). Essentially, data analytics methods are applied to help understand hidden patterns

Big data Data analytics

. Make
() be.tt.er
decisions
Understand
O “what does
Examine  data say” -
Velocity data l Prediction

Loarios R

FIG. 1.2 Big data analytics—what and why.
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and relationships in large and complex datasets. A number of equivalent terms such as sta-
tistical learning, knowledge discovery, data mining, and data-driven modeling are often inter-
changeably used to describe this collection of techniques, which are drawn from computer
science, machine learning, and artificial intelligence (Chapter 8).

From an information technology perspective, however, the scope of data analytics is some-
what broader because it includes the following steps (IDC Energy Insights, 2014):

e Data organization and management, which involves data collection, warehousing, tagging,
QA/QC, normalization, integration, and extraction.

° Analytics and discovery, which involves software-driven analysis, predictive model
building, and extraction of data-driven insights.

* Decision support and automation, which involves deploying rule-based systems with
functionality to support collaboration, scenario evaluation, and risk management.

Although big data has not become ubiquitous in the oil and gas industry, a vision for how
big-data-related technologies can be implemented in the context of exploration and produc-
tion operations is described in Brulé (2015).

1.1.3 Data Analysis Cycle

For petroleum geoscience applications, it is more useful to consider statistical modeling
and data analytics as part of an integrated data analysis cycle as shown in Fig. 1.3. The scope
of various work elements that comprise this cycle are explained below.

Data collection and management. This step involves the acquisition and aggregation of data
from multiple sources (e.g., cores, well logs, and production records), possibly in multiple
forms (e.g., numbers and text). The data also undergo a QA /QC process to ensure the trace-
ability and accuracy of each data record. Finally, the data have to be made easily available for
visualization and analysis.

Eproratory
data analysis

= g

Data collection Predictive
and management modeling
=
Visualization

and reporting
FIG. 1.3 Schematic of data analysis cycle.
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Exploratory data analysis. The goal of this step is to develop a preliminary understanding
of the data in terms of the characteristics of individual variables and the relationship
among various variables. Other objectives include identifying key variables of interest,
formulating questions for digging deeper into the data, and selecting techniques that will
be used for detailed analysis. The relevant concepts involved in this step are discussed
in Chapters 2 and 3.

Predictive modeling. The analyses in this step generally begin with unsupervised learning,
where the issues of redundancy among the independent variables and possible reduction
in data dimensionality (without losing any information) are first addressed. This is
followed by supervised learning, where observed values of a response variable are used to
train a model between the independent variables (i.e., predictors) and the dependent
variable (i.e., response). This predictive model can then be used to answer questions
posted in the previous step. Chapters 4-8 discuss the relevant concepts that are integral
to this step.

Visualization and reporting. The ultimate goal of any modeling and/or analysis is to provide
input for a decision by transferring information to decision-makers. It is therefore necessary
to capture what has been learned in the form of visual summaries, compact reports, or
decision-support tools that can be used to answer “what-if” type questions. Another useful
outcome from this step is the use of insights from predictive modeling to identify what new
data should be collected and the kinds of questions to pursue in the future.

1.1.4 Some Applications in the Petroleum Geosciences

The principles described throughout the book are explained with the help of many illus-
trative examples and problems to demonstrate their practical applicability. These include the
following:

¢ Determining conditional probabilities of cause-effect relationships

¢ Computing summary statistics (e.g., mean and variance)

* Calculating correlation and rank correlation coefficients between two variables

* Visualizing univariate, bivariate, and multivariate data

* Estimating probability coverage levels for different distributions

* Analyzing behavior of normal and lognormal distributions

¢ Calculating confidence interval and sampling distribution for the mean

¢ Testing for significance of difference in means

* Comparing two different distributions for statistical equivalence

¢ Fitting simple and multiple linear regression models to observed data

* Developing a nonparametric regression model from given data

* Reducing data dimensionality with principal component analysis

¢ Grouping data with k-means and hierarchical clustering

¢ Identifying classification boundary between clusters using discriminant analysis

* Developing distributions from data, limited knowledge, or subjective judgment

e Translating model input uncertainty into uncertainty in model predictions using Monte
Carlo simulation and analytic alternatives
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* Analyzing input-output dependencies from Monte Carlo simulation results

¢ Creating an experimental design and fitting a response surface to the results

* Applying machine learning techniques (e.g., random forest, gradient boosting machine,
support vector regression, and kriging model) for predictive modeling

* Generating decision rules with classification tree analysis

Some of the examples listed here are purely pedagogic in nature, while others are based on
actual datasets (albeit reduced in size to make the presentation tractable). Finally, several field
datasets have been analyzed to demonstrate how multiple methods “come together” in the
context of linear and nonparametric regression analysis, multivariate analysis, and data-
driven modeling.

1.2 DATA, STATISTICS, AND PROBABILITY

1.2.1 Outcomes and Events

Generally, there is some degree of unpredictability or randomness associated with most
natural phenomena. We can represent this unpredictability in terms of the many possible
outcomes of an experiment to define “what can happen.” Simply put, statistics is
concerned with the determination of the probable (events) given the possible (outcomes)
(Davis, 2002). Formally stated, outcomes are elements of the sample space 2, events are an
appropriate subset of Q, and probability, P, is the likelihood of the event occurring
(0<P<1).

The sample space, £2, is a set whose elements describe outcomes of the experiment of in-
terest. For example, if the experiment is a wildcat well with two possible outcomes—dry well
(D) or success (S), then the sample space is 2={D, S}. If the experiment is porosity determi-
nation from core samples with multiple possible outcomes (equal to the number of samples),
then the sample space is 2={0, 1}. Another experiment could be the order in which three
wells are tested—leading to six different outcomes—with the sample space being 2={123,
132, 213, 231, 312, 321}.

Events are subsets of the sample space, that is, event A occurs if the outcome of the
experiment is an element of set A. For example, let A be the event where well #1 is tested
either first or second, that is, A={123, 132, 213, 312}. Similarly, let B be the event where well
#2 is tested either first or second, that is, {123, 213, 231, 321}. When both A and B occur, we
refer to this as intersection, symbolically denoted as ANB={123, 213}. If at least one of A or B
occurs, we refer to this as union, symbolically denoted as AUB ={123, 132, 213, 312, 231, 321}.
The complement of A, denoted by AC, is when A does not occur, that is, AS={231, 321}. Note
that the complement of the sample space Q2 is the null set ®. A and B are considered to be
disjoint (i.e., mutually exclusive) if there are no common elements, that is, ANB=®. Some
additional results follow from De Morgan’s law, which states that (AU B)“=A“NB“ and
(ANB)“=A“UBC. The concepts of intersection, union, and complement are schematically
shown below in Fig. 1.4.
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/ | Venn diagrams | \
Complement Mutually exclusive

P(A) + P(A") =1 P(AnB)=0

@ ~ OI0

Union
P(AUB)=P(A) + P(B)—P(ANB)

Intersection a‘a

P(ANB)

Independent

\ a‘a P(A)xP(B)= P(Ar\B)/

FIG. 1.4 Concepts of intersection, union, and complement and associated relationships.

1.2.2 Probability

Probability is the likelihood of an event occurring and is expressed as a number between
0 and 1 or equivalently as a percentage between 0% and 100%. In the frequentist view of prob-
ability, it is the relative frequency with which an event occurs in a long sequence of trials and
is based on historical or measured data. In the Bayesian (subjective) view, it is the degree of
subjective belief about the event occurring given all relevant information.

As an example of the frequentist approach, if observed net pay (in ft) from nine wells are h =
[17.5,20.4, 15.6,16.2,16.9,18.3, 9.4, 15.2, 18.3], then the probability that the net pay is greater
than 18 ft is given by P[h >18] =4/9=0.44. On the other hand, the statement “based on prior
evidence and expert judgment, the probability is 30% that at least one well will exceed
1000 BOPD in initial production” is an example of the subjective (Bayesian) approach.

Historically, the early use of probability was in the subjective vein. Pierre Bernoulli (1713),
Thomas Bayes (1763), and Pierre Laplace (1812) treated probability as plausibility, given all ev-
idence. It was only in the mid-19th century that mathematicians started considering probability
as the long-run relative frequency and as an objective tool, based on data, for dealing with ran-
dom phenomena. This led to the development of statistics as an independent branch of math-
ematics. In the mid-20th century, the information theoretician Edwin Jaynes (1957) promoted
the application of the Bayesian framework as a formal basis for conditioning probabilities. In
this book, we embrace both the frequentist view and the subjective view of probability and use
the formalism that is most appropriate for the amount of data and the problem at hand.

Some basic rules governing probability are discussed next.

(A) Total probability of the sample space is unity
P(Q2)=P(A)+P(A%) =1 (1.1)
(B) The probability of the union of two events (as per Fig. 1.4) is given by
P(AUB)=P(A)+P(B)—P(ANB) (1.2)
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(C) For mutually exclusive events, where P(ANB) =0, this leads to the additivity rule that
states that the probability of an event is the sum of the probability of mutually exclusive
outcomes belonging to that event:

P(AUB)=P(A) +P(B) (1.3)

(D) For independent events, where the experiments do not influence each other, the
probabilities are multiplicative, that is,

P(ANB) =P(A)+P(B) (1.4)

As an example, consider a five-well wildcat campaign with outcomes 1 (success) and
0 (failure). We are interested in the event where exactly one well was a success. This can
be enumerated as

A=1{(0,0,0,0,1), (0,0,0,1,0), (0,0,1,0,0), (0,1,0,0,0), (1,0,0,0,0)}.

The probability for each element of A is clearly p(1 —p)*, where p is the probability of suc-
cess. Hence, the probability of event A can be written as

P(A)=5p(1-p)*

We can generalize this to state that the probability of r successes in n trials, when the prob-
ability of success in a single trial is p, is given by

P="Cpf (1=p)"

1.2.3 Conditional Probability and Bayes Rule

Letevent A, with probability P(A), lead to event B, with probability, P(B). We denote P(B|A)
as the conditional probability of event B, given that event A has occurred. If A and B are inde-
pendent events, that is, event B does not depend on event A, then P(B|A) =P(B). The concept
of conditional probability can be explained in terms of the intersection of two events (as
shown in Fig. 1.4), by noting that P(B|A) is simply the fraction of probability of A that is also
in event B. In other words,

P(BJA)=P(ANB)/P(A) (1.5)

This leads to the multiplication rule for the probability of the intersection of two events,
which is also a statement of symmetry in expressing conditional probabilities:

P(ANB)=P(B|A)«P(A) = P(A|B) = P(B) (1.6)

A related concept is total probability, which is based on the computation of probabilities by
considering all disjoint events that belong to a sample set. Consider the example shown in
Fig. 1.5, where C;, C, and Cj are disjoint events that collectively make up the sample set
£ (indicated by the rectangle) and A is another event that belongs to £ (indicated by the filled
circle).
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C4

FIG. 1.5 Concepts of intersection, union, and complement in the context of conditional probability.

Another way of thinking about these relationships is to denote C;=cause and A =effect.
Using the additivity rule, the probability of A can be written as

P(A)=P(ANC1)+P(ANGCy) +P(ANC3) (1.7)
From the definition of conditional probabilities in Eq. (1.6), we have

P(ANC;) =P(A|Cj) *P(C)) (1.8)
Substituting in Eq. (1.7), we get

P(A) =P(A|Cy) *P(C1) + P(A|Cy) xP(Cy) + P(A|C3) x P(C3) (1.9)

A formal linkage between the probabilities of C;and A can be compactly established using
Bayes’ rule, as discussed next. Using the identities in Egs. (1.5) and (1.8), we can write

P(A|Cj)*P(Cj))  P(A|G)) =P(C))

P(GilA) = = (1.10)
P(A) > PAIG;) <P(C))

This is the basic statement of Bayes’ rule, which can be restated as follows:

P(cause;leffect) = P(effect|cause;) « P(cause;) /P( effect) (1.11)

where P(effect) is simply a normalizing constant. Thus, Bayes’ rule allows us to make inferences
about possible causes, given observed effects, starting with the information regarding the prob-
ability of different effects from each possible cause. It enables us to combine the information
content of the data with our prior knowledge to obtain a more refined statistical distribution.
This turns out to be a very powerful tool for updating knowledge in an objective manner.

Consider the following illustrative example. We are interested in understanding the
causes of poor well productivity (i.e., wells with initial production less than 100 barrels/day)
in a fractured reservoir, denoted as event A. Let B; denote the event where the well-test
permeability is greater than 100 mD and B, denote the event where the well-test permeability
is less than 20 mD. From operational records, we know that P(B;)=0.6, and P(B,)=0.40.
Furthermore, from production data, we know that poor well productivity is more likely to occur
inlow-permeability conditions, such that P(A|B1) =0.07 and P(A|B;) =0.95. If we drill a new well
and encounter poor well productivity, what is the probability that we are in a low-permeability
environment?
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TABLE 1.1 An Example Tabular Calculation Using Bayes’ Rule

Scaled Probability

Effect A Cause B; P(B)) P(A|B)) Product P(B;|A)
Low well k>100 mD 0.6 0.07 0.042 0.10
productivity k<20 mD 04 0.95 0.38 0.90
Sum 0.422

We start by calculating the total probability using Eq. (1.9) as follows:
P(A)=P(A|B1)*P(B1) + P(A|By) *P(B;) =0.07%0.6 + 0.95% 0.4 = 0.422

Next, we calculate the probability of a low-permeability reservoir (event B,), given poor
well productivity (event A), using Eq. (1.10) as follows:

P(B,A) =P(A|B,) % P(By) /P(A) =0.95%0.4/0.422 = 0.9

The prior probability for low-permeability conditions was P(B,) =0.40. The posterior prob-
ability for low-permeability conditions, given low well productivity, is now P(B,|A)=0.90. In
other words, the knowledge of poor well productivity has significantly improved our confi-
dence in identifying low-permeability conditions. A tabular format for performing these cal-
culations is presented below in Table 1.1.

1.3 RANDOM VARIABLES

1.3.1 Discrete Case

A random variable (RV) is a quantity whose value is subject to variations due to random-
ness. Therefore, RVs can have many possible values, which can be either discrete or contin-
uous. For example, the number of downhole gauge failures in a given month is a discrete RV,
whereas porosity values obtained from core analysis in a given well can be treated as a
continuous RV.

The probability mass function (PMF), p, of a discrete RV, X, denotes the probability that the
RV is equal to a specified value, a. This is denoted by

p(a)=P(X=a) (1.12)

Similarly, the cumulative distribution function (CDF), F, denotes the probability that X will
take on values equal to or less than a. Symbolically, this is represented as

Fa)=P(X<a)=Y_p(a;) witha;<a (1.13)

Consider the case of two die throws, where we are interested in tracking the maximum
value from each die. We can enumerate the possible outcomes in a tabular form, as shown
in Table 1.2.

Fig. 1.6 shows the PMF and CDF for this example.
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TABLE 1.2 Example of a Discrete RV

a 1 2 3 4 5 6
p(a) 1/36 3/36 5/36 7/36 9/36 11/36
F(a) 1/36 4/36 9/36 16/36 25/36 1
p(a) F(a)
0.35 1
0.3 08
0.25
0.2 0.6
0.15 0.4
0.1 |
0.2 !
0.05 ._1_1
0 0
1 2 3 4 5 6 0 2 4 6 8

FIG. 1.6 Example PMF and CDF for a discrete RV.

1.3.2 Continuous Case

An RV is defined to be continuous, if for some function, f, and any two numbers a and b
with a<b:

Pa<X<b) = be(x)dx (1.14a)

a

+00

f(x)>0 for all x and J flx)dx=1 (1.14b)

—00

Here, f is the probability density function (PDF), which is the continuous version of the
PMF. Similarly, we can define the cumulative distribution function (CDF), F, for the contin-
uous case as follows:

Pla<X<b) = P(X<b)—P(X <a) = E(b)— F(a) (1.150)
b

F(b) = j Fx)dx (1.15b)
d

flx)= EF(x) (1.15¢)

We discuss the nature of discrete and continuous RVs in greater detail in Chapter 3.
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1.3.3 Indicator Transform

An indicator transform provides a mechanism to transform a continuous random variable
to a discrete random variable. For example, properties such as porosity and permeability in a
reservoir are continuous variables. Such continuous variables can be represented in terms of
discrete indicator variables by introducing thresholds or cutoffs. A common application is a
geologic facies definition that might be based on cutoffs introduced for specified properties.

The indicator transform associated with random variable X for a threshold value x; is
defined as follows:

oy /0 A X >
I(xk,X)<1 if X <x; (1.16)

An important property of an indicator random variable is that its expected value,
E{I(xx; X)}, is equal to the cumulative probability, P(X <xy), that is, the proportion of X
below x;. This can be easily seen below:

E{I(xi; X)} =1 x P(X <x¢) +0 x P(X > x) = P(X < x;) (1.17)

1.4 SUMMARY

In this chapter, we began with some introductory text regarding statistics and the statistical
modeling process, followed by a discussion of similar concepts related to big-data analytics
and data analysis cycle. We also presented an overview of fundamental statistics and prob-
ability terms, conditional probability, and random variables. Our goal here was to provide the
foundational concepts that will be used as building blocks for the chapters to follow.

Exercises

1. What are some of the attributes that would make samples representative of the
population in petroleum geoscience applications?

2. Using the OnePetro database, find one example of big-data application in each of the
following areas: (a) drilling, (b) formation evaluation, (c) production, (d) reservoir
management, and (e) predictive maintenance.

3. A biased coin is being tossed. The probability of getting heads is 0.51 and of getting
tails is 0.49. We are interested in the number of tosses it takes until a head occurs
for the second time. What is the probability that it takes five tosses?

4. If events E; and E, are independent with probabilities P(E;)=0.4 and P(E;)=0.7, find
the probability of the following: (i) P(E;NEy); (i) P(E;NE3); (iii) P(EINEy)?

5. Geoscientists have postulated two structural models for the basin where your company
is drilling exploratory wells. The probability of finding oil is 0.7 for the first model, and
0.2 for the second model. The likelihood of the first model being true is 0.4, whereas
that of the second model is 0.6. If the first exploratory well strikes oil, what are the revised
likelihoods of the two models?
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6. Experience has shown that students are unable to submit their homework on time (NH)
for one of two reasons: computer crash (CC) or dog eating the homework (DH). The
probability of CC is known to be 0.20, with the probability of no-homework submission
because of CC being 0.50. The probability of DH is known to be 0.01, with the probability
of no-homework submission because of DH being 0.99. If a student was unable to
submit the homework on time, what is the probability that a dog ate the homework?

7. If two dies are being thrown and their sum is the discrete random variable of interest,
calculate and plot the PMF and the CDF.

8. Consider the PDF given by f(x)=0 for x < 0 or x >1, and f(x)=1/4/x for 0<x <1.

What is the probability that X belongs to the interval [10>, 10 ']?
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Exploratory data analysis, which is concerned with summarizing and visualizing data as
a starting point for more detailed analyses, is the subject of this chapter. We restrict ourselves
to numerical data (as opposed to text or images) and note that: (a) data can be univariate or
multivariate, (b) data can be categorical or numerical, (c) random variables can have more
than one value, and (d) distributions capture the values taken by variables, and the frequency
with each specific value occurs.

2.1 UNIVARIATE DATA

Whether we are dealing with a population or a sample, the observed values of a variable
are likely to be different from each other. It is useful to explore this intrinsic variability for a
single variable numerically using measures that quantify the “average” value, the spread
around this average, and the overall degree of asymmetry over the full range of observed
values. These univariate measures are described below, along with some common graphical
methods for visually examining and summarizing the data.

Applied Statistical Modeling and Data Analytics 15 (© 2018 Elsevier Inc. All rights reserved.
https://doi.org/10.1016/B978-0-12-803279-4.00002-X
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2.1.1 Measures of Center

For a random variable X, where x; are the individual outcomes, the most common measure
of central tendency is the mean or the expected value, defined as

N 1
E[X]=X ;ﬁxl N;x, 2.1)
where f; is therelative frequency and is often assumed to be the same (i.e., 1/ N) for each sample.
The mean (i.e., the arithmetic mean) is the weighted average of all values, based on the relative
frequency. Two other useful measures of central tendency are (a) mode, which is the most
likely (frequently occurring) value, and (b) median, which is the midpoint of the distribution.

Consider the 10-sample net pay data: & (ft), [13, 17, 15, 23, 27, 29, 28, 27, 20, 24]. Here, the
mean is 21.3, mode is 27, and median is 21.5 (i.e., average of 20 and 23). The mean, median,
and mode generally coincide for symmetrical (or near-symmetrical) distributions but can be
very different if the distribution is asymmetrical. The mean is strongly impacted by the
extreme values, whereas the median is more robust and less sensitive to the outliers.

Fig. 2.1 illustrates this schematically for two cases, where the median lies between the
mode and the mean, but the mean and mode switch places depending on the nature of asym-
metry (i.e., left-skewed or right-skewed). Also shown therein is the case of a distribution with
two distinct modes. Generally, such bimodal (or, by extension, multimodal) behavior is indic-
ative of the fact that the dataset is not statistically homogeneous—most likely because of the
“mixture” of two or more distinct distributions. An example would be the combination of
porosity data from two different lithofacies with significantly different characteristics.

Other commonly used averages beyond the arithmetic mean are the harmonic and geomet-
ric means. The harmonic mean is the reciprocal of the arithmetic mean of the reciprocals, that s,

N

_ 1

Xy=N — 2.2
n=N/> s 22)

The geometric mean is the Nth root of the product of N observations, that is,

)_(G = (x,-xz....xN)N (2.3a)

Xc=exp[In(Xcg)] =exp [%ENZ In (x,-)} (2.3b)
i1

Table 2.1 presents a set of 21 data points of core-derived porosity values from the oil
producing Rose Run sandstone in Ohio, the United States (POR_TAB2-1.DAT)* along with
the calculation of the arithmetic, harmonic, and geometric means.

The harmonic mean can also be identified with the concept of resistances in series, whereas
the arithmetic mean can be identified with resistances in parallel. Thus, the effective perme-
ability of a stratified reservoir where the layers are parallel to each other would be given by
the arithmetic mean. On the other hand, the effective permeability of a core holder, containing
multiple core samples in series, would be the harmonic mean. For a system where

*This refers to the name of a data file that is available in the online resource section of the book.
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Probability —

Probability ——

—— Probability —

X

FIG. 2.1 Location of mode for different types of distributions: (top) left-skewed, (middle) right-skewed, and
(bottom) bimodal.

permeability values vary in a random manner (as might be expected in the field), the effective
value will be somewhere between these two bounds. As noted by Jensen et al. (2000), the ef-
fective permeability obtained from a pressure buildup test in the field is well approximated
by the geometric mean, which falls between the arithmetic and harmonic means.

In geologic media averaging of properties, in particular permeability, can have important
implications on the flow response. This is illustrated in Fig. 2.2 for basic and directional
averaging of permeability in a sand-shale medium (AVG_FIG2-2.DAT). In general, the

following basic averaging results hold:
Harmonic < Geometric < Arithmetic

and for 2-D/3-D directional averaging,

Harmonic < Harmonic — Arithmetic < Arithmetic — Harmonic < Arithmetic
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TABLE 2.1 Example Calculation of Various Measures of Central Tendency

¢ 1¢p In(¢)
8.1 0.123 2.092
11.0 0.091 2.398
13.0 0.077 2.565
7.4 0.135 2.001
6.5 0.154 1.872
8.9 0.112 2.186
6.5 0.154 1.872
4.1 0.244 1.411
79 0.127 2.067
6.7 0.149 1.902
11.0 0.091 2.398
10.0 0.100 2.303
9.1 0.110 2.208
52 0.192 1.649
31 0.323 1.131
13.0 0.077 2.565
12.0 0.083 2.485
9.9 0.101 2.293
9.5 0.105 2.251
9.6 0.104 2.262
9.3 0.108 2.230
Sum 181.8 2.760 44.140
Arithmetic mean 8.657
Harmonic mean 7.608
Geometric mean 8.182

Thus, some averages alter sand quality, whereas others preserve barriers to flow or flow
around the barriers. For example, arithmetic averaging of sand and shale will behave more
like sand, whereas harmonic averaging will behave more like shale. As shown by King et al.
(1998), upscaling of reservoir properties specifically addresses this issue of averaging fine-
scale geologic models to coarse-scale models.

2.1.2 Measures of Spread

The most fundamental measure of spread is the variance, which measures dispersion or
variability around the mean. It is defined as

N N
VIX) =0 = > filwi — EIXI) =5 > (i~ EX])?
: i—1 (2.4)

i=1
2
%"1 (E[X])*=E[X*] - (E[X])®
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|
—

|
|

— e

|
X
| -
Facies PERMX PERMZ H .
e ez Basic averages:
0.5mD 0.2 mD * Arithmetic, RMS, Geometric and Harmonic
- OmD OmD
Directional averages: | z
Model . . . . . .
7 O| 953 * Arithmetic-Harmonic, Harmonic-Arithmetic
| 4

PERMX Model 1 Model 2 Model 3 Model 4 PERMZ Model1 Model2 Model 3 Model 4
Averages Averages
Arithmetic | 33342 33342 33342 333.42 Arithmetic | 16670 16670 16670 16670
Geometric | ¢ gg 0.00 0.00 0.00 Geometric | (oo 0.00 0.00 0.00
Harmonic | 0.00 0.00 0.00 Harmonic | o9 0.00 0.00 0.00
X-Direction Z-I?irecti?n
Arithmetic- | 333.42 33342 33342 33342 Arithmetic- | 0.00 1.19 1.19 103.56
Harmonic Harmonic
X-Direction Z-Direction
Harmonic- | 33342 250.08 250.08 167.08 Harmonic- | 0.00 0.00 0.00 0.00
Arithmetic Arithmetic

FIG. 2.2 Basic and directional averaging of permeability in sand-shale media (King et al., 1998).

In other words, the variance is simply the difference between the mean of the squares
and the square of the mean. The standard deviation, o, is the square root of the variance and
is also equivalent to the commonly used root-mean-square error (RMSE). The coefficient of
variance, CV, is a normalized measure of spread, generally expressed as a percentage, and
defined as

CVIX] = % % 100% (2.5)

When quantifying heterogeneity in reservoir properties (e.g., permeability), the CV is a
more consistent measure compared with variance or standard deviation as it focuses on
the spread of the variable irrespective of the magnitude of actual values. A related measure
in petroleum engineering is the Dykstra-Parsons coefficient assuming lognormal distribution
of permeability, as discussed later in Chapter 3.

Note that the definitional equation for variance, Eq. (2.4), is actually the variance of a pop-
ulation. The variance of a finite sample, denoted by s, is obtained from Eq. (2.4) by replacing
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TABLE 2.2 Example Calculation of Variance

x x? (x— E[X])*
8.1 65.61 1.21
11.0 121.00 3.24
13.0 169.00 14.44
74 54.76 3.24
6.5 42.25 7.29
Sum 46.0 452.62 29.42
E[X] 9.2
VIX] —(452.62 — (46)2/5)/4=29.42 /4 =7.355
SD[X] 2.712

N in the denominator with (N —1). This reflects the degrees of freedom available for calcu-
lating the variance, since one calculation is needed to calculate the mean. The modified
equation is

2
N Xi

1

Table 2.2 shows the calculation of variance using the first five values of porosity from
Table 2.1.

2.1.3 Measures of Asymmetry

In general, we can describe the variability of a dataset using moments around the mean or
central moments, defined as

(o]

i =E((X =)= | G F e 27)

—o0

where y=E(X) is the population mean and f(x) is the probability density function (as defined
in Section 1.3.2). This leads to a number of useful quantities such as

=0 (2.8)
i =E|(X—p)’| =VIX] =o? (2.9)
w=E|(X—p| = on (2.10)

w=E|[(X-p'| = o*r, (211)
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where y, is the skewness (degree of asymmetry) and y, is the kurtosis (degree of peakedness).
Skewness is a measure of symmetry or, more precisely, the lack of symmetry (Davis, 2002).
A distribution or dataset is symmetrical if it looks similar on either side of the “center.” Kur-
tosis is a measure of whether the data are heavy-tailed or light-tailed relative to a normal dis-
tribution (i.e., a symmetrical distribution around the mean whose characteristics are further
defined in Chapter 3). In other words, datasets with high kurtosis tend to have heavy tails or
outliers. Datasets with low kurtosis tend to have light tails or the lack of outliers. Skewness
and kurtosis are useful tools in classical statistics for determining if (and how) a variable
should be transformed into a normal distribution for subsequent analysis, but they are not
widely used in petroleum geoscience applications.

2.1.4 Graphing Univariate Data

A common approach for displaying univariate data involves a box-and-whisker plot (gen-
erally referred to as a box or Tukey plot). The “box” in the box plot shows the range between
the first quartile (i.e., that value, below which lies 25% of the samples) and the third quartile
(i.e., that value, above which lies 25% of the samples). The solid line within the box shows the
location of the median. The ends of the whiskers connect the box to either (a) minimum and
maximum of the sampled data, (b) 5th and 95th percentiles (with the outliers shown as indi-
vidual symbols), or (c) other custom choices.

A companion to the box plot is the bean plot, which displays more information regarding
the relative frequency of different values in the dataset. Each bean consists of a density trace
(i.e., a smoothed estimate of the empirical probability density function corresponding to
the data), which is mirrored to form the polygon shape resembling a bean. Inside the bean,
a scatterplot shows the individual values as one small line for each observation.

Fig. 2.3 shows a comparison of box and bean plots for the recovery efficiency from en-
hanced oil recovery projects (expressed as a percentage of the original oil in place (OOIP))
from three different sources (BOX_BEAN_FIG2-3.DAT). Compared to the box plot, the bean

30 1 —_
o —r o
S 201 : — o
o | : o)
R : X
10
5 - i
0 l T T T
A B C
Source

FIG. 2.3 Example box and bean plots.
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plot is much more useful in showing how the data from sources A, B, and C are bimodal, left-
skewed, and symmetrical, respectively.

2.2 BIVARIATE DATA

In this case, our interest is in describing the relationship between two variables. These
bivariate measures are described below, along with some common graphical methods for
visually examining and summarizing the data.

2.2.1 Covariance

The covariance or joint variance between two random variables is an extension of the con-
cept of variance and is defined as

Cov[XY] = 0y =E[(X— X) (Y- Y)] —ﬁi\;(xi—X) (vi-7)

N
T N-1

(2.12a)
{E[XY] - E[XIE[Y]}

The covariance can be thought of as generalization of variance. For example, if we consider
the covariance of a variable with itself,

Cov[XX] =0 =E[(X - X) (X —X)] =Var[X] (2.12b)

However, note that the variance will always be positive, whereas the covariance can be
positive or negative.

2.2.2 Correlation and Rank Correlation

The correlation coefficient (CC) between two random variables is a measure of the
strength of their linear relationship. It is closely linked to the concept of covariance and
is defined as

Oy 1 L/ —X vi—Y
CC=p =Y _ ! ! 2.13
Pry ox0y N—L;( Ox )( ) 21

Oy

The value of CC ranges between —1 (indicating perfectly negative correlation) and +1
(indicating perfectly positive correlation). The sign indicates the direction of the trend (i.e.,
positive or negative), and the absolute value quantifies the strength of the relationship.
It is important to note that the concept of correlation strictly applies for a monotonic
relationship.
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If the variables of interest are related in a nonlinear manner, then the rank correlation
coefficient (RCC) can be used as a more robust measure of (nonlinear) association. It is com-
puted by calculating the correlation coefficient between the ranks of the original variables.
Here, rank transformation implies assigning rank =1 to the smallest value, rank =2 to the next
highest value, and so on. This is the simplest nonparametric linearizing technique that does
not require assuming any functional form for the relationship (Iman and Conover, 1983).
The computation of RCC is based on the following:

N _ -
Oxy(rank) 1 <Rx,i - Rx) Ry,i - Ry

RCC= = = 2.14

px}/("ﬂnk) O (rank) Oy (rank) N-=1 12:1: OR, URy ( )

A simpler alternative for calculating RCC is based on the difference of ranks, d, namely,

D%

RCC=1-—=F=F— 2.1

CcC N(N2=T) (2.15)

Note also that CC is also referred to as the Pearson correlation coefficient, whereas RCC is
referred to as the Spearman correlation coefficient.

Table 2.3 shows an example calculation of correlation and rank correlation. Here, ¢ is
porosity, K is permeability, R(¢) is the rank of porosity, R(K) is the rank of permeability,
and d is the absolute difference between the two sets of ranks. Note that the first set of
calculations of p[¢K] and p[R_¢K] is based on Egs. (2.12)—(2.14), whereas the second
calculation of p[R_¢K] is based on Eq. (2.15). The prefix “R” denotes rank transformed.
In general, the Pearson correlation coefficient will be much more sensitive to data clusters
and outliers compared with the Spearman correlation coefficient. So, it is often desirable to
compute both the measures to examine the robustness of the correlation.

TABLE 2.3 Example Calculation of Correlation and Rank Correlation

¢ K ¢K R(¢) R(k) R_¢K d

0.1 25 2.5 1 2 2 1

0.2 17 3.4 2 1 2 1

0.3 42 12.6 3 4 12 1

0.4 41 16.4 4 3 12 1

0.5 65 325 5 5 25 0
El$] EIK] El$K] SDI¢] SDIk] Covl¢K] plpK]
0.3 38 13.5 0.158 18.5 2.6 0.890
E[R_¢] E[R_K] E[R_¢K] SDIR_¢1] SDIR_k] Cov[R_¢K] pIR_¢K]
3 3 10.6 1.581 1.6 2 0.8

plpK] =2.6/0.158/185.15=0.890
p[R_$pK]=2/1.581/1.6=0.8
PIR_pK]=1—(6*(12+12+1%+1%)/5/(5°—1))=0.8
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2.2.3 Graphing Bivariate Data

A scatterplot between two variables is the simplest way of graphically displaying their
relationship. The strength of linear association, if any, is given by the absolute value of the
Pearson CC, p, whereas the sign of p indicates whether the correlation is positive or negative.

Multiple example scatter diagrams are shown in Fig. 2.4, displaying a range of possible
behavior (SCATTER_FIG2.4.DAT) between two generic variables, X and Y. In the top-left
panel, (A) a strong positive linear trend can be discerned, which corresponds to p=0.734.
The top-right panel (B) indicates a very strong negative linear trend, corresponding to
p=—0.893. The bottom-left panel (C) shows a weak negative correlation corresponding to
p=—0.145, while a modest positive correlation with p =0.484 is displayed in the bottom-right
panel (D). In general, the value of p is inversely proportional to the degree of scatter around
the underlying linear trend (shown as the dashed lines in Fig. 2.4).

Scatterplots can also be used to demonstrate the utility of rank transformation. Consider
the porosity data given earlier in Table 2.1, where the corresponding permeability values k
(mD) are [12, 30, 62, 6.7, 5.7, 14, 2.6, 3, 33, 8, 40, 23, 20, 3.1, 1.2, 110, 100, 84, 58, 38, 27]
(PERM_FIG2-5.DAT). Fig. 2.5A shows the porosity-permeability scatterplot for this dataset,
indicating an apparent exponential relationship. On the other hand, Fig. 2.5B shows the same
data after rank transformation, where a much stronger linear trend can be observed. This is
consistent with the Pearson CC value of 0.789 for these data, which reflects the strength of the
linear trend in Fig. 2.5A, and the Spearman CC value of 0.916 reflecting the strength of the
rank-transformed linear trend in Fig. 2.5B.
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FIG. 2.4 Example scatterplots with underlying linear trend.
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FIG. 2.5 Scatterplots showing (A) nonlinear relationship and (B) improved linearization after rank transformation.

It should be noted that the Pearson CC between porosity and natural log of permeability is
calculated to be 0.922, that is, essentially the same as the Spearman CC. This confirms the
power of the rank transformation to linearize data in a nonparametric manner without
making any assumptions about the functional form of the underlying relationship.

Another important point is that the square of the Pearson CC is the same as the coefficient
of determination (R?) of linear regression, as will be shown later in Chapter 4. This means that
the standard goodness-of-fit measure for a linear relationship can be directly determined
from the Pearson CC without going through the regression process.

As shown in Fig. 2.6, scatterplots can also be combined with histograms, that is, bar charts
that display how the individual variables are distributed within their respective ranges
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FIG. 2.6 Example scatterplot showing histograms of the individual variables.
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(SCATTER_FIG2-6.DAT). These histograms, shown along the axes, represent the marginal
(individual) distributions of X and Y, whereas the scatterplot is a representation of the joint
distribution between X and Y. More will be said in Chapter 3 about the computation and
mathematical representation of histograms.

2.3 MULTIVARIATE DATA

The analysis of correlation in multivariate data is a simple extension of the concepts
discussed previously for bivariate data. This involves calculating the Pearson (or Spearman)
CC for all variable pairs and presenting it in the form of a correlation matrix. Table 2.4 shows an
example for a three-variable dataset (COR_TAB2-4.DAT). Since the correlation matrix is sym-
metrical, it is sufficient to show only the lower (or upper) part of the matrix.

Similarly, the concept of scatterplots for data visualization can be generalized to a
scatterplot matrix or a pairs plot, which is generated by combining scatterplots of all variable
pairs to show their interrelationship (Venables and Ripley, 1997). Each scatterplot can be an-
notated with a smoothing line that helps visualize the underlying trend (linear or otherwise)
and can also be color coded to indicate membership of individual data points in different
groups. The histograms for each individual variable are sometimes presented along the di-
agonal. The advantage of such a plot is that an overview of the relationships, patterns,
and/or trends among independent variables, as well as between dependent and independent
variables, can be obtained at the same time.

An example scatterplot matrix is shown in Fig. 2.7 (PAIRS_FIG2.7.DAT) from a nu-
merical study of CO, injection potential into a deep saline aquifer (Mishra et al., 2014).

TABLE 2.4 Calculation of Correlation Matrix

X1 X2 X3 X1 X2 X3
0.295 0.3 0.08 0.342 0.33 0.11
0.32 1.02 0.21 0.095 1.8 0.14
0.242 1.46 0.21 0.2 1.03 0.1
0.14 15 0.12 0.2 1.31 0.14
0.265 0.65 0.1 0.087 2.11 0.17
0.335 0.71 0.16 0.145 1.22 0.09
0.085 2.33 0.23 0.145 1.76 0.06
0.17 1.8 0.21 0.165 1.56 0.2
0.265 1.2 0.19 0.145 1.98 0.15
0.292 091 0.15 0.07 2.5 0.2
X1 X2 X3
X1 1
X2 —0.89255 1

X3 —0.14474 0.484331 1
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FIG. 2.7 Example scatterplot matrix. Data from Mishra, S., Oruganti, Y., Sminchak, J., 2014. Parametric analysis
of CO; sequestration in closed volumes. Environ. Geosci. 21(2), 59-74.

Here, CUM_CO2 is the total CO, injected over 30 years, CO2_R is the radius of the CO,
plume, PCT_CO2 is the percent dissolved in the aqueous phase, D is the depth to the injection
zone, kh_MS is the permeability-thickness production of the target reservoir (Mount Simon
sandstone formation), L is the well spacing, and h_EC is the thickness of the caprock
(Eau Claire shale). Note that the first three variables along the diagonal (i.e., performance met-
rics) are the simulation results, whereas the other four (i.e., design variables) are the model
inputs.

It should be noted that some of the scatterplots show nonmonotonic relationships (e.g.,
between CUM_CO2 and h_EC), which points to the limitation of using linear correlation
to describe the strength of association. The Pearson CC for this case is close to zero, indicating
no apparent linear correlation between the two variables. However, there is clearly a
quadratic-type nonrandom relationship, as indicated by the smoothing red line. For such
cases, the concept of mutual information has been proposed as a more robust measure of
nonrandom association that can handle both monotonic and nonmonotonic relationships
(Mishra et al., 2009). This is further discussed in section 6.4.4.



28 2. EXPLORATORY DATA ANALYSIS

2.4 SUMMARY

In this chapter, we have discussed a number of measures for describing and visualizing
univariate, bivariate, and multivariate data. These include measures of central tendency
and spread, as well as correlation and rank correlation. The concepts are explained through
several worked problems.

Exercises

1. The following table shows average values of porosity and permeability from multiple core
samples collected at three different wells. Calculate the following: (a) E[¢avgl, SD[davgl,

E[kavg]/ and p[¢avg/ kavg]-

Well No. of Samples Average ¢ Average k
1 45 0.24 41
2 27 0.32 65
3 62 0.19 17

2. Using the data given in Table 2.1 [POR_TAB2-1.DAT], create 3 independent subsets and
calculate the arithmetic, geometric, and harmonic mean porosity for each 7-sample subset.
Compare them to the full 21-sample result.

3. Calculate the variance for each of the 7-sample subsets in problem 2, and compare the
7-sample subsets to the full 21-sample result. How does the result change if you combine
the 7-sample subsets into 14-sample subsets?

4. Derive the result: Cov[XX] = Var[X].

. Prepare box and bean plots for the data in Table 2.1 [POR_TAB2-1.DAT].

6. Let X = permeability, Y = porosity, Z = connate water saturation. The means of X, Y, and Z
are 20 mD, 0.15, and 0.30, respectively. (a) Assuming that permeability and connate water
saturations are uncorrelated, find E[XZ]. (b) If E[XY] = 10 and E[YZ] = 0.2, find the
covariance between (X,Y) and (Y,Z2).

7. Find the raw and rank correlation coefficient for ¢ and In(k) using the data given in
Table 2.3. Comment on their similarity (or lack thereof ).

8. For the data shown in Fig. 2.6 [SCATTER_FIG2-6.DAT], create subsets consisting of the
first 10, 50, and 100 samples. Calculate the RCC for each subset, and compare with the RCC
for the full dataset. Comment on the possible reasons for differences, if any.

9. Prepare a scatter plot matrix for the data given in Table 2.4 [COR_TAB2-4.DAT].

91

References

Davis, J.C., 2002. Statistics and Data Analysis in Geology. John Wiley & Sons, New York, NY.

Iman, R.L., Conover, W.J., 1983. A Modern Approach to Statistics. John Wiley and Sons, New York, NY.

Jensen, J., Lake, L.W., Corbett, P., Goggin, D., 2000. Statistics for Petroleum Engineers and Geoscientists. Elsevier,
New York, NY.


http://refhub.elsevier.com/B978-0-12-803279-4.00002-X/rf0010
http://refhub.elsevier.com/B978-0-12-803279-4.00002-X/rf0015
http://refhub.elsevier.com/B978-0-12-803279-4.00002-X/rf0020
http://refhub.elsevier.com/B978-0-12-803279-4.00002-X/rf0020

REFERENCES 29

King, M.J., MacDonald, D.G., Todd, S.P., Leung, H., 1998. Application of Novel Upscaling Approaches to the
Magnus and Andrew Reservoirs. Society of Petroleum Engineers, Richardson, TX. https://doi.org/
10.2118/50643-MS.

Mishra, S., Deeds, N.E., Ruskauff, G.J., 2009. Review paper — global sensitivity analysis techniques for
groundwater models. Ground Water 47 (5), 730-747.

Mishra, S., Oruganti, Y., Sminchak, J., 2014. Parametric analysis of CO, sequestration in closed volumes.
Environ. Geosci. 21 (2), 59-74.

Venables, W.N., Ripley, B.D., 1997. Modern Applied Statistics With S-PLUS, second ed. Springer, New York, NY.


https://doi.org/10.2118/50643-MS
https://doi.org/10.2118/50643-MS
http://refhub.elsevier.com/B978-0-12-803279-4.00002-X/rf0030
http://refhub.elsevier.com/B978-0-12-803279-4.00002-X/rf0030
http://refhub.elsevier.com/B978-0-12-803279-4.00002-X/rf0035
http://refhub.elsevier.com/B978-0-12-803279-4.00002-X/rf0035
http://refhub.elsevier.com/B978-0-12-803279-4.00002-X/rf0035
http://refhub.elsevier.com/B978-0-12-803279-4.00002-X/rf0040

Distributions and Models Thereof

3.1 Empirical Distributions 31 3.3.3 Log-Normal Distribution 48
; i é g:j;gt:lir%lot ;; 3.4 Fitting Distributions to Data 50
o 3.4.1 Probability Plots 51
3.2 Parametric Models 33 3.4.2 Parameter Estimation
3.2.1 Uniform Distribution 35 Techniques 52
3:2.2 Tncmgularv Dl.s t'rll?utlon 5 3.5 Other Properties of Distributions
3.2.3 Normal Distribution 37 . .
S and Their Evaluation 56
3.2.4 Lognormal Distribution 39 .
; T o 3.5.1 Central Limit Theorem and
3.2.5 Poisson Distribution 41 . .
e Confidence Limits 56
3.2.6 Exponential Distribution 42 ,
T 3.5.2 Bootstrap Sampling 59
3.2.7 Binomial Distribution 43 353 C ine Two Distributi 60
3.2.8 Weibull Distribution 43 2.2 LLomparing fwo BAstributions
3.2.9 Beta Distribution 45 3.6 Summary 65
3.3 Working With Normal and Exercises 66
Log-Normal Distributions 46
3.3.1 Normal Distribution 46 L e s e
3.3.2 Normal Score Transformation 47

The topic of this chapter is probability distributions, which help us describe and visualize
data. We discuss methods for describing empirical data, as well as theoretical models that can
be used as mathematical representations of distributions.

3.1 EMPIRICAL DISTRIBUTIONS

Distributions are a means of expressing uncertainty in data in terms of the range of possible
values and their likelihood. Sampled data are generally represented empirically in terms of
frequency plots (histograms) and /or cumulative probability (quantile) plots. The probability

Applied Statistical Modeling and Data Analytics 3 1 © 2018 Elsevier Inc. All rights reserved.
https://doi.org/10.1016/B978-0-12-803279-4.00003-1
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of any outcome is inferred from the observed frequency over a long sequence of trials (as op-
posed to being based on subjective judgment).

3.1.1 Histogram

The histogram is an empirical (sampled) form of the probability density function (PDF),
which characterizes the theoretical frequency of occurrence corresponding to a given interval.
It is constructed by first dividing the observed range into several intervals (bins) and plotting
the actual frequency of occurrence in each interval.

The number of bins used in histograms is usually a matter of trial and error. Common rules
of thumb that have been proposed include the following:

For a sample size of N, the number of intervals k should be the smallest integer such that
2%>N (Iman and Conover, 1983).

A default value for the number of bins is {3.3log(IN) + 1}, which is only a suggestion and is
often exceeded (Venables and Ripley, 1997).

Because the shape of the histogram is strongly dependent on the number of intervals cho-
sen, it is not a very robust graphic tool. As an example, Fig. 3.1 shows the histograms
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corresponding to 5, 10, 25, and 50 bins generated for observed wind speed data using a sam-
ple size of 300. The bimodal character of the data (i.e., a high proportion of very low values) is
only evident in histograms with 25 bins or higher. Both of the binning rules cited above sug-
gest using 10 bins or lower. Thus, it is always useful for the analyst to experiment with mul-
tiple bin sizes until a robust indication of the shape of the PDF is obtained.

3.1.2 Quantile Plot

The quantile plot is an empirical (sampled) form of the cumulative distribution function
(CDF), which characterizes the probability that the observed value of a random variable is
smaller than some specified value. To construct a quantile plot, the data are first ranked in
ascending order from the smallest (x;) to the largest (xy), where N is the number of samples.
For each sorted value, x;, the quantile (cumulative frequency) is determined as ¢;=i/(N+1),
and the quantile plot is generated by plotting g; versus x;. Percentiles are obtained by multi-
plying the quantile values by 100. The quantile plot is also referred to as an empirical CDF.

Compared with the histogram, the quantile plot is a much more robust tool for visualizing
the fraction of samples that fall below a given value and for determining if a distribution is
symmetrical or skewed. Some useful diagnostic rules for symmetry evaluation are listed
below:

A symmetrical distribution is characterized by an S-shaped quantile plot, where the
distance on the horizontal axis between the median (50th percentile) and any percentile P
below the median is equal to the distance from the median to the (100-Pth percentile).
Symmetrical distributions are characterized by mean =median=mode.

If the distribution has positive skewness, that portion of the quantile plot corresponding to
g>0.9 will usually be longer and flatter than the rest of the plot.

Conversely, distributions with negative skewness have a long flat portion on the quantile
plot corresponding to 4 <0.1.

Examples of these characteristics are presented in Fig. 3.2 using well-log data from the Salt
Creek field (SALT-CREEK.DAT) discussed further in Sections 4.4 and 5.4. The top panel
shows the empirical CDF and histogram corresponding to a symmetrical distribution using
data for the logarithm of microspherically focused log (MSFL). The middle panel shows a dis-
tribution with negative skewness using data for the bulk density log (RHOB). Finally, the bot-
tom panel shows a distribution with positive skewness using data for the gamma ray
log (GR).

3.2 PARAMETRIC MODELS

Parametric models of continuous probability distributions (i.e., mathematical relationships
given in terms of one or more parameters) are useful for several reasons:

They provide a compact mathematical construct for summarizing empirical data.
They allow extrapolation of data beyond the observed minimum and maximum values
and interpolation between sampled data points.
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They enable the statistical representation of uncertain quantities based on purely physical
or mechanistic considerations.
They facilitate the Bayesian updating of distributions based on prior information.

Some of the common parametric models useful for petroleum geoscience applications are
described below. Here, f(x) denotes the PDF, F(x) denotes the CDF,  denotes the mean, and ¢
denotes the standard deviation for the theoretical distribution assigned to the random vari-
able of interest, X. This discussion is based on standard references dealing with statistical ap-
plications in engineering and geoscience (e.g., Ang and Tang, 1975; Harr, 1987; Morgan and
Henrion, 1990; Jensen et al., 2000; Davis, 2002).

3.2.1 Uniform Distribution

The uniform distribution is useful as a rough model for representing low states of knowl-
edge when only the upper and lower bounds are known. All possible values within the spec-
ified maximum and minimum values are equally likely:

PDP:f(x):blTu;agxgb (3.1)
where b=maximum and 4 =minimum:
CDF: F(x) :% (3.2)
b b—a)?
Moments: p= (a; ) ;0% = ( 12a) (3.3)

Notation: X~ U(a, b)

The log-uniform distribution is a variation of the uniform, where the inputs cover a
large range (e.g., multiple orders of magnitude), but nothing else is known about the
shape of the underlying distribution. If x is such an uncertain quantity of interest, then
In(x) is taken to be uniformly distributed. Fig. 3.3 shows a schematic of the uniform
distribution.

f(x) 1
F(x)

|
|
|
|
|
|
|
0 a b X 0 a b X
Schematic of a uniform distribution showing PDF (left) and CDF (right). Source: hittps://commons.
wikimedia.orglwlindex.php?curid=27378784.
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EXAMPLE 3.1 Working with uniform distributions

The datum pressure in a reservoir has a mean of 2800 psi and a standard deviation of 100 psi
based on data from a number of new wells. Under the assumption that the data follow a uniform
distribution, calculate the 10th and 90th percentile values (i.e., P10 and P90) for this distribution.

Solution

It can be shown that the parameters of the uniform distribution can be expressed in terms of the
sample moments as follows:

a=p—V36;b=p+30

Thus, a=2800 — \/3*100 =2626.8 psi.
And b=2800+ \/3*100 =2973.2 psi.

From Eq. (3.2), we have for the P10 value
0.1=(x—2626.8)/(2973.2 — 2626.8)
Therefore, x =2661.4 psi (at P10).

Similarly, for the P90 value, we have
0.9 = (x — 2626.8)/(2973.2 — 2626.8)
Therefore, x =2938.6 psi (at P90).

3.2.2 Triangular Distribution

The triangular distribution can be used as an improvement over the uniform distribution
for modeling situations where nonextremal (central) values are more likely than the upper or
lower bounds. It is useful as a rough model when minimum, maximum, and most likely
values are known—typically on the basis of subjective judgment:

2(x—a)
O—ac—a)  1=T=C
PDF: f(x)= -0 _, (3.4)
o—a)b—c) * ==
where b =maximum, a=minimum, and c=mode (most likely value):
(x—a)?
G—ac—a) 1=T=C
CDF: Fx)={ (0—¢ b (3.5)
—x
S SO <
1 (b—a)(b—c)’c<x_b
2+ b*+c?—ab—bc—
Moments : y:(a+b+c);52:(a+ Te A ¢ ca) (3.6)

3
Notation: X~ T(a,b,c)

18

Depending on the location of the modal value, triangular distributions can be symmetrical
or asymmetrical. When uncertainties are large and asymmetrical and/or the range between
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Schematic of a triangular distribution showing PDF (left) and CDF (right). Source: https://commons.
wikimedia.orglwlindex.php?curid=182089.

the minimum and maximum spans several orders of magnitude, a log-triangular distribution
may be more appropriate. Fig. 3.4 shows a schematic of the triangular distribution. Note that
the probability density reaches a maximum at the mode, ¢, and is equal to 2/(b—a), with the
corresponding cumulative probability being equal to (c—a)/(b—a).

EXAMPLE 3.2 Working with triangular distributions

Well-log-derived water saturations in an oil field appear to follow a triangular distribution with
minimum =17%, mode =28%, and maximum =49%. Calculate the 10th and 90th percentile values
(i.e., P10 and P90) for this distribution and the cumulative probability corresponding to the mode.

Solution

Given, 1=0.17, c=0.28, and b=0.49
We first calculate the cumulative probability corresponding to the mode,
Prode=(—a)/(b—a)=(0.28—0.17)/(0.49 —0.17)

Pmode =0.34

Since P10 is to the left of the mode, we use the first expression in Eq. (3.5) leading to
0.1=(x—0.17)?/((0.49 — 0.17)(0.28 — 0.17))

Therefore, x =0.229 (at P10).

For the P90 value, we use the second expression in Eq. (3.5) leading to

0.9=1—(0.49 —x)?/((0.49 — 0.17)(0.49 — 0.28))

Therefore, x =0.408 (at P90).

3.2.3 Normal Distribution

The normal distribution is the commonly used “bell curve” for modeling unbiased uncer-
tainties and random errors of the additive kind and symmetrical distributions of many nat-
ural processes and phenomena. A commonly cited rationale for assuming normal
distributions is the central limit theorem (cf. Section 3.4), which states that the sum of
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independent observations asymptotically approaches a normal distribution regardless of the
shape of the underlying distribution(s):

1 1/x—m\2
_ — e <x<
27[0_2exp{ 2( . ) }, co<x<c0 (3.7)

where y=mean and o =standard deviation.

CDF: F(x) has no closed-form solution but is often presented using the complementary er-
ror function solution. However, it can also be expressed in terms of the standard normal CDF,
G(-), tabulated in many statistics texts and available as the intrinsic function NORMSINYV in
Microsoft Excel:

PDF: f(x)=

F(x)= G(x_”) (3.8)

o

Moments: Same as parameters of the distribution:
Notation: X~N(y, o)

The symmetrical nature of the distribution is often characterized in terms of the probability
coverage corresponding to a given interval around the mean. For example, the interval
[+ 10] corresponds to P =0.683, the interval [+ 20] corresponds to P =0.954, and the inter-
val [u£30] corresponds to P =0.997—as shown in Fig. 3.5. This implies that in a normal dis-
tribution, about 68% of the samples fall between [u & 15], about 95% fall between [1+20], and
virtually all samples fall between [u & 30]. These properties are used to assign confidence in-
tervals to estimates as discussed later.

The normal distribution is often used as a “default” distribution for representing uncer-
tainties. Because the distribution is theoretically unbounded, care should be taken to ensure
that the standard deviation is not so large as to result in nonphysical sampled values at the
lower tail. Fig. 3.6 shows examples of normal distributions. Additional details regarding the
normal distribution are discussed in Section 3.3.

Mean Mean Mean Mean Mean Mean Mean
+3(SD) +2(SD) +SD +SD  +2(SD) +3(SD)

e—) 09.7% (————

Schematic of normal distribution showing probability coverages.
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Examples of normal distributions showing PDF (left) and CDF (right). Source: https://commons.
wikimedia.org/wl/index.php?curid=3817954.

3.2.4 Lognormal Distribution

The lognormal distribution is widely used for representing skewed, nonnegative, physical
quantities. It is useful as an asymmetrical model for multiplicative independent uncertainties.
As with the normal distribution, the rationale for assuming a lognormal distribution is based
on the central limit theorem, which states that the product of independent observations as-
ymptotically approaches a lognormal distribution—regardless of the shape of the underlying
distribution(s):

2
PDF: f(x):x%/ﬁex;,{_%(%) };0<x<oo (3.9)

where a=mean of In(x) and g =standard deviation of In(x).

CDF: F(x) has no closed-form solution. However, it can be expressed in terms of the stan-
dard normal CDF, G(-), tabulated in many statistics texts and available as the intrinsic func-
tion NORMSDIST in Microsoft Excel:

F(x)=G (W) (3.10)

2
Moments: u= exp (a+ ’%) ;07 =p{exp (§) —1} = exp (2a +25°) (3.11)

Notation: X~ LN(a, ff)

Here, the geometric mean or median is given by % while the quantity ¢’ is referred to as the
geometric standard deviation. Fig. 3.7 shows an example of a lognormal distribution.

A commonly used measure of spread, especially for lognormal permeability distributions,
is the Dykstra-Parsons coefficient (Willhite, 1986), Vpp, defined as

Vpp = (kso —ksa.1) /kso (3.12)

where kp is the Pth percentile value as obtained from a lognormal fit to the sampled distri-
bution of permeability, k. It is readily shown that Vpp=1—exp(—p) with f as defined above
(Mishra et al., 1991). Fig. 3.8 illustrates the graphic calculation of the Dykstra-Parsons coeffi-
cient. Additional details regarding the lognormal distribution are discussed in Section 3.3.
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Examples of Poisson distribution. Source: https://commons.wikimedia.org/wlindex.php?curid=9447142.

3.2.5 Poisson Distribution

When events occur as a purely random (Poisson) process, the number of independent
events occurring within a fixed time interval follows a Poisson distribution. The number
of events is discrete and constrained to nonnegative integers:

:a"exp(—a)

PDF: f(x) 5

:x=0,1,2,3,.... (3.13)

where a=parameter of the distribution:

CDF: F(x)zzwl(_“) (3.14)
=0 X!
Moments: u=a; 6> =a (3.15)

Notation: X~ Po(a)

The Poisson distribution can be used to model such quantities as the number of earth-
quakes happening during a given period and the number of lost days from equipment failure
in a year. Fig. 3.9 shows an example Poisson distribution.

EXAMPLE 3.3 Working with Poisson distributions

Records collected from a downhole gauge from an offshore platform over a 4-year period show
that there have been 24 days during which the signal was completely or partially lost. What is the
probability that there would be zero lost signal days next year? What is the probability that the signal
would be lost for 10 days over the year?


https://commons.wikimedia.org/w/index.php?curid=9447142
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Solution
We assume that the Poisson distribution is an appropriate model for this dataset with a=At
where 1=mean occurrence rate and f is time.
From the data, 1=24/4=6 per year, and t=1—a=6.
For zero occurrences of lost signal, x=0 and Eq. (3.13) gives

£(0)=6"exp (—6)/0; f(0) =0.0025
The probability of 10 lost signal days is, with x=10,

£(10) =6"exp (—6)/10!; £(0) =0.0413

3.2.6 Exponential Distribution

The exponential distribution is used to model the time between the occurrence of events in
an interval of time (e.g., time between successive failures of a machine) or the distance be-
tween events in space (e.g., distance between successive breaks in a pipeline):

PDF: f(x)=Ae ™ (3.16)
where A =parameter of the distribution:

CDF: F(x)=1-¢* (3.17)

Moments: u=1/4; 6> =1/4* (3.18)

Notation: X~ Exp(4)

As shown in Fig. 3.10, the Poisson and exponential distributions are closely related. If the
number of occurrences in a unit interval can be represented by a Poisson distribution with
parameter 4, then the time between successive occurrences (i.e., the x; values shown below)
will follow an exponential distribution also with parameter A. In other words, if the mean
number of occurrences per time interval is 4, then the mean length of time between successive
occurrences is 1/4. In Example 3.3, there were six lost signal days per year. Therefore, the
mean length of time between successive lost signal days is 1/6 years, that is, 61 days.

....... Unlt CEEETTE)
interval
X e %3 L4 X5 X6
N i~ N NN NI
N=2 N=1 N=3
occurrences occurrences occurrences

Relationship between Poisson and exponential distributions.
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3.2.7 Binomial Distribution

A binomial distribution is the distribution of the number of successes k in a sequence of n
independent trials, where the probability of success p is constant from trial to trial. Each trial
with two outcomes (success or failure) is also called a Bernoulli experiment:

n n—k . n n!
PME: f(k;n,p)="Cy(1—p)" " ;"C; = (n—K)k! (3.19)
where k=number of successes:
Moments: u=np; o> =np(l1—p) (3.20)

Notation: X~ B(n,p)

The binomial distribution can be approximated by the Poisson distribution as 1 becomes
large (i.e., >20) and p becomes small (i.e., <0.05) such that the product np is constant. Also, the
binomial distribution can be approximated by the normal distribution if n is large and p ap-
proaches 0.5 such that [np(1 —p)] >25.

EXAMPLE 3.4 Working with binomial distributions

A company is planning a six-well gas exploration program in a new shale basin. Based on its
experience with similar basins, the probability of success is assumed to be 10%. What is the prob-
ability that the no wells will discover gas? What is the probability of one success?

Solution

For the first part (which is sometimes referred to as the “gambler’s ruin” case), k=0, n=6, and
p=0.1.
From Eq. (3.19), we have

£(0;6,0.1)=°Cy(0.1)°(1—-0.1)°"; £(0;6,0.1) =0.531
Similarly, when k=1 instead, we have

£(1;6,0.1)=°C;(0.1)'(1-0.1)°""; £(1;6,0.1) = 0.354

3.2.8 Weibull Distribution

The Weibull distribution is widely used to represent distributions of process performance
metrics such as completion time or equipment failure rate. Because of its flexibility to assume
negatively skewed, symmetrical, or positively skewed shapes, it can also be used to represent
many nonnegative physical quantities:

PDF: f(x) —%{G)klexp{—(%)k} ik, 1>0,0<x< oo (3.21)
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where 1=scale parameter and k=shape parameter:

CDF: F(x)=1— exp {— G)k} (3.22)

Moments : /1/31“<1+]1<) ;az—zz{r<1+i) —-1? (1+11{>} (3.23)

Notation: X~ W(k, 1)

Here, I'(.) is the incomplete gamma function. The scale parameter, 4, is that value of time at
which the CDF is equal to 0.632 (or 1—1/¢). The shape parameter, k, indicates whether the
process of interest (i.e., failure rate) is decreasing with time (k <1), constant (k=1), or increas-
ing with time (k>1). Fig. 3.11 shows some example Weibull distributions.

The Weibull distribution is a commonly used tool for modeling growth (or decline) in
biological, clinical, population, and natural resource studies. It has also been used to analyze
production decline from unconventional reservoirs (Mishra, 2012). This entails multiplying
both the PDF (Eq. 3.21) and CDF (Eq. 3.22) by a carrying capacity, M, which denotes the
physical production limit on the system and provides an upper bound on resource extraction.
The CDF can be interpreted as cumulative production and the PDF as the instantaneous
production rate.

EXAMPLE 3.5 Working with Weibull distributions

Production decline data from an unconventional gas reservoir were found to be fit in a Weibull
model with scale parameter 1=89.5 months and shape parameter k=0.765. When will the field
recover 50% of the producible gas reserves?


https://commons.wikimedia.org/w/index.php?curid=9671812
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Solution

We are solving for
0.5=F(t)=1—exp(—(t/M))=1—exp(—(t/89.5)°7%)

Thus, t =55.5 months.

3.2.9 Beta Distribution

The beta distribution is a very flexible model for describing random proportions and for
characterizing uncertainty over a fixed range (i.e., with finite upper and lower bounds). It can

take both symmetrical and skewed shapes within the prescribed interval:
(3.24)

x* 11 —x) !
PDF: f(x)=————~—;a,>0,0<x<1
0= )
where a, f=distribution parameters and B(e,) = ['(@)['(§)/T(a+p).
CDF: F(x) has no closed-form solution but can be expressed using the intrinsic function

BETADIST in Microsoft Excel:
2_ ap (3.25)

Moments: u= a ; O
CHTa 8 T e P p)

Notation: X ~ Beta(a, f§)

Fig. 3.12 shows some example beta distributions.
The beta distribution does not have a mechanistic basis but can be very useful for fitting

empirical data to distributions, because of the flexible mathematical form of Eq. (3.24). This
becomes particularly relevant for the purposes of uncertainty quantification using Monte

Carlo simulation, as discussed in Chapter 6.
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Examples of beta distributions showing PDF (left) and CDF (right). Source: https://commons

wikimedia.orglwlindex.php?curid=15404569.
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3.3 WORKING WITH NORMAL AND LOG-NORMAL
DISTRIBUTIONS

Since normal and lognormal distributions are commonly used to represent many variables
in the petroleum geosciences, it is useful to have a better understanding of how these distri-
butional models can be manipulated to provide the information needed by the analyst.

3.3.1 Normal Distribution

For the normal distribution, recall that the CDF, F(x), has no closed-form solution and is
expressed in terms of the standard normal CDF, G(-):

F(x)=G (x%”) —G(2) (3.26)

where z=(x — u)/ o is the standard normal variate (also known as the z-score). Note that z is a
dimensionless variable with zero mean and unit variance. Eq. (3.26) can be rewritten as

2= LG} =G () (3.27)

with the quantile, g, being used as an approximation of the cumulative probability, F. This
leads to the following compact equation for representing a normal distribution:

x=u+cG H(q)=p+oz (3.28)

Note that the inverse normal CDF or the z-score can be readily calculated using the intrinsic
Microsoft Excel function, NORMSINYV.

A partial table for the G(z) function is shown below in Table 3.1, indicating the cumulative
probability levels corresponding to different values of the standard normal variate, z. Recall
that the z-value (also referred to as the normal score) defines the normalized separation from
the mean (in terms of standard deviation units) for a given quantile or percentile of interest.
Thus, the probability coverage corresponding to mean4 35D =0.9987 —0.0013=0.997,
mean+25D=0.9772 -0.0228 =0.954, and mean+15SD=0.8413 —0.1587=0.683 (as shown
earlier in Fig. 3.5). From this table of values, we also note that the commonly used P10
(10th percentile) in petroleum geoscience uncertainty analysis studies corresponds to
z=—1.28, the P50 corresponds to z=0, and the P90 corresponds to z=1.28.

Tabulated Values of the Z-Function

z=G (g -35 -3 -25 -2 —1.64 -15 -1.28 -1
G(2) 0.0002 0.0013 0.0062 0.0228 0.0505 0.0668 0.1003 0.1587
z=G7Y(y) —0.67 0.5 —0.25 0 0.25 0.5 0.67 1

G(2) 0.2514 0.3085 0.4013 0.5000 0.5987 0.6915 0.7486 0.8413
z=G7Y(g) 1.28 15 1.64 2 25 3 35 4

G(z) 0.8997 0.9332 0.9495 0.9772 0.9938 0.9987 0.9998 1.0000



3.3 WORKING WITH NORMAL AND LOG-NORMAL DISTRIBUTIONS 47

Manipulation of the normal distribution can be relatively straightforward by realizing that
the random variable, x, can be readily mapped onto the corresponding standard normal var-
iate, z, if the mean, u, and standard deviation, o, are known. This is illustrated below for a
simple example.

EXAMPLE 3.6 Working with normal distributions

Given that the thickness of a shale formation, 7, is assumed to be a normally distributed variable
with mean 7 =60 ft and coefficient of variation CV[h]=20%, determine (a) probability that the thick-
ness is between 45 and 75 ft, that is, P[45 <h <75] and (b) the 95th percentile value.

Solution
Standard deviation o[h]=h * CV[h]=60 * 0.2=12 ft.

(a) We have z(lh=75)=(75—60)/12=1.25, and z(h =45) = (45 — 60) /12 = —1.25.
By interpolating from Table 3.2 or using the intrinsic Microsoft Excel function NORMSDIST,
G(1.25)=0.894, G(—1.25)=1— (G(1.25)) =0.106
Thus, P[45 <h < 75] = Glz(h =75)] — Glz(h=45)] = G(1.25) — G(—1.25) = 0.894 — 0.106:

P45 <h<75]=0.788
(b) From Table 3.1, we note that when q=0.95, z=1.64.
Therefore, hyos = h + z*o[h] =60+1.64*12:
hoos =79.7 ft

3.3.2 Normal Score Transformation

Often, it is useful to transform a sample distribution into the space of an equivalent normal
distribution, where many statistical operations can be easily performed and visualized.
This is particularly true for problems in geostatistics, as many of the spatial modeling algo-
rithms (e.g., sequential Gaussian simulation) are restricted to normally distributed random
variables. The approach involves a rank-preserving one-to-one transformation, as schemat-
ically shown in Fig. 3.13. For any given value x; of the original variable, the empirical cumu-
lative probability or quantile g is set equal to the cumulative probability for a standard normal
distribution, and the equivalent z-value or normal score is calculated. Mathematically, this
can be stated as

2=G1(g) =G (”Z’fi”) (3.29)

Once the required mathematical operations are carried out in terms of the transformed
normal score z, the results can be readily back-transformed into the space of the original
variables.
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Schematic of normal score transformation.

An example normal score transformation, using the bulk density (RHOB) data for the Salt
Creek field discussed earlier in Fig. 3.2, is presented in Fig. 3.14. Note how the asymmetry of
the original data is modified via the normal score transformation.

3.3.3 Log-Normal Distribution

For a lognormal distribution, we define the standard normal variate as

2= G} =6 ) (3:30)
where a=mean and f=standard deviation of In(x). Rearranging, we get
In(x) =a+pG 1(q) (3.31)

which is a compact equation, similar to Eq. (3.28), for representing the lognormal distribution.

Essentially, working with lognormal distributions involves transforming the data into log-
arithmic space, determining the parameters a and f, performing the necessary operations as
for the normal distribution case, and back-transforming into the space of original coordinates.
The following relationships are useful in this context:

The geometric mean, ¢ is also the median (i.e., Fys).

The geometric standard deviation, ¢?, is the ratio Fos4/Fo 5 or Fo5/Fo 1.

The nature of the distribution is fundamentally multiplicative (and therefore additive after
logarithmic transformation).



3.3 WORKING WITH NORMAL AND LOG-NORMAL DISTRIBUTIONS 49

0.16 - P P [RREEEEEED -1 0.12 sF=mpme ey TR S 11
014 dimreant et o Wit [ oA i
1 0.8 ' - 0.8
042 it s -
] I 0.08 —i---mmmdoe A i
0 N S 1
o, - 0.6
5 ] 06 z 3 | 06 5
LR e E S 0.06 i~ | s L ]
8 . - o § 1 -3
' 0.06 51 S S . 04 o w i —04 o
] [ 0.04 o 1--nonion i
0.04 i s | L
] - 0.2 1 0.2
0.02 I 0.02 i L L - I
0+ -0 0 __ : )
I T T T T T T T T T T T T T T T T T T T v
2.3 2.4 2.5 2.6 2.7 -3 -2 -1 0 1 2
RHOB RHOB normal score

FIG. 3.14 Histogram and CDF of the bulk density log data for the Salt Creek field (left) and for the
corresponding normal score transform (right).

EXAMPLE 3.7 Working with lognormal distributions

Permeability values from a reservoir are known to follow a lognormal distribution with a=3.61
and f=0.67. Calculate the geometric mean (GM), geometric standard deviation (GSD), arithmetic
mean (AM) and standard deviation (ASD), P10 and P90 values, and the Dykstra-Parsons coefficient
for this distribution.

Solution

1. Geometric mean=exp(a) =exp(3.61); GM =37.
2. Geometric standard deviation =exp(f) =exp(0.67); GSD =1.95.

Also, since the 84th and 16th percentile values are one standard deviation away from the mean
for a normally distributed variable, we can write

kogs=exp (a+p)=exp(3.61+0.67)=72.2
ko16 = exp (a — ) = exp (3.61 —0.67) =18.9

Therefore, geometric standard deviation=kg gs/ko5="72.2/37; GSD=1.95
Alternatively, geometric standard deviation=kj5/ko16=37/18.9; GSD =1.96
Thus, all calculations are essentially consistent.

3. Arithmetic mean=exp(a +4%/2) = exp(3.61+ 0.67%/2); AM =46.3.
Arithmetic standard deviation=exp(2a +24?%) = exp(2*3.61+2*0.67%); ASD =57.9.
4. From Table 3.1, the P10 and P90 values correspond to z=—1.28 and 1.28, respectively.

Therefore, k(P10) =k 1 =exp(a —1.28) = exp(3.61 —1.28%0.67); ko1 =15.7.
Also, k(P90) =koo=exp(a +1.28p) = exp(3.61 + 1.28%0.67); koo =87.1.
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5. The Dykstra-Parsons coefficient, Vpp, can be calculated in two different ways as follows:
VDp = (k50 — k16_1)/k50 = (37 — 189)/37, VDP = 049

Also, Vpp=1—exp(—f) = 1 —exp(—0.67); Vpp =0.49.

Note that definition of Vpp given earlier in Section 3.2.4 uses a notation where permeability is
arranged in descending order, that is, higher permeability values correspond to lower probability
levels. Here, we have used the more conventional notation where higher permeability values
correspond to higher probability levels, which require a slight modification to the Vpp formula
as shown above.

3.4 FITTING DISTRIBUTIONS TO DATA

Although many theoretical distributions can be used to fit an empirical dataset, only a
handful of distributions are considered in practice. The key features of these are described
in Table 3.2.

Some issues worth considering during the selection of a probability distribution include

physical or mechanistic basis for choosing a distribution family and/or shape;
discrete versus continuous nature of variable;

physical bounds, if any, for the variable;

nature and degree of skewness, if any;

importance of extreme values (tails).

With many geologic variables, the choice of an appropriate physical or mechanistic basis
for assigning a probability distribution is often difficult. This is particularly true when the
variable of interest represents behavior spanning several geologic regimes (e.g., depositional
environments), or the variable is sought to be characterized over a scale that is different from
the scale of observations. In these situations, a graphic analysis of the data using special

Commonly Used Distribution Models

Distribution Useful for Representing

Uniform (log-uniform) Low state of knowledge and/or

Triangular (log-triangular) subjective judgment

Normal Errors due to additive processes
Lognormal Errors due to multiplicative processes
Poisson Frequency of rare events

Exponential Occurrence times of random event
Binomial Number of successes in a sequence of trials
Weibull Component failure rates

Beta Bounded, unimodal, random variables
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probability plots can help identify candidate distributions and/or eliminate inappropriate
parametric models. Once a distribution has been selected, its parameters can then be esti-
mated using one of several techniques discussed below. Also, statistical goodness-of-fit tests
can be applied to further refine and/or validate the choice of distributions. This sequence of
(a) hypothesizing a family of distributions, (b) estimating distribution parameters, and
(c) assessing quality of fit of parameters is described below, along with illustrative examples
for some commonly used distributions.

3.4.1 Probability Plots

Probability plots are useful for comparing the distribution of empirical data to postulated
theoretical distributions. The observations are plotted, generally after some transformation,
so that they would fall approximately on a straight line if the assumed parametric model was
the “true” distribution from which the observations were sampled. Given that deviations
from a straight line can be readily identified, probability plotting provides a straightforward
screening tool for distribution selection (D’Agostino and Stephens, 1986).

A visual examination of the probability plot will often help in determining whether the
postulated distribution is appropriate or not. The analyst should also apply his or her
knowledge of the process and/or parameter to verify that the agreement between the ob-
servations and the theoretical distribution is acceptable in key data regimes (e.g., high/
low values). In mentally weighting portions of the data differently, the analyst should be
aware of deviations from the straight line that commonly occur at the tails due to the finite
size of samples.

The starting point in probability plotting is an empirical CDF or quantile plot, where the
quantiles (cumulative frequency) of the empirical distribution are plotted against the
corresponding observations. Two common choices for defining the quantile, g, are the
Weibull plotting position:

i

qi= N+1 (3.323)
and the Hazen plotting position:
i—05
= 32b
5=y (3.32b)

where i is the rank of the observation (sorted from smallest to largest) and N is the number of
observations. Both of these approaches ensure that the minimum and maximum values of the
sample are not assigned cumulative probabilities of 0 and 1, respectively.

A probability plot is a graph of the ranked observation, x;, versus an approximation of the
expected value of the inverse CDF, F~'(g;). The relationships needed to construct probability
plots are discussed below for the normal and lognormal distributions, because of their ubig-
uity in petroleum geoscience problems. D’Agostino and Stephens (1986) provide such rela-
tionships for several other distributions.

The basic expression for a normal probability plot follows from the linearized representa-
tion of normal distributions as discussed earlier in Section 3.3.1, namely,
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x=pu+0G1(q) (3.33a)

which suggests that a graph of x versus G~(q), or z, should yield a straight line if the observed
data follow a normal distribution. The straight line is characterized by a slope equal to the
standard deviation, ¢, and intercept equal to the mean, u.

Similarly, the basic expression for a lognormal probability plot follows from the linearized
representation of lognormal distributions as discussed earlier in Section 3.3.2, namely,

In(x) =a+pG (q) (3.33b)

Thus, a graph of In(x) versus G '(g), or z, should yield a straight line if the observed data
follow a lognormal distribution. The straight line is characterized by a slope equal to the stan-
dard deviation, #, and intercept equal to the mean, o, of the transformed variable In(x).
Note that the arithmetic mean and the arithmetic standard deviation can be readily obtained
using Eq. (3.11).

3.4.2 Parameter Estimation Techniques

Once a candidate distribution has been selected for a dataset, the parameters of the pos-
tulated theoretical distribution can be obtained in a variety of ways. The easiest approach
is to use linear regression in conjunction with probability plots. Additional techniques include
nonlinear least-squares analysis or the method of moments—as described below.

Linear Regression Analysis

In the previous section, transformations were described for linearizing the relationship
between observed (sampled) values and the corresponding quantiles of the postulated dis-
tribution. The slope and intercept of the resulting straight line in a probability plot were seen
to be related to the parameters of the underlying distribution. These relationships are
summarized in Table 3.3.

Note that in this approach, the estimated parameters are derived from an analysis based
on a transformation of the parametric distribution to a linear form. Therefore, these pa-
rameters may not produce the most optimal fit to the distribution when transformed back
to the original scale. Although more advanced techniques such as nonlinear least-squares
analysis can be used to improve such estimates, the linearized approximations should pro-
vide a good first approximation, especially if the probability plot produces a good fit.

Linearizing Relationships for Normal and Lognormal Distributions

Distribution Y-Axis X-Axis Slope Intercept

Normal x G g c
Lognormal In(x) G (g p
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Method of Moments

In the method of moments approach, the parameters of a probability distribution model
are estimated by matching the moments of the dataset with that of the candidate model.
The number of moments required corresponds to the number of unknown model parameters.
Application of this method is straightforward, as closed-form expressions for the moments
can be readily derived for most common distributions. However, the raw moments may
be biased due to the presence of outliers and/or the lack of perfect agreement between the
data and the model.

Equations relating the theoretical first two moments (i.e., mean and variance) to distribu-
tional parameters were presented in Section 3.2. These provide the basis for estimating the
parameters of the distribution from the sample moments (identified by the “hat” symbol)
computed as follows:

1 N
H= N ;Xi
(3.34)

SR e

TN

Method of moment estimators for some of the common distributions are

Normal: u=p;0=¢6 (3.35a)
62 ﬂz

Lognormal: %= In <1 + A—2> ;a= In(@) -5 (3.35b)
i

Nonlinear Least-Squares Analysis

A more flexible approach involves the use of nonlinear least-squares analysis, where the
goal is to estimate model parameters such that the mean squared difference between the ob-
served and predicted CDF is minimized. This process can be readily implemented using the
nonlinear optimization package SOLVER in Microsoft Excel:

1. Set up the data in a two-column format, with the dependent variable being the observed
quantile, g;, and the independent variable being the observed value, x;.

2. Compute the sample moments, i and o.

3. Estimate the parameters of the postulated model from the sample moments using
Eq. (3.35a,b) or equivalent expressions from Section 3.2. These will be used as initial
guesses for the nonlinear regression.

4. Calculate the theoretical cumulative probability, F;, using the appropriate form of the
postulated parametric model as given in Section 3.2 and estimates of model parameters
obtained from step 3.

5. Compute the difference between F; and g;.

6. Set up SOLVER to minimize the sum of the squares of the differences in step 5, by adjusting
the parameters estimated in step 3.
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EXAMPLE 3.8 Fitting a normal distribution

Porosity values from multiple core samples in a well (POR_TAB2-1.DAT) were found to be
¢ (%) =(3.1,4.1,52,6.5,65,67,74,79,81,89,9.1,9.3,9.5, 9.6, 9.9, 10, 11, 11, 12, 13, and 13).
Fit these data to a normal distribution, and calculate the parameters of the distribution.

Solution

A normal distribution was first fit to the data using the probability plotting method. This requires
plotting ¢ against the inverse of the standard normal CDF, G™'(g), where g is the quantile. As shown
in Fig. 3.15, a very good fit was obtained except at the extreme tails, with an R* value approximately
equal to 1. The lognormal parameters are calculated from the slope and intercept of the best-fit line
on the probability plot as 4 =28.76 and ¢ =3.09.

14
12 /

y=3.091x+8.7567 /
10 R2=0.9847 -

8
N /
6
/ * Data
4 . — Linear (Data)

Porosity (%)

0

-2 -1.5 -1 -0.5 0 0.5 1 1.5
G (@)
Probability-plot-based normal distribution fit, Example 3.3.

Next, these parameters are obtained using nonlinear least-squares analysis, which requires min-
imizing the sum of the squared differences between the observed and the predicted quantiles
corresponding to each observed value. The Excel function NORMSDIST was used to generate
the standard normal CDF necessary for estimating the cumulative probability. The corresponding
best-fit parameters, obtained using the SOLVER toolbox in Excel, are y =8.81 and 6 =2.92, which
agree very well with those estimated using the probability plotting method. Fig. 3.16 compares
the observed CDF with the predictions using regression parameters.

Some of the calculational details for the distribution process are shown below in Table 3.4.
The quantile values are calculated using Eq. (3.32a), and the corresponding G '(g) values are
obtained from the NORMSINYV function. This leads to the probability plot shown in Fig. 3.14.
The least-squares fitting for the CDF follows the stepwise procedure described earlier and leads
to Fig. 3.15.
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Nonlinear-regression-based fit to normal CDF, Example 3.3.
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Calculational Details for Fitting a Normal Distribution

Probability Plotting Least-Squares Fitting

Porosity

(%) Quantile

¢ q G '(q) x F(x) diff

3.1 0.045455 —1.69062 3.1 0.025192 —0.02026
4.1 0.090909 —1.33518 4.1 0.053251 —0.03766
5.2 0.136364 —1.0968 5.2 0.107989 —0.02837
6.5 0.181818 —0.90846 6.5 0.214194 0.032376
6.5 0.181818 —0.90846 6.5 0.214194 0.032376
6.7 0.272727 —0.60459 6.7 0.234705 —0.03802
7.4 0.318182 —0.47279 74 0.314321 —0.00386
7.9 0.363636 —0.34876 7.9 0.377385 0.013749
8.1 0.409091 —0.22988 8.1 0.403677 —0.00541
8.9 0.454545 —0.11419 8.9 0.512052 0.057507
9.1 0.5 0 9.1 0.539323 0.039323
9.3 0.545455 0.114185 9.3 0.56641 0.020956
9.5 0.590909 0.229884 9.5 0.593189 0.00228
9.6 0.636364 0.348756 9.6 0.606425 —0.02994
9.9 0.681818 0.472789 9.9 0.645346 —0.03647
10 0.727273 0.604585 10 0.658011 —0.06926
11 0.772727 0.747859 11 0.773256 0.000528
11 0.772727 0.747859 11 0.773256 0.000528
12 0.863636 1.096804 12 0.862623 —0.00101
13 0.909091 1.335178 13 0.924321 0.01523
13 0.909091 1.335178 13 0.924321 0.01523
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The method of moments can alsobe used to estimate thenormal parametersas per Eq. (3.35a,b).
The sample mean and standard deviation are found to be y =8.66 and f=2.69. These values
are generally consistent with those obtained from probability plotting and nonlinear least-
squares analysis. The discrepancy in the estimated value of ¢ is likely due to the small sample
size of 21. The method of moment estimates is best used as initial guesses for the nonlinear
regression.

3.5 OTHER PROPERTIES OF DISTRIBUTIONS
AND THEIR EVALUATION

3.5.1 Central Limit Theorem and Confidence Limits

Consider a sequence of random variables, x1, x5,..., x,,, that are independent and ideEtically
distributed with mean=p and standard deviation=o. Then, the sample mean X, also
becomes a random variable, with mean and variance given by

E[X,] = u (3.36)

0.2
V] =" (3.37)

This is known as the law of large numbers and holds regardless of the shape of the under-
lying distribution. It is important to note here that while the population mean is a constant
quantity, the sample mean is a random variable. The standard deviation of the mean is also
referred to as the standard error (s,).

Furthermore, a well-known result from statistics invokes the central limit theorem to state
that if n is reasonably large, no matter what the distribution of x, the sample mean will be
approximately normal (Davis, 2002) with mean and standard deviation as given above. In
other words, the sum of independent observations will asymptotically approach a normal
distribution. By extension, the product of independent observations will asymptotically
approach a lognormal distribution. This asymptotic normality property holds regardless of
the shape of the underlying distributions, as demonstrated in Fig. 3.17 for three different
distributions—uniform (symmetrical), exponential (moderately skewed), and lognormal
(strongly skewed). The convergence to normality increases with sample size for all three dis-
tributions. However, the greater the skewness, the larger the number of samples needed for
the sampling mean to be approximately normal.

This information is useful in assigning confidence intervals (i.e., error bars) that take into
account the dependence on sample size whenever population parameters are approximated
by sample estimators. For example, the 100(1 —a)% confidence interval for sample mean
(when the population variance is known or assumed to be the same as the sample variance)
is given by

Cl= (X,, +2, (3.38)

.
Vn
where Z is the standard normal distribution N(0,1) and zg go5=1.96 (<2) when a=0.05. Note
that a significance level of «=0.05 implies that there is a 1 in 20 chances that the result could be
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Uniform Exponential Log-normal

Population
distributions

0.5 1.0 1.5 0.5 1.0 1.5 0.5 1.0 1.5

FIG. 3.17 Sampling distribution of the mean for three distributions at various sample sizes. From Boundless.
"Examining the Central Limit Theorem.” Openlntro Statistics Boundless, 20 Sep. 2016. Retrieved Jun. 8, 2017 from
https:/lwww.boundless.comlusers/233402/textbooks/openintro-statistics/foundations-for-inference-4/examining-
the-central-limit-theorem-36/examining-the-central-limit-theorem-176-13789/

incorrect. Although significance levels of a=0.05 or «=0.01 (i.e., 1 in 100 chances of error)
have been commonly used in experimental statistics, these are arbitrary thresholds, and it
is incumbent upon the analyst to determine the problem-specific acceptable level of error
when seeking a decision from a statistical test.

When the sample size n is large, o can be replaced by sample standard deviation(s). For
small sample sizes (typically < 30), the sample estimate s can show considerable variability,


https://www.boundless.com/users/233402/textbooks/openintro-statistics/foundations-for-inference-4/examining-the-central-limit-theorem-36/examining-the-central-limit-theorem-176-13789/
https://www.boundless.com/users/233402/textbooks/openintro-statistics/foundations-for-inference-4/examining-the-central-limit-theorem-36/examining-the-central-limit-theorem-176-13789/
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and X, may not be normally distributed. However, if the population is approximately nor-
mal, we can still use the quantity f”\;:l.‘, but it is no longer normally distributed. Instead, it fol-
lows student’s t distribution with (1 —1) degrees of freedom (Davis, 2002).

Specifically, if x1,x2,x3-:+, x, is a set of random values from the population that has a normal
distribution, the standardized variable t is defined as follows:

_Xn_.u
s/

The spread of ¢ curves is affected by the number of degree of freedom (v = n — 1). As the
degree of freedom increases, t curves approach z curves, the standard normal distribution
(Fig. 3.18).

Returning to the problem of confidence intervals for small sample sizes, the 100(1a)% con-
fidence interval for sample mean (when the population variance is unknown) is given by

¢ (3.39)

ClI= (Xn Tt 1,02 ) = (X £ty_1,q/25) (3.40)

s
vn
where s is the sample variance and s, is the standard error of the mean. As shown earlier, the ¢
distribution not only is quite similar to the standard normal distribution in terms of its shape
but also depends on the sample size. Some useful values for the t-statistic corresponding to
the commonly used value of a=0.05 are given in Table 3.5. The t-statistic can also be evalu-
ated using the intrinsic Microsoft Excel functions T.INV and T.DIST.

Z-distribution
= t3 (approximately)

-3 -2 -1 0 1 2 3

Comparison of t distribution to standard normal (z) distribution.

Selected Critical Values for the t-Statistic for @ =0.05

v 1 2 3 4 5 6 7 8 9 10

t 12.7062 4.3027 3.1824 2.7764 2.5706 2.4469 2.3646 2.306 2.2622 2.2281
v 12 14 16 18 20 22 24 26 28 30

t 2.1788 2.1448 2.1199 2.1099 2.086 2.0739 2.0639 2.0555 2.0484 2.0423
v 40 50 60 70 80 90 100 110 130 150

t 2.0211 2.0086 2.0003 1.9944 1.9901 1.9867 1.984 1.9818 1.9784 1.9759
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EXAMPLE 3.9 Calculating confidence interval for the mean

Consider the 10-sample net pay data: & (ft), (13, 17, 15, 23, 27, 29, 18, 27, 20, and 24). Calculate the
95% confidence intervals associated with the population mean.

Solution

From the data, we have the following:

Sample mean X,=21.3, and sample standard deviation s=5.52.

Number of samples n=10.

Standard error s,= s/ \/n =552/ \/10 =1.75.

When n=10 and a=0.05, t905=2.26.

CI=[21.3%+2.26*1.75]; CI;=17.35, 25.25.

If the population and sample standard deviations are assumed to be the same, the Z-distribution
applies, and we get CI=[21.3+1.96*1.75]; CI,=17.88, 24.72.

3.5.2 Bootstrap Sampling

Often, the sample statistics of interest may include quantities other than the mean, such as
the standard deviation or some tail percentile (e.g., §oos). Simple expressions for computing
the confidence intervals of such quantities are generally not available, and one has to resort to
a simulation-based approach for their estimation. One such popular technique is the bootstrap
(Efron and Tibisharini, 1993). It can be described as a numerical procedure for simulating the
sampling distribution of any statisticand estimating its mean, standard deviation, and associated
confidence intervals. Bootstrap has become a frequently used tool in computational statistics.

Given a data of sample size n, the general approach in bootstrap simulation is to (1) assume
a distribution that describes the quantity of interest; (2) perform r replications of the dataset
by randomly drawing, with replacement, n values; and (3) calculate r values of the statistic of
interest. Three common options for step (1) above include (a) resampling the actual dataset
itself, (b) sampling the empirical CDF using a piecewise linear approximation, and (c) fitting
parametric models (e.g., normal and lognormal) to the data. After step (3), confidence inter-
vals for the quantity of interest can be obtained from the r values that approximate the sam-
pling distribution.

EXAMPLE 3.10 Estimating the sampling distribution with the bootstrap

For the same 10-sample dataset used in Example 3.9, calculate the mean, standard deviation, and
95% confidence intervals for the sample mean.

Solution

A 200-sample bootstrap simulation was done by resampling, with replacement, the 10 originally
sampled values. Shown below are the original values (in the first row), along with the first three
resampled datasets. Fig. 3.19 shows a histogram of the bootstrap distribution of the mean:
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Bootstrap derived distribution for sample mean, Example 3.3.

The bootstrap calculated statistics for the sample mean are (a) mean=21.35, (b) standard
deviation=1.60, and (c) confidence interval =18.50, 24.73.

3.5.3 Comparing Two Distributions

Often, it is necessary to ascertain if the mean values of two different samples are the same.
This is one way of testing for the similarity between two empirical distributions. An alterna-
tive, and more comprehensive, way is to test for the similarity in the full PDF/CDF. This ap-
proach is also useful for comparing an empirical PDF/CDF against a theoretical PDF/CDF
(corresponding to a postulated distribution) as a way of determining the goodness of fit.
Both of these methods are described below. However, a starting point for comparing two
distributions is often a graphic comparison of their quantiles, known as a quantile-quantile

plot or Q-Q plot.

Q-Q Plot

The Q-Q plot refers to a graph where two distributions are compared by plotting their
corresponding quantiles. Whereas histograms and summary statistics reveal gross differ-
ences, the Q-Q plot can reveal subtle differences between the distributions. A Q-Q plot
of two identical distributions will be a straight line with unit slope (i.e., x=y). If the
Q-Q plot plots as a straight line with a nonunit slope, then the two distributions have
the same shape but their location and spread may differ. If the Q-Q plot displays nonli-
near behavior, then the two distributions are different. Fig. 3.20 shows the Q-Q plot for
the gamma ray (GR) and bulk density (RHOB) log data from the Salt Creek field
(discussed earlier in Fig. 3.2). The differences in the skewness of the data are reflected
in the Q-Q plot.
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0Q-Q plot based on the gamma ray (GR) and bulk density (RHOB) logs for the Salt Creek field data.

Testing for Difference in Mean

The difference in the mean values obtained from samples of two different sizes can be
tested for statistical significance. The difference can be small, but significant, if the sample
size is large. Conversely, the difference can be large, but not significant, if the sample size
is small. A quantity that measures the significance of the difference of means is based on
the standard error (i.e., sample standard deviation divided by the square root of the sample
size). The standard error measures the accuracy with which the sample mean estimates the
“true” mean. In this approach, the t-statistic is computed based on the standard error of the
difference of the means (Davis, 2002), and the significance of the difference is evaluated at an
appropriate level of significance (e.g., 5%).

Let the two distributions have sample means M; and M,, sample standard deviations s,
and s,, and sample sizes nn and m. When the samples are assumed to have the same variance,
the difference in means follows a t distribution, with the t-statistic calculated as

- () s

where the standard error s, can be expressed in terms of the pooled variance s; as follows:

B 1 1 5, (m—1st+(m—1)s;
Se=5p £+%, S, = p—— (3.42)
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The t-statistic is compared with a critical value f,itica for the degrees of freedom and the
level of confidence, that is, tnim-_24/2- The two mean values M; and M, (and hence the two
distributions) are taken to be statistically different only if the calculated t-statistic value is
greater than f yitical-

If the samples are assumed to have unequal variances, then the standard error s, is
expressed in terms of the nonpooled variance as follows:

2 2
so=1/ 242 (3.43)
n m

and the rest of the calculational steps remain the same.

EXAMPLE 3.11 Testing for significance of difference in means

The lab-derived solution GOR for a field is 275 SCF/bbl. Production data from 10 wells indicate a
range of GOR values with mean 295 and standard deviation 33.6 SCF/bbl. Is there a statistically sig-
nificant increase in GOR (at the 5% significance level) indicating free gas flow has begun?

Solution

Assuming the lab measurements to have minimal error, we have

5. = s.( field) =33.6//10=10.6 SCF/bbl

M;=295 SCFE/bbl and M,=275 SCF/bbl

t=(M,—M,)/s.=(295—-275)/10.6=1.882

Given a =0.05 and 7 =10, tcsitical =t9,0.005 =2.262.

Since t <tuitical, there is no statistically significant difference between the field and lab GOR
values, and free gas flow cannot be said to have begun.

Testing for Difference in Distributions

Two commonly used tests for evaluating the difference between two distributions are
(a) chi-square test for binned data and (b) Kolmogorov-Smirnov test for continuous data
(Davis, 2002). Key features of these two approaches are briefly described as follows.

In the chi-square test, the data are discretized into bins of equal probability, and the number
of observations within each bin is compared with the number of expected data points. If N; is
the number of samples observed in the ith bin and #; is the number expected according to
some known distribution, then the chi-square statistic is given by

2
> (Ni—ni)” .

= E —i=1,... k 44

X - nl 4 1 4 4 (3 )

This statistic is compared with tabulated values of the chi-square distribution for a spec-

ified confidence level with (k—1) degrees of freedom. If 7 is larger than the tabulated critical
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Selected Critical Values for the 3 Statistic for @ =0.05 and Degrees of Freedom, v

v 1 2 3 4 5 6 7 8 9 10

X 3.84 5.99 7.81 9.49 11.07 12.59 14.07 15.51 16.92 18.31
v 12 14 16 18 20 22 24 26 28 30

e 21.03 23.68 26.3 28.87 31.41 33.92 36.42 38.89 41.34 43.77
v 35 40 50 60 70 80 90 100 110 120

X 49.77 55.76 67.5 79.08 90.53 101.88 113.15 124.34 135.48 146.57

value for the chosen level of significance and the appropriate degrees of freedom (e.g.,
Table 3.6), then the distributions cannot be accepted as similar.

EXAMPLE 3.12 Comparing two different distributions with the chi-square test

The number of man-hours lost by a wireline logging team because of equipment problems is
given below (in row 2). Is there any significant difference between the performance of various shifts?

Solution

Given the lack of any other information, the expected distribution of equipment failures can be
assumed to be uniform. Then, the analysis table (rows 3-5) can be set up as follows:

Tour Daylight Evening Morning Total
Man-hours lost 60 72 63 225
Expected 75 75 75 225
Deviation -15 -3 +18 0

7 3 0.12 432 7.44

From Table 3.6, y*=7.44 is larger than the critical value for two degrees of freedom at the 5%
significance level (i.e., 5.99), which indicates that the three groups are indeed different.

The Kolmogorov-Smirnov test involves a comparison between two CDFs. Both can be empir-
ical CDFs, or one can be the theoretical CDF of a postulated distribution for the empirical data.
The metric used for testing is the maximum value of the absolute difference between the two
CDFs, P(x) and Q(x), as shown below in Fig. 3.21:

D = max,|P(x) — Q(x)| (3.45)

The calculated value of D is compared with the tabulated value of the test statistic
(as shown in Table 3.7) for the selected level of significance and the number of samples.
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Cumulative probability distribution

Schematic of Kolmogorov-Smirnov test.

Selected Critical Values for the K-S Statistic for @ =0.05

1 2
0.995 0.7592

12 14
0.3385 0.3145

35 40
0.2021 0.1894

3
0.6389

16
0.2951

45
0.1788

4
0.5627

18
0.2789

50
0.1698

5
0.5088

20
0.2651

55
0.1621

6 7
0.4681 0.436
22 24

0.2532 0.2428

60 70
0.1553 0.144

8
0.4097

26
0.2335

80
0.1348

0.3877 0.3689

28 30
0.2253 0.2179

90 100
0.1272 0.1208

EXAMPLE 3.13 Comparing two different distributions with the K-S test

Fit a uniform distribution to the porosity data used in Example 3.2, and use the K-S test to de-
termine if this is a statistically significant representation of the data.

Solution

¢
3.1

4.1
52
6.5
6.5
6.7
74

The sample moments were previously determined to be y=8.66 and f=2.69. From this, we can
calculate the parameters of a uniform distribution as a=4 and b=13.32 (see Example 3.1). The the-
oretical CDF can be calculated using Eq. (3.10) and compared with the empirical CDF. This is shown
below, along with the difference:

q
0.045455

0.090909
0.136364
0.181818
0.181818
0.272727
0.318182

F(x)
—0.09642
0.010902
0.12896
0.268484
0.268484
0.289949
0.365076

Diff
~0.14188
—0.08001
—0.0074
0.086665
0.086665
0.017221
0.046895
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79 0.363636 0.418739 0.055103
8.1 0.409091 0.440204 0.031113
8.9 0.454545 0.526065 0.071519
9.1 0.5 0.54753 0.04753
9.3 0.545455 0.568995 0.02354
9.5 0.590909 0.59046 —0.00045
9.6 0.636364 0.601193 —0.03517
9.9 0.681818 0.63339 —0.04843
10 0.727273 0.644123 —0.08315
11 0.772727 0.751448 —0.02128
11 0.772727 0.751448 —0.02128
12 0.863636 0.858774 —0.00486
13 0.909091 0.966099 0.057008
13 0.909091 0.966099 0.057008

From this table, we note that D =max(abs(diff)) =0.142.

For a significance level of a=0.95 and a sample size of 21, the critical value of D is 0.259. Since our
test statistic is below this value, we cannot conclude that the data are not drawn from a uniform
distribution.

Note, however, that we would have arrived at the opposite conclusion had the sample size been
~75 or greater. This underscores the general uncertainty when fitting distributions to small samples,
and hence, the possibility that multiple parametric models can be statistically acceptable represen-
tations of the data. If this is the case, then the model that has the best goodness-of-fit statistics (e.g.,
lowest RMSE) can be chosen for further analysis.

Other Methods for Comparing Distributions

Several other statistical tests can be used for comparing two distributions. These include
the following:

F-test for equality of variances

Mann-Whitney test for equivalence of medians
Kruskal-Wallis test for equivalence of several samples
Wilcoxon rank-sum test for equivalence of two distributions

See Davis (2002) for additional details on these tests.

3.6 SUMMARY

In this chapter, we started with the concepts of histogram and quantile plots for summa-
rizing empirical data. Next, we discussed a number of parametric models for describing data
such as uniform, triangular, normal, log-normal, Poisson, exponential, binomial, Weibull,
and beta. This was followed by methods for fitting these distributions to sample data. Finally,
concepts such as central limit theorem, confidence limits, bootstrap sampling, and how to
compare two distributions were presented and explained using worked problems.
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Exercises

1.

10.

For the data plotted in Fig. 3.2, create new variables by taking the reciprocals of
log1o(MSFL), RHOB, and GR. Calculate and plot the corresponding histograms and the
quantile plots. What do these plots tell you about the distribution of the inverse of a
function?

For a uniform distribution, show that the parameters of the distribution are related to the
sample moments as follows: a =y — /36, and b=y +1/30.

The pore diameters (R) measured from a core sample suggest a bimodal distribution
composed of two nonoverlapping log-triangular distributions, R1 and R2. The
parameters of these individual distributions (in nanometers) are: for R1-a=10, b=30,
¢=200; and for R2, a=200, b=2000, ¢ =10,000. What is the mean and standard deviation
of log19(R)? (Hint—write the equation for PDF as four separate terms, then use Eq. (2.7)
and integrate.)

The number of successes in an exploratory drilling campaign is assumed to be a normal
distribution with mean =12.5 and standard deviation =3.31. Calculate the probability of:
(a) greater than 20 successes, and (b) less than 10 successes.

The expected value of a given rock property, 7, is 30. Evaluate the probability that a
random sample of this material will have a n value between 20 and 40, given CV[]=0.12,
and assuming that the underlying distribution is (a) uniform, (b) symmetric triangular,
and (c) normal.

Specify which of the following statements is true or false (justify your answer):

(a) The random variable X~ N(5, 1) cannot take negative values.

(b) For X~ N(8, 2) 68% of the X values belong to interval 6 <X <10.

(c) For In X~ N(6, 2) 95% of the X values belong to interval 2<X<e.
(d) For X~ N(7, 2) 16% of the data are greater than 5.

Over a 100-year period, the frequency of hurricanes in an offshore area was found to
follow a Poisson distribution. If 13 severe hurricanes occurred during this period,
calculate the probability of (a) two severe hurricanes occurring within a 3-year period,
and (b) no severe hurricanes occurring within a 10-year period.

The failure behavior of a downhole equipment is given by a Weibull distribution with
scale parameter 2.8 years and shape factor 1.6. When will 90% of the equipment need to be
replaced?

Given the following permeability values: k (mD)=1{40.5, 49.5, 70, 90, 110, 141, 182, 245,
405}, (a) fit a log-normal distribution to the data using probability plotting and calculate
the geometric parameters a and f, (b) estimate the 95% confidence interval around the
geometric mean.

Generate 1000 random variables from a uniform distribution between 0 and 1. Plot the
histogram for this dataset. Divide the data into K=10 columns each with N=100 data
values in them. For each column, compute the mean and variance (this should result in
K=100 mean and variance values). Plot the histogram of the mean values. What does the
distribution look like? What are the mean and variance for this distribution? Is this
consistent with the Central Limit Theorem? Repeat this exercise with K=100 columns
and N=10 data values. How do the results change?
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11. You are required to measure the average viscosity of a crude sample to within £3%. From
an earlier study, you know that viscosity follows a normal distribution with mean 50 and
standard deviation 5. How many measurements do you need to take?

12. Determine the 95% confidence interval for the population mean from a sample of 25 data
points with sample mean =30 and sample standard deviation=3. How would your
answer change if you ignored the fact that the standard deviation was estimated from the
data?

13. Given an 18-sample permeability dataset where Ky 16=165 mD and K g, =500 mD,
determine 90% confidence intervals for the geometric mean permeability. Assume K to be
log-normally distributed.

14. For the dataset used in Example 3.8, generate 1000 bootstrap samples by resampling the
data. Calculate and plot the histogram for the bootstrapped mean. How does this
compare to the estimate using central theorem (based on sample moments)? Also,
calculate and plot the histogram for the bootstrapped 10th and 90th percentile. What do
these distributions look like?

15. Can we conclude (with 95% confidence level) that a set of 5 sandstone cores came from a
parent population having an average porosity of 18% and a standard deviation of 5%, if
the porosity of these samples was 13, 17, 15, 23, and 27 (%)?

16. Given two datasets of net pay thickness, where X; =50 (ft), X, =48 (ft), s7=5, 55=3,

n, =25, n,=30, can we conclude that the two datasets have the same mean at the 95%
confidence level?

17. For the dataset used in Example 3.8, fit a Weibull distribution using the approach
described in Section 3.4.2. Compare the Weibull fit to the normal and uniform fits
described in the chapter, using the K-S statistic as the goodness-of-fit metric.

References

Ang, A.H.-S., Tang, W.H., 1975. Probability Concepts in Engineering Planning and Design. John Wiley and Sons,
New York, NY.

D’Agostino, R.B., Stephens, M.A. (Eds.), 1986. Goodness-of-Fit Techniques. Marcel Dekker, New York, NY.

Davis, J.C., 2002. Statistics and Data Analysis in Geology. John Wiley & Sons, New York, NY.

Efron, B., Tibisharini, R., 1993. An Introduction to the Bootstrap. Chapman and Hall, New York, NY.

Harr, M.E., 1987. Reliability-Based Design in Civil Engineering. McGraw-Hill, New York, NY.

Iman, R.L., Conover, W.J., 1983. A Modern Approach to Statistics. John Wiley and Sons, New York, NY.

Jensen, J., Lake, L.W., Corbett, P., Goggin, D., 2000. Statistics for Petroleum Engineers and Geoscientists. Elsevier,
New York, NY.

Mishra, S., 2012. A new approach to reserves estimation in shale gas reservoirs using multiple decline curve analysis
models. Society of Petroleum Engineers.https://doi.org/10.2118/161092-MS.

Mishra, S., Brigham, W.E., Orr Jr., F.M., 1991. Tracer and pressure test analysis for characterization of areally
heterogeneous reservoirs. SPE Form. Eval. 6 (1), 45-54.

Morgan, M.G., Henrion, M., 1990. Uncertainty: A Guide to Dealing with Uncertainty in Quantitative Risk and
Policy Analysis. Cambridge University Press, New York, NY.

Venables, W.N., Ripley, B.D., 1997. Modern Applied Statistics with S-PLUS, second ed. Springer, New York.

Willhite, G.P., 1986. Waterflooding. Society of Petroleum Engineers, Richardson, TX.


http://refhub.elsevier.com/B978-0-12-803279-4.00003-1/rf0010
http://refhub.elsevier.com/B978-0-12-803279-4.00003-1/rf0010
http://refhub.elsevier.com/B978-0-12-803279-4.00003-1/rf0015
http://refhub.elsevier.com/B978-0-12-803279-4.00003-1/rf0020
http://refhub.elsevier.com/B978-0-12-803279-4.00003-1/rf0065
http://refhub.elsevier.com/B978-0-12-803279-4.00003-1/rf0025
http://refhub.elsevier.com/B978-0-12-803279-4.00003-1/rf0030
http://refhub.elsevier.com/B978-0-12-803279-4.00003-1/rf0035
http://refhub.elsevier.com/B978-0-12-803279-4.00003-1/rf0035
https://doi.org/10.2118/161092-MS
http://refhub.elsevier.com/B978-0-12-803279-4.00003-1/rf0040
http://refhub.elsevier.com/B978-0-12-803279-4.00003-1/rf0040
http://refhub.elsevier.com/B978-0-12-803279-4.00003-1/rf0045
http://refhub.elsevier.com/B978-0-12-803279-4.00003-1/rf0045
http://refhub.elsevier.com/B978-0-12-803279-4.00003-1/rf0055
http://refhub.elsevier.com/B978-0-12-803279-4.00003-1/rf0060

CHAPTER

4

Regression Modeling and Analysis

OUTLINE

4.3.5 An lllustrative Example of Multiple
Regression Modeling and Analysis 82

4.1 Introduction 70

4.2 Simple Linear Regression 70
4.2.1 Formulating and Solving
the Linear Regression

Problem 70
4.2.2 Ewaluating the Linear
Regression Model 72

4.2.3 Properties of the Regression

Parameters and Confidence Limits 74
4.2.4 Estimating Confidence Intervals

for the Mean Response and Forecast 75
4.2.5 An lllustrative Example of

Linear Regression Modeling

and Analysis 75

4.3 Multiple Regression 78
4.3.1 Formulating and Solving
the Multiple Regression Model 78
4.3.2 Evaluating the Multiple

Regression Model 80
4.3.3 How Many Terms in the

Regression Model? 81
4.3.4 Analysis of Variance

(ANOVA) Table 81

4.4 Nonparametric Transformation

and Regression

4.4.1 Conditional Expectation and
Scatterplot Smoothers

4.4.2 Generalized Additive Models

4.4.3 Response Transformation
Models: ACE Algorithm and
Its Variations

4.4.4 Data Correlation via
Nonparametric Transformation

4.5 Field Application for
Nonparametric Regression:
The Salt Creek Data Set
4.5.1 Dataset Description
4.5.2 Variable Selection
4.5.3 Optimal Transformations

and Optimal Correlation

4.6 Summary
Exercises

References

84

84
86

86

88

90
90
90
92
93
94
96

Regression modeling is one of the most widely used tools for exploring and exploiting the
relationship between dependent (response) and independent (predictor) variables. When the
relationship can be expressed using linear equations (i.e., straight lines and their generaliza-
tions in multiple dimensions), it is called a linear regression. In this chapter, we start with
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simple linear regression involving a single predictor and response variable. We analyze the
regression model in terms of residuals, variable selection, and confidence intervals for the
model parameters and for model forecasts. We then generalize the concepts to multiple re-
gression involving more than one predictor variable and nonparametric regression that de-
rive functional relationship using flexible data-driven methods.

4.1 INTRODUCTION

In the petroleum geosciences, a very broad class of problems can be addressed using linear
regression and its variations. These include permeability predictions from well logs (Wendt
et al., 1986; Datta-Gupta et al., 1999), well connectivity and flow pattern analysis (Albertoni
and Lake, 2003), well performance modeling (Voneiff et al., 2013), and production data anal-
ysis (LaFollette et al., 2014). The variations of linear regression often involve simple transfor-
mation of the response and/or predictor variables (e.g., logarithmic) to linearize their
relationship. With little loss of generality, regression modeling concepts for continuous data
can also be applied to categorical data such as geologic facies. Furthermore, using arbitrary
smooth functions (scatterplot smoothers) for data transformation, we can extend the regression
modeling to identify inherent nonlinear relationship between response and predictor vari-
ables. The generalized linear models (GLM) and alternating conditional expectation (ACE)
are examples of such generalization using data transformations.

The linear parametric regression methods are model driven in the sense that they require
prior knowledge of the functional relationship between the response and predictor variables.
Oftentimes, such functional relationship is not readily available or difficult to ascertain, par-
ticularly in subsurface geoscience applications. As an alternative, data-driven nonparametric
methods such as GLM and ACE are becoming increasingly common for petroleum reservoir
characterization and analyzing data from unconventional reservoirs. We introduce the
readers to GLM and ACE and conclude the chapter with a field application of ACE involving
permeability predictions using well logs in a carbonate reservoir.

4.2 SIMPLE LINEAR REGRESSION

4.2.1 Formulating and Solving the Linear Regression Problem

Given the data, (X3, Y1), (X2, Y2),eeeenee (X,,,Y,,), we consider here a model of the form
Y=a+bX+¢, e~ (0,0%) (4.1)

where a and b are parameters of regression and ¢ is random error that includes both measure-
ment error and model error. If the model is adequately described by the data, the errors are
expected to be independent with mean zero, E(¢) =0, and a constant variance, ¢>. Fig. 4.1
shows the basic concepts in linear regression in terms of the mean values X and Y, the
observed values X; and Y, and the predicted value Y;.

How to estimate the regression coefficients a and b? Referring to Fig. 4.1, one intuitive
criterion would be to minimize the deviation between the observed value Y and predicted
value Y. This is commonly accomplished via the least-squares method where the goal is to
minimize the residual sum of squares:
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FIG. 4.1 A linear regression model and associated quantities for model analysis.

min (1, b) - lz:jm n% (42)

where Y;=d+ EXi
The minimum can be obtained as usual by taking the partial derivative of the function S

with respect to estimated parameters and setting the resulting equations to zero. This proce-
dure leads to the following solution for the least-squares regression parameters (Haan, 1986):

i=Y—-bX
s Sxy (4.3a)
p="20
Sxx
where
-1y X--?—liy- (4.3b)
_Ni:1 Y _Nifl 1 .
Sxx=Y _(Xi—X)% Sxy=)»_(Xi—X)(Y;i-Y) (4.3¢)
i=1 i=1

The regression line given by Eq. (4.1) (called Y on X regression) assumes that the indepen-
dent variable X is known without error. This line will be different (steeper) for X on Y regres-
sion where Y is assumed to be known without error (Fig. 4.2). The differences in slope arise
from the fact that Y on X minimizes the squared deviation parallel to the y-axis and vice versa.
In practical applications, in particular when the functional relationship between the variables
is assumed to be known based on physical understanding, the two regression lines can be
viewed as limits when all the errors are attributed to one variable or the other. The reduced
major axis (RMA) line lies between the two lines and assumes that the ratio of the error
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'
FIG. 4.2 An illustration of the different regression lines—Y on X, X on Y, and the RMA. Modified from
Dowveton, J. H., 1994. Geologic Log Analysis Using Computer Methods. American Association of Petroleum Geolo-
gists, Tulsa, OK, p. 169.

el S L LT

variances of the two variables is given by the ratio of their individual variances. The RMA line
is obtained by minimizing the area between the points and the best-fit line, and the slope of
the line is given by the ratio of the standard deviations of the two variables. All three lines pass
through the point, (X,Y). When perfect correlation exists, all three lines coincide.

In general, the selection of the best-fit line depends on the specific application. If the goal is
to simply predict one variable based on available measurements of the other, then a simple
regression line may be adequate with the variable being predicted as the dependent variable.
However, if the goal is to identify function or structural dependency between the variables,
then the best-fit line should incorporate noise in both the variables, and the RMA line may be
the preferred choice (Doveton, 1994).

4.2.2 Evaluating the Linear Regression Model

A common approach to examine the adequacy of the regression model is to determine how
much of the variability in the dependent variable Y is explained by the regression line. To
answer this, we start out by defining the following quantities (refer to Fig. 4.1):

e;=Y;—Y;=residual describing the deviation of observed data from model predictions
n . 2 n
SSg= Z (Y,- — Y,-) = Zeiz =residual sum of squares

i=1 i=1
n

L \2
SSr :Z(Yi—Y,) =sum of squares due to regression

i=1
n

Syy:Z(Yi—l_/,-)z =total sum of squares or sum of squares about the mean
i=1
(4.4)
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It can be shown that (see Haan (1986) for derivations)
Syy =SSg +SSr (4.5)

Thus, the total sum of squares has two components: the residual sum of squares and the
sum of squares explained by the regression model. Clearly, if SSg>>SSg, then the regression
line can explain most of the variations in the dependent variable. A related measure is the
coefficient of determination, R?, which is defined as follows:

_SSk_,_SSe

R? ==
Syy Syy

(4.6)

The R? explains the fraction of the total sum of squares that is explained by the regression
model. The range of R* will be between zero and one, with one being a perfectly fitting model
(SSg =0) explaining all the variations in the dependent variable. It is important at this point to
distinguish between this coefficient of determination and the coefficient of correlation, p,
which are often used interchangeably. If X and Y are both random variables, then R” is the
same as the square of the correlation coefficient between X and Y. In fact, the coefficient of
correlation is an estimate of the population parameter for a joint normal distribution between
X and Y, whereas R* makes no such assumption about the underlying distribution of the vari-
ables (Jensen et al., 1997).

The standard error of regression, also known as the standard error of the estimate, is given
by the following:

SSe
(n-2)

A7)

o=
Note that the square of the standard error of regression 47 is an unbiased estimate of the
error variance in ¢; (0, 6°). These are the variations in Y that are not explained by the regression
model and can be described as the “true” noise in the data. In Eq. (4.7), the residual sum of
squares is divided by (n—2) to account for the fact that two degrees of freedom for error have
been used up in estimating the slope and the intercept parameters in the regression model.
One important underlying assumption in the regression model is that the unexplained var-
iations in Y are independent (i.e., uncorrelated) and have a constant variance (i.e., homosce-
dastic). This is discussed further in the next section.

It is worth pointing out that the coefficient of determination in Eq. (4.6) is not an unbiased
estimate. It needs to be adjusted for the loss of degrees of freedom (one for the mean in Syy and
two for the slope and intercept parameters in SSg) in the same manner as in the calculation of
standard error of regression in Eq. (4.7). This leads to the adjusted R* that is given by the
following:

(n—-1)
(n-2)

Adjusted R* =1 — (1-R?) (4.8)

Note that the adjusted R* can be negative if R* is zero, and thus, X has no predictive
value. Under such conditions, the mean model is clearly a better choice than the regression
model.
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4.2.3 Properties of the Regression Parameters and Confidence Limits

In order to develop a formalism for confidence intervals for the regression model and fore-
cast, we will assume that ¢;, the deviation between the observed data and the unknown “true”
model, follows a normal distribution with mean zero and variance 6%, thatis, e ~ N (O, 02) . We
can verify this assumption using diagnostic plots for the residuals, ¢;, and ensuring that
e~N(0,0%). Such diagnostics plots are extremely useful for the analysis of regression models
and checking its validity. We will illustrate this in the examples that will follow.

We can now make estimates of the standard error associated with the regression param-
eters, a and b (see Haan (1986) for derivations):

.1 X?
0, =0 % + @ (493)
o
6, = (4.9b)
' oxx

where Sxx is defined in Eq. (4.3¢). Notice that the standard error of the parameters is directly
proportional to the standard error of regression 6. In other words, the noise in the data (as
estimated by 6%) will equally impact all the regression parameters. It is important to note that
as we obtain more data, the estimate of the standard error of regression ¢ will become more
accurate, but there is no guarantee that the error itself will decrease. However, increasing
the number of data points will reduce the standard error of the regression coefficient as
can be seen from Eq. (4.9a).

Also, recall that the quantity Sxx in the denominator of Egs. (4.9a), (4.9b) is a measure of
the spread in X. Thus, everything else being equal, an experiment conducted with a wider
range of X will result in less uncertainties in the regression coefficients and a more precise
regression model. .

If the regression model is correct, then the quantities /5, and b/6, will be distributed as ¢
distribution with (n—2) degrees of freedom (Navidi, 2008). This allows to place confidence
intervals in the regression parameters and examine the significance of the regression equa-
tion. The lower and upper confidence limits for the regression coefficients can be computed
with appropriate t-values with (n —2) degrees of freedom and the desired level of confidence
a as follows:

L=a—6at1 a2), (n-2)

o 4.10a
U=a+6,t1-q/2),n-2) ( )
and
L=b—06pta_a2), (n-2) (4.10b)

U=b+6) f(1—a/2), (1-2)

It is worth pointing out here that the ¢ distribution is very similar to the standard
normal distribution but with a larger variance and a heavier tail (see Chapter 3).
The larger variance comes from the fact that we replace the population variance with
the sample variance in computing the t-values (in the same manner as z-values in the
standard normal distribution), thus incorporating additional variability from samples.
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In fact, as the number of degrees of freedom increases, the t distribution will approach
the standard normal distribution.

4.2.4 Estimating Confidence Intervals for the Mean Response and Forecast

The confidence intervals on the regressmn line can be determined by calculating the stan-
dard error of the mean response, Y =a +bX, for a given X. It is the error associated with the
height of the regression line at a given location (Fig. 4.1). The standard error of the mean
response can be estimated as follows (Haan, 1986):

2
X-X
o[ X

4.11
2t o (4.11)

Notice that 6y is minimum at X =X, and it increases as we deviate from the mean. The
confidence interval for the mean response can now be estimated using the standard error
in the Eq. (4.11) with appropriate f-values with (n—2) degrees of freedom and the desired
level of confidence « as follows:

Ly =a+bX = 6yt(-a2), (1-2)

A : 4.12)
u? =a+bX+ ()'?t(lfg/z), (n-2)

The confidence interval of individual predicted value of Y, also called the standard error of
the forecast, will include both the unpredictable variability in Y given by the standard error of
regression 6 in Eq. (4.7) and the error in estimating the mean:

<\ 2
X-X
6r=1\/62+65°=6 1+%+<ST) (4.13)

The lower and upper confidence limits for the forecast for Y for a given X can now be
estimated using the standard error of forecast in Eq. (4.13) with appropriate t-values and
confidence level as before:

Lr =Y —6rta_a/2), n-2) (4.14)
Ur =Y +6Ft(1_q/2), (n-2) .

Notice that both the confidence intervals for the mean response and the forecast are given
for a specific value of X. By computing the confidence intervals for several values of X and
connecting the points with a smooth curve give us the confidence bands and prediction bands
for the regression model. For typical regression problems (1 >30), the confidence intervals
will generally equal to the forecast plus or minus two standard error of forecast for a 95%
confidence level.

4.2.5 An Illustrative Example of Linear Regression Modeling and Analysis

Consider the 31-sample dataset (LINREG_FIG4.3.DAT) from an oil reservoir relating ini-
tial well potential that is the producing ability of the well (response variable) and net pay that
is the net thickness of the productive interval (predictor variable). As shown in Fig. 4.3, the
linear model is given by the following equation:
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Yi=ﬁ+I;Xi

! A (4.15)
4=2.063; b=97.937

How good is the model? Although Fig. 4.3 gives us a visual idea about the extent to which
the model fits the data and captures the broad trend, a more informative diagnostic is to
visualize the structure of the residuals. Recall that the linear model assumes that (i) the
residuals are random and independent, (ii) the residuals have zero mean and the same (con-
stant) variance, and (iii) the residuals are normally distributed.

Fig. 4.4 shows the diagnostic plots for the residuals for this example. In Fig. 4.4A, we expect
the residuals to be symmetrical around zero and evenly spread for all values of the predictor
variable (because of constant variance or homoscedasticity), which is indeed the
case. Fig. 4.4B is a normal quantile plot of the residuals. A linear trend indicates that the
residuals are, indeed, normally distributed.
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FIG. 4.3 Data and the fitted linear model.
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Another useful diagnostic is a cross plot of the observed and the predicted response variable
(Fig. 4.5). This plot is useful for detecting any systematic bias in the model, such as consistent
over prediction or under prediction for a data range. We expect the plot to display uniform
spread around the unit slope line to ensure that the unexplained variability in the data are in-
deed random and do not have an underlying structure, as is generally the case here.

We can construct confidence intervals for each point on the fitted regression line using
Eq. (4.14) and smoothly connect them to generate the confidence band shown in Fig. 4.6.

300

200 +

Y-predicted

T T
200 300

Y-observed

T
0 100

FIG. 4.5 Cross validation plot—observed versus the predicted response.
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FIG. 4.6 Confidence bands given by the 95% confidence intervals for the predicted Y-values.
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TABLE 4.1 Summary of Simple Linear Regression Analysis

Regression Statistics

Multiple R 0.733851

RSquare 0.538538 <—{ Fraction of total variance explained by model ‘
AdjustedR 0.522625

Standard E 44.71329 <—’ Estimated SD of error term in regression = RVMSE ‘
Observatic shil

Coeff  StdError  tStat P-value  Lower 95% Upper 95%
Intercept 97.397 13.844 7.035 9.75E-08 69.082 125.711
X Variable 2.063 0.355 5.818 2.63E-06 1.337 2.788

NS N e

Mean and SD =Coefl/SE, the smaller = Coeff + 2SE
of regression the bigger the better
coefficients the better (likelihood that
Coeff is different
from zero)

As expected from Eq. (4.13), the uncertainty in forecast is smallest at the mean and increases
as we deviate from the mean.

Finally, Table 4.1 provides a summary of the simple linear regression analysis. As
explained before, the R* and the adjusted R* give the fraction of the total variance in Y
explained by the linear regression model. The standard error of regression is an unbiased
estimate of the variations in the data not explained by the model. The standard errors of
the regression coefficients provide a measure of uncertainty in the estimated regression
coefficients. The associated t-statistics and P-values are used for evaluating whether there
is enough statistical evidence in the sample data for the regression model to be valid in gen-
eral. The P-value for the slope parameter is particularly important in analyzing the regression
model. If the P-value is sufficiently small for this parameter, we can infer that the likelihood of
the slope being zero is very small, and the linear model is a reasonable choice.

4.3 MULTIPLE REGRESSION

4.3.1 Formulating and Solving the Multiple Regression Model

Multiple regression refers to situations when several independent variables are related
to a single-dependent variable. Assume that the variable Y is related to p-independent
variables, and we have n measurements. The simplest multiple linear regression model will
be given by
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r

Yi=fo+ > BXj+ei i=lo.. n (4.16)
=1

The multiple regression model can also include powers of the independent variables and
product terms describing variable interactions:

Y; :/)70 +ﬂ1X1i +/32X2i +ﬂ3X21,' +ﬂ4X21i +ﬂ5X1,‘X21' + & i=T1.... n (417)

Eq. (4.17)is also called a linear model even though it contains nonlinear terms. The linearity
here is with respect to the regression coefficients, f;.

Just as in simple linear regression, the coefficients of multiple linear regression model can
be obtained by minimizing the residual sum of squares. That is,

eiz (4.18a)

n
Minimize

i=1

The residual ¢; is given by
A p A
e, =Yi— | fo+ Y BXy| i=Tunn n (4.18b)
j=1

The minimization is carried out in the usual manner, taking the partial derivatives of
Eq. (4.18a) with respect to gﬁo, ﬁl ......... f;'p and setting them to zero. This leads to (p + 1) normal
equations that are solved for the (p +1) regression coefficients. For a detailed derivation, we
refer the reader elsewhere (Haan, 1986). Obviously, the results get more complicated com-
pared with the simple linear regression and can be conveniently expressed in a matrix-vector

form as follows:

p=(H"H) 'HTY

B =vector of regression coefficients (4.19)
Y =vector of measured dependent variable

H =matrix containing measured independent variables

Note that the specific structure of the H matrix will depend on the form of the multiple
regression model.

The multiple regression model is a very powerful tool for data analysis, and a very broad
range of problems can be handled using this technique. Quite often, nonlinear regression
problem involving nonlinearity in the dependent variable can be reduced to multiple linear
regression problem through appropriate transformation of the variables. These transforma-
tions can be parametric or nonparametric transformation. In particular, nonparametric trans-
formation methods for multiple regression provide a flexible data-driven approach to
interpreting complex relationships between variables in the absence of sound underlying
physical models (Hastie and Tibshirani, 1990). The nonparametric regression methods will
be discussed later in this chapter.
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4.3.2 Evaluating the Multiple Regression Model

The evaluation of the multiple regression model is carried out very much like the simple
linear regression before and uses the same sum of square quantities that are repeated below
for completeness:

ei=Y;—Y;=residual describing the deviation of observed data from model predictions
n

SSg= Z (Yi - Yl-) - ieiz =residual sum of squares

i=1 i=1
n

L —\2
SSg= Z (Yi - Yi) =sum of squares due to regression

i=1
n

Syy = E (Yz- - l_/i)z = total sum of squares or sum of squares about the mean
i=1
(4.20a)

Also, as in simple linear regression, the following identity holds (Navidi, 2008):
Syy = SSE + SSR (4.20]:))

Eq. (4.20b) is called the analysis of variance identity. These results are summarized in the
form of an analysis of variance table for multiple regression as discussed later.

We can now define R* or the coefficient of determination describing the goodness-of-fit
statistic in multiple regression:

_SS_, _SSe

R2=22R_q 20
Syy Syy

(4.21)
The R* describes the proportion of total variance explained by the multiple regression
model in the same way as in simple linear regression.
The standard error of regression is given by the following equation:

6= _ 5% (4.22)
n—p-—1

Again, the expression for standard error of multiple regression is similar to that of standard
linear regression. There are now (n—p—1) degrees of freedom, because we are estimating
(p+1) regression coefficients rather than just 2.

In simple linear regression, we have seen that the t-statistic and P-values can be used to
accept and to evaluate whether the slope parameter, f, is statistically indistinguishable from
zero and, thus, examine the validity of the linear model. An analogous statistic for multiple
regression is the F-statistic that is given by the following:

_ SSR/p
SSe/(n—p—1)
The F-statistic can be used to test the hypothesis, f; =f, = .......... =p, =0. In practice, we

must reject this hypothesis based on the evidence from the data (as given by large observed
values of the F-statistic or by small P-values) if the multiple regression model is appropriate.

(4.23)
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The validity of the multiple regression can also be verified using diagnostic plots for the
residuals versus fitted values as we have seen for simple linear regression. We expect the re-
siduals to be independent random variables with zero mean and normally distributed. It is
also recommended that we plot the residuals versus each of the independent variables to rule
out any systematic trend.

4.3.3 How Many Terms in the Regression Model?

Deciding on the number of independent variables in a multiple regression model is often
referred to as the model selection problem. The model selection process is guided by the prin-
ciple of parsimony, which states that the model should contain the smallest number of vari-
ables required to fit the data. This requires balancing between model complexity (degrees of
freedom) and goodness of fit.

The most widely used model selection process is a stepwise regression that involves eval-
uating the independent variables one at a time. The model selection rewards better fit but
penalizes too many parameters based on the Akaike information criteria (AIC) (Navidi, 2008):

AIC =nlog(SSg/n)+2p

where

n=number of observations (4.24)
p =number of model parameters

SSg =residual sum of squares

The goal here is to select the combination of independent variables that result in the min-
imum value of AIC. There are also other related measures of parsimony, for example, the
Bayesian information criteria (BIC) given by Navidi (2008):

BIC =nlog (SSg/n) + plog (n) (4.25)

An example of variable selection using the stepwise regression is discussed later in the
chapter (see Section 4.5).

4.3.4 Analysis of Variance (ANOVA) Table

The analysis of variance table (shown in Table 4.2) is a commonly used summary of mul-
tiple regression results. It displays the partitioning of the sum of squares and the associated
degrees of freedom. It is analogous to the summary of simple linear regression shown in
Table 4.1. The degrees of freedom for regression are equal to the number of independent
variables. The degrees of freedom for the residual error will be the number of observations
minus the number of estimated parameters (the coefficients of the independent variables
plus the intercept parameter). Thus, the total degrees of freedom will be the number of ob-
servations minus one. The mean squares are the sums of squares divided by their respective
degrees of freedom and are used to calculate the F-statistic that is used to test the hypothesis
that all the coefficients of the independent variables could be zero. A large value of F and
small values of P will reject this hypothesis and establish the validity of the linear model.
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TABLE 4.2 Analysis of Variance Table

Degrees of Sum of
Source Freedom Squares Mean Squares F-Statistic P-Value
Regression [4 SSr MSgr =SSr/p Fp(n—p-1) =MSgr/MSg 0 <P<1
Residual error n—p—1 SSe MSg=SSg/(n—p—1)
Total n—1

4.3.5 An Illustrative Example of Multiple Regression Modeling and Analysis

The dataset used for this example is shown in Fig. 4.7A (MULTREG_FIG4-7.DAT). The de-
pendent variable is the logarithm of permeability (PERM), whereas the independent variables
are well-log responses, namely, gamma ray (GR) and bulk density (RHOB). The gamma-ray
log is indicative of formation lithology, for example, sand versus shale, and the bulk density
log is indicative of formation porosity. Thus, permeability is likely to be correlated to these
well logs. The result of the multiple regression is shown in Fig. 4.7. The regression model
is given by the following equation:

In(Perm) = —0.0215(GR) — 13.39(RHOB) + 35.175

Fig. 4.8 shows the diagnostic plots for the residuals versus the fitted model. As for simple
linear regression, we expect the residuals to be symmetrical around zero and evenly spread
for all values of the predictor variable (homoscedasticity). Fig. 4.8B is a normal quantile plot of
the residuals. Again, the linear trend indicates that the residuals are, indeed, normally distrib-
uted. These results seem to indicate no serious violations of the regression model
assumptions.

Another useful diagnostic plot for multiple regression is residual versus the independent
variables as shown in Fig. 4.9 to detect any unexplained structure in the residual. For a good
model, the residuals should be uncorrelated random noise with no systematic trend.

Finally, Table 4.3 provides a summary of the multiple linear regression analysis. As for
simple linear regression, the R* and the adjusted R* give the fraction of the total variance
in Y explained by the multiple linear model. The standard error of regression is an unbiased
estimate of the variations in the data not explained by the model.

\n PERM

dﬂ, <3000 0.000 3@

°
T T T T
(B) 3 2 -1 0 1 2 3
Fitted: GR + RHOB

(A)

FIG. 4.7 Example of multiple regression—(A) dataset for multiple linear regression and (B) fitted model.
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FIG. 4.9 Diagnostic plots for multiple regression—residuals versus the independent variables.

TABLE 4.3 Summary of Multiple Linear Regression Analysis

Regression Statistics

R square 0.309191667
Adjusted R square 0.305737625
Standard error 1.483332723
Observations 403
ANOVA

df SS MS F P-Value
Regression 2 393.9193904 196.9597 89.51591 7.43898E-33
Residual 400 880.1103867 2.200276
Total 402 1274.029777

Coefficients Standard Error t-Stat P-Value

Intercept 35.17517182 2.862046273 12.29022 1.13E-29
X variable 1 —0.02151192 0.00666908 —3.22562 .00136
X variable 2 —13.3902369 1.115334064 —12.0056 1.44E-28
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The analysis of variance (ANOVA) table displays the partitioning of the sum of squares
and the associated degrees of freedom. The relatively large F-value and the very small P-value
suggest that all of the independent variables are linearly related to the dependent variable in a
statistically significant manner. The standard errors of the regression coefficients provide a
measure of uncertainty in the estimated regression coefficients. Since the associated ¢-statistic
is large and P-values are sufficiently small for all the parameters, we can infer that the coef-
ficients of the independent variables are nonzero and the multiple linear regression model is a
reasonable choice in this case.

4.4 NONPARAMETRIC TRANSFORMATION
AND REGRESSION

4.4.1 Conditional Expectation and Scatterplot Smoothers

In general, the regression problem involves a set of predictors, for example, a p-dimen-
sional random vector X and a random variable Y, which is called the response variable.
The aim of regression analysis is to estimate the mean response or the conditional expectation,
E(Y | X1, Xp,..., Xp). We have seen that the multiple regression method requires a functional
form to be presumed a priori for the regression surface, thus reducing the problem to that of
estimating a set of parameters. Such parametric approach can be successful provided the
model assumed is appropriate. When the relationship between the response and predictor
variables is unknown or inexact, as is frequently the case for petroleum geoscience applica-
tions, parametric regression can yield erroneous and even misleading results. This is the pri-
mary motivation behind nonparametric regression techniques that make only few general
assumptions about the regression surface (Friedman and Stuetzle, 1981).

The nonparametric transformation techniques generate regression relations in a flexible
data-defined manner through the use of scatterplot smoothers and in doing so let the data sug-
gest the functionalities. The most extensively studied nonparametric regression techniques
are based on some sort of locally weighted averaging which takes the following form
(Friedman and Silverman, 1989):

N
E(YIX)~ ) H(X,X)Y; (4.26)
i=1

where H(X, X'), the local averaging or kernel function, usually has its maximum at X = X’ with
its absolute value decreasing as |X’' — X| increases. A critical parameter in local averaging is
the span or bandwidth s(X) that is the size of the interval, centered at X', over which most of
the averaging takes place as shown in Fig. 4.10.

Some examples of averaging function are given in Table 4.4.

In practice, the choice of the span or bandwidth is much more critical than the choice of the
averaging function itself (Hastie and Tibshirani, 1990). A large bandwidth will generate a
“smoother” curve (i.e., more bias), whereas a small bandwidth will introduce more variability
(i.e., more variance). Thus, bias increases, whereas variance decreases with increasing band-
width. This is illustrated in Fig. 4.11. The optimal choice of span is given by a compromise
between bias and variance (Hastie and Tibshirani, 1990).
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FIG. 4.10  An illustration of scatterplot smoothing using a Gaussian kernel function.

TABLE 4.4 Some Examples of Local Averaging Functions

Rectangular K(x)=1 Ix| <1
Triangular Kx)=1-|x] x| <1
Epanechnikov Kx)=1-x? Ix| <1
Bisquare K(x)=(1—x%? x| <1
Tricube K(x)=(1-x%° x| <1
Triweight K(x)=(1-x%? x| <1
Gaussian K(x)= exp(7(2.5x)2 /2)
10 10 10
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FIG. 4.11 An illustration of the effects of span selection on scatterplot smoothing. Span size of 17% of the
X-range is the optimum span here based on bias-variance tradeoff.



86 4. REGRESSION MODELING AND ANALYSIS

Nonparametric regression methods can be broadly classified into those that do not trans-
form the response variable (generalized additive models) and those that do (ACE and its
variations). A brief discussion of these techniques follows. For further details, the reader is
referred to Hastie and Tibshirani (1990), Buja et al. (1989), and Xue et al. (1997).

4.4.2 Generalized Additive Models

An additive regression model has the general form:
p
E(YX1,Xy,..., X)) =a+ > (X)) +e (4.27)
1=1

where X; are the predictors and ¢; are functions of predictors. This can be viewed as an
extension of the linear model in Eq. (4.16). Thus, additive models replace the problem of
estimating a function of a p-dimensional variable X by one of estimating p separate one-
dimensional functions, ¢;. Such models are attractive, if they can fit the data adequately, since
they are often easier to interpret than a p-dimensional multivariate surface.

The technique for estimating ¢;s is called the local scoring algorithm and uses scatterplot
smoothers, for example, a running mean, running median, running least-squares line, kernel
estimates, or spline (see Buja et al. (1989) for a discussion of smoothing techniques). In order to
explain the algorithm, let us consider the following simple model:

E(Y[X1,X5) = $1(X1) + ¢h2(Xz2) (4.28)

Given an initial estimate ¢;(X;), one way to estimate ¢,(X5) is to smooth the residual
Ro=Y—¢(X1) on X, With this estimate of ¢,(X;), we can get an improved estimate
¢$1(X;1) by smoothing R1 =Y —¢,(X>) on X;. The resulting iterative smoothing procedure is
called backfitting (Hastie and Tibshirani, 1990) and forms the core of additive models.

In general, an algorithm for fitting a generalized additive model (GAM) consists of a hier-
archy of three modules: (i) the scatterplot smoothers that can be thought of as a general regression
tool for fitting functional relationship between response and predictor variables, (ii) a backfitting
algorithm that cycles through the individual terms in the additive model and iteratively up-
dates each by smoothing suitably defined partial residuals, and (iii) a local scoring algorithm
that utilizes an iteratively reweighted least-squares procedure to generate a new additive pre-
dictor. A step-by-step procedure for the GAM can be found in Hastie and Tibshirani (1990).

4.4.3 Response Transformation Models: ACE Algorithm and Its Variations

The response transformation models generalize the additive model by allowing for a trans-
formation of the response variable Y. The models have the following general form:

4
oY) => d(Xi)+e (4.29)
=1

The main motivation behind response transformation is that often, a simple additive model
may not be appropriate for E(Y | Xj, X5,..., X,), but may be quite appropriate for
E{6(Y)| X1, Xa,..., X, }. An example of such model is the ACE algorithm and its modifications.

The ACE algorithm, originally proposed by Breiman and Friedman (1985), provides a
method for estimating optimal transformations for multiple regression that result in a
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maximum correlation between a dependent (response) random variable and multiple inde-
pendent (predictor) random variables. Such optimal transformations can be derived by min-
imizing the variance of a linear relationship between the transformed response variable and
the sum of transformed predictor variables as shown in Fig. 4.12.

For a given set of response variable Y and predictor variables Xj,..., X,, the ACE algorithm
starts out by defining arbitrary measurable mean-zero transformations 6(Y), ¢1(X1), ............
¢p(X,). The error (¢%) not explained by a regression of the transformed dependent variable
on the sum of transformed independent variables is under the constraint, E [QZ(Y)] =1):

2
& (9, b1, ...,¢p) :E{ } (4.30)

The minimization of ¢ with respect to ¢1(X1), .eevnenene ¢p(Xp) and 9(Y) is carried out through
a series of single-function minimizations. Two basic mathematical operations involved in
here are conditional expectations and iterative minimization and, hence, the name alternating
conditional expectations. The final ¢;(X;),I=1,...,p and 6(Y) after the minimization are esti-
mates of optimal transformation, ¢*(X;),/=1,...,p and 0*(Y). In transformed space, the
response and predictor variables will be related as follows:

p
oY) = i(X)
=1

=

O*(Y) = ¢ (X)) +¢& (4.31)
1=1
The optimal transformations are derived solely based on the datasets and can be shown to
result in a maximum correlation in the transformed space (Breiman and Friedman, 1985). The
transformations do not require a priori assumptions of any functional form for the response or
predictor variables and thus provide a powerful tool for exploratory data analysis and cor-
relation. The transformation 6(Y) is assumed to be strictly monotone (and thus invertible),
and the conditional expectations are approximated using scatterplot smoothers. A step-by-

step procedure for the ACE model and its variations can be found in Breiman and Friedman
(1985) and Hastie and Tibshirani (1990).

6(Y)

$1(X1) + 92(X2) *.oeoeee + 9p(Xp)

FIG. 4.12 Optimal transformation for multiple regression. Based on Breiman, L., Friedman, J. H. 1985. Estimat-
ing optimal transformations for multiple regression and correlation. J. Am. Stat. Assoc. 80, 580.



88 4. REGRESSION MODELING AND ANALYSIS

4.4.4 Data Correlation via Nonparametric Transformation

Nonparametric transformation techniques offer a flexible and data-driven approach to
building correlation without a priori assumptions regarding functional relationship between
response and predictor variables. The following equation is used to estimate or predict de-

pendent variable, Y;*", for any given data point {Xy;, Xyi........ Xy} involving p- independent
variables:
. p
Y =01 g (Xa) (4.32)
=1
The calculation involves p forward transformations of {Xy;, Xp;........ Xpi} to {1 *(Xai), .., ™

(X1} and a backward transformation (Eq. 4.32). By restricting the transformation of the
response variable to be monotone, we can ensure that 6* is invertible.

The power of nonparametric transformations as a tool for correlation also lies in their abil-
ity to handle variables of mixed type. For example, we can easily incorporate categorical vari-
ables such as rock types and lithofacies into the correlation without additional complications
(Datta-Gupta et al., 1999). Another important application of nonparametric transformation is
function identification for data correlation using multiple regression as illustrated in the
example below.

This example is designed after Breiman and Friedman (1985) and demonstrates the ability
of nonparametric transformations to identify functional relationship during multiple regres-
sion. A dataset with 200 observations is simulated from the following model:

yi=exp[sin(2zx;) + /2] (1 <i<200) (4.33)

where x; is drawn from a uniform distribution U(0, 1) and &, is independently drawn from a
standard normal distribution N(0,1) (SCATTER_FIG4-13.DAT).

Fig.4.13 is a scatterplot of y; versus x;. The plot itself does not reveal a functional relationship
between the dependent and independent data observations. In this situation, the direct use of
parametric regression is difficult and requires trial and error. If we take logarithm of both sides
of Eq. (4.33), we obtain a linear relationship between In(y;) and sin(2zx;) as follows:
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FIG. 4.13  Scatterplot of y; versus x; generated using Eq. (4.33).
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11‘1(]/1‘) = Sil‘l(Zn’Xi) + E‘,‘/Z (4.34)

Thus, the optimal transformations for linear regression will have the following forms:

0*(yi) = In(y;)

@*(x;) = sin (27x;) (4.35)

To demonstrate that the ACE algorithm can estimate the above optimal transformations, we
applied the algorithm to the synthetic dataset in Fig. 4.13. Fig. 4.14A and B shows the optimal
transformations of y; and x; derived by the ACE algorithm. Clearly, ACE is able to identify the
logarithmic function as the optimal transformation of the dependent variable and the sine
function as the optimal transformation of the independent variable. Fig. 4.15 shows a plot
of 6*(y;) versus ¢*(x;). A linear regression on the transformed data yields the following:

0*(y;) ~1.093 ¢*(x;) (4.36)

which is a very close estimate of 6*(y;) = ¢*(x;) indicating that the transformations are,
indeed, optimal.
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FIG. 4.14  (A) Optimal transformation of x; by ACE and (B) optimal transformation of y; by ACE.
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FIG. 4.15 Optimal transformation of y; versus optimal transformation of x; by ACE. The solid straight line rep-
resents linear regression of the data.
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4.5 FIELD APPLICATION FOR NONPARAMETRIC
REGRESSION: THE SALT CREEK DATA SET

4.5.1 Dataset Description

We demonstrate the application of nonparametric regression, specifically the ACE
method and variable selection using a field example. Our goal here is to predict permeabil-
ity using a suite of well logs in the Salt Creek Field Unit (SCFU), a highly heterogeneous
carbonate reservoir in the Permian Basin, West Texas (Fig. 4.16). The data used in this anal-
ysis belong to seven wells with cores and measured permeabilities for the cored interval
(Lee et al., 2002). A suite of seven well logs (GR, LLD, MSFL, DT, NPHI, RHOB, and
PEF) is used to correlate core permeabilities with well-log response. Out of the seven cored
wells, one well (G517) is left out to verify the correlations using blind tests. This application
is well suited for nonparametric regression as the functional relationship between perme-
ability and well logs is typically not known a priori. Nonparametric regression methods
can be used to develop this functional relationship in a data-driven manner as illustrated
in this example.

4.5.2 Variable Selection

We start with the full set of seven well-log data and select the appropriate combination of
independent variables using a stepwise regression as shown in Table 4.5. Stepwise algorithm
includes backward elimination and forward selection. Backward elimination is the simplest
of all variable selection procedures and is illustrated here. The procedure proceeds as follows:

FIG. 4.16 Location of Salt Creek Field Unit, Kent County, TX.
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TABLE 4.5 Variable Selection Using Stepwise Algorithm

Step Add/Delete GR LLD MSFL DT NPHI RHOB PEF RSS AIC
Step 1 Full X X X X X X X 1073 383.7
Step 2 Initial X X X X X X 1073 383.7
-GR X X X X X 1153 420.5
-LLD X X X X X X 1082 386.2
-MSFL X X X X X X 1078 384.0
-DT X X X X X X 1074 381.8
-NPHI X X X X X 1292 4824
-RHOB X X X X X 1093 391.8
-PEF X X X X X 1114 402.1
Step 3 Initial X X X X X X 1074 381.8
-GR X X X X X 1151 417.5
-LLD X X X X X 1085 385.7
-MSFL X X X X X 1076 381.2
-NPHI X X X X 1343 501.4
-RHOB X X X X 1098 392.2
-PEF X X X X 1114 400.0
Step 4 Initial X X X X X 1076 381.2
-GR X X X X 1156 418.1
-LLD X X X X 1087 384.6
-NPHI X X X X 1353 503.8
-RHOB X X X 1099 390.7
-PEF X X X 1119 400.4
Optimum X X X 1076 381.2

(1) Fit the data with all the well logs and calculate the AIC; (2) delete variables one by one and
recompute AIC criteria. If there is a smaller AIC value, select that model with least AIC value
and repeat step (2). If no model has smaller AIC than the initial model, stop the stepwise pro-
cedure and select initial model as the optimal model.

Notice that out of the seven well logs we started with, two well logs (DT and MSFL) are
removed by the stepwise regression. This is partly because other well logs (RHOB, NPHI, and
LLD) already contain equivalent information.
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FIG. 4.17 Optimal transformations of some of independent variables as obtained by the ACE algorithm.
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FIG. 4.18 (A) Optimal transformations of the dependent variable and (B) optimal correlation in the
transformed space.

4.5.3 Optimal Transformations and Optimal Correlation

Fig. 4.17 shows the optimal transformations of some of the well logs obtained using the
ACE algorithm. Also shown in Fig. 4.18 are the transformation of the dependent variable
(log permeability) and the optimal correlation between the transformed dependent variables
and the sum of transformed independent variables as given in Eq. (4.31).

Because these transformations are generally restricted to be smooth, we can fit them with
simple polynomials to build a predictive model for permeability and well logs as shown
below. For example, the transformation of the well logs is fitted with the following equation:

¢*(GR) =0.0007GR? — 0.0605GR +0.9493

¢*(logLLD) = 0.1422(log LLD)? — 0.23441og (LLD) — 0.0948
¢*(NPHI) =1.7479NPHI* — 5.1772NPHI + 0.3306
¢*(PEF) = —0.0058(PEF)? +0.0355PEF +0.0152

¢*(RHOB) = —3.5349(RHOB)? + 6.9223RHOB + 5.8344

The log permeability for a given set of well-log values can now be obtained by first com-
puting their respective transformations using the equations above, summing the
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FIG. 4.19 Inverse transformation for predicting logarithm of permeability (A), measured versus the predicted

data (B), and measured versus the predicted data for a blind well not used in the correlation (C).

transformations, followed by an inverse transformation as given in Eq. (4.32). The inverse
transformation is shown in Fig. 4.19A and is given below:

In(k) = —0.2097{2(/)*(3@)}2 +1.8979 ¢* (x;) +0.094

The predicted permeabilities using Eq. (4.37) for the Salt Creek example are shown in
Fig. 4.19B. In Fig. 4.19C, we have also shown the predicted permeabilities based on well logs
versus the measured permeabilities for the blind well G517. The measured and predicted
values appear to be evenly distributed around the unit slope line, indicating no systematic
bias in the regression model.

The power of the nonparametric regression lies in the fact that it does not require any a
priori assumption regarding the functional form between the dependent and independent
variable. This is extremely useful because for earth sciences applications, such functional
forms are often not known. We have seen that the ACE algorithms generate the transforma-
tions in a data-driven manner, and the transformations can be fitted with simple equations to
develop predictive equations. The reader can reproduce the results in this field example using
the software GRACE, and the Salt Creek field data (SALT-CREEK.DAT) made available in the
online resources for this book.

(4.37)

4.6 SUMMARY

In this chapter, we have introduced data modeling and analysis using linear regression,
multiple regression, and nonparametric regression that generates the regression relation in
a data-driven manner without prior assumption regarding functional forms. Although we
have presented the relevant equations necessary for modeling and interpretation of the
results, our emphasis has been on the application and analysis rather than derivation of
the equations. We have illustrated the power and utility of regression modeling using simple
illustrative examples. Finally, a field application of nonparametric regression demonstrates
the versatility of the method as a predictive tool.
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Exercises
1. Show that the following relationship in Eq. (4.5) holds.
Syy = SSE + SSR

Hint: (Yi-Y)= (Yl- - f/i) + (Yi —7). Square both sides, sum over all observations and
manipulate)

2. Compute the 95% confidence interval on the permeability-thickness estimated from the
pressure transient data with constant rate drawdown test. In this example, the pressure
data fluctuate due to the difficulty to control the drawdown rate to be constant. Note that
slope of the bottomhole pressure against log At is given by —162.6 qBu/kh. Also, 4=1000
stb/day, B=1.0 rbbl/stb, y=1 cp. Calculate R? and adjusted-R2 for linear regression.

At (h) P (psia)
0.000 5000.0
1.000 48419
2.000 4839.3
3.000 4826.0
4.000 4824.8
5.000 4835.3
6.000 4830.7
8.000 4825.2
12.000 4822.8
16.000 4813.0
20.000 4812.2
24.000 4793.7
490.0
3485.0 \\\O~o\
2 00=20 g oa
£ 4800 o=
& 4750
470‘oo 1 10 100
Time (h)

3. Using the following dataset, build a multivariate linear regression model to predict the
bubble point pressure (dependent variable) using API, gas gravity, solution gas-oil-ratio
(Rs), and reservoir temperature (T,.s) as independent variables. Plot the residuals against
the independent variables. Are there any points that are possible outliers? Do the residual
plots have any patterns that suggest that the fitted regression model is not appropriate?
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Oil Gravity (API) Gas Gravity (SG) Tyes (°F) R, (scf/stb) Py, (psi)
48.0 0.801 215 1512 3384
42.7 0.808 299 1138 3699
425 0.809 297 1472 4125
45.6 0.835 244 1534 3187
50.4 0.789 275 1194 3005
41.8 0.815 280 1567 4264
38.8 0.752 230 1492 4433
47.2 0.852 255 1966 3424
35.2 0.844 216 448 1704
26.2 0.705 192 1007 5297
34.4 0.617 215 957 4918
42.2 0.861 220 739 2421

. Compute the R? and adjusted-R* values, standard error of regression and F-statistic for
Exercise 3.

. Compute the AIC for multivariate linear regression in Example 2. Furthermore, repeat the
multivariate linear regression by removing one of the independent variables at a time as
shown. Comment if using all the four independent variables is appropriate or not.

Oil Gravity Gas Gravity Tres GOR SSE (psiz) AIC
X X X X 8.70E +05 66.3
X X X 4.00E+06 72.3
X X X 1.33E+06 66.5
X X X 3.65E+06 71.8

X X X 2.50E+06 69.8

. Using the dataset “SCATTER_FIG4-13.DAT,” test three different smoothers (running
mean, running median, and Gaussian) for three different span sizes as illustrated in
Fig. 4.11.
. Using the dataset “SALT-CREEK.DAT,” perform nonparametric regression using the ACE
algorithm.

(1) Plot core permeability (In kg) versus core porosity (POR) and do the linear regression.
Do you think predicting the permeability only based on the porosity is a good idea for
this particular case?

(2) With variables selected in Table 4.5, perform the multivariate linear regression.

(3) With variables selected in Table 4.5, do the Nonparametric regression using ACE
algorithm and reproduce the results of Figs. 4.17-4.19.

(4) Using the dataset for a blind test (SALT-CREEK-G517.DAT), predict the permeability
with the three models: linear regression, multivariate linear regression, and
nonparametric regression. See and compare R* values.
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8. Consider the dataset relating Initial Well Potential to Net Pay (LINREG_FIG4-3.DAT).

(a) Fita linear regression model with initial well potential as the response variable and the
net pay as the predictor variable.

(b) What does the model predict about increase in initial well potential as the net pay
increases by 10 ft?

(c) What are the estimates of initial well potential for net pay of 50 ft and 100 ft?

(d) What is the estimate of the error variance? .

(e) What is the standard error of the slope parameter, b? .

(f) Construct a two-side 95% confidence interval for the slope parameter b?

(g) Construct a two-side 95% confidence interval for the estimate of initial well potential
for net pay of 50 ft and 100 ft.
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In this chapter, we introduce multivariate data analysis techniques, viz. principal compo-
nent analysis, cluster analysis, and discriminant analysis in the context of data partitioning
and pattern recognition for multiple regression. After introducing the concepts using a simple
example, we discuss in detail the application of these techniques to the Salt Creek field data
introduced in the previous chapter.

5.1 INTRODUCTION

In the previous chapter, we introduced multivariate regression techniques involving two
or more variables. Before embarking on an analysis involving large number of variables, we
might want to first examine if there are any underlying data structure or patterns that we can
exploit to improve and sometimes simplify the analysis. A common approach will be to
graphically visualize the data cloud that is limited to three variables. Often, a fourth dimen-
sion can be added by varying the type and size of symbols, but that is our limit for graphic
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visualization. For high-dimensional datasets, an alternative approach is to reduce the dimen-
sionality of the data with minimum loss of important attributes, for example, data variance.
Multivariate data analysis techniques allow us to accomplish these goals. Essentially, we de-
fine a smaller number of linear combination of the original data, called principal components
that allow for data visualization and pattern recognition in a reduced dimensional space. The
pattern recognition or classification techniques can be either “supervised” or “unsupervised.”
In the unsupervised classification techniques, commonly known as cluster analysis, we par-
tition the data into relatively “homogeneous” entities based on the characteristics of the data,
without resorting to prior information. In the supervised pattern-recognition method, also
known as discriminant analysis, we assign group membership to a given dataset based on
a prior classification. Multivariate data analysis by itself is a vast topic, and several excellent
references are available on this topic (Hastie et al., 2008; Davis, 1986; Mardia et al., 1979).
There are numerous applications of multivariate data analysis in petroleum engineering
and geosciences. Some examples include formation evaluation (Hempkins, 1978), drilling
(Hempkins et al., 1987), geophysical data analysis (Mwenifumbo, 1993), well completion
optimization (Nitters et al., 1995), reservoir characterization (Scheevel and Payrazyan,
2001), and candidate selection for enhanced oil recovery (Siena et al., 2016).

5.2 PRINCIPAL COMPONENT ANALYSIS

The major motivation of principal component analysis (PCA) is to reduce the dimension-
ality of multivariate data involving large number of observations without significant loss of
underlying information content. The principal components define a variance maximizing
mutually orthogonal coordinate system and provide a convenient mechanism for visualizing
and analyzing the data. Typically, the first few principal components are adequate to explain
the majority of the variability in the data, and hence, PCA is used to represent the data in a
reduced dimensional and mutually independent space. The principal component loadings
relate the principal components to the original data. They provide a summary of the influence
of the original variables on the principal components and constitute a useful basis for the in-
terpretation of the data using the principal components. Principal components constitute an
alternative form of displaying the data, thereby allowing better knowledge of its structure
without changing the information.

5.2.1 Computing the Principal Components

The principal components can be thought of as mutually independent surrogate variables
obtained by a coordinate transformation and projection of the data in a newly defined orthog-
onal coordinate system. The coordinate system is represented by the eigenvectors of the data
covariance matrix, and the principal components are a weighted linear combination of the
original data.

Suppose we have a dataset, X, in which the element x;; corresponds to the data at the ith
row and the jth column (=1, ...,n,and j=1, ..., p). As we have seen in the previous chapters,
while dealing with variances and covariances, it is more convenient to work with variables
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that represent the deviations from their respective means. Let Z,, ., be the matrix of deviations
from the mean for each column in X, ;. The covariance matrix of the dataset X can then be
defined by

2=7"Z/(n—-1) (5.1)

Note that the total variance S of the dataset will be given by the sum of the diagonal ele-
ments of the covariance matrix, that is, S =Trace(X). Also, the covariance matrix is symmet-
rical and nonnegative definite, and its eigenvalues will be > 0. Derivation of the principal
components follows from the matrix property that a symmetrical and nonsingular matrix
X can be factored into a combination of diagonal and orthogonal matrices via a spectral
decomposition (Strang, 1998):

==QTAQ (5.2)

where A =diag (4, ..., 4,), a diagonal matrix of eigenvalues of X, and Q is a p x p orthogonal
matrix whose column vectors consist of eigenvectors associated with the eigenvalues, 4, ...,
Ap, respectively.

Note that a row vector of the multidimensional data X can be represented as a point in
p-dimensional space; hence, X forms a cloud of points in the multidimensional space. The
eigenvectors are the principal axes of the cloud, and the matrix Q is used to transform the
original data into principal components, Y,

Y=ZQ (5.3)

If we represent Eq. (5.3) in terms of column vectors Y=[y1,12...4p], Z=[z1,22...2p),
and Q=[g1,42...qy], then some important properties of the principal components can be
summarized as follows:

(i) y; and y; are independent (uncorrelated) for i # .
(ii) The magnitudes of eigenvalues of ) are given by 1y >4, > - > 4,.
(iii) The variance of the principal components is given by Var(y;) = 4.

p 4
(iv) Total variance of all principal components is given by .21 Var(y;) = 421/1,4 =Trace(X)=S.
i= i=

From (iii) and (iv), we can see that the ratio 4;/Z4; describes the proportion of the total data
variance S explained by the principal component i.

The principal components are not scale-invariant and will be different depending on
whether they are computed using the unscaled covariance matrix or the scaled correlation
matrix. In general, one can use the covariance matrix when the original observations are
on the same scale. However, the common practice is to use the correlation matrix by rescaling
the variables by subtracting the mean and dividing by the standard deviation, particularly
when the observations are of different types, for example, well-log measurements reflecting
different subsurface properties. Fig. 5.1 illustrates the concept of principal components using
a dataset consisting of two variables x1 and x2.

From Fig. 5.1, we can see that the principal component analysis involves a coordinate ro-
tation and a projection of the data in the new coordinates. The weighting factors for the prin-
cipal components are given by the eigenvectors of the correlation matrix of the original
variables, and the relative variance of the principal components is given by the eigenvalues
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A simple illustration of the principal component analysis. It involves a coordinate rotation with the
first principal component aligned in the direction of maximum variability in the data.

of the correlation matrix. The weighting factors or coefficients of the principal component
transformation are called “principal component loadings.” The weighting factors describe
the influence of the original variables on the principal components and thus can provide a
useful basis for data interpretation. Because the eigenvalues typically decay rapidly, the first
few principal components are often adequate to explain variability of the dataset. Hence,
principal component analysis provides a mechanism of reducing the dimensionality of
the original dataset without significant loss of data variability. There are several criteria avail-
able to decide on the number of principal components to be retained for data analysis. A com-
mon practice is to prespecify a certain percentage of variance to be preserved (e.g., >90%)
and select enough principal components to satisfy the requirements. Another approach is
to exclude the principal components associated with eigenvalues less than the average of
all eigenvalues. We illustrate the steps in principal component analysis using a simple
example below.

5.2.2 An Illustrative Example of the Principal Component Analysis

Consider the dataset displayed in Fig. 5.2 (MULTIVAR_FIG5-2.DAT). There are 29 data
points here with three variables X1, X2, and X3.

The first step in principal component analysis will be to rescale the data. This involves nor-
malizing each variable by subtracting its mean and dividing by its standard deviation. This
step puts all the variables in an even footing by making them dimensionless with zero mean
and unit variance. Next, we construct the correlation matrix. This is followed by a spectral
decomposition of the correlation matrix to obtain the eigenvalues and the associated eigen-
vectors. These results are summarized in Table 5.1.
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X3
4.000 8.000 12.000
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(A)
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X1 X2 X3
59.31 7.44 1.472
57.63 5.21 2.027
60.25 5.59 10.879
61.69 5.98 9.562

= 63.19 7.86 15.802

(B)

(A) A display of the cloud of the three-dimensional dataset and (B) a few sample data values in

the cloud.

Correlation Matrix and its Spectral Decompostion for the Example Data

X1
Data correlation matrix
X1 1.00
X2 —0.731
X3 0.726
Eigenvalues

Eigenvalues and the associated variances

M 2.42

Y 0.33

A3 0.25

EV-1

Eigenvectors defining the coefficients of principal components
X1 0.5879

X2 —0.5727

X3 0.5713

X2

—0.731
1.00
—0.669

Percentages

80.5857
11.0426
8.3718

EV-2

0.0269
—0.692
—0.7214

X3

0.726
—0.669
1.00

Cum. Percentage

80.5857
91.6282
100

EV-3

0.8085
0.4395
—0.3915

A graphic representation of the results of principal component analysis is shown in
Fig. 5.3. The screeplot displays the eigenvalues in Table 5.1 against their indexes. The plot
also shows the proportion of the total variance explained by each principal component.
A sharp drop in the screeplot can be used to decide on the number of principal components
to be used in the data analysis. From Fig. 5.3A, it is clear that the first two principal com-
ponents describe over 90% of the data variance and are adequate to explain the dataset. The
principal component loadings are the coefficients of the principal components and are
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(A) Screeplot displaying the fraction of the variance explained by the principal components. (B) Prin-
cipal component loadings displaying the relationship between principal components and the original variables.
(O) A biplot displaying the original variables and the transformed variables in the principal component axes.

shown in Fig. 5.3B. For example, we can see that there is a positive correlation between prin-
cipal component 1 and variables X1 and X3 whereas there is a negative correlation with var-
iable X2. Understanding such relationship is valuable in gaining a physical understanding
of the principal components as we will see later in the field application. Another way to dis-
play this relationship is using the biplot in Fig. 5.3C. It displays the original variables and
the transformed variables using the principal component axes. For example, the biplot
clearly shows that there is very little dependence between principal component 2 and
the variable X1. This can be verified from the loadings for principal component 2 shown
in Fig. 5.3B.

5.3 CLUSTER ANALYSIS

The goal of cluster analysis is to partition a dataset into groups that are internally homo-
geneous and externally distinct (Davis, 1986; Kaufman and Rousseeuw, 1990; Johnson and
Wichern, 1992). The classification is carried out on the basis of a measure of similarity or dis-
similarity within and between the groups. Cluster analysis can be viewed as an unsupervised
method of pattern recognition because the operation is typically not guided by a priori
hypothesis or external models. Variable selection plays an important role, and different
choices may result in drastically different results. For example, if the purpose of cluster
analysis is to characterize a geologic formation by identifying electrofacies groups from a
suite of well logs, then we should select well logs that are sensitive to lithology (Doveton
and Prensky, 1992). Experience and user intervention can be critical in the proper interpre-
tation of results of cluster analysis. In two or three dimensions, clusters can be visualized.
With more than three dimensions, we need some kind of analytic assistance to reduce the
dimensionality of the data without the significant loss of information. One such approach
is the principal component analysis discussed above. Generally speaking, clustering algo-
rithms fall into three different categories: partitioning or relocation, hierarchical, and
model-based clustering algorithms.
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5.3.1 k-Means Clustering

Partitioning or relocation methods require the user to specify the initial number of groups
or clusters, and the algorithm iteratively reallocates observations between groups until a
predefined convergence criterion is reached. Most clustering algorithms rely on some dis-
tance or dissimilarity measure between data points to classify them into groups
(Mahalanobis, 1936). The simplest and most common measure is the Euclidean distance
between data vectors x;and x,: d(x1, x2) = ||x1 — x2||. One of the popular relocation methods
is the k-means algorithm. In this procedure, the user specifies k-groups as the number of clus-
ters along with their initial centroid locations. A matrix of similarities is then computed
between the n data points and the k-centroids, and each observation is assigned to the group
with the closest centroid. A new centroid, or the multidimensional version of the mean, for
each group is computed, and the process is repeated. With each iteration, the centroids are
expected to move toward the actual centers of the local groups formed during the process.
Group labels are assigned by minimizing the within-cluster sum-of-squares distances for
the k-groups, that is,

k
Minimize » "Ng Y d(x,%;)? (5.4)
g=1

xeCy

where N, is the size of Cg, the gth cluster.

A stepwise illustration of the k-means clustering is shown in Fig. 5.4. It involves iterative
refinement with two steps in each iteration: (i) an assignment step where each observation is
assigned to the closest mean and (ii) an updating step that computes the new means to be the
centroids of the observations in the cluster. The algorithm proceeds until the within-cluster
sum-of-squares distance in Eq. (5.4) is minimized. The use of the least-squares minimization
method is a disadvantage that makes k-means less resistant to outliers. Also, the memory re-
quirements are quadratic in the number of observations. The method requires specifying the
number of clusters in advance and the centroids of the clusters to get started. The results can
be sensitive to this initial choice, and often, prior knowledge can be used to define the initial
clusters. For clustering using diverse data types, it is necessary to normalize the variables for
stable and consistent results. The major advantage of the k-means algorithm is its computa-
tional efficiency because the algorithm operates on relatively small dissimilarity matrices.

An Illustrative Example of k-Means Clustering

We continue the analysis of the dataset in Fig. 5.2. In Fig. 5.5A, the data are displayed using
all three principal components. The results of cluster analysis using k-means with the first two
principal components are shown in Fig. 5.5B. Two data clusters have been identified as indi-
cated by the varying symbol sizes. A visual inspection and comparison with the data cloud
show how cluster analysis can reveal the underlying data structure. A summary of the main
results from the k-means clustering is given in Table 5.2.

5.3.2 Hierarchical Clustering

Hierarchical clustering methods proceed by stages producing a sequence of partitions,
each corresponding to a different number of clusters (Mardia et al., 1979). These algorithms
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Results of k-Means Clustering

Comp1 Comp2
Cluster centroids
Cluster 1 2.09 0.114
Cluster 2 —0.941 —0.051
Within-Cluster Sum of Squares Cluster Size
Cluster size and sum of squares
Cluster 1 11.62 9
Cluster 2 10.89 20

can be either agglomerative, meaning that groups are merged or divisive in which one or
more groups are split at each stage. Hierarchical procedures describe a method yielding
an entire hierarchy of clustering for the given dataset. The most common hierarchical algo-
rithm is the agglomerative nesting, also known as Ward’s method, which starts with each ob-
servation in separate groups and proceeds with the clustering until all observations are in a
single group. Computation consists of iteratively merging two clusters with the smallest dis-
similarity and then recomputing the dissimilarity between the new cluster and all the
remaining clusters. The order and strength of the splits can be displayed using a classification
tree or dendrogram. The dendrogram is a graphic representation of the entire hierarchical
process and shows how the data are merged into clusters at various stages of the algorithm
(Fig. 5.6). At the end of the agglomeration process, all the data points are merged into a single
cluster, and typically, a distance or dissimilarity criterion is used to identify a natural
breakpoint in the tree to identify the distinctive clusters. In practical applications, this may
also be done based on inspection or some prior knowledge that can be used to validate
the clusters.

120

100 —

80 —

60 —

40 —

=1 L ora L]

07

A dendrogram illustrating the clustering hierarchy in the agglomerative approach. A distance criterion
is used to cut the tree and identify the clusters.
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An illustration of the hierarchical clustering using the divisive approach.

In the divisive method, all points begin in a single group (i.e., k=1), and the clusters are
split apart as the number of groups k increases. Some of the criteria for splitting can be to
choose the cluster with the largest diameter or to choose the cluster with largest within-cluster
pairwise distance. A stepwise illustration of the procedure is shown in Fig. 5.7.

Unlike the k-means clustering, the hierarchical approach does not require specification of
the number of clusters at the beginning, although it still requires the selection of clusters at the
end based on some mathematical or external criterion. A major disadvantage of the approach
is the computational cost when the number of data points is large. This requires manipulation
of a potentially large similarity matrix. For example, for n observations, there will be
n(n—1)/2 similarities, the cluster analysis will involve (1 —1) steps, and the computational
cost tends to increase rapidly with the number of observations. To alleviate the situation,
the cluster analysis is often carried out in conjunction with principal component analysis
(PCA). The dominant principal components are used to carry out the clustering in a reduced
dimensional space.

An Illustrative Example of Hierarchical Clustering

We now illustrate the hierarchical clustering using the sample dataset. Fig. 5.8 shows the
dendrogram. As discussed before, it starts with each of the 29 data points as individual clus-
ter, and these clusters are progressively merged, ultimately leading to a single cluster.
A decision is then made about the number of clusters and a cutoff point is placed on the tree
to assign the data to the clusters or groups. In Fig. 5.8, the cutoffs are shown for two clusters
and three clusters. For the 2 cluster case, we can see that the dataset is grouped into clusters of
9 points and 20 points, the same outcome as the k-means clustering above.
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Dendrogram for the example dataset indicating cutoffs for two and three clusters.

5.3.3 Model-Based Clustering

Neither hierarchical nor relocation methods directly address the issue of determining the
number of groups within the data. However, various strategies for simultaneous determina-
tion of the number of clusters and cluster membership have been proposed, and one such
method is the model-based clustering techniques such as the expectation-maximization
(EM) algorithm. This approach can give much better performance than traditional procedures
such as hierarchical and k-means clustering, which often fail to identify groups that are either
of overlapping or of varying sizes and shapes. Another advantage of the model-based ap-
proach is that there is an associated Bayesian criterion for assessing the model. As discussed
below, the method provides a means of selecting not only the parameterization of the model
but also the number of clusters without the subjective judgments necessary in other conven-
tional cluster analysis techniques.

The key idea of model-based clustering is that the data are generated by a mixture of un-
derlying probability distributions. We assume that the probability density function of a
p-dimensional observation x from the kth group is fi(x;6) for some unknown parameter vector
6. Given observations D = (xy, ..., X)), let y=(y1, ..., 7,)" denote the identifying group labels for
the classification. The parameters 6 and y are determined so as to maximize the likelihood:

L(D; 6,7) =] [fi(x::6) (5.5)
i=1

Note that y,=k if x; comes from the kth group.
In general, each cluster is represented by a multivariate Gaussian model:

ﬁ(xiuwzc):(zﬂ)%zcrwexp{—%m—ufzg 1<xi—uc>} (5.6)

where x; represents the data and c denotes an integer subscript specifying a particular cluster.
Clusters are ellipsoidal, centered at the means p.. The covariances X. determine their
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geometric characteristics. For example, the orientation of the clusters will be given by the ei-
genvectors of X, the cluster size or variance is given by the largest eigenvalue of X, and the
ratio of the other eigenvalues to the largest determines the cluster shape. From Eq. (5.6), we
can see that if we simplify the covariance matrix for each cluster to be diagonal and identical,
T, = o’ where I is the identity matrix, then maximizing the likelihood in Eq. (5.5) is the same
as minimizing the sum-of-squares distances within the clusters and the algorithm reduces to
the commonly used Ward’s method discussed above. Thus, Ward’s method assumes that the
clusters are spherical in shape with the same size or variance.

5.4 DISCRIMINANT ANALYSIS

Discriminant analysis is a multivariate method for assigning an individual observation
vector to two or more predefined groups on the basis of measurements. Unlike the cluster
analysis, the discriminant analysis is a supervised technique and requires a training dataset
with predefined groups. This technique is based on the assumption that an individual sample
arises from one of ¢ populations or groups I, ..., I, ¢ > 2. If each group is characterized by a
group-specific probability density or likelihood function f.(x) and the prior probability of the
group z. is known, then according to Bayes’ theorem, the posterior distribution of the classes
given the observation x is

_aep(xle) _mefe(x) 2o (%) (5.7)
px)  p(x)

and the observations should be allocated into the group with the maximal posterior proba-

bility p(c|x). Suppose the distribution for each group c¢ be expressed by Eq. (5.6). Then, the

Bayesian maximum a posteriori criterion is used to allocate a future observation x to the

group c for which the function in Eq. (5.7) is the largest or its negative

Q. =—2logf.(x) —2logx,
= (X_ uc)ngl (X - uc) + IOg |EC‘ - Zlogﬂc

p(clx)

(5.8)

is the smallest. The first term of Eq. (5.8) is known as the Mahalanobis distance (Mahalanobis,
1936) from x to the group mean p.. The difference between the Q. for the groups is a quadratic
function of x, so the method is known as quadratic discriminant analysis and the boundaries
of the decision regions are quadratic surfaces in x space. If the groups have a common covari-
ance X, the differences in Q. are then linear functions of x and create linear decision bound-
aries between groups. Then, this method reduces to linear discriminant analysis that assumes
that the data groups have similar sizes and orientation.

The concept of linear discriminant analysis is best illustrated in Fig. 5.9 (Doveton and
Prensky, 1992). In the figure, we can see that there is considerable overlap between the
two data groups when seen as frequency curves on each axis. Given these data as the training
data, assignment of groups to some test data becomes difficult, particularly for the
overlapping regions. For this example, there is clear separation between groups A and B
in the bivariate cross plot; however, in practice, most likely, there will be regions of overlap.
The linear discriminant or allocation function is given by the equation of the line on which the
distance between the data clouds is maximized while the spread within each cloud is
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A graphic illustration of the discriminant function for a bivariate dataset. Reprinted with permission
from Doveton, ].H., Prensky, S.E., 1992. Geological applications of wireline logs—a synopsis of developments and
trends. Log Anal. 33 (1992) 286. Copyright, AAPG.

minimized. This is illustrated in Fig. 5.9. All the data points can now be projected on this line.
A discriminant index is computed as the midpoint of the projection of the mean of the data
groups on this line. The discriminant index is then used as the boundary between the data
groups to assign a new observation to one of the groups.

The discriminant analysis requires training data in the form of prior classification into rel-
atively homogenous subgroups whose characteristics can be described by the statistical dis-
tributions of the grouping variables associated with each subgroup. Typically, the
classification is performed by defining the distinct groups based on the unique characteristics
of the measurements or by applying known external criteria. However, because in many sit-
uations a training dataset with absolutely known classifications is not easily obtained, a
method like model-based cluster analysis is often used for classification purposes.

An Illustrative Example of Discriminant Analysis

We now illustrate the linear discriminant analysis using the sample dataset. The goal here
is to identify a classification boundary for the two clusters identified by the k-means algorithm
(Fig. 5.5) and develop a linear equation, called a discriminant function that best differentiates
between the two groups. The classification boundary determined from linear discriminant
analysis is shown in Fig. 5.10. Given a new set of X1, X2, and X3, we can now use the clas-
sification boundary or the discriminant function to assign each data to one of the two groups.
Note that this is a supervised classification as it relies on the classification pattern established
from the prior analysis.
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5.5 FIELD APPLICATION: THE SALT CREEK DATA SET

5.5.1 Dataset Description

We now demonstrate the application of the multivariate data analysis, specifically
PCA, cluster analysis, and discriminant analysis using a field example (Lee et al,
2002). Our goal here is to predict permeability using a suite of well logs for the Salt Creek
Field Unit (SCFU) data introduced in Chapter 4 (SALT-CREEK.DAT). The data used in
this analysis belong to seven wells with cores and measured permeabilities for the cored
interval. A suite of seven well logs (GR, LLD, MSFL, DT, NPHI, RHOB, and PEF) are used
to predict permeability in this highly heterogeneous carbonate reservoir in the Permian
Basin, Texas. Out of the seven cored wells, two (G517 and G520) were left out to verify
the correlations using blind tests.

An important first step of data correlation is data partitioning whereby we subdivide the
data into groups or classes that are internally homogeneous with respect to some predefined
measure. A common approach for data partitioning is cluster analysis discussed before. For
field applications with high-dimensional dataset, it is often necessary to perform the cluster
analysis in a reduced dimensional space. The cluster analysis is typically carried out in the
principal component space with the first few principal components explaining the majority
of the data variance. This not only reduces the computational cost but also can help eliminate
the effects of spurious noise in the data.

When the clusters are derived from well logs, they are often referred to as
“electrofacies.” So, electrofacies may be defined by a similar set of log responses that char-
acterizes a specific rock type and allows it to be distinguished from others (Serra and Ab-
bott, 1982). Once the well-log data are associated with a set of electrofacies, we can build
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correlation between measured permeability from cores and various well logs for each
electrofacies. In this example, we will use the nonparametric regression method, namely,
alternating conditional expectation (ACE) algorithm, discussed in Chapter 4 to build such
correlation without any a priori assumption of functional form between permeability and
well logs. Finally, the discriminant analysis is used to first assign electrofacies in “blind”
wells and then predict permeability using appropriate correlation specific to the
electrofacies. A stepwise illustration of the process is shown in Fig. 5.11. We now discuss
below the steps involved in the analysis.

5.5.2 PCA

PCA is applied to obtain the principal components PC; (j=1,...,7) from the well-log
data after normalization. Fig. 5.12 shows the screeplot, a barplot of the variance of the

j
principal components labeled by Z/Ii /trace(Z), which often provides a convenient visual
i=1
method of identifying the important principal components. The first four principal compo-
nents in this case explain around 90% variation in the dataset.

In the scatterplot (Fig. 5.13), we explore the relationship between reservoir properties and
the three major principal components generated from the seven well logs. The first principal
component (PC1) appears to correlate with porosity of the formation, while the second prin-
cipal component (PC2) shows a strong correlation with gamma-ray readings.

The eigenvectors of the correlation matrix provide coefficients or loadings of the principal
component transformation (Table 5.3). For example, PC1 and PC2 are given by

PC1=—0.12GR — 0.38 log (LLD) — 0.41 log (MSFL)
+0.47DT — 0.46RHOB + 0.48NPHI — 0.09PEF

PC2 =0.63GR — 0.29 log (LLD) — 0.13 log (MSFL)
—0.14DT +0.09RHOB — 0.09NPHI — 0.68PEF

We can now see that the principal components are simply surrogate variables defined by a
weighted linear combination of the well logs.

5.5.3 Cluster Analysis

Model-based cluster analysis is used to define eight distinct groups based on the unique
characteristics of the well-log measurements. In Fig. 5.14, each cluster can be treated as an
electrofacies that reflects the petrophysical, lithologic, and diagenetic characteristics. The
scatterplot in Fig. 5.13 relating the principal components to the physical variables can be use-
ful in identifying the characteristics of the clusters or electrofacies. Based on the scatterplot,
we can see that as PC1 increases, porosity decreases and the rocks become tighter. Also, as
PC2 increases, the gamma-ray reading increases, and the rocks become more shaley. Thus,
we can state qualitatively that the first electrofacies group (EF1) indicates tight media (low
porosity) with low gamma-ray reading and the eighth electrofacies group (EF8) represents
porous media with high gamma-ray reading.



112 5. MULTIVARIATE DATA ANALYSIS

RHOB

Step 1:
® Select an appropriate
suite of well logs

IE l ‘f.\‘:«"é‘“/":"ﬂ%"

Step 2:

® Perform principal
component analysis
(data reduction)

Step 3:

e Define electrofacies
using cluster analysis

® Generate permeability
correlation using ACE

Discriminant analysis Permeability Prediction
EF1
6220- y
T 6240-
EF2 6260 Step 4:
) . B .
g e |dentify electrofacies via
L discriminant analysis
K ss0 . e
w0 ® Predict permeability
4 6380- . .
oo using electrofacies-
S x oo specific correlation
i Log(K)

A schematic flowchart of permeability prediction based on electrofacies characterization. Reprinted
from Lee, S.H., Khraghoria, A., Datta-Gupta, A., 2002. Electrofacies characterization and permeability predictions in
carbonate reservoirs: role of multivariate analysis and non-parametric regression. SPE Reserv. Eval. Eng. 5(3).
Copyright SPE.
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nents. Reprinted from Lee, S.H., Khraghoria, A., Datta-Gupta, A., 2002. Electrofacies characterization and permeabil-
ity predictions in carbonate reservoirs: role of multivariate analysis and non-parametric regression. SPE Reserv.
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Scatterplot of GR, core porosity, core permeability, flow zone indicator (FZI), PC1, PC2, and PC3 of
well logs. Reprinted from Lee, S.H., Khraghoria, A., Datta-Gupta, A., 2002. Electrofacies characterization and per-
meability predictions in carbonate reservoirs: role of multivariate analysis and non-parametric regression. SPE
Reserv. Eval. Eng. 5(3). Copyright SPE.

5.5.4 Data Correlation and Prediction

After partitioning of well-log responses into electrofacies groups, the nonparametric re-
gression ACE algorithm is applied to model the correlation between permeability and
well-log responses within each of the partitioned groups. Table 5.4 compares the regression
errors for the model used for developing the correlations. These errors are summarized in
terms of mean squared error (MSE) and mean absolute error (MAE) during regression.
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Results of Principal Component Analysis of Well Logs

PC1
GR —0.122
Log(LLD) -0.379
Log(MSFL) —0.412
DT 0.470
RHOB —0.464
NPHI 0.476
PEF —0.092
Eigenvalue 3.80
Contribution (%) 54.3
Cum. contribution (%) 54.3

PC2

0.628
—0.293
—0.127
—0.140

0.089
—0.089
—0.684

1.38

19.7
74.0

PC3

—0.761
—0.119
—0.144
—0.198
0.205
—0.124
—0.537
0.685
9.8
83.7

PC4

—0.027
0.567
0.483
0.161

—0.340
0.283

—0.472
0.558
8.0

91.7

PC5

0.096
0.654
—0.742
—0.068
0.079
0.040
—0.036
0.338
4.8
96.5

PCeé

—0.015
—0.072
—0.046
—0.805
—0.553
0.172
0.095
0.135
1.9
98.5

PC7

0.033
—0.043
0.084
—0.206
0.554
0.799
0.043
0.107
1.5
100

Reprinted from Lee, S.H., Khraghoria, A., Datta-Gupta, A., 2002. Electrofacies characterization and permeability predictions in carbonate

reservoirs: role of multivariate analysis and non-parametric regression. SPE Reserv. Eval. Eng. 5(3). Copyright SPE.

PC1

Tightness —

The distribution of electrofacies data plotted on the first two principal components of well logs.
Reprinted from Lee, S.H., Khraghoria, A., Datta-Gupta, A., 2002. Electrofacies characterization and permeability pre-
dictions in carbonate reservoirs: role of multivariate analysis and non-parametric regression. SPE Reserv. Eval. Eng.

5(3). Copyright SPE.

We now predict permeability in G517, one of the two cored wells that were left out for blind
tests. The first step involves defining the electrofacies at various depths from the well-log re-
sponses in G517. On the basis of the eight clusters defined in step 2, an allocation function is
determined by discriminant analysis. Through the allocation function, we can define the
group membership of the log responses in these wells. Fig. 5.15 shows the electrofacies profile
in well G517. Permeabilities are obtained by applying the correlation model derived in step 3
for each electrofacies, and the results are compared with measured data in Fig. 5.16A. Overall,
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Comparison of Regression and Prediction Errors in Three Models

Error ACE
Regression error (5 Wells, 904 sample pts.) MAE 0.97
MSE 1.58
Prediction error (G517, 174 sample pts.) MAE 1.15
MSE 2.25
Prediction error (G520, 183 sample pts.) MAE 1.04
MSE 1.74

Reprinted from Lee, S.H., Khraghoria, A., Datta-Gupta, A., 2002. Electrofacies characterization and permeability predictions in carbonate
reservoirs: role of multivariate analysis and non-parametric regression. SPE Reserv. Eval. Eng. 5(3). Copyright SPE.
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The profile of eight electrofacies at Well G517 determined by discriminant analysis. The “true” refers
to electrofacies assigned when all the wells were included in the cluster analysis for electrofacies classification.
Reprinted from Lee, S.H., Khraghoria, A., Datta-Gupta, A., 2002. Electrofacies characterization and permeability pre-

dictions in carbonate reservoirs: role of multivariate analysis and non-parametric regression. SPE Reserv. Eval. Eng.
5(3). Copyright SPE.

the predicted permeabilities based on log data in G517 agree well with the core measure-
ments. To illustrate the value of the multivariate analysis, specifically the data partitioning
via electrofacies classification, we compare the permeability predictions with classification
based on stratigraphic zonation (Fig. 5.16B). The electrofacies approach seems to significantly
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Scatterplot of measured and predicted permeability based on (A) the electrofacies classification and
ACE (Well G517) and (B) stratigraphic zonation. Reprinted from Lee, S.H., Khraghoria, A., Datta-Gupta, A., 2002.
Electrofacies characterization and permeability predictions in carbonate reservoirs: role of multivariate analysis
and non-parametric regression. SPE Reserv. Eval. Eng. 5(3). Copyright SPE.

outperform the zonation approach. This is to a large extent because of the improved discrim-
inatory power of pattern recognition from the multivariate analysis (Lee et al., 2002).

The reader can reproduce the results in this field example using the software EFACIES
and the Salt Creek field data (SALT-CREEK.DAT) made available in the online resources for
this book.

5.6 SUMMARY

In this chapter, we have introduced three important techniques for multivariate data anal-
ysis, namely, the principal component analysis, cluster analysis, and discriminant analysis.
We have illustrated the strength of the methods for data visualization, dimension reduction,
understanding the intrinsic data structure, pattern recognition, and data partitioning/classi-
fication for regression analysis. The field application demonstrates the power and utility of
multivariate analysis for improving data correlation and predictions.

Exercises

1. Use the dataset “MULTIVAR_FIG5-2.DAT” to perform the Principal Component Analysis
as follows:

(1) Make three plots: (1) x; Vs. X2, (2) X2 vs. X3, and (3) x3 vs. x;. Examine the correlation
among the variables.

(2) Compute the normalized (mean-zero and unit-variance) variables z;, z,, and z3
corresponding to x;, X, and x3, respectively. (Hint: First, calculate the mean and
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variance for the variables xq, x5, and x3.) Then for each variable, subtract its mean and
divide by its variance.

(3) Compute covariance matrix C=272"Z/(n—1) where Z=[z; 2z, z;] and n is number
of data.

(4) Perform a singular value decomposition of the covariance matrix (C=Q"AQ) and
compute the principal components. How many principal components would be
necessary to represent the original three variables while preserving at least 90% of the
variance in the data?

(5) Plot PC2 vs. PC1 and compute the variances along each axis. You will see that PC1 has
much larger variance than PC2 as indicated by the eigenvalues.

. Using the principal components 1 and 2 in Example 1, perform k-mean clustering and
divide the data into two clusters. (Hint: Follow the steps in Fig. 5.4 by first randomly
selecting two cluster means and then assigning the principal components to the cluster
with the nearest mean. Compute the coordinates of two cluster centroids by averaging PC1
and PC2 in each cluster. Update the cluster number based on the new distance. Repeat this
procedure until the convergence is achieved.)

. Using the dataset “SALT-CREEK.DAT,” build permeability prediction models using well
logs and nonparametric regression.

(1) Perform the PCA and reproduce the results in Fig. 5.12 and Table 5.3.

(2) Using the principal components 1 and 2, perform the k-mean clustering with three
different cluster numbers. Suggest the appropriate number of clusters by examining
the histograms of the well logs within each cluster.

(3) Build permeability prediction models for each cluster using ACE algorithm.

(4) Predict the electrofacies and permeability for the blind well 517 (SALT-CREEK-
G517.DAT).

(5) Compare the R*-value between predicted and measured permeability with the
Example 6 in Chapter 4 where the electrofacies was not accounted in the regression.
Does electrofacies classification improve the prediction quality?

. Using the dataset Multivar_Exercise.xIsx, complete the following principal component
analysis:

(1) Calculate the data correlation matrix for five independent variables (x; to xs).

(2) Compute the eigenvalues and eigenvectors of the correlation matrix.

(3) Provide a screeplot for the variance analysis. How many principal components are
sufficient to explain 90% percentage of the variance?

. Using the dataset Multivar_Exercise.xlsx, perform k-mean clustering of the five
independent variables (x; to xs). (Specify k=3 for the number of clusters.)

. Using the dataset Multivar_Exercise.xIsx, draw scatterplot matrix, which is similar to
Fig. 5.13, for the following:

(1) For all five independent variables (x; to x5) to examine any correlation
among them.

(2) For the first two principal components with different colors or symbols representing
the three clusters from k-mean clustering.
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(3) For the first two principal components with different colors or symbols representing
the dependent variable y, from the given data.
(4) Please comment on the results of cluster analysis based on the visual examinations.
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The focus of this chapter is uncertainty quantification, which involves translating the un-
certainty in the inputs of a model into the corresponding uncertainty in model outputs. To this
end, we present a systematic approach regarding how to characterize the uncertainties, prop-
agate them through the system model of interest into uncertainties in model predictions, and
analyze the relative importance of various sources of uncertainty.

6.1 INTRODUCTION

6.1.1 Deterministic Versus Probabilistic Approach

Petroleum engineers and geoscientists dealing with the movement of fluids in subsurface
geologic systems are often confronted with uncertainty caused by incomplete knowledge
(arising from data gaps, measurement error, lack of resolution, biased sampling, etc.) and/
or natural randomness. Examples of such geosystems include petroleum reservoirs and
groundwater-bearing formations, as well as potential host rocks for carbon sequestration, nat-
ural gas storage, and nuclear waste disposal. The certainty and ubiquity of uncertainty in
geosystems pose interesting challenges in the analysis and modeling of such systems. Tradi-
tional deterministic modeling of uncertainty has involved using best-guess or worst-case as-
sumptions about model inputs to quantify their impacts on model predictions. Alternatively,
a set of optimistic and pessimistic values are sometimes utilized to provide upside and down-
side forecasts around a reference scenario (Ovreberg et al., 1992). However, this simplistic
approach is not capable of dealing with complex problems where the system response is
nonlinear or where correlations exist between model parameters. Systematic combinations
of optimistic and pessimistic values may also lead to confidence intervals that are too wide
(resulting in overdesign) and whose reliability is difficult to assess.

Recently, there has been renewed interest in the use of probabilistic techniques for formal
uncertainty quantification in petroleum reservoirs (e.g., Murtha, 1994; Bratvold and Begg,
2010; Ma and LaPointe, 2010; Caers, 2011), building upon the earlier work by several re-
searchers (e.g., Walstrom et al., 1967; MacDonald and Campbell, 1986). In the probabilistic
approach, multiple values of model parameters (taken from parameter-value distributions)
are propagated through the system model to produce multiple valued consequences (or out-
put distributions). Compared with the deterministic approach, the probabilistic approach of-
fers multiple advantages. First, it allows all information regarding uncertain and variable
parameters to be captured—as compared with using only the best-guess or worst-case values
in the deterministic approach. Second, the full range of possible outcomes (as well as the prob-
ability of each outcome) can be quantified, whereas the deterministic approach cannot pro-
vide the likelihood associated with the outcome from any combination of scenarios. Third, it
is possible to analyze the relationship between inputs and outputs to identify critical uncer-
tain inputs while considering any synergistic effects between the model inputs. Thus, the
probabilistic approach is better suited for making informed decisions under uncertainty.

As an illustrative example, consider the problem of predicting the uncertainty in future
income from a new oil-producing reservoir. The uncertain variables are oil production, cap-
ital and operating expenses, and oil price. The uncertainty in each variable is characterized as
(best-guess value)+10%. The goal of this exercise is to quantify the impact of these
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FIG. 6.1 Example showing deterministic versus probabilistic analysis results.

uncertainties via deterministic range analysis and probabilistic analysis. Fig. 6.1 summarizes
the results of this analysis. Here, the reference case forecast for the deterministic analysis is
based on combining all of the “best-guess” values. Similarly, the pessimistic and optimistic
forecasts are derived from a systematic combination of all pessimistic or all optimistic values,
respectively. The corresponding deterministic range is found to be between 15 and 135 mil-
lion dollars, without any additional information regarding the relative likelihood of these or
intermediate values. On the other hand, the probabilistic analysis does provide such informa-
tion as shown by the probabilistic outcome curve. Itis also clear that the deterministic analysis
includes very low-probability outcomes at both extremes, which is why the probabilistic
range (30-105 million dollars) is smaller and potentially more realistic. Although not shown
here, the probabilistic analysis also reveals that the uncertainty in oil rate and oil price con-
tribute the most to the overall spread in predictions of net income.

6.1.2 Elements of a Systematic Framework

As a first step in modeling under uncertainty, it is useful to outline the elements of a sys-
tematic framework for uncertainty quantification (Mishra, 2009). As schematically shown in
Fig. 6.2, these are:

* Uncertainty characterization—which involves capturing all information regarding
uncertain and variable factors by fitting and /or assigning marginal and joint distributions
to uncertain model inputs

* Uncertainty propagation—which involves quantifying the full range of possible outcomes
and the probability of each outcome by mapping the uncertainty in model inputs into the
corresponding uncertainty in model outputs
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FIG. 6.2 Key elements of a systematic framework for uncertainty quantification.

* Uncertainty importance assessment—which involves analyzing input-output
relationships to determine the key drivers of output uncertainty (aka “heavy hitters”)

It should be noted that in the subsurface modeling and analysis literature, the term
“uncertainty analysis” is commonly used to describe both uncertainty characterization
and uncertainty propagation as defined above, whereas the term “sensitivity analysis”
is used to describe the assessment of uncertainty importance (e.g., Ma and LaPointe,
2010). In other words, uncertainty analysis refers to the process of capturing all informa-
tion regarding uncertain and variable factors and estimating distributions around model
predictions. Sensitivity analysis, on the other hand, involves identifying key input param-
eters that contribute the most to the model’s predictive uncertainty. In this book, we
prefer to use the three descriptors of Fig. 6.2 to describe the broader uncertainty quanti-
fication process.

6.1.3 Role of Monte Carlo Simulation

A review of the petroleum and environmental geosciences literature shows that uncer-
tainty analysis is often taken to be synonymous with Monte Carlo simulation (MCS). MCS
can be broadly described as a numerical method for solving problems by random sampling
(Morgan and Henrion, 1990).

As shown in Fig. 6.3, the probabilistic modeling approach of MCS allows a full mapping of
the uncertainty in model parameters (inputs) and future system states (scenarios), expressed
as probability distributions, into the corresponding uncertainty in model predictions (out-
put), which is also expressed in terms of a probability distribution. Uncertainty in the model
outcome is quantified via multiple model calculations using parameter values and future
states drawn randomly from prescribed probability distributions. MCS is also known as
the method of statistical trials because it uses multiple realizations (i.e., combinations of
values) of different inputs to compute a probabilistic outcome.
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FIG. 6.3 Schematic of the Monte Carlo simulation process.

The MCS approach is computationally burdensome because it typically requires several
hundred model calculations (if not more). However, as noted earlier, the underlying proba-
bilistic framework also provides important information not available from a deterministic
“best-guess” or “worst-case” calculation. It should also be noted that although MCS provides
the greatest versatility in uncertainty propagation studies, it may not be the most efficient
when (a) parameter uncertainty is poorly defined, (b) forward models are computation
intensive, or (c) outcomes of interest are limited in number (Mishra, 1998). We discuss this
further in Section 6.5.

In this chapter, we present a systematic approach for uncertainty quantification—
primarily within a MCS framework—organized along the three elements shown in Fig. 6.2.
The motivation here is to provide sufficient information to emphasize that there is more to
MCS than simple random sampling, multiple model runs, and aggregation of results. Our
MCS workflow can be described as follows:

(a) Uncertainty characterization
(1) Select imprecisely known model input parameters to be sampled.
(2) Construct probability distribution functions for each of these parameters.
(b) Uncertainty propagation
(1) Generate a sample set by selecting a parameter value from each distribution.
(2) Calculate the model outcome for each sample set and aggregate results for all samples
(equally likely parameter sets).
(c) Uncertainty importance
(1) Analyze the probabilistic calculations to determine the input-output relationships.
(2) Identify the key uncertain parameters.
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6.2 UNCERTAINTY CHARACTERIZATION

In this section, we describe how to select imprecisely known model input parameters to be
sampled and how to assign ranges and probability distributions for each of these parameters.
We will also discuss the problem of scale and how it affects the choice of distribution assign-
ment. This is particularly important for parameters associated with spatially averaged
models (e.g., volumetric reserves estimation).

6.2.1 Screening for Key Uncertain Inputs

As a first step in uncertainty characterization, it is useful to consider the selection of key
uncertain inputs so as to identify and retain only those input variables that have the greatest
impact on the outcomes of interest. Eliminating redundant uncertain inputs from the sampled
set generally helps focus data collection efforts and improves the stability and reliability of
MCS results. It also facilitates robust statistical model building of input-output relationships
during the sensitivity analysis phase needed to identify key drivers of output uncertainty.
This is most readily carried out using standard one-parameter-at-a-time (OPAT) sensitivity
analysis with the results plotted using a spider chart or a tornado chart.

As an example of a spider chart, Fig. 6.4 shows the results of an OPAT sensitivity analysis
for a problem involving CO; injection into a brine-filled formation (Ravi Ganesh and Mishra,
2016). Along the x-axis, the values of different variables are represented as indicators
(e.g., —1=low, O=reference, and +1=high), which allows variables with different units to
be effectively normalized. Sometimes, it is useful to vary all parameters over a common range
(i.e., 2 standard deviations from the mean). Along the y-axis, either the unadjusted response
or the change in the response from the reference case is plotted. The steeper the slope of
the corresponding line for any variable, the greater its influence. Also, the curvature of each
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FIG. 6.4 Examplespider chart from OPAT sensitivity analysis for CO, injection into a brine-filled formation. After
Ravi Ganesh, P., Mishra, S., 2016. Simplified physics model of CO2 plume extent in stratified aquifer-caprock systems.
Greenhouse Gas Sci. Technol. 6, 70-82. https://doi.org/10.1002/ghg.1537.
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FIG. 6.5 Example tornado chart from OPAT sensitivity analysis for CO, injection into a brine-filled formation.
After Ravi Ganesh, P., Mishra, S., 2016. Simplified physics model of CO2 plume extent in stratified aquifer-caprock
systems. Greenhouse Gas Sci. Technol. 6, 70-82. https://doi.org/10.1002/ghg.1537.

line is indicative of model nonlinearity. In this specific case, the most sensitive parameter af-
fecting total storage efficiency can be identified as mean reservoir permeability (kz), perme-
ability anisotropy ratio (k,/kj), nature of permeability layering (kg layering), and CO,
injection rate (Q;,;). Therefore, these should be treated as uncertainties in an MCS exercise,
while the other parameters are fixed at their mean or median values.

A tornado chart captures sensitivities from a range analysis, where one starts with ranges
of interest for the parameters (e.g., minimum and maximum, 5th and 95th percentiles). The
model is run for each extreme value for each parameter, while keeping everything else fixed
at their nominal values (i.e., mean and median). The resulting data are plotted as horizontal
bars that show the full range of model output response for each of the uncertain inputs. The
data are arranged such that the biggest response (i.e., widest bar) is plotted at the top, leading
to the shape of a tornado. An example of such a plot is given in Fig. 6.5, which essentially
confirms the results of the spider chart analysis. The main difference is that the tornado chart
can only reflect the two end-member outcomes, whereas a spider chart can be populated with
intermediate results by calculating model outcomes at values in between the reference case
and the high/low points.

Another approach involves the use of experimental design-based screening techniques
such as Plackett-Burman (PB) analysis. As described in Section 7.2.1, in this approach, a
two-level design (i.e., high and low values) is used to estimate the main effects of the predic-
tors on the response. Arinkoola and Ogbe (2015) present a case study showing how this ap-
proach is used to identify the “heavy hitters” for an uncertainty assessment of cumulative oil
production forecasts from a reservoir model.

Once the key uncertain inputs have been identified, their proper characterization
using probability distributions is an important step in producing a defensible uncertainty
analysis study. Unfortunately, a systematic approach to probability distribution
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assignment often appears to be ignored in the petroleum geoscience literature. Such a metho-
dology has been described in detail by Mishra (2002) and involves the following components:

e Fitting distributions to measured data using probability plotting or parameter estimation
techniques (e.g., Hahn and Shapiro, 1967).

* Deriving distributions using known constraints and the principle of maximum entropy
(e.g., Harr, 1987), which forces the analyst to be maximally uncertain with respect to
unknown information.

* Assessing subjective distributions using formal expert elicitation protocols (e.g., Keeny
and von Winterfeld, 1991).

6.2.2 Fitting Distributions to Data

As noted earlier in Section 3.4 only a handful of distributions are generally considered in
practice (see Table 3.2). For example, uniform or triangular distributions are useful for
representing low state of knowledge and/or subjective judgment, normal or lognormal dis-
tributions are commonly used to model errors due to additive or multiplicative processes,
beta distributions are used for representing bounded, unimodal random variables, and
Weibull distributions are popular for modeling component failure rates.

For normal or lognormal distributions, probability plotting is a convenient way for com-
paring the data with the postulated distribution and estimating its parameters. As described
in Section 3.4.1, a probability plot for a normal (or lognormal) distribution is a graph of the
ranked observation, x;, (or In x;) versus an approximation of the expected value of the inverse
normal CDF, G '(g;). Recall that g; is the quantile (cumulative frequency) of the empirical dis-
tribution, generally calculated using the Weibull formula, g;=i/(N+1) where i is the rank of
the observation (sorted from smallest to largest) and N is the number of observations. Also,
the inverse normal CDF, or the z-score, can be readily calculated using the Microsoft Excel
function, NORMSINV.

A more flexible approach, which works for any distribution, involves the use of nonlinear
least-squares analysis, as described in Section 3.4.2. Here, the goal is to estimate model param-
eters by minimizing the mean squared difference between the observed and predicted CDF.
This process can be readily implemented using the nonlinear optimization package SOLVER
in Microsoft Excel. Initial guesses for the parameter estimation process can be generated using
the method of moments.

EXAMPLE 6.1 Fitting a lognormal distribution to observed data

Permeability values from multiple core samples in a well (PERM_FIG6-6.DAT) were found to be
x=(25,4.2,82,10.1,13.1,14.7,21.4,24.2, 28.0, 32.2, 38.4, 44.5, 54.9, 72.3, 109, 221) mD. Fit these data
to a lognormal distribution, and calculate the parameters of the distribution.

Solution

A lognormal distribution was first fit to the data using the probability plotting method. This re-
quires plotting the natural logarithm of x against the inverse of the standard normal CDF, G™'(g),
where g is the quantile. As shown in Fig. 6.6A, a very good fit was obtained except at the extreme
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FIG. 6.6 Lognormal fit using (A) probability plot and (B) nonlinear regression, Example 6.1.

tails, with an R value approximately equal to 1. The lognormal parameters are calculated from the
slope and intercept of the best-fit line on the probability plot as #=3.18 and f=1.33.

Next, these parameters are obtained using nonlinear least-squares analysis, which requires min-
imizing the sum of the squared differences between the observed and the predicted quantiles
corresponding to each observed value. The Excel function NORMSDIST was used to generate
the standard normal CDF necessary for estimating the cumulative probability. The corresponding
best-fit parameters, obtained using the SOLVER toolbox in Excel, are a=3.21 and f=1.23, which
agree very well with those estimated using the probability plotting method. Fig. 6.6B compares
the observed CDF with the predictions using regression parameters.

6.2.3 Maximum Entropy Distribution Selection

Although it is desirable to generate probability distributions for uncertain parameters on
the basis of observed and/or simulated data, reality does not always cooperate with the an-
alyst in this regard. Distributions are therefore routinely inferred on the basis of only a limited
amount of information and are also subject to rather ad hoc assumptions. As an alternative,
the principle of maximum entropy offers a systematic approach to distribution selection
under such conditions.

It is well-known that the concept of thermodynamic entropy is related to the degree of
disorder. Similarly, the concept of “information” entropy (Shannon, 1948) may be used to
characterize the uncertainty of probability states, namely,

H==) piIn(p) (6.1)

where H is the Shannon entropy (so named after its original proponent) and p; is the proba-
bility associated with the ith sample. It is easily shown that the maximum entropy corre-
sponds to a uniform distribution, where all samples are equally likely (Harr, 1987).
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TABLE 6.1 Maximum Entropy Distributions

Constraint Assigned PDF
Upper bound, lower bound Uniform
Minimum, maximum, mode Triangular
Mean, standard deviation Normal

Range, mean, standard deviation Beta

Mean occurrence rate Poisson

Any other distribution would have a concentration of probability away from the extreme
values, leading to a reduction of uncertainty and hence a reduction of entropy.

The principle of maximum entropy seeks to choose a PDF that maximizes the entropy, sub-
ject to known constraints. Uncertainty is reduced as much as possible by using all information
(i.e., satisfying all constraints), but no further by unnecessary assumptions. This ensures that
ignorance is preserved and one is maximally uncertain with respect to the unknown informa-
tion. Harr (1987) discusses how the maximum entropy principle can help assign probability
distributions on the basis of known constraints, as summarized in Table 6.1.

As an example, consider the situation when only the lower and upper bounds for porosity
values are estimated to be 8% and 18%, based on a limited amount of data from the formation
of interest and data from an analog formation. The principle of maximum entropy would in-
dicate a uniform distribution for this case. One could opt for a triangular distribution, where
the mode is taken as the midpoint of the range (i.e., 13%). However, that would be tantamount
to making assumptions not supported by the data regarding the symmetry (or lack thereof ) in
the distribution. If the most likely value is known with some degree of certainty (i.e., 15%),
then only should one resort to a triangular distribution. Thus, the entropy-based distribution
selection framework forces the analyst to be maximally uncertain about the data.

6.2.4 Generation of Subjective Probability Distributions

Another common strategy employed in the absence of data is to ask subject matter experts
to develop distributions representing their degree of belief regarding the uncertain quantity
of interest. It is generally recommended (Helton, 1993) that distributions are best developed
by specifying selected percentile values, rather than trying to specify a particular parametric
distribution model (e.g., normal) and its associated parameters (e.g., mean and standard
deviation).

In practice, one starts by specifying the minimum, the maximum, and the median values—
which correspond to the Oth, 100th, and 50th percentiles. The distribution is refined by adding
intermediate percentiles such as the 10th and 90th and the 25th and 75th. Plotting the empir-
ical CDF also helps in deciding whether the selected values at given percentiles need to be
adjusted, and/or additional percentiles need to be added. In general, it is easier for experts
to defend the choice of values corresponding to selected percentiles than the choice of param-
eters characterizing a parametric distribution model. One helpful tool in this context is the
probability scale used by the Intergovernmental Panel for Climate Change (IPCC, 2010), as
shown in Table 6.2.
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TABLE 6.2 TPCC Probability Scale for Subjective Assessments

Subjective Descriptor Equivalent Cumulative Probability
Virtually certain >0.99

Very likely 0.90-0.99

Likely 0.66-0.90

About as likely as not 0.33-0.66

Unlikely 0.10-0.33

Very unlikely 0.01-0.10

Exceptionally unlikely <0.01

TABLE 6.3 Example Subjective Probability Assignment

Percentile Expert 1 Expert 2 Consensus
0 (minimum) 0 2 1
10 1.5 2.5 2
25 3 3 3
50 4 4 4
75 4.3 6 6
90 4.7 7.5 7
100 5 9 8

As an illustrative example, consider the subjective assessment of values for well skin to be
used in a history matching exercise. CDFs elicited from two experts are shown in Table 6.3.
The first expert clearly has a preference for low skin values (mean=23.9 and median=4),
whereas the second expert prefers high skin values (mean=>5.2 and median =4). After much
discussion, a consensus CDF was chosen that was more weighted toward lower values below
the median and more weighted toward the higher values above the median, as shown below.
It should be noted that although formal expert elicitation protocols as described above are not
commonly employed in the petroleum geosciences, they do provide a traceable and defensi-
ble approach to assigning distributions based on subjective judgment.

When many uncertain quantities are candidates for subjective probability distributions, it
is not worthwhile spending limited resources to develop such distributions for each and ev-
ery parameter. Helton (1993) suggests a two-step procedure, wherein all variables are first
crudely characterized as uniform (or log-uniform, depending on the range) distributions
for a screening-level analysis. Model results are analyzed to identify the most important con-
tributors to output uncertainty. Resources can then be focused on this subset of parameters for
a more detailed characterization of uncertainty prior to the second-level analysis. Surrogate
models, built using an experimental design approach (e.g., Chapter 7), can be valuable tools
for this purpose.
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6.2.5 Problem of Scale

Another important consideration in the assignment of proper distributions is the problem
of scale. In petroleum and environmental geosciences, there is often a disparity between the
data collection scale and the model discretization scale. As shown in Fig. 6.7, the former (left
panel) is the scale associated with the physical variable, which is typically ~10~> m and cor-
responds to a higher variance, whereas the latter (right panel) is the scale associated with the
model parameter, which is typically ~10' m and corresponds to a lower variance.

Since most model parameters are typically spatially averaged quantities, care must be
taken to relate uncertainty/variability at the data collection scale to that required by the
model. In particular, it should be noted that the variance observed at the data collection scale
(e.g., core samples) reflects spatial variability and is much larger than that applicable at the
scale of the model parameter (e.g., grid block average) because of spatial averaging.

Asasimple example, consider the 10-sample net pay data from Example 3.9: ks (ft) = (13,17, 15,
23, 27,29, 18, 27, 20, and 24). It is required to develop a distribution for the average net pay to
be used in a probabilistic reserves calculation. What is therefore needed is a characterization
of the uncertainty around the average value, not the full distribution of net pay itself. As shown
in Example 3.9, this is a t distribution with nine degrees of freedom. The sample mean (X)
is 21.3, and sample standard deviation (s) is 5.52, from which standard error of mean
(SE)=5.52/+/10=1.75. For practical purposes, unless the number of samples is extremely
small (i.e., < 5), we could also approximate this as a normal distribution with the same mean
and standard error of mean.

The calculation of the CDF of the mean using the ¢ distribution and its approximation as a
normal distribution are shown below in Table 6.4. Here, the t- and z-values corresponding to a
given percentile (and the degrees of freedom, if needed) are generated using the Excel
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FIG. 6.7 Example showing disparity between data collection scale for physical variables (left) and
discretization scale for model parameters (right).
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TABLE 6.4 Example Calculation of CDF for Mean Using t and Normal Distributions

n Number of Samples =10
X_bar Sample Mean =213
SE Standard Error of Mean =1.75
t-Dist Normal
Net Pay Calculated Calculated
(ft) Rank  Quantile Percentile #-Value Net Pay (ft) z-Value Net Pay (ft)
13 1 0.091
15 2 0.182 0.01 —-2.82 16.4 —2.33 17.2
17 3 0.273 0.05 —1.83 18.1 —1.64 18.4
18 4 0.364 0.1 -1.38 18.9 —1.28 19.1
20 5 0.455 0.25 —0.70 20.1 —0.67 20.1
23 6 0.545 0.5 0.00 21.3 0.00 21.3
24 7 0.636 0.75 0.70 225 0.67 22.5
27 8 0.727 0.9 1.38 23.7 1.28 23.5
27 9 0.818 0.99 2.82 26.2 2.33 254
29 10 0.909
—8— Sample CDF CDF for mean (t-dist) CDF for mean (normal)
1.2
210
E 0.8
o
3 04
£
O 0.2
0.0
10 15 20 25 30

Net pay (ft)

FIG. 6.8 Comparison of CDFs for a variable itself and its mean—using data from Example 3.9.

functions T.INV and NORMSINYV, respectively. These standardized values are then used
with the sample mean and the standard error of the mean to calculate the values of net
pay corresponding to any given percentile.

Fig. 6.8 shows the CDF of the sample net pay data, along with a CDF computed for the
mean using the t distribution, and also approximated using the normal distribution. The main
takeaways from this graph are as follows: (a) The distribution for the mean is much tighter
than that for the variable itself, and (b) the normal approximation to the ¢ distribution works
reasonably well even with as few as 10 samples.
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6.3 UNCERTAINTY PROPAGATION

In this section, we describe how to translate the uncertainty in model inputs into the
corresponding uncertainties in model predictions so as to capture (a) the full range of possible
outcomes and (b) the probability of each outcome. This involves generating many sample sets
(realizations) with random values of model parameters, selecting the appropriate number of
runs needed to reliably estimate uncertainty in model outcomes, and approaches for
presenting the MCS results. We also present some alternative uncertainty analysis techniques
that complement MCS.

6.3.1 Sampling Methods

Random Sampling

The basic idea behind the random sampling approach is as follows. Let the CDF for any
random variable, X, be denoted as F.(x), which is a nondecreasing function of x such that
0 <F,(x) <1. Thus, we can establish a unique functional relationship F, (x) for any u so long
as 0<u <1 and F,(x) is strictly monotonic, which is generally the case with probability dis-
tributions encountered in petroleum and environmental geosciences. If we now define U
as a uniform random variable U =U(0,1), it follows that X =F,~*(U). In other words, by equat-
ing the value of a uniform random variable between 0 and 1 to the CDF, we can back calculate
the corresponding value of the random variable of interest. Fig. 6.9 demonstrates this concept
for a single random variable, where the sampling process works as follows:

1. Generate n uniform random numbers uy, U, U3, ..., u, from U(0,1).
2. Solve for x;=F, '(u;), i=1,2, ..., n.

This results in a design containing n independent samples with replacement, i.e., the same
value could end up being sampled multiple times. Variations on this approach could use dif-
ferent marginal distributions in the sampling of the inputs or possibly include draws from a
joint distribution over subsets of inputs. See Tung and Yen (2005) for additional details on
how this CDF-inverse method can be extended to the case of multiple random variables
for both noncorrelated and correlated cases.

c

Probability

0 X X
FIG. 6.9 Schematic of random sampling with the CDF inverse method.
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Random designs are easy and straightforward to produce. However, they could also suffer
from poor “space-filling” characteristics. That is, multiple observations can end up clustered
in one part of the space and provide largely redundant information about the behavior of the
response surface in that region. Other parts of the space may be sparsely populated, and the
redundant observations could be put to better use filling in those gaps.

Latin Hypercube Sampling

A Latin hypercube sample (LHS) design is intended to fill the predictor space by randomly
selecting observations in equal probability bins across the range of the inputs (McKay et al.,
1979). It is a stratified sampling procedure that involves dividing the range for each input into
strata of equal probability, picking one value from each interval, and randomly combining
values picked for different variables. The sampling is done in such a way that for a sample
of size n, there will be exactly one observation in each of the intervals [0, 1/1], [1/n,2/n],...,
[(n—1)/n, 1] for each of the inputs. In practice, the [0, 1] bounds on the values in LHS
samples are interpreted to be a probability, and the design points are transformed through
some probability distribution on the inputs. This has the effect of spreading the sampled points
across equal regions of probability for each input (according to the chosen distribution), which
alsoresultsinareductionin the computed variance of the corresponding model outcome (Iman
and Helton, 1985). Fig. 6.10 shows how the LHS scheme samples five different values from
nonoverlapping probability bins for different variables and pairs them in a random manner.

1:0 ------------ /:

0.2

X

X5

FIG. 6.10 Latin Hypercube sampling in two variables with five samples.
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Correlation Control in LHS

Input-input correlations are important to take into account whenever (a) sensitive inputs
are correlated, (b) the input-output model is nonlinear, and (c) tails of the output distribution
are important. Correlations should be handled explicitly as functional relationships if the
RCC (rank correlation coefficient) >0.9. Otherwise, the restricted pairing technique (Iman
and Conover, 1982), when used in conjunction with LHS, allows preserving any specified cor-
relation structure between uncertain inputs and eliminating spurious input-input correla-
tions. As noted earlier, the rank correlation is used for generating correlated samples as it
is a more robust and distribution-free measure.

Let T be the actual correlation matrix, and C the desired one. We can define a transforma-
tion matrix S such that STS’ =C. Here, S is any arbitrary matrix, and S’ denotes its transpose.
If we apply Cholesky factorizations (Press et al., 1992) to both C and T, i.e., C=PP’, and
T=QQ), then it is easy to show that S=PQ~". Here, P is the lower triangular decomposition
of the desired correlation matrix C, and Q is the lower triangular decomposition for the actual
correlation matrix T. If R is the original matrix of ranks, then R*=RS’ produces the desired
correlation matrix C. An illustrative example is presented below for a two-variable case
(Fig. 6.11).

R T C
3 2 1 -0.4 1 0.5
1 4 -0.4 1 0.5 1
5 1
2 3 Q P
4 5 1 0 1 0
RCC -0.4 -0.4 0.916515 0.5 0.866025
Q' S s’
1 0 1 0 1 0.877964
0.436436 1.091089 0.877964 0.944911 0 0.944911
R* (raw) R* (rank)
3 4.523716 3 1
1 4.657609 1 3
5 5.334734 5 4 RCC 0.5
2 4.590662 2 2
4 8.236414 4 5

FIG. 6.11 Example showing Iman-Conover restricted pairing technique for inducing correlation with LHS.

6.3.2 Computational Considerations

Number of Samples

In the MCS process, it is important to ensure that multiple model computations are carried
out using a sufficient number of sampled parameter vectors to obtain a stable solution for key
performance indicators (e.g., mean, 90th percentile). One widely used rule of thumb for
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FIG. 6.12 Sensitivity to sample size in Monte Carlo simulation results for the exponential decline problem
discussed in Example 6.2.

selecting an optimal sample size in LHS in order to obtain a stable mean is the 4/3N rule
(Iman and Helton, 1985), where N is the number of uncertain inputs. However, additional
runs may be required if tail percentiles are to be used as performance metrics of interest.

Fig. 6.12 shows the sensitivity to sample size for the Monte Carlo simulation version of the
exponential decline problem discussed later in Example 6.2. The left panel shows the sensi-
tivity of mean and standard deviation as the sample size is varied between 10 and 1000. The
exaggerated scale notwithstanding, it is clear that stable values of both mean and standard
deviation can be obtained with ~300 samples. The right panel shows a similar plot for the
P10, P25, P50, P75, and P90 statistic values. Once again, the results appear stable around
300 samples, excepting for the P90 value. This lack of convergence for the extreme percentiles
is a commonly observed situation, as noted earlier.

Visualization of Results

MCS results can be presented in a variety of ways. For time-independent output, it is
generally recommended to show the CDF with two or three different sample sizes, as
presented in Fig. 6.13. Here, the 300- and 1000-sample cases track each other very well, but
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3 n=100
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o
[
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= 04 /
3 Y
E
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0 100 200 300 400 500

q (bbl/day)

FIG. 6.13 Comparison of CDFs at three different sample sizes from Monte Carlo simulation results for the
exponential decline problem discussed in Example 6.2.
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FIG. 6.14 Graphic representation of Monte Carlo simulation results for time-dependent output. From
Mishra, S., 2009. Uncertainty and sensitivity analysis techniques for hydrologic modeling. ]. Hydroinf. 11 (3—4),
282-296.

the 100-sample case shows clear divergence at both low and high percentiles (confirming the
earlier results).

For time-dependent output, it is recommended that all of the probabilistic results should be
presented in the form of a “horsetail” plot, along with the running mean and the 5th-95th
percent confidence bounds. An example of such plots is shown in Fig. 6.14 for an environmen-
tal tracer transport problem (Mishra, 2009).

EXAMPLE 6.2 Monte Carlo simulation

Consider the problem of calculating the original oil in place for a new field and the associated
uncertainty using the simple volumetric reserves estimation model:

N 7758Ah¢£100 — Suwi) 62)
10%B,;

where N is the original oil in place (stock tank barrels or STB), A is the total area for the reservoir
(acres), I is average net pay thickness (ft), ¢ is average porosity (%), S, is initial water saturation,
and B,; is oil formation volume factor at the original pressure (reservoir barrels per stock tank
barrels, or RB/STB). Using data from Murtha (1994) as given in Table 6.5 (INPUTS_TAB6-6.DAT),
which represent the variability of the key input parameters over 26 fields in the Repetto basin,
(a) fit appropriate distributions to the uncertain variables, (b) generate Monte Carlo simulation
results for 100 and 500 Latin hypercube samples with and without correlation among the inputs,
(c) test the validity of predicting P10, P50, and P90 for N using the equivalent percentiles for the five
uncertain inputs.



TABLE 6.5 Input Data for Probabilistic Reserves Estimate Calculation

A (acres) h (f) ¢ (%) Swi (%) B,; (RB/STB)
200 172 27 28 1.24
250 72 38 30 1.05
355 388 21 40 1.17
1268 125 32 35 1.04
388 224 20 37 1.3
265 250 20 37 1.3
445 332 26 25 1.16
525 338 29 27 1.16
144 95 36 40 1.08
365 133 32 25 1.04
1200 511 24 31 1.05
320 85 28 25 1.05
3000 250 36 36 1.05
445 150 38 35 1.05
1133 300 23 40 1.15
1133 400 32 23 1.1
1133 325 26 30 1.15
374 91 20 40 1.43
355 300 30 50 1.24
373 130 28 35 1.08
1000 80 33 19 1.05
859 123 33 19 1.05
270 80 34 18 1.05
400 50 35 18 1.05
200 75 30 26 1.05
180 325 25 37 1.01

Correlation Matrix With Raw Data

A h ¢ Sevi B,
A 1
h 0.29 1
¢ 0.18 —047 1
Sewi 0.01 0.30 ~0.38 1
B, 022 0.16 —0.68 0.46 1

Correlation Matrix With Ranks of Data

A h ¢ Swi B,
A 1
h 0.33 1
¢ 0.04 —0.49 1
Sewi —-0.14 0.35 —-0.42 1
B,; —-0.11 0.42 —0.64 0.49 1

After Murtha, |.A., March 1, 1994. Incorporating historical data into Monte Carlo simulation. Soc. Pet. Eng. https://doi.org/
10.2118/26245-PA.


https://doi.org/10.2118/26245-PA
https://doi.org/10.2118/26245-PA

138 6. UNCERTAINTY QUANTIFICATION

Solution
Part (a)

The data were fitted with different parametric distribution models using the nonlinear regression
procedure described previously in Section 6.2.2. The fitted models and parameters are the following;:

A—lognormal In(A)=LN[a=6.11, $=0.87]
h—lognormal In(h)=LN[a=5.16, $=0.84]
¢—normal ¢=N[u=29.57, 6=6.58]
Swi—Weibull Swi=W[4=35.21, k=3.62]
B,—Beta B,i=Bla=1.78, f=12.12] +1

The empirical CDFs for these parameters and their corresponding model fitted values are shown
in Fig. 6.15, indicating good fits for all five variables.

A (acre)—Log-normal CDF fit

h (ft)—Log-normal CDF fit
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FIG. 6.15 Comparison of empirical CDFs and corresponding model fits for uncertain inputs of interest, Monte
Carlo simulation example. X-axis labels for each variable are given at the top; y-axis represents cumulative

probability in all cases.
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Part (b)

Next, 500 Latin hypercube samples for the five variables were generated, taking into account the
correlation structure of the dataset as measured by the rank correlation matrix (Table 6.5)
(MCS_500_CORR.DAT). A scatterplot matrix for this case is presented in Fig. 6.16, which shows that
the input-input correlation structure for the data was properly reproduced by the sampling
algorithm.

Three other cases were generated: (a) 500 samples without correlation, (b) 100 samples with
correlation, and (c) 100 samples without correlation. These realizations (i.e., vectors of sampled
values for the five uncertain parameters) were used to the oil-in-place, N, using Eq. (6.2).

Correlated LHS: n=500

3 4 5 6 7 0 10 30 50
log(X1) Lo
0.33 0.039 -0.14 -0.11 o
log(X2)
-0.49 0.35 0.42

50

-0.42 -064 8
X4
0.49
X5 i

0.4

0.2

0.0

0.0 0.2 0.4

FIG. 6.16 Scatterplot matrix for the sampled data, 500 LHS samples with correlation. Here, X1=A, X2=h,
X3=¢, X4=S,,;, and X5=1— B,;.
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TABLE 6.6 Key Statistics and Percentiles From Monte Carlo Simulation Results, 100 and 500
Samples, With and Without Correlation

Rand 500 Rand 100 Corr 500 Corr 100
Mean 226.6 217.7 264.8 273.0
Median 107.3 101.2 113.9 101.9
St. dev 378.8 346.4 543.0 598.3
P5 11.4 15.0 11.5 8.4
P10 19.2 23.1 20.1 16.0
P50 107.3 101.2 113.9 101.9
P90 519.1 499.6 594.9 528.2
P95 858.7 701.4 917.6 852.4

Table 6.6 shows the key statistics and percentiles for all of the cases. The corresponding data files are
(MCS_500_RAND.DAT), (MCS_100_CORR.DAT), and (MCS_100_RAND.DAT).

Fig. 6.17 (top) shows the Monte-Carlo-simulation-based CDFs for the 100 and 500 samples with
correlation, suggesting that a sample size of 100 may be too small for this problem. Fig. 6.17 (bottom)
compares the CDFs for the 500-sample case with and without correlation, clearly showing that the
correlated case leads to more extreme results because of the combination of low-low and high-high
values. This is also confirmed by the higher standard deviation and tail percentile values for the
correlated versus uncorrelated cases given in Table 6.6.

Part (c)

Table 6.7 shows the P10, P50, and P90 values for the five uncertain inputs, based on the
distributional parameters described earlier in Part (a). Also shown therein are the corresponding
values for N calculated using Eq. (6.2) and the corresponding Monte Carlo simulation result
using 500 uncorrelated samples. Clearly, the simple combination of percentiles produces a much
wider distribution, with lower results compared with the Monte Carlo simulation at the sub-50
percentiles and higher results at the super-50 percentiles. Note, however, that the P50 result is
reasonably reproduced—suggesting that this is the only case—where a combination of percen-
tiles can be applied. The divergence between the two calculations is an artifact of implicitly as-
suming perfect correlation between the inputs, which is what the simplistic combination of
percentiles essentially accomplishes, and is referred to as the “problem of compounded
conservatism” in the risk analysis literature. For example, Bogen (1994) has shown that in a
simple multiplicative model of risk, if upper p-fractile (100pth percentile) values are used for
each of several statistically independent input variates, the resulting risk estimate will be the
upper p'-fractile of risk predicted according to that multiplicative model, where p'>p.
The difference between p’ and p may be substantial, depending on the number of inputs, their
relative uncertainties, and the value of p selected.
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FIG. 6.17 CDFs from Monte Carlo simulation showing effect of sample size (top) and input-input correlation
(bottom).

TABLE 6.7 Calculation Using Simple Combination of Percentiles

A h f Swi B,i N N_MCS
P5 108.37 43.92 18.76 15.60 1.02 5.72 11.4
P10 148.23 59.47 21.17 18.99 1.03 11.35 19.2
P50 449.84 174.14 29.56 31.83 111 110.32 107.3
P90 1363.66 510.02 37.97 44.27 1.25 915.04 519.1

P95 1856.68 689.68 40.30 47.55 1.29 1621.99 858.7
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6.4 UNCERTAINTY IMPORTANCE ASSESSMENT

In this section, we describe how to analyze the probabilistic calculations (i.e., uncertainty
propagation results) to determine input-output relationships, and how to identify the key un-
certain parameters. The motivation here is the fact that probabilistic models can consist of tens
or hundreds of parameters that are uncertain, and whose interactions with one another are
potentially complex and/or nonlinear. As such, it is difficult to develop a straightforward
understanding of causal input-output relationships, critical uncertainties and key sensitivi-
ties based on a simple evaluation of model results. A systematic approach is therefore needed
to extract this understanding.

6.4.1 Basic Concepts in Uncertainty Importance

The goal of uncertainty importance assessment (aka global sensitivity analysis), is to study how
the variation in the probabilistic output of a model can be apportioned to different sources
(Mishra et al., 2009). This is in contrast to traditional one-parameter-at-a-time local sensitivity
analysis of subsurface flow and transport models, which involves perturbing each of the pa-
rameters by a small amount, one at a time, from a reference value and computing the
corresponding change in the model output (Hill and Tiedeman, 2007). Sensitivity coefficients,
computed as the change in output divided by the change in input, reflect the slope of the
input-output relationship at the reference point. However, unless the functional relationship
between the output and the input of interest is linear over the entire range of input values,
such analyses can only provide information regarding the relative sensitivities of input pa-
rameters that is valid locally. The “one-off” nature of these analyses also precludes a proper
accounting for synergistic effects between inputs. Global sensitivity analysis techniques have
therefore emerged as an attractive alternative for investigating input-output sensitivities that
are valid over the full range of parameter variations and parameter combinations considered
in the analysis (Saltelli et al., 2000).

In the context of probabilistic modeling, global sensitivity analysis involves examining the
relationship between uncertain model inputs and corresponding model outputs to answer
such questions as the following: (a) which uncertain parameters or inputs have the greatest
impact on the overall uncertainty (variance) in probabilistic model outcomes? and (b) what
are the key factors controlling the separation of model results into extreme-outcome produc-
ing realizations? In addition to identification of key variables affecting uncertainty in
predicted model outcomes, global sensitivity analyses results are also useful for verification
of model performance (i.e., testing for physically reasonable results) and for providing feed-
back to data collection efforts for uncertainty/risk reduction (Mishra et al., 2009).

Uncertainty importance assessment is essentially a wvariance-partitioning problem. As
shown schematically in Fig. 6.18, the contribution to output uncertainty (variance) by an input
is a function of both the uncertainty of the input variable and the sensitivity of the output to
that particular input. In general, input variables identified as important in global sensitivity
analysis have both characteristics; they demonstrate significant variance and are character-
ized by large sensitivity coefficients. Conversely, variables that do not show up as important
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FIG. 6.18 Uncertainty importance concepts.

per these metrics either are restricted to a small range in the probabilistic analysis or are vari-
ables to which the model outcome does not have a high sensitivity.

Global sensitivity analysis on probabilistic modeling results can be viewed as a form of
statistical data mining, i.e., the use of statistical techniques for extracting causal relationships,
structures, patterns, and/or trends among dependent and independent variables in large-
dimensional datasets (Hastie et al., 2008). Here, sampled values of uncertain inputs are
treated as independent variables and computed model outputs are treated as dependent vari-
ables. In general, sampled inputs are considered to be time-independent. If the output of
interest is time-dependent, then its values are extracted at fixed time slices for the analysis.
Asnoted above, the objective of global sensitivity analysis is to develop input-output relation-
ships and/or decision rules that capture the model behavior over the full range of inputs and
corresponding model outcomes.

In this section, we will describe some basic uncertainty importance analysis techniques that
are most appropriate in conjunction with sampling-based uncertainty analysis. These methods
build upon the results of Monte-Carlo-simulation-based uncertainty analyses and hence, do
not require resampling of the uncertain parameters and recomputation of model results. These
are (1) scatterplots and rank correlation analysis and (2) stepwise rank regression and partial
rank correlation analysis. We will also discuss other techniques such as entropy (mutual infor-
mation) and classification tree analysis that can be useful for specialized situations.

6.4.2 Scatter Plots and Rank Correlation Analysis

Scatterplots were discussed in Section 2.2.3 as a means of graphically depicting biva-
riate relationships. In the context of Monte Carlo simulation, we can also use scatterplots
for visual analysis of input-output relationships. They provide qualitative insights into the
strength (e.g., strong or weak) and nature (e.g., linear or nonlinear) of cause-and-effect
relationships. However, a systematic examination of scatterplots to identify the most
influential input parameters is generally not feasible unless the model has only a few
uncertain inputs.

Fig. 6.19 shows two of the input-output scatterplots for the oil-in-place uncertainty analysis
problem discussed in the previous section. From the left panel, it is clear that the sampled
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FIG. 6.19 Input-output scatterplots from oil-in-place uncertainty analysis problem.

value of A has a very strong influence on the computed value of N, as evidenced from the log-
log plot. Conversely, the right panel shows that the sampled value of B,; has minimal effect on
the computed value of N.

It is more useful to use scatterplots in conjunction with rank correlation analysis to analyze
uncertainty importance. Following the discussion in Chapter 2.4, we can express the Spearman’s
rank correlation coefficient, RCC, between any input-output pair as (Helton et al., 1991)

> (% —%)(vk—7)
RCCly, x4 = k (6.3)

12
[z - DS (-

k k

where x is the rank-transformed input of interest, y is the rank-transformed output, the
overbar symbol denotes the sample mean, and k is an index for the samples (realizations).
Rank transformation, where variables are ranked in ascending order with their values
replaced by the ranks, is the simplest nonparametric linearizing technique (Iman and
Conover, 1983). The RCC provides a measure of the degree to which the input variable of in-
terest and the output can change together. It quantifies the strength of linear and monotonic
association between the input-output pair—with the rank transformation facilitating a line-
arization of any underlying nonlinear trends (Helton, 1993). Positive values of the RCC imply
that an increase in the input corresponds to an increase in the output, with negative values
implying the reverse situation. The larger the absolute value of the RCC, the stronger the
relationship between the input-output pair, i.e., the greater the uncertainty importance.
Fig. 6.20 shows a graphic comparison of the RCC values for the 500-sample uncorrelated case.

Note that the utility of the RCC is limited to the case of uncorrelated inputs. This point will
be discussed further in the next section.

6.4.3 Stepwise Regression and Partial Rank Correlation Analysis

A popular framework for uncertainty importance analysis involves building a multivariate
linear rank regression model of the form
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FIG. 6.20 Input-output RCC bar charts from oil-in-place uncertainty analysis problem.

y = bo + Z b]'X]' (6.4)
j

where y (overbar) denotes the (predicted) rank-transformed output, the x; are the rank-
transformed input variables of interest, and the b; are the unknown coefficients (Helton, 1993).

The regression coefficients are generally determined using a stepwise regression proce-
dure (Draper and Smith, 1981). As discussed in Section 4.5, this involves the construction
of a sequence of regression models starting with the parameter that explains the largest
amount of variance in the output. At each successive step, the parameter that explains the
largest fraction of residual variance is included in the model. The process continues until
all input variables that explain statistically significant amounts of variance in the output have
been included in the model.

When a linear additive input-output model such as Eq. (6.4) is built with uncorrelated
inputs, the goodness-of-fit of the model can be expressed as (Draper and Smith, 1981)

R*= ZRCC2 [y, xj] (6.5)
i

where R?, the coefficient of determination, denotes the fractional variance in y explained by
the model. Thus, the term RCC? [y, xj] can be interpreted as the fractional variance in y
explained by the jth independent variable. This is a more useful measure for interpreting
the RCC in the context of input-output models to assign uncertainty importance.

When some of the input variables are correlated, the goodness-of-fit of the input-output
model can no longer be expressed via a simple linear sum as in Eq. (6.5), but must also include
terms reflecting the covariance of the correlated inputs. In such situations, it becomes difficult
to assign a unique component of the output variance to each of the uncertain inputs. When
variables are correlated, a more appropriate measure of uncertainty importance is the partial
rank correlation coefficient (PRCC). PRCCs quantify the strength of a linear relationship
between input-output pairs after eliminating the linear influence of other input variables
(Draper and Smith, 1981).

The concept of partial rank correlation can be explained as follows. Let y denote the
rank-transformed output variable and xj, j=1...n, denote the rank-transformed uncertain
inputs—some of which may be correlated. In order to determine the PRCC between y
and the p-th uncertain input, x,, a linear regression model is first built between y and all
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the other uncertain inputs, with y, g denoting the regression-fitted variable. Next, a linear
regression model is built between x, and all the other uncertain inputs, with x, 5 denoting
the regression-fitted variable. The RCC between the residuals arising out of these regres-
sions will be free from the effects of input-input correlations, and is defined as the PRCC
(Draper and Smith, 1981):

PRCCy, x,] =RCC [y — Yp_jits X — Xp_i| (6.6)

RamaRao et al. (1998) showed that the square of the PRCC can be interpreted as the gain in
R* of an input-output regression model—when the selected variable is brought into
regression—as a fraction of the currently unexplained variance. PRCCs can be readily calcu-
lated from the input-input correlation matrix and the input-output correlation vector using
simple matrix algebra. This practical strategy, which does not involve building a sequence
of regression models, starts with the augmented correlation matrix between the output var-
iable, y, and the independent variables x;, j=1,...., n, written as

1 ro - 1 1y
1 1 e 1oy Ty
A B
x| :[BT 1} ©6.7)
Tl T2 - 1 rny
T rp o Ty 1

where the matrix A represents the input-input correlation matrix with elements r;;=RCC
[x;, x]] and the vector B" denotes the output-input correlation vector with elements
r,;=RCCly, xj]. As shown by RamaRao et al. (1998), the PRCC between x; and y can be
obtained from the elements of C~}, the inverse of C, as

PRCC[y, %] = — CC;?CW (6.8)

where the subscript y is now used as the designator for row and column n+1in C.

EXAMPLE 6.3 Uncertainty importance analysis
The Monte Carlo simulation results for the 100-sample uncorrelated case and the 500-sample cor-
related case from Example 6.2 are given in (MCS_100_RAND.DAT) and (MCS_500_CORR.DAT).
Determine the relative importance of various uncertain inputs using both RCC and PRCC.
Solution

For the 500-sample correlated case, the augmented correlation matrix is given by

X1 X2 X3 X4 X5 Y
X1 1 0.330025 0.039105 —0.13718 —0.10916 0.878514
X2 0.330025 1 —0.48913 0.348095 0.419246 0.663484
X3 0.039105 —0.48913 1 —0.4179 —0.63754 —0.03724
X4 —0.13718 0.348095 —0.4179 1 0.487029 —0.07616
X5 —0.10916 0.419246 —0.63754 0.487029 1 —0.02485

Y 0.878514 0.663484 —0.03724 —0.07616 —0.02485 1
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The inverse of this matrix is given by

14.34689 10.49055 2.599638 —1.68031 —0.84375 —19.6164
10.49055 11.24454 2.888181 —1.96581 —1.18653 —16.7483
2.599638 2.888181 2.484343 —0.25393 0.678332 —4.11006
—1.68031 —1.96581 —0.25393 1.704022 —0.27915 2.893845
—0.84375 —1.18653 0.678332 —0.27915 2.013093 1.582517
—19.6164 —16.7483 —4.11006 2.893845 1.582517 29.45223

The PRCCs can now be calculated using Eq. (6.8). For example, the PRCC between Y and X1 is
given by PRCCy.x;=—(—19.6164)/sqrt(14.34689%29.45223) =0.954292. The PRCCs for the other
output-input pairs and the corresponding RCC values are given below:

Y-X1 Y-X2 Y-X3 Y-X4 Y-X5
PRCC 0.954 0.920 0.480 —0.408 —0.206
RCC 0.879 0.663 —0.037 —0.076 —0.025

The importance of variables X1, X2, and X5 is the same with both methods, and that of variables
X3 and X4 has been switched around. However, given the finite correlation present in many
elements of the input-input correlation matrix, the importance ranking from PRCCs should be
considered more reliable.

For the 100-sample uncorrelated case, the augmented correlation matrix is given by

X1 X2 X3 X4 X5 Y
X1 1 —0.01261 0.044896 —0.00469 0.034443 0.711347
X2 —0.01261 1 —0.02523 0.056958 0.05679 0.624974
X3 0.044896 —0.02523 1 0.165833 —0.26056 0.203732
X4 —0.00469 0.056958 0.165833 1 —-0.15777 —0.0461
X5 0.034443 0.05679 —0.26056 —0.15777 1 —0.01041
Y 0.711347 0.624974 0.203732 —0.0461 —0.01041 1

From the inverse of this matrix, the PRCCs can be calculated using Eq. (6.8) as before for all input-
output pairs. These values and their corresponding RCC values are given below:

Y-X1 Y-X2 Y-X3 Y—-X4 Y—-X5
PRCC 0.960 0.952 0.674 —0.488 -0.177
RCC 0.711 0.625 0.204 —0.046 —0.010

As expected, the importance ranking (based on the absolute value of either the PRCC or RCC)
is the same in both cases.

It should be pointed out that the actual values of the PRCCs are not as easy to interpret as
the RCCs, which are related to the slope of the best-fit line through a rank-transformed
input-output scatterplot. While the relative magnitude of the PRCCs are important indica-
tors of variable importance, the numeric values only have a specific meaning in the context
of building a multivariate input-output regression model. As noted earlier, the square of the
PRCC gives the increase in R?, when a new variable is added, as a fraction of the currently
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unexplained variance in the model. From a practical standpoint, ranking the variables with
PRCCs and examining scatterplots to understand input-output relationships would be a
reasonable strategy for sensitivity analysis of probabilistic models when inputs are
correlated.

A related measure of variable importance is based on the concept of R*-loss, i.e., the loss in
explanatory power of an input-output model if a particular variable is excluded. The larger
the R*-loss, the greater the importance of the variable of interest. Sections 8.3.3 and 8.4.3 pro-
vide additional details on how this approach can be applied in practice.

6.4.4 Other Measures of Variable Importance

Entropy (Mutual Information) Analysis

Since the concept of correlation and regression is strictly applicable to monotonic relation-
ships, it is useful to pose the uncertainty importance problem in the general terms of identi-
fying important nonrandom patterns of association. An example of such a situation would be
if the performance metric of interest is quadratic in nature (as is likely to be the case in the
context of history matching). Here, the word “association” is used in a broader context than
“correlation” and includes both monotonic and nonmonotonic relationships. Determining
the significance and strength of input-output association is facilitated by the information-
theoretic concept of entropy, which provides a useful framework for the characterization
of uncertainty (or information) in the univariate case, and redundancy (or mutual informa-
tion) in the multivariate case (e.g., Press et al., 1992). Mishra and Knowlton (2003) describes a
methodology for global sensitivity analysis that combines the mutual information concept
with contingency table analysis.

As per Press et al. (1992), let the input variable x have I possible states (labeled by i), and the
output variable y have | possible states (labeled by j). This information can be compactly
organized in terms of a contingency table, a table whose rows are labeled by the values of
the independent variable, x, and whose columns are labeled by the values of the dependent
variable, y. The entries of the contingency table are nonnegative integers giving the number of
observed outcomes for each combination of row and column. The corresponding probabili-
ties are readily obtained by normalization.

The mutual information between x and y, which measures the reduction in uncertainty of y
due to knowledge of x (or vice versa), is defined as (e.g., Bonnlander and Weigend, 1994)

I(x,y) :ZZpij In 'pij : (6.9)
i pl‘P']

Here, p;; is the probability of outcomes corresponding to both state x; and state y;, while p;. is
the probability of outcomes corresponding to state x; alone, and p,; is the probability of out-
comes corresponding to state y; alone. A useful measure of importance defined on the basis of
mutual information is the so-called R-statistic (Granger and Lin, 1994):

R(x,y) = [1— exp{-2I(x,y)}]'/* (6.10)

R takes values in the range [0,1], with values increasing with I. R is zero if x and y are inde-
pendent and is unity if there is an exact linear or nonlinear relationship between x and y.
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In summary, the entropy-based measure R-statistic is a very general tool for quantifying
the strength of an association, even in nonlinear and/or nonmonotonic cases. Mishra et al.
(2009) show how important nonmonotonic patterns, missed by stepwise regression analysis,
can be readily identified using entropy analysis (Fig. 6.21). Here, the performance metric of
interest is the RMSE for a groundwater model calibration problem. The bubble plot
corresponding to the contingency table clearly reveals a significant association, as indicated
by the inverted V-shaped pattern and also quantified by a R-statistic of 0.691. However, the
corresponding RCC is only 0.09, reflecting the inability of linear correlation to capture the
strength of a nonmonotonic relationship.

Classification Tree Analysis

Uncertainty importance analyses based on stepwise regression or mutual information con-
cepts are typically applied to the entire spectrum of input-output data. However, specialized
approaches may be required for examining small subsets (e.g., top and bottom deciles) of the
output. To this end, classification tree analysis can provide useful insights into what variable
or variables are most important in determining whether outputs fall in one or the other (ex-
treme) category (Breiman et al., 1984). Such categorical problems may arise in the context of
model calibration, where the factors contributing to good v/s poor fits may be of interest. An-
other example is contaminant transport, where insights on variables responsible for high v/s
low migration distance may be useful. Classification tree analysis is also an important tool for
data-driven modeling as discussed in Chapter 8.
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A binary decision tree is at the heart of classification tree analysis. The decision tree is gen-
erated by recursively finding the variable splits that best separate the output into groups
where a single category dominates. For each successive fork of the binary decision tree,
the algorithm searches through the variables one by one to find the optimal split within each
variable. The splits are then compared among all the variables to find the best split for that
fork. The process is repeated until all groups contain a single category. In general, the vari-
ables that are chosen by the algorithm for the first several splits are most important, with less
important variables involved in the splitting near the terminal end of the tree.

A common tree-building methodology is based on a probability model approach (Venables
and Ripley, 1997). The classification tree is built by successively taking the maximum
reduction in deviance over all the allowed splits of the leaves to determine the next split.
The deviance is simply a measure of mean square error (for continuous response) or negative
log-likelihood (for discrete response). Termination occurs when the number of cases at a node
drops below a set minimum or when the maximum possible reduction in deviance for
splitting a particular node drops below a set minimum. See Hastie et al. (2008) for additional
details regarding the tree-building process and measures of importance.

In summary, classification tree analysis is a powerful tool for determining variable impor-
tance for categorical problems. Compared with linear regression modeling, tree-based
models are attractive because (a) they are adept at capturing nonadditive behavior,
(b) they can handle more general interactions between predictor variables, and (c) they are
invariant to monotonic transformations of the input variables. Mishra et al. (2003) describe
an application of this methodology for identifying key variables affecting extreme outcomes
in a groundwater-driven radionuclide transport model. Fig. 6.22 shows a decision tree from a
probabilistic analysis of groundwater model calibration, where the top 10% and bottom 10%
of the realizations in terms of RMSE of the model fit are analyzed to identify the key variables
affecting the spread in RMSE.
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FIG. 6.22 Classification tree example, showing decision tree (left), and partition plot (right). From Mishra, S.,
Deeds, N., Ruskauff, G., 2009. Global sensitivity analysis techniques for probabilistic ground water modeling.
Ground Water 47, 727-744. https://doi.org/10.1111/.1745-6584.2009.00604.x.
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6.5 MOVING BEYOND MONTE CARLO SIMULATION

As noted earlier, the main disadvantage with the MCS technique is the need to perform
multiple model calculations. For large and /or complex models, the computational burden
for a Monte Carlo analysis can be prohibitive. Engineers therefore commonly resort to using
only a limited number of realizations as a computational shortcut, even though there is no
assurance that the final results will be statistically reliable. An alternative approach is to use
simplified or surrogate models using experimental design and response surface as
discussed in Chapter 7 (Carreras et al., 2006). A second disadvantage concerns the issue
of data availability for defining the range and distributions of the uncertain inputs. In many
real-life situations, the lack of data often forces the engineer to make simplifying assump-
tions about the ranges and shape of the input distributions. Under such circumstances, the
justification for using a full-blown MCS study, based on subjective assumptions about
data distributions, becomes questionable at best. Finally, MCS may not be the most efficient
strategy when the probability associated with only a limited number of model outcomes is
desired.

In the following sections, we will discuss several alternatives to Monte Carlo simulation
that address some of these shortcomings. These include the first-order second-moment
method (FOSM), the point-estimate method (PEM), and the logic tree analysis (LTA).

6.5.1 First-Order Second-Moment Method (FOSM)

Often, uncertainty about model inputs is available only in terms of the first few statistical
moments (e.g., mean and variance). Given this limited information, it is useful to ask if the
corresponding uncertainty in model predictions can also be quantified in terms of the mean
and the variance rather than the full distribution. The first-order second-moment method
(FOSM) is one such methodology (Morgan and Henrion, 1990; Tung and Yen, 2005). As
we shall see later, the FOSM approach is also the basis for the widely used error propagation
formulas in experimental work.

General Expressions for Mean and Variance

Consider an uncertain quantity, F, which depends on the parameter vector, x=(x1,x2,..,Xj,..,
xn)- A first-order Taylor expansion around the mean point,x, gives

(Xl' 7JAC1') (611)

with X being the vector of mean values of the uncertain parameters, where the partial
derivatives in Eq. (6.11) are also evaluated. Taking the expected value of both sides of this
expression yields

. E[X,’ - )ACI] (612)
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where E[] denotes the expectation (averaging) operator. Now, assuming small and uni-
formly distributed random parameter perturbations around the mean values such that the
expectation term in the RHS can be dropped and all higher-order terms neglected, we obtain

E[F) = F(X) = F(&1, %2, .., %, .., i) (6.13)

Thus, the first-order estimate of the expected value (mean) of the uncertain quantity, F, is
obtained simply by using the mean (expected value) of each of the uncertain parameters.
The variance of F is defined as

V[F|=c2=E {(Ff E[F])Z} (6.14)

which can be calculated by substituting Egs. (6.10) and (6.12) in Eq. (6.13) as follows:

2
V[F|~E { (F()%) + Za—é (x,-fci)> F(ﬁ)}
9l (6.15)

where the covariance, Cov[x;x;] = p[xixjlo[x;]o[x;] can also be expressed in terms of the param-
eter correlation coefficients, p;;, and the individual parameter standard deviations, . The var-
iance of F is thus seen to depend on the variance-covariance relation of the input parameters
and its sensitivity to the uncertain inputs.

For uncorrelated parameters, that is, when p(x;x;) = 0, the expression for variance simplifies to

VIF=> (g—i

i

2
) V[Xi] (6.16)

because Cov[x;x;]=V[x;]. Each term in the summation of Eq. (6.16) can be interpreted as the
fractional contribution of x; to the total variance of F. It may be recognized that Eq. (6.16) is
also the commonly used expression for propagating experimental errors (Morgan and
Henrion, 1990), and is conceptually equivalent to Fig. 6.18.

The sensitivity coefficients (partial derivatives) needed in Egs. (6.15) and (6.16) for evalu-
ating the variance of F can be computed either analytically or numerically. For simple petro-
leum geoscience problems, closed-form expressions for the derivatives can be readily
generated. For complex models such as reservoir simulators, a forward difference calculation
of the derivatives is often the common practical solution. In such cases, (1 + 1) functional eval-
uations are required for FOSM estimates of the mean and variance where 7 is the number of
uncertain inputs. Thus, the FOSM technique can be competitive with Monte Carlo simulation
so long as n~10, rather than n~100.

The first-order estimate of the mean given in Eq. (6.13) is a reasonable approximation so
long as parameter variances are small and the function is only mildly nonlinear, which allows
higher-order terms to be dropped. If these conditions are not met, then second-order terms
need to be retained in the Taylor expansion of Eq. (6.11), leading to a correction to the mean
that depends on the parameter covariance and mixed second partial derivatives (Dettinger
and Wilson, 1981). Second-order corrections to the variance, which involve complex mixed
partial derivatives of higher order, are rarely applied in practice (Morgan and Henrion,
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1990). It is also advisable to perform variable transformations as needed so that the input-
output relationship is (quasi) linear and parameter uncertainties are approximately symmet-
rical around the mean values (Tung and Yen, 2005).

EXAMPLE 6.4 FOSM application for exponential decline problem

Consider the exponential decline problem, g=g, exp(—at), where g, is initial oil rate (bbl/d), a is
decline rate (1/year), and ¢ is time (year). Given E[q,] =650 bbl/d, o[g,] =50 bbl/d, E[a]=0.11/year,
0[a]=0.02, and p[g,a] =—0.5, estimate E[q] and o[q] when t=10 years.

Solution

First, we evaluate the expected value of g using Eq. (6.13):
Elg) = Elgu)exp{—Ela] -t}
=(650)exp{—(0.10)(10)}
=239bbl/d
Next, we develop analytic expressions for the required partial derivatives:
09/0q, = exp (—at) =q/qo
0q/0a = —g,texp (—at) = —qt
Now, application of Eq. (6.15), with all quantities evaluated at the mean point, gives
Vlg) = (0/940)"Vqo) +(99/0a)* V[a) +2(0q/ 0q,) (9q/ 0a) Covlgoa]
= (0/0)V1go + (qt)*V[a] +2(q/q0) (gt )plgolog0]o[a]
= (239/650)7(50)% + (239 x 10)%(0.02)* +2(239/650) (239 x 10)(0.5)(50)(0.02)
=338 +2284 + 879 =3501
olq] = v/3501 =59.2bbl/d

Error Analysis in Additive and Multiplicative Models

Additive models are those that take the general form
F=ax+by+cz (6.17)

where x, y, and z are uncertain parameters and the coefficients 4, b, and c are constant. For
simplicity and without any loss of generality, Eq. (6.17) has been restricted to only three in-
dependent variables. Now applying Eq. (6.13), we get an expression for the mean

E[F] =aE[x] +bE[y] + cE[z] (6.18)
Using Eq. (6.15), the variance of F is obtained as
V[F] =a*V[x] + b*V[y] + ¢* V[z] + 2abCov[xy] + 2bc Cov|[yz] + 2acCov |zx] (6.19)
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with the last three terms dropping out if the uncertain parameters are uncorrelated. It is worth
noting that both Egs. (6.18) and (6.19) are exact because of the linearity of Eq. (6.17), which in
turn makes the first-order Taylor expansion exact. Another important observation is that var-
iances are additive (albeit as a weighted sum), but not standard deviations (i.e., error
estimates).

The central limit theorem states that the sum of independent random variables will be
normally distributed. Thus, knowing the mean and variance of the additive model given
in Eq. (6.15) and assuming normality for F, we can estimate any quantile as shown in
Example 3.6.

Multiplicative models are those that take the general form

F=[(x") (") (=] (6.20)

where x, y, and z are uncertain parameters and the exponents 4, b, and c are constant. As in the
case of the additive model, Eq. (6.20) has been restricted to only three terms for simplicity and
without any loss of generality. We can rewrite this equation as

In(F)=a In(x) +b In(y) + ¢ In(z) (6.21)

using a logarithmic transformation that converts our nonlinear multiplicative model into a
linear additive one. Expressions for the mean and variance of In(F) can now be readily derived
using Egs. (6.18) and (6.19), provided the moments of In(x) are available. This is a useful
approach to take when x, y, and z can be described using lognormal distributions.

As an alternative, an expression for the mean can also be derived using Eq. (6.13)

E[F] 2 [ (El))" (El) (L)) ] (6.22)

assuming that the variables are independent. In order to calculate the variance using
Eq. (6.15), we evaluate the partial derivatives at the mean point

oF a oF b JoF ¢

a*mE[F]} @:TME[F]; a:mﬂp} (6.23)
This leads to

2 2 2
V[F] = (ﬁz—:m) V] + (ELME[P]) Viyl + (ﬁE[FD V[z] (6.24)

Dividing both sides by E?[F], and recalling that the coefficient of variation, CV[x]=o[x]/
E[x], we can rewrite Eq. (6.24) as

CV*[F] 2a® CV?[x] + B*CV?[y] + > CV?[z] (6.25)

This is a very useful expression for estimating the relative error (i.e., coefficient of variation)
in the output of a model as a function of the relative error of the inputs. Note that the square of
the relative errors is additive (albeit as a weighted sum), but not the relative errors themselves.

The product of independent random variables can be shown to follow a lognormal dis-
tribution as per the central limit theorem. If the mean and variance of (InF) are known, then
any quantile of F can be estimated using the lognormal distribution relations as shown in
Example 3.7.
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EXAMPLE 6.5 Error analysis with multiplicative model

Consider the problem of estimating permeability from the slope of a Horner plot via the equation:
kh=162.6 quB/m, where k is permeability (mD), h is thickness (ft), g is oil rate (bbl/d), u is viscosity
(cp), B is formation volume factor (rb/bbl), and m is Horner slope (psi/log-cycle). If the relative er-
rors (coefficient of variation) in g, u, and B are 10%, and the relative error in m is 20%, what is the
relative error in the estimated value of the permeability-thickness product?

Solution

Our basic model is a multiplicative one similar to Eq. (6.20), with exponents +1 or —1. This sim-
plifies the application of Eq. (6.17) to

CV2[kh] = CV?[g] + CV?[u] + CV?[B] + CV?[m]
=(0.1)%+(0.1)* +(0.1)*+ (0.2)> = 0.01 +0.01 + 0.01 + 0.04 = 0.07
CV[kh] = 0.07 =0.26 = 26%

Note that the actual values of the various parameters are not required for this error analysis—
only the magnitude of the relative errors (i.e., standard deviation normalized by the mean). Also,
note that if the errors are expressed in the {E[x]£o[x]} format, they need to be converted into
coefficient of variations for Eq. (6.25) to be applied.

In summary, the FOSM technique is an appealing alternative to MCS when only the mean
and variance of model outputs are of interest rather than the full CDF. It involves consider-
ably less computational effort for problems with a small number of uncertain parameters,
while providing results of comparable accuracy for linear and mildly nonlinear problems
(Mishra and Parker, 1989; James and Oldenburg, 1997; Hirasaki, 1975).

6.5.2 Point Estimate Method (PEM)

Although the FOSM technique is conceptually simple, it has limited practical applicability
for nonlinear models or models where numerical computation of derivatives could be bur-
densome. To overcome these limitations and to provide an efficient method for relating
the statistical moments of the inputs to the moments of the output, the point-estimate method
(PEM) was proposed by Harr (1989). In this method, the model is evaluated at a discrete set of
points in the uncertain parameter space, with the mean and variance of model predictions
computed using weighted averages of these functional evaluations.

The starting point in PEM is the estimation of the eigenvalues (/;) and eigenvectors (e;;) of
the correlation matrix for the uncertain variables. Each variable, x;, is then perturbed around
its mean by a factor, Ax;:

Ax]- = j:eij \/NOG [x]‘] (6.26)

where N is the number of uncertain variables and ¢ denotes the standard deviation. The
method thus results in 2N point estimates of the model, based on which the output mean
is computed as follows:



156 6. UNCERTAINTY QUANTIFICATION

A

E[F] :zl: (F' +F ) g (6.27)
and the output variance is computed from
21 _ +\2 —\2 i
E[F]—Z{(Fz‘) +(Fi)}2N (6.28)

1

by noting the relationship: V[F]=E [F?] — (E[F])*. Here F;* and F;,~ denote estimates of model
output corresponding to the perturbation of each input parameter from its mean value by Ax;
in the positive and negative directions and 4; are the eigenvalues corresponding to each input
(Fig. 6.23).

Although 2N model evaluations are required to compute the mean and variance as per
Egs. (6.27) and (6.28), it has been noted that in many cases the eigen transformation of the
correlation matrix results in only a few dominant eigenvalues (Harr, 1989). Thus, it is possible
to use this subset of eigenvalues for uncertainty propagation without any significant loss of
accuracy.

In summary, the PEM approach is a derivative-free alternative to FOSM for estimating the
mean and variance of uncertain model outputs. The original PEM algorithm of Harr (1989)
was designed for correlated random variables with normal distributions. Chang et al.
(1997) describe a methodology for extending this method to problems involving multivariate
nonnormal random variables. Unlu et al. (1995) and Mishra (1998, 2000) provide comparative
assessments of FOSM and PEM for uncertainty propagation using subsurface flow and
transport models.

e, €1

X4, X5 - original coordinates
e4, e, - direction of eigenvectors
A1, Ao - €igenvalues

@ - points selected by PEM
FIG. 6.23 Selection of points for model evaluation in PEM.
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6.5.3 Logic Tree Analysis (LTA)

Logic tree analysis (LTA) is particularly useful for uncertainty propagation when param-
eter uncertainty is described using a limited number of probable states (e.g., high, medium,
and low values), and their likelihoods. Logic trees (also known as probability trees) combine
individual scenarios resulting from uncertain discrete events and/or parameter states. As
such, they may be recognized as a special case of decision trees containing only chance nodes
but no decision nodes (Morgan and Henrion, 1990).

The logic tree is organized such that independent effects are placed to the upstream (left)
side, and dependent effects are placed to the downstream (right) side. Each branch is assigned
a probability that is conditional on the values of the previous branches leading to that node.
All scenarios must be considered in building the tree, so that probabilities for branches orig-
inating from each node sum to 1.

Consider a simple groundwater contaminant transport modeling problem involving two
uncertain inputs: source concentration (s) and groundwater velocity (v). Uncertainty in the
source node is represented by two values, s1 and s2, with probabilities P1 and P2, respec-
tively. Uncertainty in the velocity node is also represented by two values, v1 and v2. These
values have conditional probabilities ranging from P3 to P6, depending on which branch of
the source node they are attached to. Each path from the root to an end branch (or terminal
node) of the tree represents a feasible scenario. The four feasible scenarios for this system
can be enumerated as (s1,v1), (s1,02), (s2,v1), and (s2,02). The probability of each scenario is
the product of conditional probabilities of the branches along that path, as shown in
Fig. 6.24.

The logic tree thus organizes various parameter combinations and their probabilities.
Given this information, the computation of the consequence for each of the discrete com-
binations is a straightforward task. The results can be organized in terms of a table or
graph of sorted discrete outcomes versus the corresponding summed probabilities. Such
a “risk profile” is equivalent to a cumulative distribution of model output generated
via MCS.

P3 __ v1 wwm 1 (P1eP3
B (P1eP3)
s1
- PR V2 (P1eP4)
O
| P2 P5 V1 o €3 (P20P5)
| s2 O <
| | P8 ™ V2 oo c4 (P20P6)
Source | |
I
Velocity

Concentration
(from model)

FIG. 6.24  Schematic of logic tree construction and assessment of probabilities.
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In summary, the LTA methodology is a useful alternative to MCS when uncertainty char-
acterization is based on a limited number of possibilities (as in the case of expert elicitation).
Given the combinatorial nature of the algorithm, it can only handle a limited number of
uncertain inputs, and is often useful in screening-type analyses. An example application of
the LTA methodology is in risk assessments of the potential nuclear waste repository at Yucca

Mountain, NV (Kessler and McGuire, 1999).

EXAMPLE 6.6 PEM and LTA applications for the exponential eecline problem
For the exponential decline problem discussed earlier in Example 6.1, calculate (a) mean, vari-

ance, and CDF (assuming normal distribution) using PEM and (b) CDF, mean, and variance using

LTA. Assume that there is no correlation between the parameters. Compare these two CDFs with

MCS simulation results from Mishra (1998).

Solution
(a) Point Estimate Method

The application of PEM was simplified for this problem because the parameters were taken to
be uncorrelated. Thus, using eigenvalues of 4;=1.0 and 1,=1.0, with eigenvectors (1,0)T and
(O,1)T, we first calculate the perturbation for each variable, Ax; (using Eq. 6.26), the resulting
evaluation point x;(+) and x;(—), and the corresponding value of the function Fy(+) and F(—)

as shown below:

Ai Ax; x; (+) x; ()
Aq_o 70.71068 721E+02 5.79E+02
1 Aa 0.0000 0.1000 0.1000
Aq_o 0 6.50E + 02 6.50E +02
1 Aa 0.0283 0.1283 0.0717

Then, applying Egs. (6.27) and (6.28), we can calculate the mean and standard deviation as

E[g] = 243.9bbl/d
olg) =52.1bbl/d.

Recall that the corresponding FOSM values are E[q]=239.1 bbl/d and o6[q]=52.1 bbl/d from
Example 6.2, after modifying the results for zero input-input correlation.

(b) Logic Tree Analysis

The first task is to approximate the continuous distributions assumed for g, and a into discrete
states. Following Clemen (1997), we note that for a symmetric distribution, an equivalent three-point
distribution that preserves the first two statistical moments corresponds to the following:

P=0.185for X0.05
P=0.63forxps
P=0.185for X0.95

We can thus construct a nine-point logic tree (using three states for each of the variables) as

shown below:
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P(q,) 9o P(a) a P q Sorted g P Cum P
0.185 568 0.185 0.0672 0.034225 290.0698 150.5238 0.034225 0.034225
0.63 650 0.185 0.0672 0.11655 331.946 172.2544 0.11655 0.150775
0.185 732 0.185 0.0672 0.034225 373.8223 193.9849 0.034225 0.185

0.185 568 0.63 0.1 0.11655 208.9555 208.9555 0.11655 0.30155
0.63 650 0.63 0.1 0.3969 239.1216 239.1216 0.3969 0.69845
0.185 732 0.63 0.1 0.11655 269.2878 269.2878 0.11655 0.815

0.185 568 0.185 0.1328 0.034225 150.5238 290.0698 0.034225 0.849225
0.63 650 0.185 0.1328 0.11655 172.2544 331.946 0.11655 0.965775
0.185 732 0.185 0.1328 0.034225 193.9849 373.8223 0.034225 1

Using the definitions of weighted mean and weighted variance from Chapter 2 (i.e., by combin-
ing the calculated scenario probability, P, and the corresponding outcome, q), we obtain

E[q] =243.9bbl/d
Vg =2762.6
SD[q] = v/2762.6 =52.6bbl/d

Note that these values are essentially identical to the PEM results but slightly different from the
FOSM results. Now, the CDF can be readily constructed using the (Sorted q) versus (Cum P) columns
as shown above. The logic tree CDF is generally presented in a stair-step manner to explicitly show
that it is the outcome of a combination of discrete states for the different uncertain variables.

The nine-point discrete LTA CDF, expressed in terms of exceedance probabilities (i.e., P* =1-P),
is shown in Fig. 6.25, along with the corresponding MCS values generated using 5000 LHS samples
as described in Mishra (1998). Also shown is the CDF for normal distributions with the mean and
standard deviations as calculated by PEM and the nine-point discrete distribution from LTA. All
methods are seen to produce essentially similar CDFs.

LTA = = PEM —— MCS

o o o
IS o o

Exceedance probability, P*

o
N

0 ===
100 200 300 400 500
Oil rate @ t=10 years (STB/d)

FIG. 6.25 Comparison of CDFs from PEM, LTA, FOSM, FORM, and MCS for the exponential decline
Example 6.2.
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6.6 TREATMENT OF MODEL UNCERTAINTY

6.6.1 Basic Concepts

The use of geostatistical techniques for generating multiple realizations of 3-D porosity and
permeability fields to build static and dynamic reservoir models has become routine.
Geostatistical methods can generate fine-scale images of reservoir properties honoring data
from a variety of sources, with the realization-to-realization variations characterizing the un-
certainty due to incomplete information and paucity of data. This uncertainty can be recog-
nized as conceptual or model uncertainty, as opposed to parameter uncertainty that has been the
focus of this chapter.

Quantifying the impacts of such uncertainty on forecasts of reservoir performance gener-
ally requires a statistical model averaging approach (Singh et al., 2010), using either formal
Bayesian model averaging (e.g., Neuman, 2003) or a heuristic approach such as generalized
likelihood uncertainty estimation (e.g., Beven and Binley, 1992), which would necessitate
flow simulations for a large number of these plausible reservoir descriptions. However, com-
putational constraints often preclude the use of a full suite of geostatistical models for reser-
voir forecasting. Typically, only a few selected realizations are used in detailed simulations to
provide an indication of the range of uncertainty in reservoir performance. These realizations
are selected via a ranking of stochastic reservoir models on the basis of some surrogate mea-
sure of reservoir performance. The ranking technique has generally become accepted as an
economical way of quantifying the impact of uncertainty in reservoir description on reservoir
performance (e.g., Ballin et al., 1992; Gomez-Herndndez and Carrera, 1994).

The ranking methods described above typically provide estimates of reservoir perfor-
mance corresponding to the “best” case, the “median” case, and the “worst” case. These qual-
ifiers are obtained from the surrogate performance measure (e.g., volumetric sweep), and are
also assumed to apply to the actual performance measure of interest (e.g., fractional water
cut). However, summary statistics of reservoir performance (e.g., mean and standard devia-
tion), which are needed for performing economic risk analysis, cannot be generated from
these selected cases without knowing their likelihoods or weights. To that end, an efficient
method for both ranking and weighting models, based on the logic tree analysis concepts,
as proposed by Mishra et al. (2000) is discussed next.

6.6.2 Moment-Matching Weighting Method for Geostatistical Models

The idea behind this approach goes back to the work of Kaplan (1981) in the field of prob-
abilistic seismic hazard and risk assessment, where logic trees are commonly used for prop-
agating uncertainty. To avoid the problem of combinatorial explosion, which puts a practical
limit on the number of uncertain variables, Kaplan suggested that a discrete distribution with
multiple (e.g., 10 or greater) values should be replaced by a simpler one with 3-5 values to
make the uncertainty analysis problem more tractable. The two distributions are made con-
sistent by requiring that the weights (probabilities) for the new values be chosen so as to pre-
serve the first few statistical moments. Mishra et al. (2000) have proposed using a discrete
distribution of three values with moment-matching weights.
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The first step is to decide which discrete values of the surrogate measure should be chosen
for further analyses. In order to capture the full range of uncertainty, the median (50th per-
centile) value along with the 5th percentile at the low end and the 95th percentile at the high
end are reasonable choices. The geostatistical models (realizations) corresponding to these
discrete values then become candidates for carrying out detailed simulations.

The second step is to decide how to weight the simulation results from each of these se-
lected realizations. The weighting methodology is based on the fact that any continuous dis-
tribution can be approximated by a discrete distribution such that the statistical moments of
the original distribution are preserved. As depicted in Fig. 6.26, this implies that if we chose
the values x4, x», and x3 as discrete representations of the surrogate performance measure, x,
then their respective weights, Py, P,, and P3;, must satisfy the following moment-matching
constraints:

Pl*xl +P2*X2 +P3*X3:E[X] (629)
P1¥x1% + Py*x” + P3*x3® = E [x*] = E*[x] + V1] (6.30)

where E[*] denotes the statistical expectation or average and V[®] denotes the variance. Note
that x is some readily computed surrogate measure (indicator) of reservoir performance and
the values x4, x, and x5 correspond to realizations Rj, R,, and Rs, respectively.

From the continuous distribution of x, we know E[x] and V[x]. Thus, once the discrete
quantities x1, xp, and x3 are chosen, the weights P;, P,, and P; are determined using
Egs. (6.29) and (6.30), and an additional constraint requiring that the discrete weights (prob-
abilities) must sum to unity:

P1 +P2+P3:1 (631)
| ~100 Geostatistical fields | | ~100 "Simple” simulations
f
Surrogate measure, x
P2
P3 P1
Actual P3
f
performance P2 _
measure,
P1 x3 x2 x1
Surrogate measure, x
3 “Detailed” simulations | | 3-Point discretization of PDF

FIG. 6.26 Schematic of proposed methodology, based on approximating a continuous distribution by a discrete
distribution.
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The realizations selected in this process (R;, Ry, and Rj3) are then used as inputs to detailed
simulations for computing the actual performance measure of interest (e.g., water cut and oil
recovery) denoted by {. The uncertainty in forecasts of { can be characterized as follows:

MIC]=Pr*8y + Pa*Gr + P3*(3 (6.32)

SD[¢] = P*{¢ — MICY* +Po*{&, — M[E]Y
+ P3*{¢5 — M[E]Y? (6.33)

where M[e®] denotes the mean and SD[®] denotes the standard deviation.

6.6.3 Example Field Application

Mishra et al. (2000) present an example application of this methodology using a three-
dimensional field example from the North Robertson unit (NRU) in west Texas. NRU is a
heterogeneous, low permeability carbonate reservoir with 144 active producing wells and
109 injection wells. A smaller subset of the field containing 27 producers and 15 injectors
was chosen for this analysis.

Fifty realizations of the permeability field were generated using sequential Gaussian sim-
ulation based on well-log data from 30 wells. The volumetric sweep efficiency, E,, at 5000 days
based on the single-phase tracer time-of-flight connectivity was calculated using a streamline
simulator as the surrogate performance measure. The geostatistical models (realizations)
were then ranked based on the computed CDF for volumetric sweep efficiency. Three real-
izations, corresponding to the 5th, 50th, and 95th percentile values of E,, were selected for
further analyses. The weights corresponding to these realizations were calculated as per
Egs. (6.29)—(6.31) and are 0.1593, 0.6473, and 0.1934.

The next step in the analyses was the prediction of water cut history up to 5000 days for all
27 producers and the cumulative oil recovery, in the model domain. Waterflood simulations
incorporating multiphase flow effects were carried out for the three selected realizations, and
their results were combined using the weights listed above to obtain estimates of the mean
and standard deviation of water cut history as per Egs. (6.32) and (6.33). In order to evaluate
the accuracy of the proposed weighting scheme, detailed waterflood simulations were also
carried out for all 50 realizations to compute the “true” mean and standard deviations.
Fig. 6.27 (left) compares “true” mean water cut history (from all 50 simulations) with the
“calculated” water cut history (from three simulations) and the corresponding standard
deviation for a representative well, showing good agreement.

Note that predicting uncertainty in a “local” performance measure such as water cut fore-
casts on a well-by-well basis is a rather severe test for any uncertainty propagation technique,
especially one based on a “global” surrogate measure such as volumetric sweep. A more rea-
sonable test would be to examine the behavior of an actual “global” performance measure
such as field-wide oil recovery, which is typically the basis for carrying out economic risk
analysis. To this end, we compute the mean and standard deviation of oil recovery history
for all 50 realizations, and compare those with the values predicted by our approximate
method (using the 5-50-95 percentile weights). As shown in Fig. 6.27 (right), good agreement
is also obtained between the two sets of results.
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FIG. 6.27 Calculated mean and standard deviation of water cut response for well #6 (left) and field-wide oil
recovery (right) using the 5-50-95 percentile weights as compared with the true mean and standard deviation cal-
culated from all 50 realizations. After Mishra, S., Choudhary, M.K., Datta-Gupta, A., 2000. A novel approach for
reservoir forecasting under uncertainty. Soc. Pet. Eng. https://doi.org/10.2118/62926-MS.

In summary, the moment-matching method provides a computationally expedient frame-
work for dealing with model uncertainty as represented by multiple geostatistical realiza-
tions. It can calculate the mean and variance of reservoir performance while using only a
few geostatistical models along with their weights computed on the basis of a surrogate per-
formance measure.

6.7 ELEMENTS OF A GOOD UNCERTAINTY
ANALYSIS STUDY

The following bulleted list provides some guidance regarding the desirable attributes of a
good uncertainty analysis study. This list is generic and can be applied to quantitative uncer-
tainty quantification studies from any problem domain.

* Define problem
Provide a succinct statement of problem including performance measures of interest.
Describe mathematical model linking inputs to outputs. For computationally
expensive forward simulations, it might be necessary to build simplified or
surrogate models using experimental design and response surface methods
(see Chapter 7).

* Characterize input uncertainty
Show PDF/CDF in charts or tables; provide source of information.
If discrete states or expert judgment were used, describe how these were how obtained.
Discuss if there is any correlation among inputs and how this will be handled.

e Perform uncertainty propagation
Show PDF/CDEF/risk profile of output.
Provide table of mean, SD, percentiles of interest.
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Discuss statistical stability of results (i.e., sensitivity to sample size).
Discuss the application of simplified methods (e.g., FOSM), if appropriate.

Determine sensitivity /importance ranking
Show table/charts of importance ranking +scatterplots and describe what methods
were used to obtain these.
Provide tornado/spider (sensitivity) charts for comparison with MCS importance
ranking.
Discuss key drivers of risk and their physical implications from process understanding
and future date collection perspectives.

Summary and conclusions
What is the range of likely outcomes and their probabilities?
Which inputs are the key drivers of risk?
What is the robustness of results to basic assumptions?
What is the usefulness of probabilistic analysis and added value for decision-making?

6.8 SUMMARY

In this chapter, we started with the motivation for a probabilistic approach to uncertainty

quantification. This was followed by a detailed discussion of each of element of our system-
atic framework (i.e., uncertainty characterization, uncertainty propagation, and uncertainty
importance). A number of approaches were presented for each of these and demonstrated
using several example problems. Finally, a practical methodology for treatment of model un-
certainty was presented along with a field example.

Exercises

1.

2.

For the problem described in (6), calculate and plot spider and tornado charts. For a
normal distribution, use mean + 3 SD as the effective range.

For the porosity data given in Table 2.1 [POR_TAB-1.DAT], calculate the sampling
distribution for the mean using the t-distribution and the normal approximation. Plot
the CDFs. How do they compare? What is the reduction in variance going from the full
sample distribution to the sample mean distribution?

. Assume that the distribution of ¢ is U[0.1,0.3], while that of R is U[200,300]. Generate

10 samples for each of the variables using both random sampling and LHS. Prepare a
scatter plot of ¢ versus R. Discuss the relative efficiencies of the two sampling techniques
in covering the uncertain parameter space.

. Consider Archie’s equation for determining water saturation from a well log, viz.:

Sw=a¢""/[Rt/Ro]

where S, is water saturation, R, is formation water resistivity, R; is true formation
resistivity, ¢ is porosity, and a, m, and n are empirical coefficients. Based on available
information, we have:
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a=0.62
n=2
m = 0.33

¢ = N[0.20,0.04]
R = R,/R,, = U[250,350]

Calculate the CDF, E[.] and SD[.] of S;, using Monte Carlo simulation.
Using the “random number generation” option in Excel — Tools — Data Analysis, generate
100 samples of ¢ and R, and then combine them to compute the CDF of S, (and its statis-
tics). Your output should consist of: (a) a worksheet containing the random input vectors,
and the corresponding output vector, (b) a worksheet showing the computation of the
CDF, E[.], and SDL.], (c) a chart showing the CDF together with the position of the mean,
(d) a chart showing a running tally of E[.] and SD[.], and (e) scatter plots of S;, versus ¢ and
R. Which is the dominant input and why?
5. Create a contingency table between S,, and ¢ and S,, and R using 5 x 5 bins. Calculate the
R-statistic for each case. Compare the significance with respect to the results in problem (4).
6. Volumetric estimates of oil in place can be computed using the formula:

N =7758E —6VS, /B,

where N is oil in place (MM STB), V is reservoir volume (ac-ft) = N[70,000, 7000], S, is oil
saturation (—) = U[0.50, 0.70], B, is formation volume factor (RB/STB) = T[1.15, 1.20, 1.25].

Calculate the mean and standard deviation for N using FOSM, PEM, and LTA. (Hint—
convert U and T distributions to a 3-point distribution using the method used in
Example 6.6.) How do the results compare? Calculate the fractional contribution to vari-
ance using FOSM based on Eq. (6.14).

7. Estimate the uncertainty in the permeability value calculated from the formula
162.6qBu
k=218
mh

where k is permeability (mD), q is flow rate (bbl/d) = [240, 260],  is viscosity (cp) = 0.80, B
is formation volume factor = 1.36, m is slope of Horner plot (psi/log-cycle) =70 £+ 15, h is
thickness (ft) = 69.

Express your answer as percent relative error. Which parameter is the major source of
uncertainty and why?
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Numerical models are widely used in engineering and scientific studies. Making a number
of simulation runs at various input configurations is what we call a computer experiment. The
design problem is the choice of inputs for efficient analysis of data. Experimental design is an
intelligent way to pick the choice of input combinations for minimizing the number of com-
puter model runs for the purpose of data analysis, inversion problems, and input uncertainty
assessment (Yeten et al., 2005; Schuetter and Mishra, 2014). One way to carry the tasks on ex-
perimental design results is to build a response surface. A response surface is an empirical fit
of computed responses as a function of input parameters. In this chapter, we introduce
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various techniques for experimental design and response surface modeling and illustrate
their application in petroleum engineering.

7.1 GENERAL CONCEPTS

To understand the behavior of a response function with respect to multiple predictor
values, one typically needs a large number of observations to adequately cover the input
space. An inefficient approach is to compute the response for all combinations of predictor
values chosen on a suitably fine grid. Usually, this is not feasible. In physical experiments,
some combinations of predictors may not be available to the experimenter or may produce
responses that are beyond the capability of the instrumentation to measure. In numerically
simulated experiments (e.g., finite-element- or finite-difference-based computer models), a
large amount of computation may be required to collect each response. Therefore, computing
responses over a grid of predictor values may take too long or be too expensive to complete.

The standard method for avoiding costly data collection is to only observe the response at
prescribed combinations of predictors, called a design matrix, and then fit a metamodel (also
called a “proxy model” or “response surface model” or “reduced-order model”) to those
points. These combinations are specially chosen to be representative of all possible predictor
settings, called the input space. The runs are also chosen to allow the estimation of large-scale
effects in the response. Using the observed runs, a statistical model is then developed. This
model describes a specific mathematical relationship between the predictor variables and the
response.

A good metamodel needs to have two characteristics. First, it must provide an accurate
approximation of the full-physics simulation. That is, for any combination of predictor set-
tings, the metamodel should predict a value of the response that is close to the value one
would get by running the full simulation at the same settings. Second, the metamodel must
run orders of magnitude faster than the full-physics simulation. If these two requirements
are met, then the metamodel may be used as a proxy for the full-physics simulation, and
since it can produce responses quickly, it can be used to explore the input space for
optimal predictor combinations. In the petroleum and geoscience literature, some common
applications of metamodels have been for model calibration or history matching (Li and
Friedmann, 2007), parameter sensitivity analysis (White et al., 2001), uncertainty assessment
using Monte Carlo methods (Friedmann et al., 2001; Carreras et al., 2006), reservoir studies
(White and Royer, 2003; Ghomian et al., 2008), and optimal reservoir management
(Esmaiel, 2005).

7.2 EXPERIMENTAL DESIGN

In this section, we introduce two broad categories of the design of experiments: factorial
design and sampling design. Within each category, there are several choices. We discuss the
pros and cons of these methods in terms of the number of simulation requirements and their
space-filling characteristics.
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7.2.1 Factorial Designs

Factorial designs are typically used for variable screening or response surface optimization.
These designs set each of the predictor variables at one of several levels, usually a “low” and
“high” or a “low,” “center,” and “high.” Typically, “low,” “center,” and “high” levels are
denoted —1, 0, and +1, respectively. When the number of inputs is small, factorial designs
can use a relatively small number of runs to explore the predictor space and allow the estima-
tion of simple linear or quadratic models, which can in turn be used to identify the regions of the
space corresponding to optimal response values. As long as the response surface can be ade-
quately modeled with simple functions, factorial designs are sufficient; however, other designs
may be necessary for understanding the behavior of more complex functions (see Section 7.3).
As the number of inputs increases, full-factorial designs can get quite large due to exponential
growth in the number of runs. In that case, smaller factorial designs can be used to understand
the response surface. A description of several of those designs is given below.

Plackett-Burman

Plackett-Burman designs (Plackett and Burman, 1946) are a class of designs that are chosen
to provide the best possible estimates of the main effects of the predictors on the response.
Main-effect estimates for Plackett-Burman designs have the minimum variance possible
for a limited number of runs. The designs themselves are chosen so that each unique combi-
nation of levels for every pair of predictors appears the same number of times throughout the
design. Typically, there are only two levels (+1 and —1) assigned for each input. While main
effects are estimable, interaction effects between predictors are typically confounded with the
main effects and cannot be separated without additional runs. Plackett-Burman designs for k
inputs can have a number of unique runs anywhere between the nearest multiple of four from
k (not any larger than k+4) and 2* runs, where they become full 2" factorial designs. One ex-
ample of a Plackett-Burman design is shown in Fig. 7.1. In this case, the design has 12 runs

FIG. 7.1 An example of a Plackett-Burman design for three inputs (left) and its representation in the predictor
space (right).
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over 3 inputs, although there are only 2° =8 unique runs; the other runs are replicates. While
replicates are commonly used in physical experiments to explore sources of variability, they
do not impact the number of computer simulations.

Central Composite and Box-Behnken

Central composite (CC) and Box-Behnken (BB) (Box and Behnken, 1960) designs are related
methods that use three levels for each predictor. Both designs make judicious use of observa-
tions and allow the estimation of linear and quadratic terms in a polynomial surface model.
The CC design samples points at the corners of a hypercube in the input space and at points
at the centers of the faces, as shown in Fig. 7.2. In contrast, the BB design samples points along
the edges of the hypercube, as shown in Fig. 7.3. One commonly cited disadvantage to the CC
design is that combinations where multiple predictors have simultaneous extreme values (i.e.,
at the corners of the hypercube) are typically unrealistic. The BB design places observations at
less extreme predictor combinations to provide a better model fit over the center of the space.

Augmented Pairs

The augmented-pair (AP) design described by Morris (2000) is an alternative to central
composite and Box-Behnken designs and is made to work well with sequential response sur-
face search and optimization procedures. The strength of the AP design is that it builds the
three-level targeted design by augmenting the two-level design used in the initial exploration
phase. In this way, none of the runs are wasted. To construct an AP design, one begins with a
two-level (preferably orthogonal) design, with observations at various combinations of —1
and +1 for the different factors. An example of such a design is the Plackett-Burman design.
To augment the design, first, no center-point replicates are added (e.g., repeated runs with
level 0 for all factors). Next, each pair of runs in the two-level design are used to construct
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FIG. 7.2  Central composite design for three inputs (left) and its representation in the input space (right). Note
that the geometry of the design is specified by a parameter « that is set to be 1.68 for this specific case
(rotatable CCD).
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FIG. 7.3 Box-Behnken design for three inputs (left) and its representation in the predictor space (right).
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FIG. 7.4 Augmented-pair design for three inputs (left) and its representation in the predictor space (right).

anew single run, where the levels of the factors in the new run are Ly, = —0.5" (L1 + Ly). Here,
L; and L, are the factor levels in the two parent runs, so that the new level of the factor will be
0 if the original runs were at +1 and —1, —1 if both original runs were at +1, or +1 if both orig-
inal runs were at —1. The resulting design is smaller in size than a CC or BB design but still
retains many of their advantages (Fig. 7.4).
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Comparison of Factorial Designs

Fig. 7.5 shows a comparison of the number of unique runs required by each type of factorial
design described above. The most expensive design is a full two-level factorial design, which
has 2" runs for k inputs (see the curve indicated in magenta). Such designs are a special case of
Plackett-Burman design, but Plackett-Burman designs can have as low as k+1 runs. The min-
imum number of runs for a Plackett-Burman design is shown in Fig. 7.5 in cyan. Note, how-
ever, that such designs do not allow the estimation of much more than the main effects of the
inputs and are not good in general for response surface modeling. Of the three-level designs,
the Box-Behnken and central composite designs (red and green, respectively) have compara-
ble numbers of unique runs, while the AP design typically has fewer runs. The maximum
number of three-level runs possible is 3 (not shown).

7.2.2 Sampling Designs

For smooth, well-behaved responses, factorial designs provide a means of fitting polyno-
mial surfaces (e.g., linear for two-level designs and quadratic for three-level designs) to the
data to guide further exploration in the predictor space. Because they were developed in
the tradition of modeling physical experiments, predictors in these designs are only set to
one of a few levels in each run; this allows the estimation of predictor effects (i.e., through
an ANOVA decomposition) and the magnitude of the random variability present in the sys-
tem. In this case, the goal is to fit a metamodel to the output of deterministic simulation code.
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FIG. 7.5 A comparison of the number of unique runs needed for the different factorial designs described in this
section.
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That is to say, the variability in the system is zero. There is less of a need to sample predictors
at one of a small set of values from run to run, since estimating variability is no longer re-
quired. Furthermore, it is possible that the simulation surface is not smooth and well behaved.
There could be local discontinuities present that cannot be easily observed from a factorial
design that only examines behavior at the low, center, and high end of the ranges for each
predictor.

An alternative approach is a sampling design, which has runs that are not restricted to low,
center, and high values of each predictor. Instead, the samples are randomly chosen across the
ranges of values for each predictor. Generally, the goal is to have a space-filling design, that s,
to spread observations across the predictor space with as few “holes” or “gaps” as possible.

Purely Random Design

The most basic sampling design is a simple random sample over the input space. Obser-
vations are chosen by drawing independent random samples of size n over the range of pos-
sible values for each input. The result is a design with n runs. Variations on this approach
could use different marginal distributions in the sampling of the inputs or possibly include
draws from a joint distribution over subsets of inputs. Random designs are easy and straight-
forward to produce. However, they could also suffer from poor “space-filling” characteris-
tics. That is, multiple observations frequently end up clustered in one part of the space
and provide largely redundant information about the behavior of the response surface in that
region. Other parts of the space may be sparsely populated, and the redundant observations
could be put to better use filling in those gaps.

Latin Hypercube Sampling

A Latin hypercube sample (LHS) design described by McKay et al. (1979) is intended to fill
the predictor space by randomly selecting observations in equal probability bins across the
range of the inputs. These designs sample values in [0, 1] for each of the inputs at each design
point. The sampling is done in such a way that for a sample of size 7, there will be exactly one
observation in each of the intervals [0, 1/n], [1/n,2/n], ..., [(n —1)/n, 1] for each of the inputs.

In practice, the [0, 1] bounds on the values in LHS samples are interpreted to be a proba-
bility, and the design points are transformed through some probability distribution on the
inputs. This has the effect of spreading the sampled points across equal regions of probability
for each input, according to the chosen distribution. Several examples of LHS designs are
shown in Fig. 7.6 for two predictors.

0.5

0 1
0 0.5 1

FIG. 7.6 Examples of LHS designs using 20 observations for two predictors.
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Maximin LHS

A maximin LHS design described by Johnson et al. (1990) is created by generating a large
number (e.g., thousands) of LHS designs and selecting the design that has the largest value of
the function:

M(x!,x%, ..., x") = min; Hxi —x

7

where x!,x?,...,x" are the n sampled observations and ||xi —x/ H is the Euclidean distance be-

tween observations i and j. In other words, the maximin LHS design is the one that maximizes
the minimum distance between any pair of observations in the sample. Examples of maximin
LHS designs are shown in Fig. 7.7.

Maximizing the minimum distance between any pair of points has the effect of spreading
the observations out as much as possible across the input space, under the constraint that the
design is still based on a Latin hypercube. Maximin LHS designs, therefore, tend to have bet-
ter space-filling characteristics. With a generic LHS design, there is a rare chance that, for ex-
ample, all of the runs could be drawn from bins along the diagonal of the hypercube. This
would result in a poor design for response surface modeling. Since maximin designs are se-
lected from hundreds or thousands of candidate models, the chance of such a diagonal model
is infinitesimally small. In general, for any location in the input space, the distance to the clos-
est observation will be on average less in a maximin LHS design than in a generic LHS design.

Maximum Entropy Design

Maximum entropy designs described by Shewry and Wynn (1987) are also designed to
have space-filling characteristics. The design is chosen to maximize the amount of “informa-
tion” given by the sample, which in this case is captured by the entropy measure as defined in
Shannon’s information theory (Shannon, 2001). One way to do this is to maximize the deter-
minant of the correlation matrix C= ([, j]), where

c g 1—F(l’l,‘]‘) 1fh,]§u
’["]]_{o if by >a

Here, h;; is the distance between two observations x' and ¥/, and ['(h;) is a spherical
variogram with range a, defined by

1 1
O o 1e) O
05) O 005 00 ° Jo0s° 0o
°© Lo 5
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0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1

FIG. 7.7 Examples of maximin LHS designs using 20 observations for two predictors.
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FIG. 7.8 Examples of maximum entropy designs using 20 observations for two predictors.

Maximum entropy designs are not restricted to equal probability bins, as LHS designs are.
Several examples of these designs are shown in Fig. 7.8.

Comparison of Sampling Designs

The figures below show comparisons of the various types of sampling designs with respect
to several space-filling criteria. The wraparound L, discrepancy described by Hickernell
(1998), WL2, measures the difference between the number of design points per subvolume
compared with the same count for a uniform distribution of points across the input space.
It is computed with the formula shown below, where p is the number of inputs and x',
x>,...,x" are the n observations (i.e., design runs):

o= (§) 331G b))

i=1 j=1 k=1

k_ .k
xi—x]-’(l—

The second criterion is the maximin criterion:
M= min; ; HxZ —x’H

The final criterion is the entropy measure, defined as E = det(C), where the matrix
C=(ri,j]) as described in the maximum entropy design.

To compare the space-filling characteristics of each of the sampling designs, 100 designs of
each type were sampled over 7 =20 runs and d =2 inputs. Each of the three criteria was then
computed for each design. Comparisons of the designs are shown in Figs. 7.9-7.11,

T T T T T T T T T T

Max. entropy - I———m———— .

Maximin LHS | ;-[[H 3

Basic LHS

b

Random

0.06 0.08 01 012 014 0.16 018 02 022 024
Discrepancy

FIG. 7.9 Comparison of the sampling designs with respect to the wraparound L, discrepancy measure. Smaller
values indicate better space-filling characteristics.
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FIG. 7.10 Comparison of the sampling designs with respect to the maximin distance measure. Larger values
indicate better space-filling characteristics.
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FIG.7.11 Comparison of the sampling designs with respect to the entropy measure. Larger values indicate bet-
ter space-filling characteristics.

corresponding to wraparound L, discrepancy, maximin, and entropy measures, respectively.
Maximum entropy is the top performer for two of the metrics, including the maximin mea-
sure. It is able to outperform the maximin LHS design in the latter case because it is not bound
by the restriction to be a Latin hypercube design. In terms of wraparound L, discrepancy,
maximin LHS seems to outperform other designs.

7.3 METAMODELING TECHNIQUES

After deciding on an experimental design, the experiment can be run at each of the pre-
scribed predictor settings, and the responses can be observed. Using the design and the ob-
served response, a response surface model may be used to predict what the response would
have been at an unobserved combination of predictor values. In the context of computer ex-
periments, where the response being modeled is the result of deterministic computer code,
the response surface model is also referred to as a proxy model or a metamodel. Both terms
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capture the fact that one is using a model (i.e., the metamodel) to predict the output of another
model (i.e., the deterministic computer code).

There are many variations of metamodels, but the goal is generally the same for all of them.
Some assumptions are made about either the shape of the response surface, its smoothness,
and/or the correlation in responses between points that are close in the space. The parameters
for these assumptions are estimated with the sampled observations, and a criterion is opti-
mized. Typically, that criterion balances the smoothness and simplicity of the surface with
its ability to match available data.

7.3.1 Quadratic Model

The quadratic polynomial model fits a parametric model to the response that is the analog
of the parabola in p dimensions. It is defined as a sum of all linear, quadratic, and pairwise
cross product terms between predictors. That is, the approximating function f (x) is defined by

. p p p
FOO=g=bo+Y bixi+ Y bu(xi)+ Y > byxix;
i=1 i=1 i=1 j>i

The coefficients in the quadratic polynomial model are estimated by solving the linear
model Y=XB, where

2

1 1 (41)2 1 1,1 41,1 1 .1

£(x) 1 xf x, (%) (xp) X0 X{Xg e XX,

2
y= [F@) ] x= |18 2 () - () 2 b 2|
xn H . . By H
&) 1 x X (x{’)2 (xg) XXy A e XXt
and

B= (bOI bl/ [RRY bp/ bll/ seey bpp/ blZI b13l ey bpfl,p)T'

The solution is given by B= (X'’X)"'X'Y. This is an example of multivariate linear regres-
sion discussed in Chapter 4.

7.3.2 Quadratic Model With LASSO Variable Selection

Typically, in industry, the analyst will perform a variable selection technique before pro-
ceeding with a quadratic fit. This could be done, for example, using exploratory analysis,
stepwise regression, or comparison of candidate models using information criteria like
AIC or BIC (Chapter 4). Ultimately, the final model fit will only use a subset of the main ef-
fects, interactions, and squared effects. This results in a parsimonious model and can often
lead to better predictions because noisy, less relevant covariates have been removed from
consideration.

One way of performing variable selection is through an automatic procedure based on
LASSO regression. Least absolute shrinkage and selection operator (LASSO) regression de-
scribed by Tibshirani (1996) is a technique for fitting a basic multiple linear regression model
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while shrinking the coefficients toward zero. Mathematically, this is done by adding a penalty
term to the least-squares term in the objective function for linear regression (Eq. 4.18b).

2
n 4 P
Minimize » " | Yi—fo—> BiXj | +1> ’ﬂf‘
i j=1 =1

LASSO regression has the interesting property that some of the fitted coefficients will be ex-
actly zero. In these cases, LASSO serves as a variable selection algorithm where variables
whose coefficients are zero are removed from the model.

The full procedure for the LASSO variable selection and quadratic fit is as follows:

(1) Determine an appropriate value of the strength of the penalty term 4, typically using cross
validation on the root-mean-square error (RMSE) of the regression fit. Large values of A
will drive more coefficients toward zero.

(2) Fit a LASSO model using the quadratic regression model below by minimizing the least
squares error with the penalty term:

=y=bo+ Zb Xi+ Zb” Xi) Z, ZZb,]xlx]

i=1 j>i

(3) Identify which coefficients (b, b;, bjj;, and b;;) are nonzero in the LASSO model. Remove all
main effects, interactions, and squared terms that are associated with the zero coefficients.

(4) Refit an ordinary least-squares regression model using only the remaining terms from the
LASSO model.

7.3.3 Kriging Model

The kriging model described by Cressie (1993) and Krige (1951) has an approximation
function that is composed of a trend term and an autocorrelation term. That is,

f0) =n(x) +Z(x),
where u(x) is the overall trend and Z(x) is the autocorrelation term. Z(x) is treated as the re-
alization of a mean-zero stochastic process with a covariance structure given by
Cov(Z(x)) = 6’R, where R is an 7 x n matrix whose (i, j)th element is the correlation function
R(x',¥) between any two of the sampled observations x' and x'. Ordinary kriging assumes a
scalar trend (x) =y, whereas universal kriging uses a parametric trend term.

The Matérn correlation is often favored for kriging models because it tends to produce es-
timates that are smoother on a local level than other common alternative structures, like the
exponential. However, it is also more flexible than Gaussian correlation, which can be overly

smooth. An example of the Matérn (5/2, 6) correlation where dy = (x;< —xi) is given below:

i) P dk\/_ 5d2 dV/5
oK) =[] |1+ 8 9—£ ewp| ==

k=1
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In the universal kriging model, the quadratic polynomial trend term below is commonly
used:

)=y + > i+ 3 b+ 303 by
i=1 i=1

i=1 j>i

7.3.4 Radial Basis Functions

Radjial basis functions described by Chen et al. (1991) are any functions that depend solely
on the distance of an observation to some fixed location ¢. That is, an RBF ¢( -) satisfies
¢(x) =p(||x—c||). An RBF regression model takes the following form:

. P
f)=bo+> bigh(lx —xil)
i=1

That is, the response surface is approximated by a weighted sum of radial basis functions,
each of which depends on the distance from the location of interest, x, and one of the sampled
observations, x;. The regression weights b; are then trained using an ordinary least-squares
approach. Other variations on this theme may be used to improve model fit. One way to pro-
vide a smoother fit is to include a smaller number of basis functions that involve alternative
centers ¢y, ¢y, ..., ¢, instead of xy, x5, ..., X,, where p’ <p. Another alternative is to allow the
parameters of the ¢;( -) functions to vary by location.

7.3.5 Metamodel Performance Evaluation Metric

The most desirable property of a metamodel is that it will provide the closest match be-
tween the prediction and the true response for future independent test data. When comparing
different metamodels, it is useful to be able to capture the quality of the metamodel fit in a
single statistic. There are many ways to do this, but two of the most common are RMSE
and R* RMSE is defined as the square root of the average squared difference between pre-
dictions 7, =f (x') and true response values y; =f(x') for a set of observations {x',x’,...,x"}:

=

1 N2
RMSE= 1355
i=1
The RMSE can also be normalized by, for example, dividing it by the median observed re-

sponse. This puts it on a similar scale regardless of the response, allowing for comparison of
metamodel fits to different response surfaces:

T S
=S (vi—3,)
“Scaled” RMSE = SRMSE — V1~

median{yi, y2, ..., Yn}

Another metamodel accuracy measure is R?, which is defined as the amount of variation in
the response that is explained by the predictors. In a simple linear regression model, the R
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statistic is the square of the correlation between the actual and predicted response values. For
other models, a pseudo-R? statistic is typically used:

n ~\2
SS0del —1_ Zi:l (]/z _yi)
SSerror Z?:l (]/1 — y)z

Note that while R? in simple linear regression is always in [0, 1], the pseudo—R2 isin[—oo, 1].
A negative pseudo-R? statistic means the model predicts the response worse than a flat model
that predicts the mean observed response value everywhere in the predictor space.

Pseudo — R? = Rf, =1-

7.4 AN ILLUSTRATION OF EXPERIMENTAL DESIGN
AND RESPONSE SURFACE MODELING

We illustrate here the steps involved in experimental design and response surface analysis
using an example involving the prediction of flowing bottom-hole pressure (BHP) at a well
for a given time as function of three variables: permeability (PERM), porosity (POR), and skin
factor (SKIN). The skin factor is a dimensionless quantity that quantifies the near-wellbore
damage. Thus, in this example, our response variable is the BHP, and the three factors are
PERM, POR, and SKIN.

In experimental design, several parameters are varied simultaneously according to a
predefined pattern. The design here refers to a set of factor value combinations for which
responses are measured as discussed before. For the design, the first step is to specify the
number of levels and assign appropriate value to the factors for each level. We use here a
three-level Box-Behnken design, and the variable ranges are shown in Table 7.1.

A Box-Behnken design requires a less number of experiments compared with a full-
factorial design. For example, in this case, the design requires 16 experiments for the three
factors, including four replicates at the factor center point (all factors assigned to their
center-point values) (Table 7.2). Center-point replicates make the design more nearly orthog-
onal, which improves the precision of estimates of the response surface coefficients. Whereas
the center-point replicates are common in experimental data collection to ensure repeatabil-
ity, they are less common in computer experiments. Without the center-point replicates, the
Box-Behnken design here will require 13 experiments as shown in Fig. 7.3.

The next step is to obtain the response for the combination of factors in Table 7.2. For field
applications involving complex geology, this typically requires numerical simulation of the
reservoir response. For this example, the BHP history for the center point is shown in Fig. 7.12.

TABLE 7.1 Predictor Variable Ranges for Experimental Design

PERM (MD) POR SKIN
Low -1 0.05 0.2 -2
Center 0 0.1 0.25 0

High 1 1 0.3 1
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TABLE 7.2 Box-Behnken Design with Three Factors and Four Center-point Replicates

EXP # PERM POR SKIN BHP (psi)
1 1 0 -1 2884.4
2 0 1 -1 2129.4
3 -1 0 -1 1360.4
4 0 -1 1 1488.9
5 -1 1 0 596.93
6 0 0 0 1711.1
7 -1 -1 0 515.89
8 0 1 1 1529.4
9 0 0 1711.1
10 0 0 1711.1
11 0 -1 -1 2088.8
12 1 1 0 2847.6
13 1 0 1 2824.4
14 1 -1 0 2839.7
15 -1 1 160.52
16 0 0 1711.1
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FIG. 7.12 Bottom-hole pressure response for the combination of factors at the center point. The pressure at
200 days is used in the response surface analysis.

The single response used in this example is the BHP at 200 days, although experimental de-
sign does allow for multiple responses to be modeled. The BHPs at 200 days for the various
factor combinations in the Box-Behnken design are also included in Table 7.2.
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The design step is followed by building of a response surface model that is an empirical fit
of the response as a function of the factors. The Box-Behnken design is used to construct a
second-degree polynomial response surface model given below:

BHP =b0 + b1*PERM + b2*POR + b3*SKIN + b4*PERM*PERM + b5*POR*POR + b6*SKIN*SKIN
+b7*PERM*POR + b8*PERM*SKIN + b9*POR*SKIN

The coefficients of the regression equation above are obtained by a multilinear regression,
and the regression results are summarized in Table 7.3. The high value of R* indicates that
most of the variability in BHPs can be explained by the regression model.

The results of analysis of variance for the multilinear regression are shown in Table 7.4. As
discussed in Chapter 4, the analysis of variance (ANOVA) is actually a hypothesis test to ex-
amine the influence of the factors in explaining the response. The F-test statistic is used to test
the hypothesis that none of the factors are linearly related to the response variable. A large
value on the observed F-test statistic indicates that the linear model adequately explains
the response. The P-value is defined as the probability of having a test statistic that is at least
large as the observed test statistic. A small P-value means that at least some of the factors have
effect on the response variable.

The next step is to examine the influence of the individual factor on the response. This is
done by looking at the t-statistic associated with the regression coefficients. The results are
summarized in Table 7.5. The first column indicates the coefficients in the polynomial model,
and the second column shows its value. The third and fourth columns show the ¢-statistic and
the associated P-significant values. Again, small P-values will indicate that the parameters are
significant. Often, a threshold P-value, for example, P-value <0.005, is set to test the signifi-
cance. This means that the coefficients with P-value smaller than 0.005 are significant.
The fifth column shows the standard error in the estimation of a particular response surface
coefficient. The sixth and seventh columns show the —95% and +95% confidence values,
respectively, for the coefficients.

TABLE 7.3 Regression Summary

R? 0.998
R? adjusted 0.996
Standard error 56.48
# Points 16

R? for prediction 0.971

TABLE 7.4 Analysis of Variance

Source df SS 55% MS F P-Values
Regression 9 10725941.02 100 1191771.225 373.57 1.50861E—07
Residual 6 19141.1 0 3190.2

Total 15 10745082.12 100




7.4 AN ILLUSTRATION OF EXPERIMENTAL DESIGN AND RESPONSE SURFACE MODELING

185

TABLE 7.5 Test of Significance for the Coefficients

Coefficient  Coefficient Values  #-Stat P-Value Std Error —95% 95%

bo 1711.1 60.59 1.35841E—09 28.24 1642.0 1780.2
by 1095.3 54.85 2.46619E—09 19.97 1046.4 1144.2
b, 21.26 1.064 0.328 19.97 —-27.61 70.12
b3 —307.48 —15.40 4.74339E—-06 19.97 —356.34 —258.62
by —6.382 —0.226 0.829 28.24 —75.48 62.72
bs —4.706 -0.167 0.873 28.24 —73.81 64.40
be 102.71 3.637 0.01088 28.24 33.61 171.81
b, —18.27 —0.647 0.542 28.24 —87.37 50.83
bg 284.98 10.09 5.50004E—05 28.24 215.88 354.08
by —2.5E-05 —8.85242E—07 1.000 28.24 —69.10 69.10

From Table 7.5, we can see relatively large P-values for the coefficients by, by, bs, b7, and b,

indicating that these coefficients are likely to be zero. The results also indicate that porosity
does not seem to influence the BHP that is consistent with our physical understanding of the
problem. Repeating the multiple regression without these coefficients leads to the following
equation for the response surface model:

Resp.1 =b0 +b1*perm + b2*skin + b3*perm*skin + b4*skin*skin

The regression summary, the analysis of variance, and the test of significance table for the

revised response surface model are given in Tables 7.6-7.8. The results show that there is no

TABLE 7.6 Regression Summary

R? 0.998

R? adjusted 0.997

Standard error 47.04

# Points 16

R? for prediction 0.991
TABLE 7.7 Analysis of Variance
Source df SS MS F P-Value
Regression 4 10720739.3 2680184.825 1211.1 1.84275E—14
Residual 11 24342.8 2213.0
Total 15 10745082.12
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TABLE 7.8 Test of Significance for the Coefficients

t-Stat P-Value Std Error —-95% 95%
bo 1705.6 102.55 9.47447E—18 16.63 1669.0 1742.2
by 1095.3 65.85 1.22747E—-15 16.63 1058.7 11319
b, —307.48 —18.49 1.24053E—09 16.63 —344.09 —270.87
b3 284.98 12.12 1.05378E—-07 23.52 233.21 336.75
by 102.71 4.367 0.00112 23.52 50.94 154.48

significant loss in R* The large F-values and the associated small P-value indicate that the
model adequately explains the response. Finally, looking at the t-statistic and the
corresponding P-values, we can conclude that all the coefficients in the response surface
model are significantly different from zero.

Fig.7.13 shows the cross plot of actual versus the predicted BHP using the response surface
model. Clearly, the response surface model is able to predict BHP using the two factors: per-
meability and skin. Also, the residual plot (Fig. 7.14A) shows no clear structure, and the
straight-line normal quantile plot for the residual (Fig. 7.14B) shows that the residuals are,
indeed, normally distributed. These results seem to indicate that the response surface model
does not violate the assumptions of the underlying regression model. Additional diagnostic
plots with residual versus each of the factors can be made to further validate the model.
Finally, Fig. 7.15 shows the response surface plot for various combinations of permeability
and skin. As expected, we can see that as permeability decreases, the BHP also decreases.
Similarly, as the skin factor increases, the BHP decreases. Again, these results are consistent
with our physical understanding.

The reader can reproduce the results in this example using the public-domain software
EREGRESS and the gas flow simulator GASSIM made available in the online resources for
this book.

Prediction vs. Actual response
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FIG. 7.13  Actual versus the predicted BHP using the response surface model.
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FIG. 7.14 Diagnostic plots for the residuals: (A) residuals versus the fitted response and (B) normal quantile
plot for the residuals.
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FIG. 7.15 Plot of the response surface displaying the behavior of the BHP for various combinations of factors:
permeability and skin.

7.5 FIELD APPLICATION OF EXPERIMENTAL DESIGN
AND RESPONSE SURFACE MODELING

7.5.1 Problem of Interest

There are numerous field applications of experimental design and response surface anal-
ysis for parameter sensitivity studies (White et al., 2001), fast surrogate modeling (Zubarev,
2009), geologic model calibration or history matching and uncertainty analysis (Cheng et al.,
2008). We briefly discuss here an application for field-scale history matching of geologic
models. History matching is the process of reconciling geologic models to dynamic reservoir
response such as pressure data and multiphase production data. Effective strategies for his-
tory matching commonly follow a structured approach with a sequence of adjustments to the
geologic model starting from global to regional parameters followed by local changes in
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model properties associated with matching for pressure, flood front progression, and individ-
ual well performance (Cheng et al., 2008; Yin et al., 2011). Typical parameters for pressure
matching are regional pore volume multipliers, regional vertical and areal transmissibility
multipliers, fault transmissibilities, and aquifer strength. Modern assisted /automatic history
matching methods utilize design of experiments and response surface methodologies with
machine learning and evolutionary algorithms to calibrate the uncertain parameters (Cheng
et al., 2008).

7.5.2 Proxy Construction and Application Strategy

Key parameters are first identified via a sensitivity analysis and an initial ensemble of
models that span the parameter ranges is created (Cheng et al., 2008). To minimize the num-
ber of flow simulations, which can be computationally demanding, it is common to construct
surrogate or proxy models using experimental design and response surface analysis. The
steps for sensitivity analysis and proxy modeling are illustrated in Fig. 7.16.

Genetic algorithm (GA), one of the evolutionary algorithms, is commonly used for model
calibration (Cheng et al., 2008). The genetic algorithm imitates biological principles of
evolution—survival of the fittest. The evolution starts from a population of randomly gener-
ated individuals consisting of a set of model parameters. In each generation, the fitness
(a measure of dynamic data misfit) of every individual in the population is evaluated.
A proxy model is particularly useful here because it can be used to reject individuals for

Define history matching parameters

:

Plackett-Burman 2 level design (max. and min.)

:

Run simulation and evaluate data misfit

|

Sensitivity analysis
Identify key parameters and ranges

:

Latin hypercube design with key parameters

Run simulation and evaluate data misfit

Proxy model construction for data misfit

FIG. 7.16 Flow chart of sensitivity analysis and proxy modeling for history matching.
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which the proxy approximation to the misfit function is higher than an acceptable threshold.
This avoids costly flow simulations (Cheng et al., 2008; White and Royer, 2003; Yeten et al.,
2005).

Multiple individuals are stochastically selected from the current population (based on their
fitness) and modified (recombined and possibly randomly mutated) to form a new popula-
tion. The new population is then used in the next iteration of the algorithm. The algorithm
terminates when either a maximum number of generations have been produced, or a satis-
factory fitness level has been reached for the population.

7.5.3 Field Case Study

We briefly discuss a field application of the genetic algorithm and proxy modeling for his-
tory matching (Yin et al., 2011). The E reservoir has an average depth of 1000 m with 13 active
producers and six active injectors. The reservoir structural framework was built to represent
seven zones. Each zone was divided into multiple layers resulting in a total of 424 layers. Also,
22 faults were incorporated into the model resulting in 12 fault blocks. The E field was oper-
ated under a combination of depletion and pressure maintenance strategy to maximize oil
recovery and a better-calibrated full-field model would support these activities.

A stepwise illustration of the model calibration procedure is given in Fig. 7.17. To start
with, a proxy model for the dynamic data misfit is constructed as discussed in Section
7.5.2. The proxy model is used to screen out less viable models with potentially large data
misfit. This step results in substantial savings in computation time as only the models that
pass the proxy screening are used for flow simulation and rigorous computation of the data

Initialize/update GA generation
'

Select/crossover/mutate

Discard

Run simulation and compute misfit

Converge check

| Cluster analysis |

Proxy updating *
7 | Local update |

GA: population accepted by fitness
measure

FIG. 7.17 Flow chart of genetic algorithm with proxy for history matching.
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TABLE 7.9 E Field History Matching Parameters and Ranges

Uncertainty Variables Low Value Mid Value High Value Distribution
Facies —1 0 1 Discrete uniform
Static uncertainties Water saturation -1 0 1 Discrete uniform
Porosity =i 0 1 Discrete uniform
Baffles/barriers Interregion transmissibility multipliers 1.E-06 1.E-03 1.E+00 Continuous uniform
Fault transmissibility multipliers 1.E-06 1.E-03 1.E+00 Continuous uniform
Sorw1 (thin bed) 0.30 0.36 0.42 Continuous uniform
Sorw2 (thick bed) 0.25 0.32 0.38 Continuous uniform
Krwe1 0.30 0.45 0.60 Continuous uniform
. i, Krwe2 0.21 0.33 0.45 Continuous uniform
Relative permeabili
p ty Nw1 1.50 1.05 0.60 Continuous uniform
Nw2 2.50 2.00 1.50 Continuous uniform
Now1 3.20 11.60 20.00 Continuous uniform
Now2 2.40 2.80 3.20 Continuous uniform
Rock property Rock compressibility 5 20.50 36 Continuous uniform
Pore volume Aquifer PV multiplier 1 10.50 20 Continuous uniform
.. Horizontal transmissibility 0.5 0.75 1 Continuous uniform
Transmissibility Vertical transmissibility 0.1 0.55 1 Continuous uniform

misfit. As shown in Fig. 7.17, these misfit calculations are used to further update the proxy
model after sufficient number of flow simulations.

Table 7.9 shows a full set of uncertain parameters identified during geologic modeling. Given
the large number of potential uncertain parameters, first a sensitivity analysis was carried out by
a Plackett-Burman 2-level experimental design. Flow simulations were performed for each of
the experiments and the effects of each parameter on the data misfit were ranked. The param-
eters resulting in the largest change of the misfit function were kept and the less sensitive pa-
rameters are discarded. The details of the sensitivity analysis can be found in Cheng et al. (2008).

An ensemble of geomodels was calibrated using GA with proxy model to history match
well data including shut-in bottom-hole pressures, Modular Dynamic Test (MDT) pressures,
and cumulative liquid productions. Some example matches of MDT pressure are shown in
Fig. 7.18. A cluster analysis can be performed on the ensemble of history matched models

MDT well 1 MDT well 2
" ' A Obse'rved ' ' A Observ'ed

3700 \\ —— Initial model | 3400 4:‘\ —— Initial model

3800 } Updated models | a Updated models

3900 | § ] 3600 | 2 1
§ 4000 | AX ' l gﬁ 42
7 4100} s {2 %0 |

4200} 1 2000} e |

4300 \\ A 1 KA‘

4400 | 4 4200 | ]

1400 1600 1800 2000 2200 1400 15.00 16.00 17bO 18.00 1900
MDT pressure (psi) MDT pressure (psi)

FIG. 7.18 Examples of Modular Dynamic Test (MDT) match.
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to identify a diverse set of models for performance forecasting, uncertainty analysis and to
optimize field development and management strategy (Cheng et al., 2008).

7.6 SUMMARY

In this chapter, we have introduced the concepts of experimental design and response sur-
face analysis to construct proxy models to approximate the results of complex flow simulation.
Proxy models can be very useful for large-scale field applications as they can be used to
prescreen potential solutions without going through costly flow simulations. A good proxy
can also substitute a full-physics simulation model within the prescribed range of predictor var-
iables. Introduction of proxy models enables stochastic search and optimization algorithms
such as GA, simulated annealing (SA), and Markov chain Monte Carlo (MCMC) to be practi-
cally feasible for field-scale applications, especially when there are large numbers of parameters
in the problem. We have illustrated the power and utility of the experimental design and re-
sponse surface models using a simple illustrative example and a field application.

Exercises

1. Suppose we have four inputs, with each input ranging between —1 and 1. Please create the
following designs:

(a) Full Plackett-Burman design (full factorial)

(b) Central Composite design (with « is set to 1)

(c) Box-Behnken design

(d) Write a program to compute the Augmented Pairs” design, based on the 2-level
full factorial design from (a)

2. Suppose we have three inputs. Each input has uniform probability and ranges between
0 and 1. Please finish the following:

(a) Purely random design with 60 independent random samples.

(b) Latin Hypercube Sampling with 60 observations.

(c) Maximin LHS (among 50 realizations with 60 observations each realization).

(d) Maximum entropy design (Hint: one option for sampling is to choose the one with
highest entropy among 50 LHS realizations with 60 observations each realization).

(e) Compare these designs using the three space-filling criteria mentioned in the book,
with 100 realizations of designs for each type.

3. Consider the data given by Table 7.2. Ignore the porosity data (POR) and construct a
second-degree polynomial response surface model.

(a) What is the R* and standard error?

(b) Provide the Analysis of Variance table.

(c) Test the significance for the coefficients, regarding the constant term and PERM*PERM
term. Is the conclusion changed compared to the results from Table 7.5?

(d) Plot the diagnostic plots for the residuals. Is there any structural bias observed?
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The focus of this chapter is data-driven modeling, where machine-learning techniques are
used to uncover the relationship between input and output variables. Our discussion will
cover: (a) premises, i.e., easy-to-understand descriptions of the commonly used concepts
and techniques, (b) promises, i.e., case studies demonstrating successful practical applications,
and (c) perils, i.e., honest appraisal of challenges and potential pitfalls.

8.1 INTRODUCTION

8.1.1 Preliminaries

Big data analytics and data-driven modeling have become quite the buzzwords in re-
cent years in the context of analyzing the performance of oil and gas reservoirs (Saputelli,

Applied Statistical Modeling and Data Analytics 1 95 (© 2018 Elsevier Inc. All rights reserved.
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2016). Their growing application has been predicated on the potential to usher in exciting
new developments related to (1) acquiring and managing data in large volumes, of different
varieties, and at high velocities (the 3V problem) and (2) using statistical techniques to
“mine” the data and discover hidden patterns of association and relationships in large,
complex, multivariate datasets (Holdaway, 2014). The terms data mining, statistical learning,
knowledge discovery, and data analytics have all been used interchangeably in this context.
Essentially, the goal of such an exercise is to extract important patterns and trends and
understand “what the data says,” using supervised and/or unsupervised learning
(Hastie et al., 2008).

In supervised learning, the value of an outcome is predicted based on a number of inputs,
with the training dataset used to build a predictive model or “learner” via techniques such as
regression analysis discussed in Chapter 4 and other methods to be discussed in this chapter.
On the other hand, unsupervised learning involves describing associations/patterns among
a set of input measures to understand how the data are organized or clustered, using
techniques such as cluster analysis and principal component analysis discussed in
Chapter 5 and other methods such as multidimensional scaling and self-organizing maps
(see Hastie et al., 2008, for details).

8.1.2 Data-Driven Models—What and Why?

In classical statistics, the standard approach to data analysis requires postulating a
model between the independent (predictor) and dependent (response) variables. For ex-
ample, Chapter 4 discusses the application of linear regression for input-output modeling,
where a simple linear relationship is assumed between the variables. As datasets have be-
come more complex and/or multidimensional, there is a growing recognition that one
needs to look beyond linear regression (or its linearizing variants) to better describe
input-output relationships. In particular, the idea is to extract the model from the data
without making any assumptions regarding the underlying functional form (Breiman,
2001b). This is what was also referred to earlier as supervised learning. Such problems
can be further subdivided into (a) regression problems, where the response variable is con-
tinuous (e.g., permeability), or (b) classification problems, where the response variable is
categorical (e.g., rock type). In both cases, the predictor variables can be continuous
and/or categorical. For example, building a predictive model for the cumulative annual
production in the first 12 months is a regression problem (Schuetter et al., 2015), whereas
determining the factors responsible for identifying electrofacies on the basis of well-log
response is a classification problem (Perez et al., 2005).

The benefits of data-driven modeling, compared with standard linear or nonlinear re-
gression analysis with a prespecified data model, are (a) identifying hidden patterns in the
data, (b) capturing complex nonlinear relationships between variables, (c) avoiding the
need to explicitly define functional forms for the input-output relationship,
(d) automatically handling correlations between predictors, and (e) guided/automated
tuning of the model during “learning.” However, some degree of model interpretability
can be lost because of model complexity—leading to their labeling as “black-box” models.
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8.1.3 Our Philosophy

For more than a decade, advanced algorithms developed by statisticians and computer
scientists have been used to provide data-driven insights into system performance in fields
ranging from consumer marketing to cyber security to health care (Bahga and Madisetti,
2016). Such techniques are also increasingly being used for problems such as reservoir
characterization (e.g., Toth et al., 2013; Bhattacharya et al., 2016), production data analysis
(e.g., Shelley et al., 2014; Lolon et al., 2016), reservoir management (e.g., Maucec et al,,
2011; Maysami et al., 2013), and predictive maintenance (e.g., Rawi et al., 2010; Santos
etal., 2015). However, the subject of data-driven modeling (aka data analytics) remains a mys-
tery to most petroleum engineers and geoscientists because of the statistics-heavy jargon and
the use of complex “black-box” algorithms.

Since the development or coding of advanced statistical algorithms is typically not the
primary focus for petroleum engineers and geoscientists, there is increasing reliance on
commercial packages such as SAS or open-source packages such as R that make these
algorithms readily available to the larger community. Nonetheless, there still remains the
issue of (a) choosing the right algorithm(s) for the problem as opposed to using a preferred
one for all cases, (b) applying the algorithm(s) with the proper choice of user-defined param-
eters, (c) avoiding the problem of data overfitting and resulting bias in fitted model predic-
tions, and (d) ensuring that the data-driven model makes physical sense in terms of variable
selection and parameter importance.

In this chapter, we will provide an overview of some of the most commonly used data-
driven modeling techniques (which can handle both regression and classification problems)
for the petroleum geosciences. Since our focus will be on the application of the algorithms
rather than their programming, the mathematical descriptions will be kept to a minimum.
Our discussion will emphasize a thought process and analytic framework that can be easily
applied by geoscientists and petroleum engineers, working together with data scientists.
To that end, we will provide easy-to-understand descriptions of the algorithms supple-
mented by simple pedagogical examples and practical field examples demonstrating their
applicability.

8.2 MODELING APPROACHES

8.2.1 Classification and Regression Trees

Classification and regression trees (CART) are simple, interpretive models to describe how
the predictors impact the response (Breiman et al., 1984). The general idea is to (a) split
the predictor space into nested rectangular regions, and (b) within each region, predict the
response with a constant value for a regression problem (i.e., y;=c;) or a categorical label
for a classification problem (i.e., y;=class;). As shown in Fig. 8.1, the resulting binary tree
(right panel) is useful for determining prediction rules that partition output into groups based
on input values and for finding structure in data. The method is called a tree, because the
rectangular regions are defined by using a branching structure, and each branch is a binary
split obtained by applying a threshold to the value of one of the predictors.
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FIG. 8.1 Schematic of tree-based modeling concept showing partitioning of parameter space into rectangular
regions (left) and the corresponding binary tree (right).
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FIG. 8.2 Example of classification tree. From Perez et al. (2005).

Fig. 8.2 shows an example of a classification tree that involves identification of electrofacies
from multiple well-log responses for the Salt Creek field data described earlier in Chapters 4
and 5 (Perez et al., 2005). The tree has a root node where the binary splitting process starts and
internal nodes where the splitting process continues until a terminal node is reached. The root
node shows the first split or decision rule, PEF (photoelectric) < 6.51. With this split, the data
of 77 samples are classified into two groups. The first group (52 samples) is placed to the left,
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and the second group (25 samples) is placed to the right in the tree. The next split corresponds
to NPHI (neutron porosity) <0.055, where the 52 samples are divided into a group of 19 sam-
ples to the left and 33 samples to the right. If we continue this process with the left part of the
tree, the final split is applied to logMSFL (micro spherically focused log) <2.24 resulting in
two terminal nodes. The first split classified 10 samples as electrofacies 5 and the second split
classifies 9 samples as electrofacies 4. From this figure, we can also easily deduce that the most
important well logs for this classification problem are the ones near the top of the tree, that is,
PEF, NPHI, and gamma ray (GR).

The CART construction requires the following parameters to be chosen at each split:
predictor j, threshold values s, and predicted response c; and ¢, within each branch. For
regression problems, ¢; and c, are the mean values of the response variable for each of the
branches. For classification problems, they are the class labels corresponding to the category
with the highest probability in each branch. Estimation of these parameters at each split
requires minimizing some measure of misclassification error or node impurity (i.e., data
misfit), such as a sum-of-squared error metric for regression or the Gini index (i.e., summation
over product of class membership probability and its complement) for classification (Hastie
et al., 2008). Once the best split is found, the data are partitioned into two mutually exclusive
regions. The splitting process is then repeated on each of the two regions (and all the resulting
regions) until the tree-building process is terminated.

The optimal tree size should be a parsimonious compromise between complexity of the
tree and overall goodness of fit. One commonly used “pruning” process involves growing
the tree to nearly full size and then selecting the subtree that optimizes some complexity cri-
terion (Breiman et al., 1984). Generally, this is taken to include both a summation term
representing overall node impurity and a penalty term combining a tuning (cost complexity)
parameter and the number of terminal nodes. The cost-complexity parameter thus governs
the trade-off between tree size and its goodness of fit to the data, with larger values of the
parameter corresponding to smaller trees and vice versa. For example, the pruning chart
shown in Fig. 8.3 displays this trade-off for the tree shown earlier, indicating that the
misclassification error does not change significantly if we reduce the size of the tree from
39 to 25 nodes, with the biggest change occurring when there are fewer than 10 nodes
(Perez et al., 2005). Additional computational details regarding the construction and pruning
of regression and classification trees can be found in Hastie et al. (2008).

Once the optimal tree has been constructed, the most important predictors can be readily
identified as the ones near the top of the tree. For example, in the classification problem
illustrated in Fig. 8.2, the most important well logs are the photoelectric (PEF), neutron
porosity (NPHI), and density (DT). If two or three variables are identified as holding most
of the explanatory power in the model, the results can be visualized further through the
use of a partition plot—especially for a classification problem. This is a scatterplot of
the two most important input variables, with the categorical outcomes defined by unique
symbols. One horizontal and one vertical line show the location of the splits for the input
variables. Fig. 8.4 (top panel) shows a partition plot using the PEF and NPHI well logs
corresponding to the tree shown in Fig. 8.2. The classification is refined further by incorpo-
rating DT as shown in the 3D partition plot (Fig. 8.3, bottom panel), which suggests that a
majority of the electrofacies can be identified using just three well logs, that is, PEF, NPHI,
and DT. Note that the classification problem is somewhat challenging because of the
overlapping nature of the electrofacies clusters.
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FIG. 8.3 Example of pruning chart. From Perez et al. (2005).

As an example of a regression tree, consider the two-variable surface generated using
the function {y= sin(x1)*cos(x;)+x,?/(4r) —x1?/(37)} and the corresponding optimal
tree based on a random sample of 100 points drawn from this surface (Fig. 8.5)
(SAMPLE_FIGS8-5.DAT). As expected, the regression tree has a “blocky” nature, since it can
only represent the continuous space of the response variable using a set of discrete values
(in this case, corresponding to 58 terminal nodes). Regression trees are therefore best used
as a tool for high-level understanding and as a building block for more advanced tree-based
ensemble modeling approaches such as random forests or gradient boosting machines to be
discussed next.

8.2.2 Random Forest

Random forest (RF) regression generates an ensemble of trees to increase performance of a
single regression tree using a “bagging” (bootstrap aggregation) approach (Breiman, 2001a).
Since using the entire input dataset would always yield the same regression tree, variation is
introduced by using subsets of the input data and/or predictors to build multiple trees and
thus view the dataset from these multiple perspectives as an ensemble or a “random forest.”
In practice, each tree in the ensemble is trained using a bootstrap sample of the training data,
and a random subset of the predictors is considered for each split. This randomization allows
each regression tree to focus on subtly different aspects of the predictor-response relation-
ship. In aggregate, the trees can combine this information into a powerful prediction tool
via an averaging step that reduces the variance from the noisy nature of individual trees.

The starting point for building an RF regression model is a set of regression trees, each
of which is created from random subsets of data points and predictors, using the regression
tree-building methodology described in the previous section. For prediction, each new
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FIG. 8.4 Example of two-dimensional (PEF-NPHI) and three-dimensional (PEF-NPHI-DT) partition plots.

From Perez et al. (2005).
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FIG. 8.5 Example of regression tree, pruned to 58 terminal nodes (right), based on a random sampling of 100
points taken from a 2D surface (left).

observation is passed through all the trees in the ensemble, thus producing a different regres-
sion estimate. The final model prediction is an average of those individual tree-level esti-
mates. The predictive model is readily validated using the built-in cross validation
capability in the RF algorithm (see Section 8.3.2 for an example of the cross validation proce-
dure). Since each tree sees only a subset of the data, the remaining observations are called out-
of-bag samples. For that tree, those out-of-bag samples can be treated as independent test data
and used to develop estimates of error rates to gauge model performance.

Assignment of missing values for the predictors (also referred to as imputation) is han-
dled using the concept of proximity. The proximity statistic used in the RF algorithm is a
measure of similarity of different data points to one another represented via the normal-
ized Euclidean distance in the form of a symmetrical matrix with 1 on the diagonal and
values between 0 and 1 off the diagonal. The imputed value is the average of the
nonmissing observations weighted by the corresponding proximities. Other than the im-
putation, the setup of RF is quite user-friendly and only involves two parameters: (1) num-
ber of predictor variables in the random subset at each node and (2) total number of trees
in the ensemble.

The RF classifier is trained the same way as it was in the regression setting, with the
exception that classification trees are used instead of regression trees since the response
variable is categorical in nature. As shown in Fig. 8.6, classification trees are built using
the approach described in the previous section. For prediction purposes, each observation
is first passed through all of the trees in the ensemble, with each tree producing a predicted
class label. The final label is the most popular vote among the trees. As before, out-of-bag
samples are used to estimate misclassification rate on independent test data as part of cross
validation. Additional computational details regarding the construction of the RF model and
its interpretation can be found in Hastie et al. (2008).

An example of RF model, corresponding to the regression tree shown earlier in Fig. 8.5, will
be discussed in the next section.
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FIG. 8.6 Schematic of random forest model-building procedure.

8.2.3 Gradient Boosting Machine

Gradient boosting machine (GBM) for regression are similar to RF models in the sense that
they are also ensembles of regression trees (Friedman, 2001). The basic idea in GBM is to gain
prediction power from a large collection of simple models instead of building a single com-
plex model. However, these trees are constructed sequentially, rather than in parallel as in the
case of the RF model. Each new tree is constructed in such a way as to compensate for the
shortcomings of the previous tree. In other words, when one tree tends to fit poorly to the
training data for certain predictor values, the next tree will put more emphasis on observa-
tions in that problem area and ensure that the predictions have better accuracy. The final
model can be considered a linear regression model with thousands of terms, where each term
is a regression tree. This process is generally referred to as “boosting,” wherein the outputs
of many weak models are combined to produce a more accurate “committee” or aggregated
prediction (Hastie et al., 2008).

The general GBM procedure involves starting with a base model (i.e., tree) and introducing
a correction term (i.e., new model) to compensate for the residuals of the previous tree as iden-
tified by negative gradients of a squared-error loss function. The sequential fitting process can
be repeated multiple times, with the caveat that the GBMs will soon start to model the noise
and overfit. This problem can be handled in a variety of ways, namely, (a) using a fractional
multiplier or learning rate on the correction term so the updated model improves the fit at a
slower pace, (b) imposing constraints on the fitting parameters such as the maximum number
of iterations, and (c) using a bootstrap sample of the data at each iteration rather than the full
dataset.

The missing value issue is handled in GBMs with the construction of surrogate splits. The
key step in tree-based modeling is to choose which predictor (and where) to split on at each
node. In the GBM algorithm, nonmissing observations are used to identify the primary split,
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including the predictor and the optimal split point, and then form a list of surrogate splits that
tries to mimic the action of the primary split. Surrogate splits are stored with the nodes and
serve as a backup plan in the event of missing data. If the primary splitting predictor
was missing during modeling or prediction, the surrogate splits will be used in order. The
surrogate split utilizes the correlation between predictor variables to mitigate the negative
impact of missing values.

GBMs are easily ported over from regression to the classification setting. The basic building
block of the GBM classifier is a classification tree. Rather than fitting a single model at each
step, there are multiple trees, one for each group. The negative gradient required for model
updates is based on multinomial deviance rather than regression residuals. Additional com-
putational details regarding the construction and interpretation of GBM models can be found
in Hastie et al. (2008).

Examples of RF and GBM models that attempt to fit the surface shown in Fig. 8.5 are shown
below (Fig. 8.7). The RF model uses 500 trees, whereas the GBM is based on 150 trees. As a

FIG. 8.7 RF (left) and GBM (right) model predictions for the 2D surface shown in Fig. 7.5 (top panel) and
corresponding residuals (bottom panel).
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result, the RF model predicted surface is somewhat smoother than the GBM version (top
panel), even though the error rates are quite similar (bottom panel).

8.2.4 Support Vector Machine

Support vector machines (SVMs) are powerful machine learning tools for data classifica-
tion and prediction (Vapnik, 1995). The problem of separating two classes is handled using a
hyperplane that maximizes the margin between the classes (Fig. 8.8). The data points that lie
on the margins are called support vectors. The SVM algorithm seeks to find the hyperplane
that creates the biggest margin between the training points for the two classes. It also penal-
izes the total distance of points on the wrong side of their margin whenever there is overlap
among the two classes of data. This permits a limited number of misclassifications to be tol-
erated near the margin.

The other key computational feature in SVM is the use of kernel functions and penalty
parameter to convert nonlinear boundaries in the parameter space of the inputs to linear
boundaries in some higher-dimensional transformed space. A popular choice in SVM appli-
cations is the radial basis function, which is described in Chapter 7 in the context of response
surface modeling.

Fig. 8.9illustrates the representation of a two-class problem in two-dimensional space using
SVM (SAMPLE_FIG2-9.DAT). Here, the demarcation of boundaries between the red and blue
classes (left panel) shows a predominantly continuous space for the red class with embedded
blue pockets. The fitted SVM model (right panel) also creates a diagonally dominant pattern,
albeit one where the blue class is continuous. The relative fraction of blue versus red space
is very similar in both cases.

The concept of support vector regression (SVR) is very similar to that of SVMs. SVR ma-
chines are linear models where the parameters are optimized with respect to e-insensitive
loss, which considers any prediction within & of the true value to be a perfect prediction
(i.e., zero loss). During parameter estimation, the support vectors are also selected from
the training dataset. Since the model is only specified through a dot product of support vec-
tors and predictors, the “kernel trick” can also be used to transform the data to a linearized
space, thus enabling highly nonlinear regression fits to be produced in the original input

Support vectors
Hyperplane

Margin

FIG. 8.8 Schematic showing separation of two classes of data using an optimal hyperplane in SVM.
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FIG. 8.9 Test data for an example of two-class separation problem (left) and corresponding SVM model fit
using a radial basis kernel function (right).

feature space. Additional details regarding the computation of SVMs for regression and
classification can be found in Hastie et al. (2008).

8.2.5 Artificial Neural Network

Artificial neural network (ANN) is a popular machine learning algorithm that attempts to
mimic how the human brain processes information (Rumelhart and McClelland, 1986). It
provides a flexible way to handle regression and classification problems without the need
to explicitly specify any relationships between the input and output variables. Generally,
neural networks are arranged in three layers: one input layer, one or more hidden layers,
and one output layer—as shown in Fig. 8.10. In this example, the inputs are estimated
attributes from various well logs, and the output is an indicator referring to the specific
lithofacies assigned to that depth. For a regression problem, the output could be a numerical
value (e.g., corresponding log- or core-derived permeability).

In the ANN, each layer contains a number of nodes (or artificial neurons) that are
connected to each of the nodes in the preceding layer by simple weighted links. Except for
nodes in the input layer, each node multiplies its specific input value by the corresponding
weight and then sums all the weighted inputs. Sometimes, a constant (the “bias” term) can be
involved in the summation. The final output from the node is calculated by applying an
activation function (transfer function) to the sum of the weighted inputs.

A critical aspect in neural network modeling is the learning process of forcing a network
to yield a particular output (response) for a specific input (signal). ANN modeling starts
with randomly assigned weight coefficients. Then, a set of data patterns are fed forward
repeatedly, and the weights of the neurons are modified until the output matches closely with
the actual values. For multilayer feed-forward neural networks, a more powerful supervised
learning algorithm, called backpropagation, can be employed to recursively adjust the
connection weights so that the difference between the predicted and the observed outputs
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FIG.8.10 Schematic architecture of an ANN algorithm where input layers correspond to different well logs and
output refers to different lithofacies.

is as small as possible. The most important parameters to control in building the ANN include
the number of hidden layers, number of hidden layer nodes, learning rate, damping
coefficient or momentum, and number of iterations for better optimization. See Hastie
et al. (2008) for additional computational details regarding the construction of ANNs for
both classification and regression problems.

We revisit the classification problem example discussed earlier, to show the performance
of two different ANNSs in Fig. 8.11. The left panel shows a simple ANN with one hidden layer
and two hidden units, which fails to capture the actual class boundaries as indicated by the

FIG. 8.11 ANNs for the example of two-class separation problem with one hidden layer and two hidden units
(left) and one hidden layer and five hidden units (right).
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green line. A more complicated ANN with one hidden layer and five hidden units (right
panel) is much better in preserving the structure of the data, and its performance is very
similar to that of the SVM model shown in Fig. 8.9.

8.2.6 Model Strengths and Weaknesses

The five data-driven modeling approaches discussed in this chapter, that is, CART, RF,
GBM, SVM, and ANN, are very powerful tools for both regression and classification
problems. However, there are important differences with respect to key performance
attributes such as the following:

¢ Ability to handle missing data and missing values

* Robustness to outlier data points and irrelevant inputs
* Insensitivity to monotone transformation of inputs

* Ability to extract linear combinations of features

¢ Computational scalability

¢ Interpretability

¢ Predictive power

Table 8.1 provides a compact summary of how the five different modeling approaches
stack up against these attributes, using a format originally presented by Hastie et al.
(2008). Broadly, it can be concluded that CART can be useful for preliminary modeling
and only as basic model building blocks—primarily because of their poor predictive power.
On the other hand, the two ensemble tree-based methods RF and GBM have good predictive
power and a number of desirable features related to computational robustness (e.g., handling
of missing data and robustness to outliers). While SVM and ANN also have good predictive

TABLE 8.1 Comparison of Model Strengths and Weaknesses

CART RF GBM SVM ANN

Handling of mixed data A A A v v
Handling of missingvalues A A A v v
Robustness to outliers A A A v v
ansformations of inputs A A A v v
Computational scalability A v v
Ability to deal with

irrelevant inputs A A A v v
Combinations of eatures v v A A
Interpretability v v v v
Predictive power v A A A A

A ,good; ¢ (fair; V,poor
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power, they do not offer the same degree of computational robustness as RF and GBM.
Unfortunately, all four approaches (RF, GBM, SVM, and ANN) suffer from the problem of
poor interpretability.

How then to balance the conflict between predictive power and interpretability? Since
these models are essentially black-box solutions, one approach would be to develop greater
insights into each model’s internal architecture. Some useful strategies to this end are
(a) determining the relative importance of each predictor with respect to the response of in-
terest (see Section 8.3.3) and (b) performing a conditional sensitivity analysis to better under-
stand how the variation of any given predictor affects the model response when other
correlated inputs are varied commensurately while uncorrelated input parameters are held
at their mean/median values (see Section 8.4.4).

8.3 COMPUTATIONAL CONSIDERATIONS

8.3.1 Model Evaluation

A common approach to evaluating the goodness of fit for a model is to generate a
scatterplot of actual response values in the training dataset versus the corresponding
predicted (fitted) responses. If the points in the scatterplot lie close to the 45-degree (1:1) line,
this indicates a good model fit to the training data. However, this does not necessarily indicate
that the model has good predictive ability for new datasets. Consider the model shown in
Fig. 8.12 (left), which is clearly overfitting the training dataset by trying to capture not only
the true underlying function but also the noise in the measurements. The model likely
contains more degrees of freedom than are necessary to capture the underlying shape of
the curve producing these observations, which makes it unlikely to have good predictive
power going forward. However, in the model evaluation scatterplot (shown in the right
panel), all the points lie along the 45-degree line, indicating a very good fit. The point of this

Model fit Model evaluation on training data
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FIG. 8.12 Example of a poor model that appears to fit well when evaluated solely against the training set but
could be suffering from overfitting (Schuetter et al., 2015).
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simple example is to emphasize the risks of overfitting and the need to move beyond using
predictions on the training data itself as the sole measure of model quality.

One simple strategy for accomplishing this is to evaluate the model using an independent
test set. This can be either a completely new dataset (e.g., pilot data from a region where the
model is intended for use) or a “held out” portion of the training dataset. In both cases, one
can fit the model using the training portion of the dataset (typically 70%—90% of the data) and
then evaluate the fit on the independent test observations (i.e., remaining 10%-30% of the
data) to gauge the predictive ability of the model for new data. The challenge is in ensuring
that the test set is sufficiently broad enough to cover the full range of potential applications of
the model.

A better choice for model evaluation is k-fold cross validation (Hastie et al., 2008). In this
approach, schematically shown in Fig. 8.13, the training dataset is randomly split into k
different groups or “folds.” Next, each of the k groups is held out one at a time; the model
is trained on the remaining k—1 groups and used to make predictions on the group that
was held out. After cycling through all k groups, there will be a single cross validated
prediction for every observation in the dataset, where the predictions were made using a
model for which that observation was not included in the training set.

It is important to note that the cross validation procedure can be extended by repeating the
entire process with a different random selection of k groups. A repeated cross validation using
r repeated runs of k randomly selected groups will yield r different predictions on each of
the observations. Not only these can be aggregated to compute statistics on goodness-of-fit
metrics, but also they give important insight into the variability in model predictions
depending on the characteristics of the training set. Also, the models trained during cross
validation are not the models to be used for prediction going forward; rather, one would build
a single predictive model using the full training set. The cross validation procedure is only for
evaluation purposes and provides a better indication of the robustness of the predictive
model for future applications using new data, as compared with a single heldout test set.

Next, we discuss three common metrics for quantifying the goodness of fit: (1) average
absolute error or AAE, (2) mean squared error or MSE, and (3) pseudo-R”. These metrics are
broadly similar, in that they attempt to capture the overall closeness of predictions to the eval-
uation data. Let y; be the true response for the ith observation and y; be the predicted response
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FIG. 8.13 Conceptual representation of k-fold cross validation with k=5 (Schuetter et al., 2015).
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for that observation. The AAE is defined as the average magnitude of the difference between
the true response and predicted response (i.e., the average size of the residuals), as in Eq. (8.1):

n

1 N
AAE==3 |y~

i=1

(8.1)

MSE is similar to AAE but measures the average squared difference between observations
and their corresponding predictions, rather than the absolute value:

n

MSE = %Z(y,- -9, (82)

i=1

Note that AAE has units matching those of the response, while MSE is measured in
squared units of the response. A common variant of MSE is the root-mean-square error or
RMSE, which is simply the square root of MSE. Values closer to zero are desirable, as they
indicate smaller deviations between the observations and predictions (i.e., more accurate
prediction). MSE (or RMSE) is typically preferred over AAE due to its well-known distribu-
tional properties and being a sufficient statistic for normally distributed random processes
(Navidi, 2008).

The third metric, pseudo-Rz, is defined in Eq. (8.3):

n ~ 2
R; —1_ SSmodel —1_ Ziil (yl _yi)z
Sstotal Zi:l (]/z _ y)

Pseudo-R* compares the sum of squared differences between the true responses y; and
predicted responses j; with the overall sum of squares, which is proportional to the variance
of the responses. That is, it measures how much of the variability in the response is explained
by the model. Note that while in linear regression the pseudo-R”is bounded between 0 and 1,
this is not the case for a general regression model. When a regression model fits the data worse
than a constant value at the mean response, the pseudo-R* will be negative.

(8.3)

8.3.2 Automatic Tuning of Model Parameters

Selecting the values of the tuning parameters in various “black-box” data-driven modeling
algorithms often becomes a manual time sink, with the added potential for significant
subjective bias. Examples of such tuning parameters include (a) number of variables
randomly sampled as candidates at each split and number of trees for the RF algorithm,
(b) number of trees for the GBM algorithm, (c) cost parameter for the SVM algorithm, and
(d) number of hidden layers and hidden units for the ANN algorithm.

To his end, an automated process that relies on cross validation has been suggested by
Kuhn and Johnson (2013). The basic steps are as follows: (a) define a set of candidate values
for the tuning parameters(s); (b) for each candidate set, resample data, fit model, and predict
hold outs for a k-fold cross validation strategy; (c) aggregate the resampling into a
performance profile; (d) determine the final tuning parameters using cross validated RMSE
as the accuracy metric of choice; and (e) using the final tuning parameters, refit the model
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FIG. 8.14 Example showing automatic tuning of SVM model parameters using normalized cross
validated RMSE as the accuracy metric.

with the entire training set. Fig. 8.14 shows an example application of this strategy for an SVM
model for selecting the optimal value for the cost parameter.

8.3.3 Variable Importance

When data-driven models are fitted to large multivariate datasets, the resulting interac-
tions of variables with one another can be complex and/or nonlinear. As such, it is difficult
to develop a straightforward understanding of causal input-output relationships and key
sensitivities based on a simple evaluation of model results. The problem is also compounded
by the fact that often only a few predictors have any significant influence on the model
response, making the others largely irrelevant. It is therefore useful to have a strategy that
complements the building of a predictive model for a given response by determining the
relative importance of each input among a set of predictors. This helps the analyst focus
on the key variables for future data collection efforts and screen out unimportant variables
during subsequent iterations of the model-building process.

In general, the identification of variable importance tends to be model-specific, and the
corresponding metrics can be specified in absolute or relative units. For example, the relative
importance computed for an RF model measures the prediction strength of each variable by
calculating the increase of RMSE when that variable is permuted while all others are left
unchanged (Breiman, 2001a). The rationale behind the permutation step is that if the predictor
variable was not important to the tree-building process, rearranging the values of this
variable will not change the prediction accuracy much. On the other hand, relative impor-
tance for GBM models is based on the number of times a predictor variable was selected
for splitting, weighted by the squared improvement to the model as a result of each split,
averaged over all trees, and rescaled with a total sum of 100 (Friedman, 2001).

One straightforward approach for variable importance that is not tied to any particular
model is based on the concept of R*loss (Mishra et al., 2009). This method works for any
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regression model, and the reasoning is that if an influential predictor is removed from a
model, the accuracy of that model will be significantly reduced. Alternatively, if a superflu-
ous predictor is removed from the model, there should be little to no impact on the accuracy.
To measure variable importance, one can compute R} (i.e., pseudo-R* as defined earlier in
Eq. 8.3) using all the predictors and then compute Rlz’ for a reduced model that uses all of
the predictors except the predictor of interest. The “R°-loss” metric is simply the difference
between R; for the full model and R; for the reduced model. The larger the loss in
pseudo-R? for any given predictor, the greater its influence on the model response.

8.3.4 Model Aggregation

In our experience with data-driven model applications, it is quite common to have several
modeling techniques resulting in comparable goodness of fit in terms of AAE, RMSE, or
pseudo-R>. Since this does not necessarily imply comparable performance for a new set of
data, the question is to how to pick one model from the collection for future applications.
As an alternative, one could consider the possibility of aggregating the predictions over a
number of models using some statistical model averaging procedure. Such approaches
are increasingly being applied in the context of subsurface flow and transport modeling to
combine predictions from models that represent varying degrees of conceptual (geologic)
model uncertainty (see Singh et al., 2010, and references therein). The goal of such an exercise
is to determine the weighting for each model based on model performance against observed
data and then develop an “ensemble” prediction by creating a weighted average of all the
model predictions.

The problem of model averaging is generally handled using a Bayesian formalism (e.g.,
Draper, 1995), where the model weights, w;, are given by

Lip(M))

o > Lip()

Here, L represents the likelihood of the model that depends on the prediction error of
the model for the given data, and p(M;) represents the prior probability of the model. In
the case of data-driven modeling, all models can be assigned the same prior probability
(i-e., p(M;)=1/N) where N is the total number of models under consideration.

One formal approach to the determination of model likelihoods is via maximum likelihood
Bayesian model averaging or MLBMA (Neuman, 2003). The starting point for MLBMA is a
collection of models that have been calibrated to observed data using maximum likelihood
estimation. The likelihood for each model is then estimated using

BIC; — BICmin
LJOC exp —f

(8.4)

(8.5)

where the difference is taken between the Bayesian information criterion (BIC) measure
for the jth model and the minimum BIC value among all competing models. Assuming a
multi-Gaussian error distribution with unknown mean and variance for the model likelihood,
the BIC term for model j can be written as

BIC, = () In (6%,;) +k; In(n) (8.6)
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with n, number of observations; k, number of model parameters; and 62, variance of
residuals. Note that because of the exponential weighting in Eq. (8.5), the Bayesian model
averaging approach tends to concentrate model weights on only one to two best-performing
models.

A more practical alternative to model aggregation is the generalized likelihood uncertainty
estimation (GLUE) procedure. It is based on the concept of “equifinality,” that is, the possi-
bility that the same final state may be obtained from a variety of initial states (Beven and
Binley, 1992). In other words, a single set of observed data may be (nonuniquely) matched
by multiple parameter sets that produce similar model predictions. Here, the likelihood
for each model is also computed as a function of the misfit between observations and model
predictions.

One of the central features of GLUE is the flexibility with respect to the choice of the
likelihood measure. For example, two common choices are

2 2 N
gf'j %
Ljoc exp [—N?] or Ljoc <GT> (8.7)

0 ,j

where L;is the likelihood for model j, af, jis the variance of the errors (residuals) for model j, o2
is the variance of the observations, and N is a shape factor such that values of N>1 tend to
give higher weights (likelihoods) to models with better agreement with the data and values of
N1 tend to make all models equally likely. A simpler version of Eq. (8.7) can be defined
using the traditional root-mean-square-error (RMSE) statistic as follows:

1 \2
b <RMSE> (88)
The aggregated model response can then be calculated as a weighted average of the re-

sponses from multiple models, using the likelihood relationships given in Eq. (8.7) or (8.8)
(see Mishra, 2012, for an application in decline curve analysis).

8.4 FIELD EXAMPLE

8.4.1 Dataset Description

The techniques described in this section will be illustrated on an example dataset from
West Texas, the United States (Zhong et al., 2015; Schuetter et al., 2015). The study area is
the Delaware Basin, where the Wolfcamp shale forms an unconventional reservoir of roughly
20004000 ft thick, which is being exploited by a number of horizontal wells.

A publicly available dataset of 476 horizontal shale wells from phantom field was selected
for this study. The predictor variables relate to operational characteristics of the wells, includ-
ing when the well was drilled, its physical dimensions, stimulation details, and by whom it is
operated. The response measures cumulative well production (in barrels) over the first 12 pro-
ducing months. A list of all variables in the dataset is shown in Table 8.2.

Next, we discuss the process of building predictive models for M12CO as a function of the
predictors listed in Table 8.2. This is followed by a classification tree analysis to identify the
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TABLE 8.2 List of Variables in the Study Dataset

Type Variable Description
- ID Well identification number
Response M12CO Cumulative production within first 12 producing months (BBL)
Predictor Opt2 Categorized operator code
COMPYR Well completion year
SurfX Geographic location (horizontal)
SurfY Geographic location (vertical)
AZM Azimuth angle (degrees)
TVDSS True vertical depth (ft)
DA Drift angle (degrees)
LATLEN Total horizontal lateral length (ft)
STAGE Number of frac stages
FLUID Total frac fluid amount (gal)
PROP Total proppant amount (Ib)
PROPCON Proppant concentration (Ib/gal)

key attributes that separate good wells (i.e., those corresponding to the top 25% of M12CO
values) from bad wells (i.e., bottom 25% in terms of M12CO).

8.4.2 Predictive Model Building

Before starting the model-building process, missing values for the predictors found in 157
of the wells were imputed to create a complete dataset. Predictive models were built using
three data-driven algorithms, that is, RF, GBM, and SVR, a multilinear regression model
described in Chapter 4 (referred to here as ordinary least squares or OLS) and a
multidimensional kriging model described in Chapter 7 (referred to here as kriging meta
model or KM). Model-fitting results are summarized in Fig. 8.15. Each plot shows the true
response (M12CO) on the horizontal axis and the predicted response on the vertical axis.
Points on the diagonal dotted line indicate perfect prediction. Each row of plots shows pre-
dictions from one type of model (OLS, RF, GBM, SVR, and KM), while each column shows
results for a different model evaluation type.

The left column shows independent validation results, where a random 20% subset of the
wells was held out to create a single heldout test data. The model was then fit to the remaining
80% of the dataset and evaluated on the 20% heldout set. The points in the plots in the left
column only correspond to those predictions on the holdout segment of the dataset. For
the cross validation predictions (center column) a 10-fold cross validation was used as a fur-
ther refinement of the fivefold cross validation approach discussed earlier. The points in these
plots show the actual versus the cross validated predictions of each of the wells in the dataset.
The right column shows the results from training and predicting on the full dataset, which is
the conventional approach to evaluating goodness of fit.
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FIG. 8.15 Comparison of model performance for OLS, RF, GBM, SVR, and KM models using different model
evaluation approaches. After Schuetter, J., Mishra, S., Zhong, M., LaFollette, R., 2015. Data analytics for production
optimization in unconventional reservoirs. In: Proc. SPE/AAPG/SEG Unconventional Resources Technology Confer-
ence, San Antonio, TX, July 21-23.
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Notice that the independent validation and cross validation results (left and center col-
umns) tell a much different story than the predictions on the full training set (right column).
Except for OLS, all other models show a dramatic reduction in error in both the AAE and
MSE metrics—if one accepts the full training set approach for model evaluation. However,
this reduction is more modest for the other methods of model evaluation. The extreme case
is the kriging model (KM), which is a perfect interpolator and hence, by design, forces the
model fit through the training observations. However, for a case like the random forest
(RF), it is not so clear that the predictions on the training data are biased. It is only when com-
paring the goodness of fit for the full training set to those shown in the independent validation
and/or cross validation plots that the overfitting is revealed. As noted earlier, the fit statistic
for a multifold cross validation is more likely to be a robust indicator of predictive model
performance on new datasets.

8.4.3 Variable Importance and Conditional Sensitivity

We now discuss the relative importance of different predictors using the R*loss metric.
When determining variable importance, it can be useful to compute the ranks using several
different predictive models to get a more robust sense of which predictors are important. In
this case, there is some divergence among the four selected models (i.e., OLS, RF, GBM, and
SVR) as to which predictors are the most influential. The depth parameter (TVDSS) is popular
among all models. Three of the four models also put weight on the amount of proppant used
(PROP), the length of the lateral (LATLEN), and the amount of fracturing fluid used (FLUID).
A compact way of visualizing this information about variability of ranking across models is
through horizontal box plots, as shown in Fig. 8.16. The box plots are sorted from bottom to
top by average rank, with the width displaying the degree of variation. TVDSS is clearly an
influential predictor, with high rank and low variability. FLUID also has a reliable rank in the
middle of the pack. Finally, opt2A is definitely not important, with consistently low rankings.

The variable importance analysis reflects model performance across the entire range of
predictor and response variables, converted into a set of ordinal ranks. However, model in-
terpretability can be further enhanced by explaining how the model response changes as the
value of any of the predictor variables is changed. This is similar to a standard one-parameter
at a time (OPAT) sensitivity analysis. A more meaningful strategy is to perform a conditional
sensitivity analysis to quantify the model response for a specified variation of any given pre-
dictor, when other correlated inputs are varied commensurately while the uncorrelated input
parameters are fixed at some reference values. For the Wolfcamp dataset, this involves vary-
ing the key parameters COMPYR, LATLEN, FLUID, and PROP in a correlated manner
(reflecting the relationship in the observed data) while setting the other variables at the mean
or median values. Fig. 8.17 shows these conditional sensitivity analysis results for M12CO
generated using the SVM model (blue line), whereas the standard OPAT analysis results
are shown in the red line. The background symbols are those for the original dataset. It is clear
that the conditional sensitivity analysis is a more robust approach to answering “what-if”
questions as it forces the analyst to vary predictors whose correlations cannot be ignored
(e.g., LATLEN and PROP/FLUID).
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FIG.8.16 Importance ranking based on R>-loss metric and aggregated across OLS, RF, GBM, and SVR models.
After Schuetter, ., Mishra, S., Zhong, M., LaFollette, R., 2015. Data analytics for production optimization in uncon-
ventional reservoirs. In: Proc. SPE/AAPG/SEG Unconventional Resources Technology Conference, San Antonio, TX,
July 21-23.

8.4.4 Classification Tree Analysis

Having dealt with building a predictive regression model for cumulative first year produc-
tion (M12CO) in terms of a given set of well characteristics, we now turn to the issue of trying
to predict whether the well will performance be a “good” (i.e., relatively large M12CO) or
“bad” (i.e., relatively low M12CO). This can be accomplished by changing the problem from
regression to classification. That is, the response can be binned into categories, and classifier
models (e.g., classification tree) can be used to predict which category a well falls into.

For the Wolfcamp dataset, the top 25% and bottom 25% producing wells were identified,
and the middle 50% of the wells were removed. A classification tree was then built to separate
the top and bottom 25% groups, with the result shown in Fig. 8.18. The tree begins at the top of
the figure, where the first split checks whether the proppant used is less than 1.405e6 Ib. If so,
a well observation moves down the left path; otherwise, it goes right. Subsequent splits work
in the same way, until eventually the observation reaches a terminal node that contains a pre-
diction. The text at the terminal nodes in this tree indicate how many training observations on
each type (bottom 25%/top 25%) ended up in that node.

One advantage of classification trees (compared with other common classifiers such as
SVM and ANN) is better interpretability. Not only do they clearly indicate which predictors
are influential in determining the response category, but also they identify critical values at
which these categories change. As shown in Fig. 8.18, there are two general paths to a top 25%
producing well. For wells using lower amounts of proppant (PROP < 1.405e6 lb), the goal is
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FIG. 8.17 Comparison of model performance for OLS, RF, GBM, SVR, and KM models using different model
evaluation.

to have a longer lateral (LATLEN >2756 ft) and a greater vertical depth (TVDSS < — 8294 ft).
For wells using more proppant (PROP >1.405e6 lb), the goal is again to have a greater vertical
depth (TVDSS < —8100 ft) and to have a lateral that is not too long (LATLEN < 5362 ft).

Fig. 8.19 shows partition plots that render the classification tree from the perspective of the
wells in the predictor space. In these scatterplots of two predictors, the predictor space is
partitioned into blocks of similar observations via vertical and horizontal segmentations of
the plot. For example, in the top left plot, the first split at PROP =1.405e6 appears as a vertical
division of the plot. Within each of those divisions, the splits on LATLEN (2756 on the left
branch and 5362 on the right) serve to further subdivide the plot into relatively homogeneous
data clusters. In general, the tree is fairly efficient at partitioning the predictor space into the
region that contains primarily the top 25% wells.

A “confusion matrix” that summarizes the separability of the two classes in the training set
is shown in Table 8.3. The value in each cell describes how many wells of the true category
indicated in the row header were in a terminal node whose majority category was the one
indicated in the column header. Since 62 of the 80 true top 25% wells were in “top 25%” ter-
minal nodes, this yields a correct identification rate of 62/80="77.5%. A similar calculation
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FIG. 8.18 Classification tree separating top 25% of wells for M12CO from bottom 25%. After Schuetter, J.,
Mishra, S., Zhong, M., LaFollette, R., 2015. Data analytics for production optimization in unconventional reservoirs.
In: Proc. SPE/AAPG/SEG Unconventional Resources Technology Conference, San Antonio, TX, July 21-23.

PROP vs. LATLEN

PROP vs. TVDSS

~7800 A -
6000 - P = a o & A
& ° ° ° L A a 4
5000 a -8000 & ” C
- oNe
28, .Ag .%* ::? . o IN ° >
° @ . °
@ A® e a A L]
Z 4000 © 2 Aa ¥ Kf.. ° . ° » —8200 1 4 a 40 A N o .
| Py " 19 A o & o
= & 4 Q o $0
° C )
~ 3000 5 P 84004 o %% ¢ 9 Eﬁt.- ..
° S o
ald a s
%A A a & . [ ] J L] =
20001 & & 8600 pf %" .
VNN A%&A A
YN
2 s B
1000 E T T T T T T T T T T T T
0e+00  1e+06  2e+06  3e+06  4e+06  5e+06 0e+00  1e+06  2e+06  3e+06  4e+06  5e+06
PROP PROP
® Top 25%
LATLEN vs. TVDSS A Bottomn 25% LATLEN vs. TVDSS
PROP <1.405e6 PROP>1.405¢6
—7800
N E 0 R & N
A N a A &
8000 - a |8 8000 A a
I ° A -
A
=
u a A °
« —8200 2 £, 8 o 00 , o
8 S a a® e IN
r S % L]
= o 2o = . O
~8400 | 2 o 10 = . o A ° 3 ¢
B -8400 . . F
a i . ° s A .
0600 | sa, L e ° e
e
N N 8600 .
A a
T T T T T T T T T
1000 2000 3000 4000 5000 4000 4500 5000 5500
LATLEN LATLEN
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TABLE 8.3 Classification Tree Terminal Node Confusion Matrix

Predicted Predicted Correct
Bottom 25% Wells Top 25% Wells Total ID Rate (%)
True bottom 62 18 80 77.5
25% wells
True top 7 73 80 91.3
25% wells
Total 69 91 160 84.4

gives a correct identification rate of 91.3% for the bottom 25% wells. Overall, the rate is
(62+73)/160=_84.4%. This indicates a reasonable ability to separate the two classes.

8.5 SUMMARY

In this chapter, we have presented a number of commonly used data-driven modeling ap-
proaches for both regression and classification problems. These include classification and re-
gression tree, random forest, gradient boosting machine, support vector machine, and
artificial neural network. We also discussed several computational considerations such as
model evaluation, automatic tuning of model parameters, identifying variable importance,
and model aggregation. Finally, a field application was used to demonstrate the practical ap-
plicability of these algorithms for predictive modeling, variable importance, conditional
sensitivity, and classification.

Exercises

Prerequisites: Download the folder named “Data_Driven_Modeling” from the online
resources website for this book. As a prerequisite R needs to be installed on the user com-
puter. R Studio should be installed in order to edit code if needed. Also, following list of li-
braries are needed to be installed: “xlsx,” “Metrics,” “randomForest,” “e1071,” “MASS,”
“gbm,” “gegplot2,” “cvTools,” “class,” “maps,” “devtools,” “rpart.plot,” “reshape2,” and
“neuralnet.”

In order to install a library, go to R Studio menu bar and press Tools = Install Packages.
A window should be opened up where the needed library can be installed. In case a library
is needed but not installed, R Studio should generate error in console.

For the problems below, use the data file “Model_data.xlsx.” List of predictors to be used in
the following problems are:

Za7i VZA7i

Predictor Description
qi Initial flow rate of the well (STB/month)
PROP_TOTAL Total amount of proppant per well (Ibs)

FRAC_FLUID_TOTAL Total amount of fracturing fluid per well (bbl)
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CLENGTH Difference between measured depths of last and first perforation (ft)
STAGES Number of hydraulic fracture stages (dimensionless)

TVD_HEEL Total vertical depth of well heel (ft)

TVD_HEEL_TOE_DIFF Difference between total vertical depths of well heel and well toe (ft)
LATITUDE Latitude of well head location (degrees)

LONGITUDE Longitude of well head (degrees)

1. Train a regression tree model to predict estimated ultimate recovery (EUR) calculated from
stretched exponential decline model (SEDM) model (SEDM_EUR). Explain how you chose
the cost-complexity parameter for this tree with illustration.

2. Cluster wells into four groups according to EUR calculated from SEDM model
(SEDM_EUR). Train a classification tree model to predict cluster numbers (1, 2, 3, or 4) and
explain the choice of cost-complexity parameter with illustration. Repeat using SVM and
ANN. Comment on the relative performance of these methods.

3. Divide wells randomly into training data (80%) and test data (20%).

a. Taking only the training data, build models using the machine learning algorithms: RF,
SVM, GBM, and ANN to make predictions for “SEDM_EUR” and the decline curve
parameters of SEDM: “tau” and “n.”

b. Make predictions for “SEDM_EUR,” “z,” and “n” for training and test data wells and
show the performance in a plot (i.e., actual vs. predicted). Also, report root mean
squared error (RMSE) and pseudo R error for train and test data fits. Examine the
relative performance of the machine learning algorithms used. RMSE and pseudo R* are
given by:

n

1 .
Ruse= 13-,

i=1

i=1
n

> i-9)°

i=1

pseudo R* =

where y; = observed value of ith data point, i, = predicted value of ith data point, and
¥ = mean of observed values.
c. Using the predicted values of “z” and “n” for test data wells, plot actual well rates and
predicted SEDM decline curves for each of the machine learning algorithms in a single
time versus rate plot.

4. Comment on the relative performance of RF, SVM, GBM, and ANN as machine learning
algorithms. Which machine learning algorithm gives the best performance? How does this
change if you used a different 80-20 split to train and test the data?
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5. Relative influence (RI) of pth predictor in a machine learning model is given by:

R?, —R?_
P 14
RI, =abs (Rzp )

where R?, = pseudoR? of model with all predictors included and R?_, = pseudoR? of model
with all predictors except pth predictor are included.

Removing one predictor at a time, calculate RI measure of each of the predictors taking
only test data R* into account. Rank the variables according to RI (e.g., predictor with highest
RI is ranked 1 and so on). Repeat this for all four machine learning algorithms (RF, SVM,
GBM, and ANN). Show the variation of predictors” RI using a boxplot and a histogram.
Which predictors are making the highest influence?
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9.1 THE PATH WE HAVE TAKEN

9.1.1 Recapitulation of Topics

This book seeks to provide the background to understand and apply the fundamental
concepts of classical statistics and emerging concepts from data analytics in the analysis of
petroleum geoscience and related datasets. To that end, Chapter 1 started with definitions
of statistics and data analytics, description of the data analysis cycle, overview of example
applications in petroleum engineering and geoscience, and basic probability and statistics
concepts. This was followed in Chapter 2 by various exploratory data analysis techniques
for summarizing and visualizing univariate and bivariate data. Chapter 3 dealt with a num-
ber of common probability distributions and how to model them, along with concepts of con-
fidence limits and comparing distributions. In Chapter 4, we looked at linear regression with
two variables as a fundamental tool for modeling relationships, along with its extension for
multiple variables and with nonparametric transformations. Multivariate analysis was
covered in Chapter 5, which included topics such as dimensionality reduction, clustering,
and discriminant analysis. Uncertainty quantification was the subject of Chapter 6, covering
uncertainty characterization from empirical data or subjective judgment, uncertainty propa-
gation using Monte Carlo simulation or analytic alternatives, and uncertainty importance
(sensitivity) analysis using a number of techniques. Chapter 7 dealt with experimental design
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and response surface methods that included both classical and sampling-based designs.
Finally, Chapter 8 focused on data-driven modeling methods, that is, those based on
machine-learning approaches such tree-based models, boosting and bagging approaches,
support vector machines, and artificial neural networks.

9.1.2 Style and Intended Use

As we have emphasized in the preface, this is a book on the application of statistics, writ-
ten by practitioners, for practitioners. As such, we have tried to strike a judicious balance
between statistical rigor and formalism and practical considerations regarding the funda-
mentals and applicability of various relevant concepts. We hope that petroleum engineers
and geoscientists will come away with a solid understanding of the statistical concepts un-
derpinning both basic and advanced topics, which will be reinforced by the worked prob-
lems and exercises. This minimalist approach with respect to mathematical treatment may
not appeal to the purist, but our experience suggests it is sufficient for developing a proper
appreciation of various techniques and algorithms discussed in the book. Also, the data-
driven modeling chapter has been written with the geoscientist in mind, who is likely to
be more interested in becoming a smart user of machine-learning algorithms rather than
a programmer of such methods.

The material has been arranged in the form of a “how-to” manual or a ready reference
guide for practitioners in the petroleum geosciences. It will also benefit engineers and scien-
tists working in related subsurface domains such as hydrogeology, geologic carbon seques-
tration, and nuclear waste disposal. We hope it will be regularly used as a desktop companion
by those routinely dealing with the acquisition, interpretation, analysis, and modeling of data
from field tests, laboratory experiments, and/or computer simulations. We envisage the book
to be utilized also as a textbook for an upper division or graduate-level course on statistical
modeling and analysis with a geoscience flavor. As an alternative, a first course in basic sta-
tistics and geostatistics can be created by combining the first five chapters of this book with
the material on geostatistical topics such as variography, kriging, and simulation.

9.1.3 Resources

The online resource for this book is https://www.elsevier.com/books-and-journals/
book-companion/9780128032794. It contains the following:

o All of the datasets used in the book

* Excel files for several of the example problems

* Solutions to exercises at the end of each chapter

* GRACE, an open-source software for nonparametric regression (Chapter 4)

* E-FACIES, an open-source software for multivariate analysis (Chapter 5)

* E-REGRESS, an open-source software for experimental design and response surface
analysis (Chapter 7)

* Miscellaneous scripts for executing some of the data-driven algorithms discussed in
Chapter 8 using the open-source software R.

* Links to other relevant open-source software as discussed in various chapters
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9.2 KEY TAKEAWAYS

9.2.1 Which Variables?

Today’s datasets are larger than ever before, with this abundance of riches posing a challenge
to the analyst in terms of which variables to focus on. For example, in the case of production
data from an unconventional reservoir completed with horizontal wells containing multiple
hydraulic fractures, there could be hundreds of independent (predictor) variables broadly
grouped under (a) well geometry, (b) fracturing fluid, (c) fracture-treatment conditions,
(d) chemistry of produced water, (e) geologic parameters, and (f ) rock mechanics parameters.
It is very likely that there will be a high degree of redundancy among these variables. There is
also the possibility that the data can be partitioned into statistically homogeneous subgroups,
with each subgroup having its own unique input-output relationships. This is where the
process of unsupervised learning can be applied to reduce the dimensionality of the data by
combining similar variables and creating clusters of data points that can be analyzed separately.
Section 5.4 describes how multivariate analysis techniques such as principal component anal-
ysis, clustering, and discriminant analysis can be utilized for such a problem.

In terms of dependent (response) variables, it is sometimes useful to develop a new derived
variable that contains more information than the primary variables themselves. For example,
in the unconventional production case, the initial production rate normalized by the length
of the horizontal well could be more effective in building predictive models. Similarly, in
the analysis of seismic data, particularly when large volumes of data are acquired from
permanently embedded sensors, the “onset time” could be more revealing than the seismic
attributes themselves (Vasco and Datta-Gupta, 2016; Hetz and Datta-Gupta, 2017).

For example, in Fig. 9.1, the time-lapse survey maps of a two-way acoustic travel time shift
because of steam injection in a heavy oil reservoir do not seem to contain any specific feature.
However, the seismic onset time map, which is the calendar time when the seismic attribute
crosses a prespecified threshold value at a given location, clearly seems to indicate a propa-
gating front. Also, the onset time map reduces multiple time-lapse seismic survey data into a
single map, leading to substantial data reduction.

9.2.2 Simple Model, or Complex?

Geoscientists are generally guided by Occam’s razor, which states that a simpler explanation
(model) is to be preferred over a complex one. This conventional wisdom can be at odds with
a statistician’s perspective, that is, the simplicity and interpretability of a model tend to be
inversely related to its accuracy—leading to what can be described as Occam’s dilemma.
For example, in Section 8.4, the simple and easy-to-interpret ordinary least-squares model is
found to be much less accurate than more complex and opaque models such as random forest
or support vector machine. The challenge with embracing the latter alternative is how to tease
out more information regarding the inner workings of the model. Techniques such as variable
importance or conditional sensitivity can be useful tools in this regard (see Section 8.4.3).
The modified conventional wisdom therefore suggests that the curse of dimensionality can
be ignored without sacrificing interpretability for accuracy, by making sure that insights
regarding variable interaction and input-output dependencies are extracted as part of the
model-building process.
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FIG. 9.1 Conversion of multiple seismic attribute maps (time shift) to an onset time map. (A) A sample of seven
time shift maps, (B) a plot of the seismic response at a specific cell (black dot in the time shift maps), and (C) the
seismic onset time map derived from 175 time shift attribute maps. The contours (isochrones of onset times) dis-
play the front progression.

9.2.3 One Model, or Many?

Machine-learning techniques such as random forest, support vector machine, and artificial
neural networks are becoming increasingly popular for building input-output models as op-
posed to basic linear regression or its nonlinear /nonparametric variants. Often, the choice of
which advanced model should be used is based on the analyst’s preference. However, our
experience suggests that no single method works best for all problems—making the a priori
selection of a single modeling technique quite difficult. Sometimes, multiple competing
models may arise when the goodness-of-fit measured in terms of training or test error is quite
similar across the model set. Such an example is shown in Fig. 9.2, where the model fit
expressed in terms of cross validation scaled RMSE is found to be very similar for four dif-
ferent models—ordinary kriging, quadratic fit with LASSO, multiple adaptive regression
spline (MARS), or additivity and variance stabilization (AVAS). Here, the bars represent
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Ordinary Universal Quadratic Quadratic MARS AVAS
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FIG. 9.2 Model fits for multiple experimental design and response surface combinations. After Schuetter, J.,
Mishra, S., Zhong, M., LaFollette, R., 2015. Data analytics for production optimization in unconventional reservoirs.
In: Proc. Unconventional Resources Technology Conference. DOI: 10.15530/URTEC-2015-2167005.
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different experimental design strategies, that is, orange, Box-Behnken (BB); purple, aug-
mented pairs (AP); green, maximum entropy (ME); and black, maximin LHS (MM).

Compounding this problem even further, we have the possibility that each modeling
approach provides different insights regarding the relative importance of the predictors. This
was demonstrated earlier in Fig. 8.13. Our recommended solution is to accept the multiplicity
of models and combine them using the process of model aggregation as discussed in
Section 8.3.3. Aggregating over a large set of completing models provides more robust under-
standing and predictions compared with a single model, which may not be the most accurate
for the problem at hand and may not capture the full range of variable interactions as part of
model building.

9.2.4 Is Past Always Prolog?

A common question is whether data-driven modeling tools can replace physics-based
models in dealing with subsurface processes. Here, it is important to recognize that statistical
techniques have a limited ability to project the “unseen.” The learning from sandstone forma-
tions cannot be directly applied to carbonates. Similarly, insights regarding early-time tran-
sient flow conditions during flow to wells do not carry over to late-time boundary-dominated
flow conditions.

Consider Fig. 9.3, which shows the time-dependent rate-normalized pressure response in a
tight-gas well (Palacio and Blasingame, 1993). Here, the flow behavior of the system can be
clearly separated into the early-time transient period (shown by the quarter-slope lines) and
the boundary-dominated period (shown by the unit-slope lines). What if we did not have any
late-time data? In that case, with a physics-based model, multiple scenarios can still be gen-
erated for the late-time period even without any boundary-dominated data. However, with a
data-driven model, only the past (transient) trend can be extrapolated into the future. It is
therefore incumbent on the analyst to ensure that the conditions for which model predictions
will be developed are consistent with those for the training dataset.

9.2.5 To Fit, or Overfit?

The flexibility of advanced statistical models such as those discussed in Chapter 8 can be
both a blessing and a curse in the context of developing input-output models with good
predictive accuracy. These models have much greater leeway for handling variable interac-
tions, resulting in higher accuracy in general compared with linear regression or variants
thereof. At the same time, there is the danger of overfitting to the training data by manipu-
lation of the adjustable (tuning) model parameters (e.g., size of tree in random forest and
number of hidden layers in artificial neural networks). This is where the power of cross
validation (Fig. 8.11) can help the analyst. It can be used as an effective tool during the
model-building process for balancing model accuracy and degree of complexity. Kuhn
and Johnson (2013) have described such a workflow, which is summarized in Fig. 9.4. Also
shown therein is an example of automated parameter tuning for a support vector machine
model, and how the optimal value of the adjustable “cost” parameter is determined based
on a cross-validated accuracy metric.
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FIG. 9.3 Pressure and rate response for a tight-gas well showing both early- and late-time behavior. After
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9.3 FINAL THOUGHTS

In summary, we note that there is a growing trend toward the use of statistical modeling
and data analytics for oil and gas (and related subsurface domain) applications. The goal is to
“mine the data” and develop data-driven insights to understand and optimize the perfor-
mance of geosystems such as petroleum reservoirs and groundwater aquifers for both fluid
production and injection problems. The maturity of the field appears to be much like that of
geostatistics in the early 1990s, when it had not been fully adopted for mainstream applica-
tions. To that end, we believe that petroleum engineers and geoscientists need to develop a
better understanding of the full repertoire of available techniques and their potential. This
will help them better interact with data scientists to propose and apply appropriate statistical
techniques for developing robust data-driven insights for decision-making.

We close with a quote from the poet T.S. Eliot, who asked “Where is the wisdom we have
lost in knowledge? Where is the knowledge we have lost in information?” Let these thoughts
guide our journey as we strive to transform data into information by understanding relations,
transform information into knowledge by understanding patterns, and transform knowledge
into wisdom by understanding principles (Bellinger, 2004).
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mean and variance, 151-153

F-statistic, 80

F-test, 65

G

Gamma ray log (GR), 33

Generalized likelihood uncertainty estimation (GLUE),
214

Generalized linear models (GLM), 70

Geometric mean, 16

GRACE, open-source software, 226

Gradient boosting machine (GBM), 203-205, 204f,
208-209, 208t
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H

Harmonic mean, 16-17

I
Intergovernmental Panel for Climate Change (IPCC),
128, 129t

K

Kolmogorov-Smirnov test, 6263, 64-65b, 64f
Kriging model (KM), 180-181, 215
Kruskal-Wallis test, 65

Kurtosis, 20-21

L

Latin hypercube sample (LHS) design, 133-134,
133-134f, 175, 175f

Least absolute shrinkage and selection operator (LASSO)
regression, 179-180

Local scoring algorithm, 86

Logarithm of permeability (PERM), 82

Logic tree analysis (LTA), 157-159, 157f, 159f

Lognormal distribution, 3940, 40f

M
Mahalanobis distance, 108
Mann-Whitney test, 65
Maximin LHS design, 176, 176f
Maximum entropy designs, 177, 177f
Mean, 16, 151-153
Mean absolute error (MAE), 113, 115¢
Mean squared error (MSE), 113, 115¢
Measure of central tendency, 18¢
geometric mean, 16
harmonic mean, 16-17
mean, 16
median, 16
mode, 16, 17f
sand-shale medium, 17, 19f
Measures of spread
coefficient of variance, 19
standard deviation, 19
variance, 18, 20t
Median, 16
Microspherically focused log (MSFL), 33
Mode, 16, 17f, 36
Monte Carlo methods, 170, 225-226
Monte Carlo simulation (MCS)
elements, 123-124
FOSM
additive and multiplicative models, 153-155
error propagation, 151
mean and variance, 151-153
LHS, 133-134, 133-134f
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LTA, 157-159, 157f, 159
number of samples, 134-135, 135f
PEM
subsurface flow and transport models, 156, 156f
2N model evaluations, 156
uncertain variables, 155-156
probabilistic modeling approach, 122, 123f
random sampling, 132-133, 132f
visualization, 135-141, 135-136f, 136-1400b, 137t,
138-139f, 140-141t, 141f
Multiple adaptive regression spline (MARS), 228-229
Multiple regression model, 83t
ANOVA, 81, 84
diagnostic plots, 82, 83f
evaluation of, 80-81
formulating and solving, 78-79
model selection process, 81
PERM and GR, 82
residuals vs. independent variables, 82, 83f
Multivariate data analysis
cluster analysis
experience and user intervention, 102
hierarchical clustering, 103-106, 105-107f
k-means algorithm, 103, 104f, 105¢
model-based clustering, 107-108
SCFU data, 111-112, 113-114f
discriminant analysis
bivariate dataset, 108-109, 109f
example of, 104f, 109, 110f
Mahalanobis distance, 108
predefined groups, 108
field application (see Salt Creek Field Unit (SCFU)
data)
PCA, 98-102, 100-102f, 101t

N
Neutron porosity (NPHI), 199
Nonparametric transformation techniques
additive regression model, 86
conditional expectation, 84-86
data correlation, 88-89, 88-89f
field application
inverse transformation, 92-93, 93f
optimal transformations, 92-93, 92f
predicted permeabilities, 93
SCFU, 90, 90f
stepwise algorithm, 90-91, 91¢
variable selection, 90-91
Gaussian kernel function, 84, 85f
local averaging functions, 84, 85¢
response transformation models, 86-87
scatterplot smoothers, 84-86
span selection on scatterplot smoothing, 84, 85f
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Normal distribution, 37-38, 38-39f
North Robertson unit (NRU), 162

o

Occam’s razor, 227

One-parameter-at-a-time (OPAT) sensitivity analysis,
124-125

Outcomes and events, 6, 7f

P
Parametric models
beta distribution, 45, 45f
binomial distribution, 43, 43b
continuous probability distributions, 33-35
exponential distribution, 42, 42f
lognormal distribution, 3940, 40f
normal distribution, 37-38, 38-39f
poisson distribution, 41-42, 41-42f, 41-42b
triangular distribution, 36-37, 37b
uniform distribution, 35-36, 35f, 36b
Weibull distribution, 43-45, 44f, 44-45b
Partial rank correlation coefficient (PRCC), 145-147
Pearson correlation coefficient, 23
Photoelectric (PEF), 199
Plackett-Burman (PB) analysis, 125
Point-estimate method (PEM)
subsurface flow and transport models, 156, 156f
2N model evaluations, 156
uncertain variables, 155-156
Poisson distribution, 41-42, 41-42f, 41-42b
Population and sample, 1-2, 2f
Principal component analysis (PCA)
coordinate system, 98
dataset, 98-99
example of, 100-102, 101¢, 101-102f
p-dimensional space, 99
properties, 99
SCFU data, 111, 113f, 114¢
variables, 99-100, 100f
Principal component loadings, 99-100
Probability mass function (PMF), 10-11, 11f
Probability plotting method, 127, 127f

Q
Q-Q plot, 60, 61f
Quadratic polynomial model, 179

R

INDEX

indicator transform, 12
Rank correlation coefficient (RCC), 22-23, 23¢
Regression modeling and analysis
GLM and ACE, 70
multiple regression, 83t
ANOVA, 81, 84
diagnostic plots, 82, 83f
evaluation of, 80-81
formulating and solving, 78-79
model selection process, 81
PERM and GR, 82
residuals vs. independent variables, 82, 83f
nonparametric transformation (see Nonparametric
transformation techniques)
simple linear regression
confidence intervals, 75
evaluation of, 72-73
formulating and solving, 70-72
properties of the, 74-75
31-sample dataset, 75-78, 76-77f, 78t
Response variable, 84
Root-mean-square-error (RMSE) statistic, 19, 180, 214

S
Salt creek field unit (SCFU) data, 90
correlation and prediction, 113-116, 115¢,
115-116f
dataset, 110-111, 112f
model-based cluster analysis, 111-112, 113-114f
PCA, 111, 113f, 114¢
Scatterplot matrix, 26, 27f
Sensitivity analysis, 122
Simple linear regression model
confidence intervals, 75
evaluation of, 72-73
formulating and solving, 70-72
properties of the, 74-75
31-sample dataset, 75-78, 76-77f, 78t
Skewness, 20-21
Spearman correlation coefficient, 23
Standard deviation, 19
Standard error, 73-74
Statistics, 1-3, 59, 140t
Supervised pattern-recognition method.
See Discriminant analysis
Support vector machines (SVMs), 205-206, 206f, 208-209,
208t, 228-229
Support vector regression (SVR), 205-206

Random forest (RF) regression, 200202, 208209, 208¢, Support vectors, 205

228-229
Random variables
continuous case, 11
discrete case, 10, 11t

Surrogate models, 129

T
Triangular distribution, 36-37, 37b
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U number of samples, 134-135, 135f
Uncertainty random sampling, 132-133, 132f

characterization treatment

lognormal distribution, 126-127, 127f example, 162-163, 163f

maximum entropy, 127-128, 128t good uncertainty analysis, 163-164

problem of scale, 130-131, 130-131f, 131t moment-matching constraints, 160-162,

subjective probability distributions, 128-129, 129¢ 161f

uncertain inputs, 124-126, 124-125f reservoir forecasting, 160
deterministic vs. probabilistic approach, 120-123, 121f visualization, 135-141, 135-136f, 136-1400, 137t,
elements, 121-122, 122f 138-139f, 140-141t, 141f
input-output relationships Uncertainty analysis, 122

classification tree analysis, 149-150, 150f Uniform distribution, 35-36, 35f, 36b

global sensitivity analysis, 142-143 Unsupervised classification techniques. See Cluster

local sensitivity analysis, 142 analysis

mutual information, 148-149, 149f

PRCCs, 145-147 \Y

rank correlation analysis, 144, 145f Variance, 18, 20t, 151-153

regression coefficients, 144-145

scatterplots, 143-144, 144f U

variance-partitioning problem, 142-143, 143f Weibull distribution, 4345, 44f, 44-45b
LHS, 133-134, 133-134f Wilcoxon rank-sum test, 65
MCS

elements, 123-124 Y

FOSM, 151-155 Y on X regression, 71-72, 72f

LTA, 157-159, 157f, 159f

PEM, 155-156, 156f Z

probabilistic modeling approach, 122, 123f z-score, 46
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