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Preface



Nanotechnologyindesulfurizationisafascinatingsubjectofrecentorigin.Theexpansionofnanoma-
terialsisthefocalpointofresearchandtechnologythatismostlyrelatedtochemistry,physics,applied
sciences,petroleumandengineering.Researchonnanotechnologyhasmainlyfocusedontheaspectsof
synthesisofnanomaterialsthathaveuniquechemical,thermalandmechanicalpropertiesapplicablefor
awiderangeofapplications.Avarietyofpropertiesandphenomenahasbeeninvestigated,andmany
ofthestudieshavebeendirectedtowardunderstandingthepropertiesandapplicationsofnanomaterials.
Duetotheirenhancedchemicalandmechanicalproperties,thenanomaterialsplaypromisingrolesin
enhancingthedesulfurization.Nanomaterialshavepropertiesthatareusefulforenhancingsurface-to-
volumeratio,reactivity,strengthanddurability.Inpursuitofthesamegoal,ApplyingNanotechnology
totheDesulfurizationProcessinPetroleumEngineeringbookoffersdetailed,up-to-datechaptersonthe
synthesis,propertiesandtechnologicaldevelopmentsofnanomaterials,andtheirapplicationsinpetroleum.

Thefirstchapterofthebookencompassestheoccurrenceoforganosulfurcompoundsinpetroleum,
theirdetrimentaleffectsandvarioustechniquesforremovalofthesecompounds.Thesecondchapter
covers sulfur x-ray absorption near edge spectroscopy performed on some carbonaceous materials,
viz.crudeoilandrelatedmaterials(asphaltenes,kerogens,bitumens,andresins),andcoals.Thethird
chapterdescribes thedesigningofeffectiveHDScatalysts anddesulfurizationpathwayswith some
unusualmechanismsofthedesulfurizationprocesswhichbreakthepopularbeliefthatdesulfurization
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ABSTRACT

This chapter describes the occurrence of organosulfur compounds in petroleum, their detrimental effects 
and various techniques for removal of these compounds. The sole commercial desulfurization process 
i.e. HDS is broadly discussed in terms of reaction conditions, different types of catalysts used, reactor 
design and mechanistic pathways in the process. The shortcomings of HDS and needs for developing 
new desulfurization techniques is also described. Various newly developed research techniques for 
desulfurization are also discussed with their technical backgrounds, commercial overview, advantages 
and shortcomings in the light of literature reports. These techniques include, Adsorptive desulfurization, 
Bio-desulfurization, Precipitative desulfurization, and Oxidative desulfurization with its sub types like 
ODS using H2O2- Polyoxometalates (POM), ODS with Ionic liquids, Photo-oxidative desulphurization 
and Ultrasound Assisted ODS.

INTRODUCTION

Sulfur occurs in crude petroleum in different forms and in varying quantities. But in petroleum the pres-
ence of sulfur compounds is undesirable because of several reasons, such as causing corrosion problems, 
deactivating catalysts in various refining processes and contributing to environmental pollution. The 
problem of environmental deterioration is increasing steadily as the energy demand increases with growth 
of the world’s population; therefore, worldwide environmental regulation authorities are imposing strict 
regulations to limit the amount of sulfur in petroleum based liquid fuels.

At present, the commonly used industrial process for removal of sulfur from petroleum is hydrodesul-
furization (HDS), which involves treatment of petroleum fractions in a special reactor at high temperature 
(300-500 oC) in the presence of a catalyst and hydrogen gas under high partial pressure (30-300 psi). The 
requirements of HDS process make it a too expensive operation. Furthermore, HDS cannot eliminate 
certain refractory sulfur compounds from petroleum and therefore cannot attain low level desulfurization 
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under its normal operating conditions. Thus, petroleum desulfurization is a challenging task for the refiners 
under the current environmental regulations. Keeping in view this scenario, worldwide researchers are 
striving to develop new desulfurization techniques that are cost effective and more efficient than HDS. 
In this regard, several new techniques for desulfurization of petroleum have been introduced, including 
extractive desulfurization, adsorptive desulfurization, desulfurization by polymer membranes, precipita-
tive desulfurization, bio-desulfurization and oxidative desulfurization. All these techniques are still in 
stages of technological improvements since each one has its own advantages and drawbacks.

This chapter gives detailed account of different types of sulfur compounds occurring in petroleum, 
their hazardous effects and various processes used for desulfurization of petroleum. The main objectives 
of this chapter include,

• To identify the nature and types of different sulfur compounds presents in crude petroleum and 
their distribution in distillate fractions.

• To know various problems associated with sulfur compounds present in petroleum.
• To understand the technological background of different desulfurization techniques and identify 

the limitations of each.
• To highlight the developments occurred in different desulfurization processes over the past few 

decades.

1. OCCURANCE OF SULFUR IN PETROLEUM

In crude petroleum, sulphur exists as a non-hydrocarbon constituent in different concentrations. Petroleum 
crudes obtained from different oilfields contain different quantities and types of sulphur compounds. 
Generally in heavier crude oil, the proportion and complexity of the sulphur compounds is usually greater 
than the lighter crudes. The concentration of sulphur in crude petroleum may range from trace amounts to 
as high as 8 wt%, depending upon its source e.g. the sulphur content in some light Pennsylvanian crude 
is about 0.05%, in heavy Mexican or Mississippi crude as high as 5% or even more, whereas Middle 
East crude contain about 2.1% sulfur (Birch et al., 1925).

Based on their nature, sulfur compounds in petroleum, may be divided in two categories i.e. sulfur in 
organic form and in inorganic form. In inorganic form sulfur is present as H2S, elemental sulphur, and 
pyrites which are dissolved or suspended in crude petroleum. In organic form the sulphur is bounded 
to a hydrocarbon molecule as a heteroatom, these compounds may be classified as thiols, sulfides, thi-
olanes, thiophenes, benzothiophenes, benzonapthothiophenes and their alkylated derivatives (Agarwal 
et al., 2009).

On the basis of their reactivity, sulphur compounds occurring in crude petroleum may be classified 
in two classes, namely active sulfur and inactive sulfur compounds. Active sulfur compounds are those 
which directly react with metals and causes corrosion, including H2S, mercaptans, elemental sulphur and 
lower sulphides. The active sulfur compounds impart corrosive action to the sour crudes, but due to their 
high reactivity these compounds can be easily removed from petroleum. The second class, inactive sulfur 
compounds cannot react readily with metals and it includes aromatic sulphur compounds i.e. thiophene, 
benzothiophene, dibenzothiophenes, benzonapthothiophenes and their alkyl substituted derivatives, etc. 
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Due to their limited reactivity, these compounds particularly the alkyl dibenzothiophenes, are difficult 
to eliminate through normal operating conditions of hydrodesulfurization (Gray et al., 1995), and hence 
these are referred as refractory sulphur compounds (see Figure 1).

2. DISTRIBUTION OF SULFUR COMPOUNDS IN DISTILLATE FRACTIONS

Among the distillate fractions obtained from crude oil, the distribution of the sulphur compounds is not 
uniform, rather it vary from fraction to fraction depending upon their boiling points. The concentration 
as well as the complexity in the structure of the sulphur compounds increases in various distillate frac-
tions with the increase in boiling points (Heinrich G et al., 2001). In light distillate fractions sulphur is 
generally present in a very simple identifiable form, mostly as reactive forms of sulfur compounds such 
thiols and sulfides that can be removed easily by extraction or sweetening processes. On the contrary, 
in case of heavy distillate fractions or residual portions of crude oil having a high boiling point, organic 
sulfur occurs in more complicated form i.e. as a heteroatom in polyaromatic compounds bearing lim-
ited reactivity and therefore difficult to remove (Ahmad, 2013). The distribution of different classes of 
organosulphur compounds among various distillate fractions is presented in the Table 1.

Crude oil contains different classes of organic sulphur compounds including thiol, sulfides and 
thiophenes. H2S and sometimes elemental sulphur are mostly found in dissolved form. The elemental 

Figure 1. Representative sulphur compounds present in petroleum
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sulphur reacts with thiols in low boiling fractions and produce H2S, which causes the corrosion problems 
(Ahmad, 2013). Most of H2S is flushed off along with gaseous hydrocarbons e.g. methane, ethane, pro-
pane, butane etc. which are removed from crude on oil field. Due to the high boiling point of elemental 
sulphur, it shifts to higher boiling point fractions during the distillation process. The oxidation of H2S 
present in petroleum gases and gasoline may also lead to production of elemental sulfur.

In light distillate fractions the commonly present sulfur compounds include thiol, aliphatic sulfides, 
and simple thiophenes. The main sulfur compounds in gasoline include thiols, aliphatic sulfides and 
disulfides as well as cyclic sulphides. Thiophenes usually do not occur in straight run gasoline but are 
present in FCC gasoline that is obtained from cracking of the heavier fractions. As shown in Table 1, 
in light distillate fractions with boiling point ranging from 70 to 180 oC i.e. naphtha, about 50% of the 
sulphur compounds occur as thiol and the same proportion as sulfide, whereas thiophenes are present 
only in trace amounts. Ronald, et al. (Martin et al., 1965) showed that in a gasoline sample, about 61% 
of total sulfur was present as thiophene and 25% as dibenzothiophenes whereas 11% as sulfides, 2% as 
disulfides and only 1% was in the form of thiols. Similarly, various classes of sulfur compounds in FCC 
and RFCC gasoline in China were thiols, sulphides, disulphides and thiophenes with relative distribu-
tion of 10, 20, 3 and 68%, respectively (Yin et al., 2002). Furthermore, in catalytically cracked naphtha, 
the sulfides are mostly aliphatic and cyclic, whereas the thiophenes are mostly mono-, di- or tri-alkyl 
thiophenes (Yin et al., 2004). Various types of common sulfides and thiophenes identified in catalyti-
cally cracked naphtha are presented in Table 2.

Kerosene oil also contains types of sulphur compounds similar to those found in gasoline, however 
the proportion of thiophenes and dibenzothiophenes is higher than thiol and disulfides. A kerosene oil 
sample obtained from Midle East crude with 0.05% wt sulphur, was shown to contain about 6% of thiols, 
45% of various aliphatic sulfides, 2% of thiophenes and 47% of multi ring thiophenes, mostly consisting 
of 2 and 3 rings (Martin & Grant, 1965).

In diesel oil, sulfur compounds are mostly as sulfides and disulfides, various types of thiophenic 
compounds such as beonzothiophene, dibenzothiophenes, benzonapthothiophene, and a number of other 

Table 1. % Distribution of various classes of sulphur compounds among different distillates (wt %)

Distillate Fractions B. P range (oC) Thiols Sulfides Thiophenes Higher Thiophenes

Naphtha 70–180 50 50 Rare –

Kerosene 160–240 25 25 35 15

Diesel 230–350 15 15 35 35

Vacuum gas oil 350–550 5 5 30 60

Vacuum residue >550 Rare Rare 10 90

(Javadli et al., 2012).

Table 2. Common sulfides and thiophenes present in FCC naphtha

Sulfides Butyl-methyl sulfide, Butyl-ethyl sulfide, Tert-pentyl methylsulfide, Tert-butyl isopropyl sulfide, Tert-pentyl 
ethylsulfide, Tert-pentyl iso-propyl sulfide, Iso-propyl butylsulfide.

Thiophenes Thiophene, 2-Methyl thiophene, 3-Methyl thiophene, Tetrahydro thiophene, Iso-propyl thiophene, Methylethyl 
thiophene, Dimethyl thiophene, Trimethyl thiophene.
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alkylated thiophenes. As shown in Table 1, the proportion of thiophenic sulfur compounds in diesel is 
about 70%. In variously treated diesel oil, such as RFCC, FCC, visbreaker, delayed coker and hydrofined 
diesel oil, the sulfur compounds identified by using two dimensional gas chromatography were simi-
lar to that of straight run diesel oil i.e. aliphatic sulfides and alkyl derivatives of benzothiophenes and 
dibenzothiophenes. Furthermore, in the case of cracked diesel, the proportion of DBTs is higher than 
in straight run diesel (Hua et al., 2003). The light cycle oil LCO with boiling range 220-337 oC mostly 
contains alkyl substituted benzothiophenes (BT) and dibenzothiophenes (DBT). Quantitative distribution 
of various thiophenes in LCO, was found to be as: thiophenes (1.9%), C1-BT (9.5%), C2-BT (15.1%), C3-
BT (22.1%), DBT (2.2%), C1-DBT (11.8%), C2-DBT (15.9%) and C3-DBT (20.9%) (Nylén et al., 2004).

In case of heavier distillates i.e. asphalts, shale oil, atmospheric residue, bitumen, etc. sulfur occurs in 
even more complex forms; mostly as condensed heteroaromatics, thiols and traces of sulfides, whereas no 
H2S or elemental sulphur is present. According to Borns, et al., in oil sands derived bitumen, only 38% 
sulfur is aliphatic and the rest are aromatics with a high molecular weight in the 200 to 700 m/z range 
(Shi et al., 2010). Furthermore, heteroaromatic sulphur compounds containing multiple S atoms like one, 
two and three sulphur atoms (S1, S2 and S3) may also be found, with S1 being present in high proportion 
(71%), and S2 and S3 in smaller proportions (11 and 1%, respectively). Variety of hetero-atomic aromatic 
compounds also occurs in bitumen which contains S, N and O in a same molecule or ring.

Like bitumen, shale oil contain sulphur compounds of great complexity. The majority (up to 90%) 
occurs as thiophenes and benzothiophenes and only traces of alkyl sulfides and disulfides may be found. 
Table 3 exhibits some typical heterocyclic sulphur compounds identified in Paraho shale oil (Willey et 
al., 1981). Sulphur compounds in petroleum residues are similar to those occurring in oil sand bitumen, 
VGO and shale oil, which could not be eliminated through HDS process. The refractory sulfur compounds 
in residue portion, are often associated with asphaltenes, which contain high amounts of nitrogen, sulfur 
and various metals and resembles to polymeric material (Ahmad, 2013).

3. DETRIMENTAL EFFECTS OF SULPHUR COMPOUNDS IN PETROLEUM

Sulfur compounds are associated with a variety of problems, and are therefore removed from petroleum 
products. Below is an overview of the major problems caused by sulfur compounds in petroleum.

Table 3. Some organosulphur compounds present in oil sahle (Paraho Shale)

Benzothiophenes

• Benzothiophene, 
• 5-ethylbenzothiophenes, 
• 3-methylbenzothiophene, 
• Dibenzothiophene

High Mol. Wt. Benzothiophenes

• phenanthro[4,3-b]benzothiophene, 
• naptho[2,1-b]benzothiophene, 
• triphenyleno[4,5-b,c,d]thiophenes, 
• anthra[1,2-b]benzo[d]thipophene, 
• dinaptho[1,2-b:2-1,d]thiophene, 
• benzo[b]naptho[2,3-d]thiophenes, 
• phenanthro[2-1,b]thiophene chrysene, 
• phenanthro[9,10-b]thiophenes
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3.1 Malodorous

The irritating pungent smell of sour petroleum crudes is due to the presence of sulfur compounds, 
particularly H2S and mercaptans (McKetta, 1992.). These compounds are not only malodorous but also 
toxic, therefore handling and processing of the petroleum products with objectionable odor creates health 
hazards and nuisance to the workers. Besides, most of these compounds often bear corrosive character, 
influencing the fuel quality. The bad odor is removed from the crude petroleum through sweetening 
processes or by various refining processes in the refining industry (Hobson et al., 1984).

3.2 Corrosion Problems

The corrosive nature of sour crude petroleum and light distillate fractions is due to some of the sulfur 
compounds like H2S, elemental sulphur, lower aliphatic sulfides and mercaptans, which are highly 
reactive towards metals and thereby causes the corrosion in the distribution systems and equipment in 
the petroleum refineries (McKetta, 1992.; Wood et al., 1925). When these compounds are present abun-
dantly in crude oil or light distillate fractions, they cause corrosion by reacting directly on the metals 
surfaces. Corrosion damages storage tanks, pipes and equipments, reducing not only their durability but 
also leading to high repair and maintenance costs (Ahmad, 2013). Such type of corrosion in petroleum 
products is assessed by means of the relative degree of corrosivity using the copper strip corrosion test 
(ASTM D 130).

Apart from direct corrosion, sulfur compounds also cause indirect corrosion by producing SOx which 
damage the internal linings of pipes, boilers and parts of the engine, boilers or piping (Ma et al., 2007). 
During combustion of fuel containing sulfur in the boilers or internal combustion engines, organic sulfur 
is oxidized and set free as SOx, which leads to formation of H2SO4 by combining with water vapors pres-
ent in the flue gases. As the temperature decreases, the acid condenses on various metal surfaces like 
linings of tubes, cylinder, internal parts of the engine, etc. and causes the corrosion of these parts, thereby 
decreasing their durability (Ahmad, 2013). Various techniques are used to combat such corrosion; these 
include application of metal plating as protective coatings, increasing the metals temperature to avoid the 
condensation of acid, using different additives in the combustion chamber. Similarly addition of addi-
tives to the flue gas stream or increasing the temperature of incoming gases by auxiliary heating systems 
is also carried out to avoid the acid precipitation on the metal surfaces (Hobson & Petroleum, 1984).

3.3 Deactivation or Poisoning of Catalyst

The major disadvantage of the sulfur compounds in petroleum is that they deactivate the base metals 
and precious metal catalysts used in a number of refining processes for downstream processing of pe-
troleum and other catalytic environmental operations (B.C. Gates et al., 1979; Kent, 2010; Ma et al., 
1994). During these processes, sulphur species are selectively adsorbed over the surface or active sites 
of metals present in the catalysts, thereby causing inactivation or reducing of their activity. This loss of 
activity occurs after the formation of metal sulfides when sulfur compounds contact the surface of Cu, 
Ni, Co etc. For instance, sulphur impurity on ppm level in the feed is sufficient to reduce the activity 
of nickel catalyst many folds in just a few days. Generally, sulfur species are irreversible poisons for 
most catalysts e.g. heavy metals like Hg, Pb, As. Hence, regeneration of the catalyst by air, O2, or steam 
treatment becomes a difficult task (Froment et al., 1987; Kent, 2010). However, in some cases where 
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precious metals are reversibly poisoned, these can be regenerated by removing sulfur compounds from 
the gas stream (Kent, 2010). Other examples of reversible poisons are nitrogen compounds like cyanide 
and ammonia, whereas vanadium is an irreversible poison.

In various processes e.g. catalytic hydrogenation, reforming, isomerization and alkylation, sulphur 
is selectively adsorbed on the catalyst surface as H2S or organic sulfides, and blocks the adsorption of 
any other species, hence leading to partial or complete loss in the activity of the catalyst. The degree of 
deactivation of the catalyst depends on the extent of the surface coverage, which may be mechanistically 
categorized as geometric blocking or by long range electronic effects. In case of a partially covered sur-
face, deactivation results from the combined geometric blocking and long range electronic effects. On 
the other under high surface coverage, loss in activity is resulted only by geometric blocking (Ahmad, 
2013). In combustion operations, SO2 and SO3 from sulfur compounds may form active metal sulfates 
after being adsorbed over the metal surface (Kent, 2010). Pt supported on Al2O3 used for reduction of 
the combustion emissions is also deactivated in the similar manner; the SO2 produced during combus-
tion is oxidized to SO3 by Pt which subsequently is adsorbed on the carrier surface (Al2O3) to form the 
corresponding sulfate. The sulfate slowly covers the surface of the carrier, causing Pt occlusion and 
leading to loss in the activity of the catalyst.

Generally, during catalytic hydrotreatment processes, the sulfur compounds present in the feed form 
H2S under a high partial pressure of H2, increasing its concentration in the recycle gas stream, and lead-
ing to deactivation of the catalyst unless it is removed. The H2S is known for being a reversible poison 
for Pt and it deactivates the catalyst used in recyclization and hydrogenation reactions. In the earlier 
designs of catalytic reforming reactors, the removal of H2S gas from the recycle stream was effectuated 
by absorption with steam and di-ethanolamine. In modern units, the sulfur from the feed is removed 
through catalytic HDS, and then the feed is subjected to reforming. In most practices, sulfur in the feed 
is reduced to about 0.5 ppm or less, in case of using high sulfur feed, problems of low catalysts activity 
and poor products yield are encountered. Similarly, during the pretreatment of the feed, it is necessary 
to reduce sulfur contents to a few ppm before subjecting to catalytic reforming in case of using naphtha 
as feed and also for catalytic isomerization of C4 to C6 paraffins.

Pre-sulfidation of the catalyst may be used to overcome the deactivation problem up to some extent 
in certain processes. The catalyst is pre-sulfided with various sulfur precursors before the reaction, the 
so called sulfided catalyst can efficiently catalyze hydrogenation reactions even if strong inhibitors like 
H2S and NH3 are present. In addition, the sulfided catalysts also resists early deactivation through coke 
deposition (Absi Halabi et al., 1996).

3.4 Influence of Octane Number in Gasoline

It has been shown that in gasoline, the presence of sulfur compounds tend to resist the susceptibility 
of octane boosting with the addition of the octane improvers like tetra-methyl-lead (TML) and tetra-
ethyl-lead (TEL) (Magyar et al., 2005). Studies have shown that different classes of sulfur compounds 
decrease the octane number of gasoline and its response to tetraethyl lead. The thermal decomposition 
products of different sulfur compounds show susceptibility to TEL, and hence reduce its response to 
raise the anti-knocking.(Ryan, 1942) 

Similarly, the gasoline obtained through fluid catalytic cracking (FCC gasoline) contains high concen-
tration of aromatics and olefins as well as sulfur compounds. Generally sulfur compounds are eliminated 
through hydrodesulphurization, however the during this process olefins and aromatic saturation occurs 
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due to which the octane number of the gasoline decreases (Babich et al., 2003), and in order to meet the 
octane rating according to standard fuel specifications additional processing is required, which leads to 
increased operating cost of the gasoline.

3.5 Health Effects

Sulphur compounds, particularly some condensed thiophenes, are known to cause adverse effects on 
human health i.e. carcinogenic or mutagenic, on exposure to a certain level (Braid et al., 2005; Willey et 
al., 1981). H2S is a malodorous compound that produces strong irritating odors and causes headaches on 
short time exposure and on long duration exposure might lead to unconsciousness (Gruse et al., 1960). 
Some thiols (-C-SH) have also a stinging repulsive odor and are strong irritants that can be very toxic 
at high concentrations. For instance methylmercaptan can be smelled at level below 0.002 ppm, and at 
above this concentration its harmful affects starts. Thiols may cause nausea, vomiting, headache, cough-
ing, lung irritation and inflammation of eyes, throat and nose on exposure to high concentrations. Under 
severe conditions of high concentrations, long term exposure to high concentrations of thiols may also 
leads to uncomfortable breathing, muscular spasms or unconsciousness, however effects of irritation 
disappears soon as the affected individual is brought to breath in fresh air. Furthermore, as thiols are 
highly soluble in fats, soon after contact they are readily absorbed in the skin.

Like other sulfur compounds, low molecular weight sulfides are also malodorous. The dimethyl- and 
diethyl-disulphides are relatively less toxic and have less repulsive odor than thiols, but still their smell 
can be observed at very low concentrations, up to a range of 0.0001 to 0.002 ppm. Under high concen-
trations, sulfides can cause irritation of eyes, throat, nose and muscular paralysis.

3.6 Contribution to Atmospheric Pollution

Sulfur present in petroleum products is converted to SO2 during combustion, which is liberated in to the 
atmosphere where it causes serious environmental pollution problems such as acid rain while contribut-
ing to photochemical smog. Also, SO2 is directly harmful to animals and vegetation.

3.6.1 Direct Effects of SO2 in Atmosphere

SO2 is a colorless gas having piercing pungent odor and is very harmful to man, animals and vegetation; 
its main source is the conventional fuels containing sulfur compounds, which are utilized for transpor-
tation and in the industry [34]. The effect of SO2 on humans primarily appears on the respiratory tract 
causing its irritation and constriction, which leads to increased resistance in air passage. These effects are 
more pronounced in persons suffering from respiratory weakness and sensitized asthma. The irritation 
effects are experienced when the individuals are exposed to SO2 level of 1-2 ppm in air, SO2 level of 5-10 
ppm causes severe bronchial spasm, whereas the level of 500 ppm may lead to death (Manahan, 2010).

A combination of SO2 and smoke in air, which usually occurs when smog is formed by temperature 
inversion layer, leads to a widespread disaster that affects not only humans but also animals. Several 
incidents happened across the world in the past when high SO2 level was trapped in smog. In Meuse 
River Valley, Belgium such incident occurred in December 1930, when the SO2 level in the atmosphere 
raised to 38 ppm, leading to the death of approximately 60 people and many cattle. Similarly, in October 
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1948 in Pennsylvania, United States of America, the SO2 level reached 2 ppm, and caused the death of 
about 20 people and the illness of more than 40% of the population (Sharma, 2007). In December 1952 
in London, heavy smog with 1.3 ppm SO2 and 4 mg/m3 of smoke, lasted for five days, during which ap-
proximately 12000 deaths occurred (Davis, 2002). These deaths were mainly caused due to pneumonia, 
bronchitis and related respiratory problems. A similar accident occurred in London in December 1962, 
but this time the number of the deaths was small i.e. about 700, which was due to the implementation 
of the Clean Air Act, in 1962 (Manahan, 2010; Sharma).

High levels of SO2 are also injurious to plants, causing a condition called leaf necrosis in which the 
edge of the leaf and its petiole is damaged. The chronic effect of SO2, chlorosis, appears as yellowing 
of the leaf. It has been found that low level chronic effects of exposure to SO2 are more damaging than 
exposure to high dose for short durations (Varshney et al., 1979). Furthermore, the SO2 also damages 
the plants and aquatic flora in rivers and lakes indirectly by causing acid rain.

3.6.2 Acid Rain

The SO2 released during combustion of fossil fuels containing sulfur compounds is photo-catalytically 
oxidized to SO3 in the atmosphere [37]. In atmosphere, under humid conditions SO3 reacts with water 
and form H2SO4.

2SO2 + 2O2 → 2SO3 (1)

SO3 + H2O →H2SO4 (2)

In a similar way, the oxides of nitrogen forms HNO3 in atmosphere, and when these acids combine 
to cause acidic precipitation, this is termed as acid rain. Today, acid rain is a major environmental prob-
lem; it is not only hazardous to living beings but it also damages the non-living objects. The acid rain 
adversely affects the biota and its surroundings.

Acid rain primarily affects soil by leaching action. Acid rain dissolves and washes away the nutrients 
that are needed for plants development and growth, thereby rendering soil less fertile. Furthermore, the 
acidic washing also dissolves the harmful substances present in certain soils i.e. Hg, Al, Pb, As etc., 
further polluting the fresh water bodies, vegetation and finally reaching human food chain. Certain ben-
eficial microbial cultures in soil that cannot survive under low pH conditions are also destroyed by acid 
rain (Harrison et al., 2007). The acid rain has damaging effects on forests as well (Manahan, 2010), due 
to decreasing the soil fertility by washing away the important nutrients, the growth and development of 
forest vegetation, particularly large trees is retarded. Furthermore the acid rain damage the waxy coating 
on the leaves and needles of the large coniferous trees, causing dead brown spots on it, due to which they 
lose their photosynthetic activity. The infected trees weaken and become vulnerable to diseases, insect 
manifestations, cold weather and draught. The trees at peaks or high altitude remains in direct contact 
with the acidic clouds, hence these are at more risk of adverse effects.

The acid rain runoff drains into fresh water bodies like lakes, streams and marshes, where it disturbs 
the aquatic life. The fresh water is commonly neutral, with pH in the range of 6- 8, and is suitable for 
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supporting the aquatic life. The aquatic flora and fauna is very sensitive to high or low pH, therefore the 
acid rain which lowers the pH of fresh water bodies greatly threaten their survival. Acidic water mainly 
affects the reproduction and growth of the organism living in water (Morris, 1989; Singh et al., 2007).

Another main deleterious effect of the acid rain is the damage of structures made of metal or stone 
like statues, buildings, automobiles etc. when exposed for long durations (Singh & Agrawal, 2007). The 
famous historic buildings and statues across the world like the Taj Mahal in Agra (India), the Parthenon 
in Athens (Greece), the stonework of Lincoln Castle in Lincolnshire, England etc. have been damaged 
by acid pollution.

The human health is not harmed directly by acid rain but indirectly through intoxication of the food 
chain. The acidic water leaches the toxic substances from soil and leads them to the fresh water bod-
ies, from where they find their way to the food chain by directly consuming the contaminated water or 
utilize the animals or plant grown therein (Singh & Agrawal, 2007). For example in Sweden, several 
lakes have been found contaminated with Hg, which is leached by acid rain from the surrounding soils, 
and the residents are abandoned to use fishes as food from these lakes.

4. DESULPHURIZATION OF PETROLEUM PRODUCTS

Concerning the nuisance due to sulfur compounds in the form of environmental pollutant, health effect 
and hurdling in the refining processes, it is important to remove sulfur from petroleum derived fuels 
prior to their usage for energy. In order to stop the serious environmental deterioration, the worldwide 
environmental regulatory authorities have implemented serious rules and regulations to limit the con-
centration of sulphur in transportation and industrial fuels. The environmental protection agencies in 
developed countries like US, Japan and in Europe, the level of total sulfur contents has been set to 10 
ppm for gasoline, whereas 15 ppm for diesel oil (Largeteau et al., 2012; Stanislaus et al., 2010).

Sulfur compounds are removed from petroleum and petroleum derived products through the process 
referred as desulphurization process. Today hydrodesulphurization (HDS) is the only process used by 
refineries worldwide for desulfurization of petroleum, but researchers are struggling to introduce new 
desulfurization processes that should be more efficient and cost effective than HDS. The preceding 
sections include discussion on the HDS as well as new desulfurization techniques brought to scene by 
researchers.

4.1 Hydrodesulphurization (HDS)

Hydrodesulphurization (HDS) process was discovered in 1930 and is used since then as a most common 
industrial process for desulfurization of petroleum. In HDS process, feed is treated with hydrogen gas 
in a specially designed reactor under high partial pressure and elevated temperature in the presence of 
a catalyst. The organically bonded sulphur is converted into H2S during the reaction, which is separated 
from the feed in the stream of flue gases. The conventional HDS process commonly operates at tem-
perature ranging from 300 to 450 oC and pressure of 30 to 300 psi, however the process conditions may 
vary depending on the nature of feed and its sulfur contents as well as the degree of desulphurization 
required (Javadli & Klerk, 2012). In conventional HDS, the catalysts mostly used are sulfided CoMo 
type or NiMo and CoMo supported on Al2O3 (Furimsky, 1996; Knudsen et al., 1999; Ma et al., 1994; 
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Shafi et al., 2000; Vasudevan et al., 1996). The advanced HDS operation is used for deep desulfurization 
of high sulfur feed, and carried out under severe conditions of temperature and pressure, i.e. at elevated 
temperature and high pressure, over the catalysts using advanced supports.

In HDS unit, the feed which may be naphtha, kerosene or gas oil is mixed with hydrogen gas and 
heated in a fire heated tubular furnace to up to 315 and 425 °C temperature. The vaporized feed is then 
pumped into a fixed bed reactor packed with catalyst under pressure up to 70 bars. During the process, the 
compounds of sulfur and nitrogen present in the feed react with H2 to form H2S and NH3. The products 
from the reactor are passed to a cooler, and then to a separator. In the separator, the gases consisting of 
H2S and H2 are separated from the liquid product, high-pressure gas rich in H2 is recycled to the HDS 
reactor and the low-pressure gas rich in H2S is passed to amine contactor for removal of H2S gas. The 
flue gases can be used for heating the furnaces. Liquid products are pumped to the stripping column, 
where remaining H2S, gases and other impurities are then removed as desulfurized product (see Figure 2).

In the HDS process, the reactions of sulphur compounds involve the removal of sulfur atom as H2S. 
In case of thiols or sulfides, the reaction proceeds through S-C bond breakage, and subsequently by S-H 
and C-H bonds formation. The reactions of thiophenic compounds are somewhat complex for which 
two pathways are proposed, hydrogenolysis and hydrogenation (Babich & Moulijn, 2003). The hydro-
genolysis pathway proceeds via direct removal of S atom from the molecule by simultaneous cleavage 
of C-S bond and formation of S-H bond. The hydrogenation pathway involves successive addition of 
hydrogen to the carbon atoms and subsequently leads to the removal of S from the aromatic ring. In case 
of aromatic sulfur compounds, generally both reaction pathways proceed in parallel, however the nature 
of the catalysts can steer the preference of either pathway. It is commonly known that the NiMo catalyst 
favors the hydrogenolysis pathway, and CoMo catalyst enhances the hydrogenation. In case of DBT, only 
hydrogenolysis reaction occurs, whereas in case of alkyl-DBT both hydrogenolysis and hydrogenation 
reactions proceed (Knudsen et al., 1999; Ma et al., 1994; Vasudevan & Fierro, 1996).

Figure 2. Typical HDS unit
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During the HDS process, the order of reactivity of various oragnosulphur compounds is as:(B. C. 
Gates et al., 1997; Shafi & Hutchings, 2000).

Th > R-Th > BT > R-BT > DBT > R-DBT > 4-R-DBT > 4, 6-R2-DBT 

where, Th = Thiophene, R = Alkyl group
Due to resonance stabilized structure and the alkyl side chains which encounters stearic hindrance, 

the alkyl-BT and alkyl-DBT, particularly 4,6-dialkyl-DBT are highly resistant to HDS under normal op-
erating conditions (Campos-Martin et al., 2010; Javadli & Klerk, 2012). In order to treat these refractory 
sulfur compounds in distillate fractions, HDS operation requires severe conditions, i.e. high hydrogen 
partial pressure, low space velocity and elevated temperature. On the other hand, many side reactions 
occur under these conditions, which include the olefin and aromatics saturation and coke formation. In 
light distillates fractions i.e. FCC naphtha, the saturation of olefins and aromatics leads to substantial 
decrease in the octane number, whereas the enhanced coke formation under high temperature, causes 
catalyst deactivation. Also the application of severe operating conditions is limited by the design of HDS 
reactor (Babich & Moulijn, 2003).

Several efforts have been made on development of active catalyst systems and reactor design to 
enhance the efficiency of the HDS and eliminate the refractory sulfur compounds as well as to avoid 
the problems outlined above. Various new catalysts were developed by considering the choice of active 
species, proper support and exploring best synthetic routes for the catalyst.

Recent research has introduced some new support materials with improved efficiency, including 
MCM-41, Titania (TiO2) and Alumina (Al2O3), HY zeolites, Carbon, etc. (Olguin et al., 1997; Segawa 
et al., 2000; Song et al., 2003). With the interest of finding the active catalysts, Akzo Nobel catalyst 
preparation technology designed a highly active catalyst which is thermally and mechanically stable 
and with a good product quality. This catalyst consists of CoMo & NiMo and was named Super Type 
II Reactive Sites (STARS) catalyst. The catalysts worked well in case of high sulfur containing feeds, 
allowing to reduce the sulfur contents from 1000 ppm to up to 1-2 ppm (Brevoord E et al., 2000; EOR, 
2000; Song & Ma, 2003). Akzo Nobel also developed another catalyst which is referred as NEBULA 
(New bulk activity) with a bear high hydrotreatment activity in the sulfide form (Mayo S et al., 2001). 
The catalyst is very suitable for hydrotreatment process under harsh condition and high hydrogen pres-
sure. Criterion catalyst and technologies, also introduced some new catalysts named Criterion NiMo 
and CoMo CENTINAL catalysts, which are designed for treatment of different feeds under different 
condition (W., 2001). NiMo CENTINAL is the favorite catalyst for HDS of low sulphur content feeds 
under high H2 pressure, whereas CoMo CENTINAL is preferred for high sulphur feeds and under low 
H2 pressure. The addition of various noble metals such as Pd, Ru and Pt has also been reported to en-
hance the activity of active catalytic species. On the other hand, the addition of noble metals increases 
the susceptibility to sulfur poisoning (Song & Ma, 2003) (see Figure 3).

Apart from improving the catalyst activity, developments in the reactor design also boosted the HDS 
efficiency. Generally the conventional HDS processes use fixed bed reactors, where the feed and hydrogen 
are supplied concurrently. In this setup the complete sulfur removal at the outlet is limited due to high 
concentration of H2S and hydrogen. To overcome this problem, ABB Lummus Technology designed a 
new two stage reactor with counter current supply of feed and hydrogen. In this reactor design the H2 
and the feed are supplied from the bottom and top respectively while both stages are packed with catalyst 
beds. In the first reactor stage, the feed and hydrogen current are put into contacted concurrently and 
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Figure 3. HDS reaction of different sulphur compounds
(Babich & Moulijn, 2003).
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the sulphur resistant catalyst is used. In the second stage, the feed is counter currently contacted with 
hydrogen, allowing to obtain efficient removal of H2S while favoring the mixing of olefins and H2S 
(Song & Ma, 2003).

The Institute of Petroleum France (IPF) developed new HDS processes named T-Star process, which 
was designed for treating heavy feed stocks, which are commonly associated with high production of 
coke. In this process, the ebullated bed type reactor was used by fluidizing the catalyst bed by means 
of a fast stream of feed and hydrogen. Because of the intimate contact of the catalyst and the reactants, 
the process efficiency is very high and less coke is produced whereas no overheating of the catalyst or 
bed plugging or channeling is encountered. Furthermore, the activity of the catalyst can be controlled 
by adding or drawing the catalysts particles into or from the reactor (Krishna et al., 2000).

5. ALTERNATIVE DESULFURIZATION METHODS

Although many advancement are brought in the HDS process, the technology is still considered very 
expensive because of using costly hydrogen, specialized reactors and severe conditions of temperature 
and pressure, especially when dealing with a high sulfur feed (Ron et al., 2004). Besides, the process 
efficiency is limited by reduced reactivity of alkylated benzothiophenes as well as by the deactivation 
of catalyst by coke formation and H2S (Babich & Moulijn, 2003). Therefore less expensive and more 
efficient desulphurization techniques must be sought as alternatives to conventional HDS. As a result of 
extensive research in this field, some new desulfurization techniques have been suggested, as detailed in 
the preceding sections (Babich & Moulijn, 2003; Campos-Martin et al., 2010; Javadli & Klerk, 2012) 
(see Figure 4).

5.1 Extractive Desulphurization (EDS)

As a rule like dissolves like or simply polar substance dissolve in polar solvents and vice a versa, hence 
sulfur can be removed from petroleum by extraction using an appropriate solvent. Extractive desul-

Figure 4. Various techniques for desulphurization of petroleum
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phurization (EDS) involves removing sulphur compounds from the petroleum by transferring it into a 
solvent in which their solubility is higher than the petroleum hydrocarbons. Apart from bearing a high 
solubility for sulphur compounds, the solvent should be less expensive, immiscible to petroleum and with 
a different boiling point to that of sulphur compounds. Thus, the removal could be accomplished easily.

The EDS process operates at ambient conditions and is applicable in industry. The solvent and feed-
stock are allowed to mix in the mixing tank, by virtue of their solubility in the solvents, and the sulfur 
compounds are transferred to the solvent. The solvent is then removed from the feedstock in the separa-
tor section before being recycled after removal of the extracted sulfur compounds through distillation.

A number of patents are available on the EDS of petroleum. The commonly used solvents for EDS 
include ethanol, acetone (Izumi Funakoshi et al., 1998), polyethylene glycols (Forte, 1996), various 
amines (Yuji Horii et al., 1996), dimethyl formamide (DMF), misetyl oxide, furfural, dimethyl sulfoxide 
(DMSO) and N-methylpyrolidone (NMP) (H. Rang et al., 2006). Commonly two or more solvents are 
blended together and used for EDS i.e. acetone: ethanol mixture or tetraethyleneglycol: methoxytriglycol 
mixture, in order to enhance the extraction of organosulphur compounds. Early studies showed that the 
EDS of various distillate fractions using polyethylene methylether achieved approximately 30% of sulfur 
removal (Pfüller et al., 2003). However, later researchers reported that using a blend of ̴ 30 wt% aque-
ous acetone, methanol, misetyl oxide and formic acid, up to 86 -96% desulfurization range is attained 
in different distillates fractions (Funakashi et al., 2002).

EDS cannot remove all types of sulfur compounds and therefore in different distillates fractions the 
overall desulfurization efficiency is very low. However, it has been reported that when EDS is employed 
in combination with other processes like hydrotreatment and oxidation, the efficiency of the process can 
be markedly enhanced (H. Rang et al., 2006). For gas oil, the sulphur content can be reduced to up to 
71% by extraction with polyethylene glycol and dimethylether while deep desulfurization of gas oil was 
attained by successive hydrotreatment and extraction (Pfüller & Walstra, 2003). Similarly, in the case 
of kerosene, extraction followed by hydrotreatment achieved 94% of sulfur removal (Forte, 1996). The 
efficiency of the EDS can be further enhanced when the sulfur compounds are previously oxidized and 
extracted with polar solvents. However this process will be discussed in detail in later sections.

The immiscibility of the solvent and the hydrocarbons in the feed is necessary in order to separate 
the sulfur compounds. On the other hand, it reduces the solubility of the sulfur compounds and hence 
the extraction capacity, leading to low desulfurization yields. Furthermore, other compounds apart from 
sulphur species can be extracted during the process and reduce the feed oil recovery. In case of heavy 
oils, when increasing the temperature for reducing the viscosity and easing the mixing, the solvent may 
suffer loss due to evaporation (Javadli & Klerk, 2012).

In the last decade, a new class of liquids termed as ionic liquid (IL) were introduced as potential alter-
natives to organic solvents. IL are thermally and chemically stable and have low vapour pressure, which 
makes them very suitable for extractive desulfurization. Several types of IL based on alkylimidazolium 
cations and CuCl-, Cu2Cl3

-, Cu3Cl4
- anions have been investigated for EDS of model and commercial oil. 

These IL were aimed to remove thiophene by π-complexation, although the complexing agents dissolved 
in gasoline. The IL, [BMIM]Cu2Cl3 is able to extract close to 23% of sulfur from gasoline (Campos-
Martin et al., 2010). Some other IL containing alkylimidazolium cation and various other anions like 
hexa-flourophosphate [BMIM]PF6, tetra-flouroborate [BMIM]BF4 (S. Zhang et al., 2002), ethylsulfate 
[EMIM]EtSO4, octylsulfate [BMIM]OcSO4 (Wasserscheid et al., 2004), dibutylphosphate [BMIM][DBP], 
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bistrifluoro methylsulfonylimide [HMIM[Tf2N] (Planeta et al., 2006), diethylphosphate [EMIM][DEP] 
etc. (Nie et al., 2007) were used for extractive desulfurization of model and commercial oil. The high 
efficiency IL could lower the sulfur in diesel to as low as 10 ppm.

Similarly various pyridinium based ionic liquids containing tetrafluoroborate anion and various 
alkylpyridinum cations like N-hexylpyridinium, N-butylpyridinium, and N-octylpyridinium tetrafluo-
roborate, have also been used for EDS of liquid fuels (H. Gao et al., 2008). Moreover, some of the IL 
can be regenerated and reused. However, their overall desulphurization efficiency is very small, also 
resulting in the extraction of aromatic compounds.

5.2 Adsorptive Desulphurization

Adsorptive desulphurization involves the selective adsorption of the organosulphur compounds in the 
light distillates on a suitable adsorbent. The process may be operated in column mode or batch mode. 
During the process, as the feed contacts the solid adsorbent, the sulphur compounds are adsorbed on 
its surface .The process can be operated in cycles until the sulphur breakthrough is attained. Different 
characteristics of the adsorbent material influence the efficiency of the adsorptive desulfurization; these 
include the capacity of adsorption, stability, selectivity, regeneration ability and durability etc.

Based upon the interaction of the organosulphur compounds with the adsorbent, adsorptive desul-
phurization may follow two different approaches including physical adsorption and reactive or chemical 
adsorption. In physical adsorption, Van der Wall forces are responsible for binding the sulphur compounds 
onto the sorbent surface. During this process, the sulfur compounds are adsorbed on the adsorbent with-
out changing their structure. Since the sulfur compounds are held to adsorbent by physical forces, less 
energy is required for regenerating the adsorbent.

In case of reactive adsorption, the sulfur compounds are fixed to the adsorbent via chemical bonding 
and therefore the nature of the sulfur compounds may be altered. The sulphur compounds are commonly 
attached to the adsorbent mostly as sulphides, and thereby removed from the feed stock. In some cases 
the chemosorbed sulfur compounds are further altered by treatments like hydrogenation etc. to set free 
the sulfur atom from the parent hydrocarbon molecule.

The regeneration of the adsorbent may be performed by strong heating in air or solvent washing, and 
the sulfur removal as hydrogen sulfide or sulfur oxides, depends on the nature of the adsorbent and the 
sulphur compounds as well as on the and regeneration process employed (Babich & Moulijn, 2003). 
It has been found that the regeneration is easy but selectivity is limited in case of physisorption based 
adsorptive desulphurization, whereas reactive adsorption is highly selective however regeneration is 
quite difficult and complex (Hernández-Maldonado et al., 2004a, 2004b).

In the literature, several different types of materials have been used as adsorbents for adsorptive 
desulfurization of various distillate fractions like model oil and gasoline, naphtha, diesel and jet fuel 
oil. The most common are activated carbon, zeolites 5A and 13X (Mikhail et al., 2002; Salem, 1994; 
Salem et al., 1997), Si2O3 & Al2O3, MOF (metal organic framework) (Brieva GB et al., 2010; Irvine R 
L et al., 1999), modified composite oxides (Zhou et al., 2006), SBA-15 (McKinley et al., 2003), ZSM-5, 
MCM-41, Faujasite (Hernández-Maldonado et al., 2002; Velu et al., 2003), etc. Activated carbon is a 
very efficient adsorbent for high sulphur feed but generally attains low level of total desulfurization; in 
contrast, zeolite 13X is efficient in attaining deep desulphurization of low sulphur feeds. The applica-
tion of these two adsorbents in a two stage reactor constitutes an industrially viable process, where the 
first stage consists of a bed of activated carbon which merely lowers the sulfur contents of the feed and 
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the second stage comprises of a bed of 13 X zeolite which further attain deep desulfurization. Activated 
carbon, silica and zeolites are very efficient in removal of alkylated DBTs from the high sulfur feed i.e. 
containing around 1200 ppm total sulphur.

Another approach exploited by reactive adsorptive desulphurization involves the π-complexation 
between a metal on the adsorbent surface and organosulphur compounds. As the π bond is relatively 
stronger than Van der Wall’s attractions of physical adsorption, the sulphur compounds are more effi-
ciently removed from the feed. Various transition metals like Ag, Cu, Co, Zn, Ni, Ce, etc. over various 
supports e.g. zeolite Y, MCM-41 and silica gel, are being used for this purpose (Hernández-Maldonado 
et al., 2005; Hernández-Maldonado & Yang, 2002; Ma et al., 2005; McKinley & Angelici, 2003; Tian 
et al., 2005; Velu et al., 2003). Clay adsorbents like bentonite clay loaded with π-complex forming spe-
cies such as Fe+3, Cu+1,Cu+2 or modified with KMnO4 etc. have also being applied for model gasoline 
(Tang et al., 2011).

The IRVAD process is a commercial adsorptive desulphurization process for gasoline that was devel-
oped by Black and Veatch Pritchard engineering company, employing selective adsorbents containing 
alumina (Babich & Moulijn, 2003; Song & Ma, 2003; R. T. Yang et al., 2003). The process involves the 
counter current contact of feed and adsorbent in a multistage reactor with a feed to adsorbent ratio of 
4:1 under atmospheric pressure and temperature of 240 oC. The process showed 90% of desulfurization 
efficiency in pilot plant experiments for coker naphtha and FCC gasoline (Babich & Moulijn, 2003).

Another commercial desulfurization process called S-Zorb process was introduced by Phillips Pe-
troleum Co. (USA), based on simultaneous hydrotreatment and adsorption (Song & Ma, 2003). In this 
process the feed, usually gasoline or diesel is combined along the adsorbent and gaseous hydrogen in a 
fluidized bed hydrotreatment reactor under 2 to 20 bars pressure, at a temperature between 340 to 410 
oC. During the process, sulphur is bounded to the adsorbent material, consisting of a metal oxide like Zn 
and Ni supported on alumina and silica (Gyanesh P. Khare et al., 2000). The efficiency of the process 
is close to 98%, using a 1100 ppm sulfur gasoline and allowing to reduce the sulfur content to up to 25 
ppm while slightly reducing olefins content to about 3%. This process commercially started for operation 
in 2001, in Phillips Petroleum Co. refinery, at Texas Philips.

5.3 Precipitative Desulphurization

The conversion of organosulphur compounds into insoluble precipitates by means of different precipi-
tating agents constitutes the basis of precipitative desulphurization. The sulfur compounds precipitate 
into a insoluble form that can be easily removed from the feed stock through filtration or gravity set-
tling. Different precipitating agents follow different reaction chemistry to accomplish the conversion of 
soluble sulfur compounds into insoluble precipitates in the liquid hydrocarbon fuels e.g. formation of 
metal thiolates, S-alkyl sulfonium salts and charge transfer complex.

Thiols (mercaptans) in light distillate fractions or crude petroleum can be converted into metal 
thiolates by reacting with metal oxides or hydroxides, the metal thiolates formed are solid that can be 
easily recovered from the feed (Reid, 1966; Tiers et al., 2000). In this process, the hydrocarbon feed is 
contacted with various active metal oxide or hydroxide; thiols are changed into metals thiolates through 
a hetrogeneous phase reaction and can be separated from the feed through a filtration process. The met-
als thiolates can be treated with dilute acid to recover the original thiole and the respective metal salts; 
the choice of acid depends upon the metal salt desired. The process occurs under ambient condition and 
therefore no specialized reactor is required.



18

Sulfur in Petroleum
 

MO + 2R-SH →M(SR)2 + H2O  (3)

M(SR)2 + 2HNO3→  M(NO3)2 + 2R-SH  (4)

Precipitative desulfurization has been investigated with a number of metal oxides and hydroxides 
using model or real oils as feed. PbO and Hg(OH)2 has shown to be highly active in precipitating various 
types of thiols under ambient conditions at 1 h reaction time. (Nehlsen et al., 2003, 2004). In addition, 
MnO2 is also found to be efficient in removing thiols from crude oil as well as distillate fraction, however 
its reaction is completed after almost 3 h (M. Shakirullah et al., 2009).

Other approach of precipitative desulphurization is based on conversion of heterocyclic sulfur com-
pounds i.e. thiophenes into solid precipitates of S-alkylsulfonium salts using suitable alkylating agents. 
Shirashi, et al.,(Shiraishi, Tachibana, et al., 2001; Shiraishi, Taki, et al., 2001) showed that thiophenes 
in the model and real oil react with alkyl halides such as CH3I in the presence of AgBF4 as a catalyst, 
forming solid participates of S-alkylsulfonium salts, which can be separated from the hydrocarbon feed. 
The process was investigated for desulfurization in catalytically cracked gasoline containing 100 ppm 
sulfur, which showed that the sulphur content of the feed was decreased to up to 30 ppm. In this process 
the only problem encountered was the competitive alkylation of the aromatics and the olefins along with 
the alkylation of sulfur compounds, limiting its efficiency. On the other hand, during this process the 
olefinic content is decreased significantly, still the octane number of the treated CCG was higher than 
the CCG (See Figure 5).

Another technique of precipitative desulfurization utilizes the idea of precipitating the aromatic sulphur 
compounds in the hydrocarbon stream as a charge transfer complex (Meille et al., 1998; Milenkovic et 
al., 1999). In this process the thiophenic compounds are converted into a charge transfer complex by π 
complexation with an efficient π–acceptor compound. Model experiments on 4,6-DMDBT dissolved in 
a solvent was carried out with a π –acceptor (tetranitro-9-fluorene), in which the suspended precipitate 
was formed, the precipitated complex could be removed by filtration. However, like in alkylation based 
process, the competitive reactions of the non sulphur aromatics limits the efficiency of this process as well.

5.4 Biodesulphurization (BDS)

The biodesulphurization process relies on the chemosynthetic bacterial strains for reducing the sulfur 
content of petroleum, by metabolizing sulphur compounds in the hydrocarbon stream. In comparison to 
HDS, biodesulphurization is an economic process since it operates under mild conditions of temperature 
and pressures i.e. below 50 oC and atmospheric pressure (Kaufman et al., 1998; Linguist LK et al., 1999; 

Figure 5. Formation of S-alkyl sulfonium salts
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Pacheco MA et al., 1999). Depending on the type of the bacterial strains used, BDS involve different 
mechanistic approaches in which sulfur is eliminated from the feedstock, however two major pathways 
namely ring destructive and sulphur specific oxidation pathway are worth mention (Campos-Martin et 
al., 2010).

In case of ring destructive pathway, the cleavage of thiophenic ring results from the oxidation of 
sulfur or carbon atoms of the ring, termed as Kodama pathway. The oxidation products are immiscible 
to the hydrocarbon phase because of their polar nature and therefore they can be separated from the 
feed through extraction with polar solvents. The Kodama pathway was investigated by Denome et al. 
(1993), who showed that enzymes produced by Pseudomonas strain 18, carry out the di-oxygenation 
of the peripheral aromatic ring of the DBT that results in the ring cleavage. The final oxidation product 
formed is 3-hydroxy-2-formylbenzothiophene, which is water soluble and transfers to aqueous phase.

Another approach for ring destructive pathway was proposed by Afferden (M. v. Afferden et al., 1993), 
in which Brevibacterium sp. triggers the oxidation of sulphur atom in the DBT ring, ultimately result-
ing in the release of a sulphur atom in the form of sulfites or sulfates. As the ring destructive pathway 
involves the loss of carbon atoms from the aromatic skeleton, the calorific value of fuel is decreased 
and hence the process is considered to be not favorable for the Industry hence (Campos-Martin et al., 
2010) (see Figure 6).

Figure 6. DBT metabolism via Kodama pathway
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Sulphur specific oxidation pathway, also termed as 4-S pathway, was proposed by Kilbane (Kilbane, 
1989) and it involves the successive and selective oxidation of sulfur atoms in the thiophenes ring (Fig-
ure 7). In the case of DBT, this leads to the formation of DBT sulfoxides, followed by DBT sulfone, 
hydroxybiphenylsulfinate (HBPS) and hydroxybiphenyl (HBP), whereas sulfur is ultimately eliminated 
as SO3

-2 or SO4
-2. Van Afferden et al. investigated the 4-S pathway with a specie termed as Brevibacte-

rium Sp for oxidizingd DBT to DBTO and further to DBTO2, releasing free sulfur as SO3
-2 or SO4

-2 from 
DBTO2 (M. Afferden et al., 1990) (see Figure 7).

Various aerobic strains such as Rhodococcus erythropolis can selectively remove the sulphur atom 
from the thiophenic ring without losing the total carbon atoms of the molecule (Kirimura et al., 2002). 
Other species include the Gordona, Nocardia, Mycobacterium, Agrobacterium, Klebsiella, Xanthomonas, 
thermophile Paenibacillus species etc. (Javadli & Klerk, 2012). Rhodococcus species encode a set of of 
genes, named as Dsz. These genes produce four types of enzymes, DszA, DszB DszC and dszD. These 
enzymes consecutively oxidize DBT to DBTO, DBTO2, 2-(2-hydroxybiphenyl)-benzenesulfinate (HPBS), 
and 2-hydroxybiphenyl, respectively and finally inorganic sulphur is released. The DszC and DszA are 
monoxygenase enzymes. The DszC enzymes oxidizes DBT to DBTO and DBTO2, and it require oxygen 
and FMNH2. The DszA also require oxygen and NADH, and it convert sulfones into sulfinate i.e. HBPS. 
The DszB is a sulfinse enzyme, which catalyze the conversion of HBPS to HBP. Similarly the DszD is 
an oxidoreductase enzyme which oxidizes NADH and reduces FMNH2. The oxidation pathway involves 
these enzymes to remove the sulfur compounds(Denome et al., 1994; M. Z. Li et al., 1996; Mohebali 
et al., 2008; Oldfield C Fau - Pogrebinsky et al., 1997; Piddington et al., 1995). The overall oxidation 
process is given as following.

Figure 7. Sulphur specific oxidation or 4S pathway for DBT degradation
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DBT + 3O2 + 4 NADH + 2 H+→  2HBP + SO3
-2+ 3H2O + 4NAD+ (6)

As HBP is left behind in the hydrocarbon stream i.e. feed hence no loss to the fuel value of the feed 
occurs in the selective oxidation pathway. BDS of light crude and heavy crude oil (with S content 0.4 
and 1.9%) was investigated using Pantoea agglomerans D23W3, the sulfur removal efficiency in both 
fractions was found to be 61% and 63%, respectively (Javadli & Klerk, 2012).

Aerobic BDS is associated with risks of explosions or fire hazards and the production of byproducts. 
These reasons led to consider the cloning of desulphurization genes into anaerobic hosts. The anaerobic 
BDS offers the advantage over aerobic BDS, since it does not involve the formation of undesired oxidation 
byproducts such as coloring and gummy products which is common in aerobic BDS (McFarland, 1999).

The use of a sulfate-reducing bacterium, Desulfovibrio desulphuricans M6, allows extending desul-
furization of heavier crudes (Kim et al., 1990; B. H. Kim et al., 1995; Lizama et al., 1995). Further inves-
tigations indicated that, aromatic sulphur compounds are more susceptible to the reductive degradation 
of the bacteria than the aliphatic sulphur compounds. BDS of different thiophenic sulphur compounds 
was also examined using Desulfovibrio desulphuricans M6, which shown that the conversion of benzo-
thiophenes was 96% and that of DBT was 42% (Kim et al., 1990).

To improve the efficiency of the BDS process, several critical aspects such as reactor design, oil-
water separation and recovery of the products or by-products are required to be developed. Recent 
research on the reactor design suggests that the use of multistage air lift reactors offers low costs for 
mixing the feed, enhanced reaction kinetics during the process and a continuous growth or regeneration 
of the microbes within the reactor. The breaking of the stable emulsions formed by the mixture of feed 
oil, water and microbes could be circumvented with the application of hydrocyclones for attaining an 
efficient separation of clean oil and water. Instead of using single phase aqueous system for removal of 
sulphur in BDS, application of two phase system comprising of aqueous and alkane solvents give a high 
efficiency. Using refined products, such as diesel or gasoline instead of viscous crude petroleum as a 
feed in the BDS process can solve the problems of creating two phase oil-water systems with retarded 
efficiency (Ahmad, 2013).

In the last few decades, researches brought tremendous advancements to BDS, however there are 
still several shortcomings in the process, including the storage, shipment and use of microbes within 
the industrial environment and logistics of sanitary handling, which makes the BDS a commercially 
unviable process (Javadli & Klerk, 2012).

5.5 Desulfurization by Polymer Membranes (PV Process)

Polymer membranes are used to remove sulfur compounds from light distillate fractions by the pervapo-
ration (PV) technique, in which the sulfur compounds are selectively permeated from the feed through 
reduced pressure across the membrane (Lin et al., 2009). The polymer membrane is fixed in a cell, and 
preheated feed is introduced and pumped downstream of the membrane by a vacuum pump. A condenser 
or cold trap is also provided between the cell and the vacuum pump. Under reduced pressure the sulfur 
compounds from the feed diffuses into the polymer membrane along with some hydrocarbons, permeat-
ing through the membrane as vapor and collected in the condenser as liquid permeate. The sulfur free 
feed is removed and sent to storage and sulfur rich permeate can be hydrotreated to remove sulfur. For 
a continuous operation the feed is allowed to contact the membrane on its one side, and the vacuum is 
applied on the other side to build a continuous pressure gradient. The semipermeable membrane works as 
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a separation media in the process, the sulfur compounds are removed from the feed on the basis of their 
affinity or relative diffusivity to the polymer membrane. The amount of feed components permeating 
through the unit area of the membrane in unit time is referred as flux, whereas the ratio of the amount 
of sulfur in feed to that in permeate is characterized as sulfur enrichment factor. These two parameters 
are of main concern in the operation of pervaporation process. A general sketch of the process is shown 
in Figure 8.

A variety of polymer membranes has been used for desulfurization of light distillates, such as polethy-
eneglycol (PEG) (Lin et al., 2006), polydimethylsiloxane (PDMS), polyimide (PI) (Qi, Wang, et al., 2006; 
Qi, Zhao, et al., 2006; L. Wang et al., 2006), Nafion (Saxton et al., 2002), polysulfone (PS) (Plummer M 
A et al., 2002) etc. Grace Davison Company patented a number of polymer membranes for desulfuriza-
tion of gasoline, including PUU, PERVAP 1060 and PI (White LS et al., 2004), they reported that PUU 
exhibit high sulfur enrichment however the flux for PUU was very small i.e. 0.1 kg/m2h. ExxonMobil 
Research and Engineering Company invented a process based on non-ionic and ionic membranes, the 
non-ionic membranes used included PVP and CTA whereas the ionic membrane included Nafion RTM 
(Minhas et al., 2004; Minhas et al., 2002; Saxton & Minhas, 2002). In the case of catalytically cracked 
naphtha containing 1990 ppm sulfur, the PVP membrane was found to produce retenate with 120 ppm 
sulfur, whereas the CTA membrane gave the permeate containing 5000 ppm sulfur from catalytically 
cracked naphtha having 1880 ppm sulfur. Marathon Oil Company also investigated a process for removal 
of sulfur from naphtha by using a number of membranes including Nanofiltration SR-90, Ultrafiltration 
G-10 and polysulfone SEP-0013, out of which polysulfone gave the maximum sulfur enrichment.

In order to enhance the desulfurization efficiency, the performance of the polymer membrane can be 
improved by various modifications like crosslinking, grafting, filling, blending and copolymerization 
etc. For example the crosslinking of PEG, not only make it insoluble in gasoline but also decrease its 
swelling due to which it retains good selectivity (Lin et al., 2006). Besides the crosslinking of PEG, the 
sulfur enrichment factor for model gasoline increased from 3.31 to 7.31and for FCC gasoline increased 
from 1 to 3.05. However it was found that with increasing crosslinking in PEG, total permeation flux 
was reduced. Qi et al. investigated desulfurization of model gasoline by using polymer composite of 

Figure 8. Scheme of the polymer membrane based desulfurization process
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PDMS and AgY zeolite, with which increase in total flux was attained (Qi et al., 2007b). these authors 
also studied the separation of model sulfur compounds by mixed matrix membrane of PDMS and AgO2 
as filler, and found that selectivity and permeability was an issue for the modified and unmodified mem-
branes (Qi et al., 2007a). Lin et al. reported that in desulfurization of gasoline with PEG and PU blended 
membranes, high permeation flux and sulfur enrichment factor was achieved (Lin et al., 2008). Li et al. 
studied the desulfurization of model gasoline with hybrid membranes of PDMS and Ni+2Y zeolite, results 
shown that with increasing amount of Ni+2Y in the membrane, the permeation flux increased however 
the sulfur enrichment factor first increased and then decreased which was attributed to the presence of 
defective voids in the membrane (B. Li et al., 2008). Similarly Kong et al. synthesized PEG and PES 
composite membranes which exhibited high flux and sulfur enrichment factor (3.37 kg/m2h and 3.63, 
respectively) in case of FCC gasoline. The key operating parameters which influence the efficiency of 
the desulfurization by polymer membrane include the feed temperature, permeate pressure and sulfur 
contents of the feed and the feed flow rate.

The Grace Daviso Company was the first to introduce a high efficiency commercial membrane de-
sulfurization process for gasoline in the name of S-Brane technology. The pilot plant was operated in 
October 2001 and it can reduce the sulfur content in gasoline to up to 30 ppm with the capacity of one 
barrel per day (Lin et al., 2009). A demonstration plant of S-Brane technology for desulfurization of 
naphtha with capacity of 300 bpd was installed in Conco Philips, Bayway Refinery in 2003. The plant 
operated continuously for 6 months, indicating the industrial viability of the process (Zhao X et al., 
2004). Trans Ionic Corporation has also developed a commercial process for desulfurization gasoline 
range products, which is called TranSep process. The unique feature of the process is the use of venture 
nozzle and a fluid for recovery of permeate under atmospheric pressure, hence eliminating the expensive 
refrigeration process for condensation of the permeate (Robert C S). In spite of extensive technological 
advancement, there are several problems in the membrane based desulfurization process which needs 
attention of the researchers such as high energy requirements, loss in octane number, economic assess-
ments and coupling optimizations.

5.6 Oxidative Desulphurization (ODS)

Oxidative desulphurization (ODS) was early introduced in 1970s, but recently the process has gained 
popularity as HDS alternative techniques for achieving deep desulfurization in petroleum. The ODS is 
based on selective oxidation of sulfur compounds in hydrocarbon fuel, followed by removal of the oxi-
dized compounds from the feed through extraction or adsorption (Campos-Martin et al., 2010; Javadli 
& Klerk, 2012). In this process the nature of the organosulphur compounds is altered by oxidation with 
a suitable oxidizing agent, followed by separation. Hence the overall ODS process basically consists 
of two processes, namely the oxidation and extraction or adsorption. An appropriate oxidant is used to 
selectively oxidize the sulfur compounds in hydrocarbon stream into respective sulfoxides and then to 
sulfones, which possess relatively higher polarity than the parent sulfur compound. Because of their high 
polarity the oxidized sulfur compounds can be removed from feed through liquid-liquid extraction or 
adsorption process. The attraction of the ODS process is that it operates under mild conditions, mostly 
atmospheric pressure, mild temperature (below 100 oC) and reaction time ranging between 30 to 100 
min. The sulfur compounds in the feed are oxidized by reacting with an oxidant in a vessel under normal 
conditions. The oxidants include organic peracids, molecular oxygen, ozone and hydroperoxides, etc. 
and a suitable oxidation catalyst is also added to enhance the oxidation efficiency. After the oxidation is 
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completed, the treated feed is transferred to a extraction vessel where the oxidized sulphur compounds 
are removed by extraction with a polar solvent system. In the case that the oxidized sulfur compounds 
are removed by adsorption on a solid adsorbent, column adsorption or batch adsorption may be used 
(see Figure 9).

The order of reactivity of different sulfur compounds in the ODS has been found to be as (Otsuki et 
al., 2000);

4,6-DMDBT > 4-MDBT >DBT > BT > Th 

The reactivity of the sulfur compounds increases due to the electron donating effects of alkyl side 
chains as the electron density on the sulfur atom increases for the electrophilic attack on the oxygen. 
This reactivity order is the opposite for the HDS reactivities, since the most resistant compounds to be 
treated by HDS are the most reactive in ODS.

During the extraction process, when the oil treated by selective oxidation is mixed with an immiscible 
polar solvent, phase separation occurs and the oxidized products migrate to the polar solvent phase. The 
aqueous or polar solvent phase rich in oxidized sulfur compounds is then conveniently separated from 
the feed oil by decantation or gravity separation. The extraction solvents should be polar in nature and 
should have a boiling point higher or lower than the oxidized sulphur compounds so the sulfur com-
pounds could be removed from the solvent by distillation. For the selection of the extraction solvent 
other properties of the solvent may also be taken into account such as freezing point, surface tension, 
viscosity, and density, etc. Several type of solvents have been used for extraction purpose in the ODS 
process, which includes dimethyl sulfoxide, N-methylpyrollidone, acetonitrile, furfural, methanol, and 
dimethylformamide, etc. (Sobati et al., 2010; Zannikos et al., 1995). According to different researchers 
the sulfur extractability of all the solvents is not same, some solvents are highly efficient in extracting 
oxidized sulfur compounds although may also lead to extraction of the aromatic components of the feed 
(Campos-Martin et al., 2010). In order to enhance the sulfur extraction efficiency and to avoid the ex-
traction of non-sulfur aromatics, usually azeotropic mixture of various solvents with water is employed 
for extraction (Ali et al., 2006). After oxidation, the oxidized sulphur compounds may also be removed 
from the feed through adsorption process using adsorbents such as silica, alumina and activated carbon 
etc. (Javadli & Klerk, 2012; Ma et al., 2007).

Figure 9. Oxidation of sulfur compounds
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Among all the non HDS techniques, only the ODS process seems to be the promising alternative to 
HDS, because it offers several advantages over the rest of desulfurization methods.

1.  The ODS process do not require costly hydrogen and a specialized high temperature and high pres-
sure reactor.

2.  The process operates under mild conditions of pressure and temperature, which makes it an eco-
nomic process.

3.  The solvent and the extracted oxidized sulfur compounds can be recycled.
4.  The refractory sulfur compounds (alkyl-substituted dibenzothiophenes) can be efficiently removed 

by ODS, which are difficult to be treated by HDS under its normal operating conditions, hence the 
ODS can attain deep desulfurization.

Maintaining selectivity and efficiency in oxidation of sulphur compounds among the olefins, aromat-
ics and cycloalkanes in non-polar medium and selection of the most appropriate oxidant is a challenging 
task in the ODS process. Extensive research in this field suggests the application of some novel oxidants, 
catalysts and use of different techniques in oxidation process.

Many types of oxidation systems are utilized for efficient conversion of sulfur compounds. Some 
reported the use of several of inorganic oxidants in the ODS process, which included nitric acid (Tam 
et al., 1990a), nitric oxide (Tam et al., 1990b), KMnO4, sodium perchlorate (Shakirullah et al., 2010) 
and ozone etc. (Paybarah et al., 1982). However in most cases the inorganic oxidants requires a polar 
solvent or aqueous medium for enhanced efficiency, on the other limits the interaction of the oxidant 
and the sulphur compounds in the petroleum due to immiscibility. Many other oxidation systems used 
in the ODS process are mentioned below.

5.6.1 ODS with Organic Peracids

Organic peracids are extensively used as selective oxidants for oxidation of aliphatic and aromatics sul-
phur compounds. However because of the explosive nature of organic peracids and due to their storage 
and handling problems, they are produced in-situ during the ODS processes by reacting organic acids 
and H2O2 (Campos-Martin et al., 2010). For this purpose, formic acid and acetic acid are the best choices 
among various organic acids, and are most widely used in the presence of H2O2 as efficient oxidants 
for ODS processes (Gaofei Zhang et al., 2009). The oxidation of sulfur compounds with organic acids 
in combination with H2O2 involves the generation of peroxy radical from the resultant peracid, which 
selectively oxidizes the sulphur compounds (see Figure 10).

Desulfurization of gas oil was investigated with H2O2 and CH3COOH oxidation system followed 
by solvent extraction and close to 90% of the sulfur content was decreased at 90 oC and after 30 min 
reaction time (Zannikos et al., 1995). Using the same oxidants and a mixture of acetonitrile and water 
for extraction, Shirashi, et al. carried out ODS of light oil, which resulted in depletion of the sulphur 
level to less than 50 ppm (Shiraishi et al., 2002). Formic acid in combination with H2O2 also constitutes 
an efficient oxidation system for selective oxidation of aromatic sulphur compounds, which has been 
extensively utilized for ODS model oil and real oil samples (De Filippis et al., 2010; Dehkordi et al., 
2009; Otsuki et al., 2000).

Although the use of organic peracids produced in-situ provides a highly efficient route for the selective 
oxidation of organosulphur compounds in petroleum, large amounts of H2O2 and other organic acid are 
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consumed, leading to increased operating costs. The efficiency of ODS could be enhanced with a lower 
consumption of H2O2 and organic acid using a heterogeneous catalyst. In peracids oxidation system, the 
catalyst enhances the production of peroxy species, which are responsible for oxidizing of the organo-
sulphur compounds during the ODS process. Desulfurization of fuel oil by H2O2/HCOOH oxidation 
system showed a 60% sulfur removal, however using activated carbon as catalyst in the system yielded 
a maximum 95% desulfurization (Yu et al., 2005). Several types of catalysts are being used to enhance 
the efficiency of ODS with peracids, these includes EDTA, activated carbon, Na and Mg-silicates (Hao 
et al., 2005), silica gel (CHEN et al., 2006), molecular sieves loaded with various metal oxides(CHEN 
Lanju, 2007), transition metal salts (de Souza et al., 2009), and sodium bicarbonate (Deshpande et al., 
2004). These heterogeneous catalysts promote the generation of peracid radicals, which further accelerate 
the oxidation of sulphur compounds, and in turn leads to enhanced desulphurization yields. However, the 
maximum efficiency of the oxidant cannot be utilized because of the phase transfer limitations between 
polar oxidants and non-polar oil phases. The immiscibility of the phases delays the interaction between 
oxidant and sulfur compounds and hinders the activity of the oxidants and hence the desulfurization 
efficiency. But if a surface active agent is introduced, the phase transfer limitations could be minimized. 
The application of various surfactants as phase transferring agents has been practiced in advanced ODS 
processes as discussed in detail in the later sections.

5.6.2 ODS with Air or Molecular Oxygen

Air or molecular oxygen cannot directly oxidize the sulfur compounds but only in the presence of a hydro 
peroxide source generally alkyl aromatics, at elevated temperature i.e. 100 to 200 oC and near atmospheric 
pressure. The application of auto-oxidation for the ODS of the heavy oil and distillates fraction has been 
studied extensively (Javadli & Klerk, 2012). Air or molecular oxygen can also oxidize sulfur compounds 
at lower temperature, but the reaction requires an initiator (oxygen carrier) or a catalyst.

Figure 10. Oxidation of dibenzothiophene by peracids



27

Sulfur in Petroleum
 

Generally the high temperature auto-oxidation process involves the formation of a hydroperoxide 
intermediate by the attack of molecular oxygen on alkyl aromatics, which selectively oxidizes the or-
ganosulphur compounds. The production of hydroperoxide follows a free radical mechanism. The alkyl 
aromatics present in the heavy distillates fraction serves to form hydroperoxide during oxidation with 
air or molecular oxygen. In heavy oil, the oxidation by molecular oxygen leads to the removal of sulphur 
in the form of SO2, whereas in light distillates fractions sulfur is separated as sulfoxide and sulfone, 
mostly by extraction or adsorption process. Such type ODS has been widely studied in case of various 
oil fractions, where the hydroperoxide is produced in situ by molecular oxygen using different types of 
catalysts. The organosulphur compounds that are present in jet and diesel oil have shown to be efficiently 
oxidized at 120 oC by O2 and using CuO as catalyst, due to the in-situ generation of hydroperoxides 
(Sundararaman et al., 2010). The production of hydroperoxide is found to be dependent on the amount of 
the alkyl aromatics available. Under a high concentration of alkyl aromatics in the feed, the production 
of hydroperoxides is higher, leading to an increase in the rate of sulfur oxidation. As the alkyl aromatics 
are more abundant in diesel oil than jet oil, the desulphurization attained in diesel oil was higher. The 
desulphurization yield in the absence of the catalyst has shown to be very low, which reveals that the 
catalyst promotes the formation of hydroperoxides (see Figure 11).

With the use of different types of catalysts the efficiency of ODS by air or molecular oxygen is mark-
edly enhanced. Sampanther, et al., (Sampanthar et al., 2006) employed MnO2 & Co2O3 supported on 
Al2O3 as catalyst for the ODS of diesel oil by air oxidation (under pressure of 0.1 MPa and temperature 

Figure 11. Oxidation of thiophene by my molecular oxygen
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range of 230 to 300 oC), and using NMP as extractant, the sulfur concentration of the feed was reduced 
to 60 ppm from the initial of 400 ppm. This study also revealed that the ODS process was associated 
with decrease in the aromatic contents of the feed (from 46.4 to 12.5%), and an increase in the olefin 
contents (from 2.4 to 3.6%), which was resulted by the free radical mechanism involved. The study also 
indicated that the sulphur atom from the organosulfur compounds was removed in the form of SO2. 
Similarly the ODS of different model sulfur compounds by air (0.1 MPa and 400 oC) in the presence 
of various catalysts including CuO and ZnO supported on Al2O3, and Cu & Pt supported on CeO2 also 
indicated that during the process sulfur is removed as SO2 (Y. Lu et al., 2008). Song, et al. studied the 
ODS of Jet oil by air oxidation (0.1 MPa) at lower temperature (50 oC) using nitrates and bromides of 
Fe(III) loaded on activated carbon (Ma et al., 2007), and reported that the efficiency of the catalyst 
increases as the Fe loading increases.

Oxidation of sulfur compounds by molecular oxygen under mild conditions i.e. low temperature and 
atmospheric pressure occur only in the presence of an initiator usually an aldehyde, such process is of 
great importance for ODS application. Several types of aldehydes have been used with molecular oxy-
gen for ODS of various distillate fractions (Venkateshwar Rao et al., 2007). The notable aldehydes used 
include isobutyraldehyde, benzaldehyde, n-octanal and hexanal etc. It has been shown that during this 
process, the interaction of molecular oxygen and aldehydes first leads to the formation of acyl radical, 
then to peroxy-acyl radical and ultimately to a per-acid. It is actually the per-acid produced that oxidizes 
the sulphur compound through transfer of oxygen.

The ODS of diesel oil containing 447 ppm sulfur was studied using O2 and iso-butyraldehyde oxidation 
system, when the oil was extracted with acetonitrile the sulphur contents were reduced to about 77 ppm 
and when further subjected to column adsorption on silica gel the sulfur level was decreased to 31ppm 
(Venkateshwar Rao et al., 2007). In similar type low temperature ODS based on O2/aldehyde oxidation 
system, catalyst like cobalt salts and iron pthalocyanin complexes have also been used to enhance the 
desulfurization efficiency (Murata et al., 2003; Zhou, Li, et al., 2009). Application of tert-butyl hydro-
peroxide as initiator was shown to readily increase the conversion of DBT from 85 to 96% conversion 
in ODS using air and isobutyl aldehyde (Guo et al., 2011).

Studies indicated that ODS based of molecular oxygen not only suffers from oxidation of non-sulfur 
moieties, but also involve the formation of undesirable oxidation products like sediments and gums 
mostly in case of heavy oils (Javadli & Klerk, 2012).

5.5.3 ODS with Organic Hydroperoxides

The selective oxidation of sulfur compounds can also be effectuated with organic hydroperoxides, which 
are extensively used for ODS applications. Various hydroperoxides employed in the ODS processes in-
clude tertiary-butylhydroperoxide (TBPH) (Chica, Gatti, et al., 2006), cumenehydroperoxide (Chang et 
al., 2010), cyclohexanoneperoxide (X. Zhou et al., 2006) and tert-amylhydroperoxide (Zhou, Gai, et al., 
2009) etc. Among these, TBHP is highly efficient, and hence is widely used in ODS studies. EniChem/
UOP and Lyondell Chemicals have patented several ODS processes which involve TBHP as oxidant 
(Karas LJ et al., 2004; G. R. a. L. M. Karas LJ, 2008; Kocal JA, 2001; Kocal JA and Branvold TA, 2002; 
Z et al., 2005). The Lyondell chemical process involves the separation of oxidized sulfur compounds by 
extraction, whereas the ODS processes by EniChem/UOP employs adsorption for removal of oxidized 
products. However, TBPH is very costly and as it contains very low free available oxygen(17-10%) there-
fore its consumption during oxidation process is very high, which limits the efficiency of these processes.
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Generally, a catalyst is required for the efficient oxidation of sulphur compounds by hydroperoxides. 
Several types of heterogeneous catalysts have given promising results, mostly containing transition 
metals like Ti, W, V and Mo, loaded on different supports such as alumina, silica, titania, mesoporous 
MCM-41 etc., (Campos-Martin et al., 2010).

A number of researchers have investigated that Mo supported on different supports, when used with 
hydroperoxides for ODS, show high desulfurization activity (Chica, Gatti, et al., 2006; Ishihara et al., 
2005; Venkateshwar Rao et al., 2007; D. Wang et al., 2003). However, in addition to the high efficiency, 
most of these catalysts suffer from leaching of Mo to the medium, due to which the catalyst loses its 
activity (Sharipov et al., 2005). Therefore new catalytic materials were sought. Chica, et al., conducted 
a study on comparative efficiency of Ti/MCM-41 and MoO3/Al2O3 catalyst using TBPH for ODS of 
DBT in a fixed reactor (Chica, Corma, et al., 2006). The authors shown that Ti/MCM-41 exhibited 
high desulfurization activity than MoO3/Al2O3 catalyst, as well as no leaching of Ti to the medium was 
observed. A patent on ODS of distillate fuels using Ti/SiO2 catalyst in the presence of hydroperoxide 
oxidation system showed that the catalyst bear high desulfurization efficiency along with high stability 
in the medium (G. R. a. L. M. Karas LJ, 2008). Similarly, Mo containing kegging type heteropolyacids 
immobilized on alumina were found to show high efficiency in ODS of hydrotreated diesel in the pres-
ence of TBHP with minimal oxidant consumption (Alberto de Angelis et al., 2007).

5.5.4 ODS with H2O2- Polyoxometalates (POM)

The cluster of anionic metal oxides containing Mo, W, V, Ge etc. (group VI and V metals) associated 
with some cation in the form of a salt is termed as Polyoxometalates (POM). In the case that some 
heteroanions, such as SO4

-2 or PO4
-2, are also associated, the POM are called heteropolyoxometalates. 

Because of their giant molecular structure and large versatile characteristics such as high redox potential, 
thermal stability, proton acidity and high reactivity of lattice oxygen, POM finds a number of applica-
tions ranging from the fields of medicine to catalysis, materials and electronics (Long et al., 2007). As 
an oxidation catalyst, POM show excellent activity in selective oxidation of sulfur compounds, and are 
therefore also used in ODS reaction. In ODS processes, these are mostly employed in supported and 
unsupported forms in the presence of H2O2 as oxidant (Gaofei Zhang et al., 2009). In ODS reaction, a 
highly reactive transient specie, polyoxoperoxo complex is formed by transfer of oxygen from H2O2 to 
the POM molecule. The, the peroxo complex successively oxidizes the sulfur compounds to sulfoxides 
followed by sulfone. The POM is again re-oxidized by H2O2 to form another peroxo complex which is 
ready for further oxidation (Te et al., 2001).

Since POM salts are soluble in aqueous phase, they are used in biphasic systems in which some polar 
solvent is added to the non-polar organic phase. During the reaction in the biphasic medium, the sulphur 
compounds transfer from the non-polar oil phase to the polar phase solvent before being oxidized by 
POM to the respective sulfones. Acetonitrile and ethanol are the common solvents used for biphasic ODS 
in the presence of POM. When acetonitrile (at the ratio of 4:1 with oil) is used for the ODS of light oil 
in the presence of tungstophosphoric acid (TPA) and H2O2 at 60 oC, the amount of sulphur is lowered 
from 300 ppm to 112 ppm (Yazu et al., 2001). The ODS of model oil has also been investigated with the 
TPA/H2O2 oxidation system comprising of tetradecane-ethanol (Yazu et al., 2003) and octane-acetic acid 
(Yazu K. et al., 2007). Among various phosphorous and silicon based Keggin type POM catalysts used 
for ODS of model oil in the presence of H2O2, the sulfur removal efficiency was found to be decreased 
as; phosphotungstic acid > phosphomolybdic acid > silicotungstic acid > silicomolybdic acid (Te et 
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al., 2001). Several phosphorus based keggin type POM salts with W and Mo in different molar ratios 
have also been used as catalysts for the ODS of diesel oil in biphasic systems with acetonitrile. The 
POM containing W and Mo in the ratio of 1:1 (i.e. H3PW6Mo6O40) showed a desulfurization efficiency 
of more than 97% in diesel oil (R. Wang et al., 2010).

The reactivity of various sulphur compounds in ODS with POM/H2O2 oxidation system has shown 
to increase as follows:

4,6-DMDBT < 4-MDBT < DBT 

The reactivity order is similar to that of HDS reactions but opposite to ODS processes without POM 
catalysts. This is because of the large size and bulky shape of the POM molecules, which produce steric 
hindrance to alkyl substituent’s in the alkylated aromatic sulfur compounds and hence decreases their 
reactivity.

Several studies have revealed that increasing the surface area of POM by dispersion on a suitable 
solid support drastically enhances the ODS activity. Various types of material supports have been suc-
cessfully used for immobilizing POM in ODS reactions, these include different anion exchange resins 
(AER) (Yazu et al., 2003), SiO2 (Xue-Min Yan et al., 2007), Al2O3 (Zhang Y W et al., 2005,), SBA-15 (L. 
Yang et al., 2007) etc. As the POM catalyst acts in cyclic mode, it could be used for multiple cycles with 
negligible loss in activity. It has been observed over a number of studies that POM/H2O2 system works 
well for model oil but not for real fuels without using a polar solvent. Due to phase transfer limitations 
in real fuels with a complex non-polar nature, the oxidant cannot access the organosulphur compounds 
completely; hence large quantity of H2O2 is consumed. The problem of the phase transfer limitations 
can be overcome by the application of surfactants in the ODS reaction system. For this purpose different 
types of surfactants like tertaoctyl-ammonium bromide, hexadecyltrimethyl-ammonium bromide (CTAB), 
have been used in POM/H2O2 oxidation system, which has resulted remarkably high ODS efficiency 
with low H2O2 consumption and shortened reaction time (Collins et al., 1997).

A new approach toward the POM catalysis in ODS is the application of surfactant based POM salts, 
which consist of a heteropolyoxometalate anion and a quaternary ammonium surfactant cation combined 
together as a salt and being called emulsion or amphiphilic catalysts. These catalysts in combination with 
H2O2 exhibit remarkable sulfoxidation efficiency with a high selectivity. The amphiphilic or emulsion 
catalysts circumvent the obstacles of phase transfer limitations and enable an efficient contact between the 
oxidant aqueous phase and the sulfur compounds in the feed. The catalyst actually produces an emulsion 
in the reaction medium consisting of tiny bubbles or droplets. For each bubble three distinct regions can 
be differentiated, the inner regions or interior, the outer continuous region or exterior and the interfacial 
membrane between these two regions. Likewise the amphiphilic catalyst is also comprised of two parts, 
a liphophilic part i.e. the alkyl side chains and the hydrophilic part which is the POM cluster. In the 
reaction medium containing emulsion catalyst and H2O2, the liphophilic part of the catalyst disperses at 
the exterior of the bubble and its hydrophilic part is retained in the interfacial membrane, whereas the 
H2O2 remains in the interior of the bubble. At the interfacial membrane, the contact between the sulphur 
compounds, the POM catalyst and the oxidant (H2O2) occurs before the transfer of oxygen for oxidizing 
the sulfur. After the reaction is completed, the emulsion is broken and the catalyst is collected at the 
water-oil interface, dried and then reused (Z. Jiang et al., 2011) (see Figure 12).
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The emulsion or amphiphilic catalysts have shown a remarkable efficiency in the desulfurization of 
real and model oil samples. The interesting feature of these catalysts is that they can be regenerated and 
reused for multiple times without losing their activity. Keggin type phosphotungstate based emulsion 
catalyst i.e. [(C18H37)2N(CH3)2]3[PW12O40], in combination with H2O2 has shown to decrease the level 
of sulfur to about 1ppm in diesel oil containing 500 ppm sulfur (C. Li et al., 2004). In case of ODS of 
hydrotreated diesel and straight run diesel, the sulfur content decreased from 500 and 6000 ppm to 1 
and 30 ppm respectively, in the presence of quaternary ammonium based sodium phosphotungstate i.e. 
[C18H37N(CH3)3]4[H2NaPW10O36] under mild conditions with O/S=3 (Lü et al., 2006). The ODS of gas 
oil was studied in the presence of several emulsion catalysts containing tetrabutylammonium cation 
and different POM anions containing Mo, W and V i.e. [PV2Mo10O40]

4-, [W6O19]
2-, [V(VW11)O40]

4- and 
[PVW11O40]

4-. The catalysts containing [V(VW11)O40]
4- showed to be highly active, close to a 90% de-

sulfurization in gas oil after adsorption on silica (Komintarachat et al., 2006).
The emulsion catalysts containing different quaternary ammonium cations lead to the formation of 

emulsions with different strengths i.e. from weak to strong or very strong. A weak emulsion is unsustain-
able and hence results in a low ODS yield. However, the emulsion formed might be very stable, being 
very difficult to break and complicating the removal of the catalyst and the products. As the formation 
of the emulsion depends on the nature of the quaternary ammonium cation, the amphiphilic catalyst 
should contain an appropriate cation for producing a suitable emulsion for an efficient ODS process. A 
variety of quaternary ammonium cations containing alkyl chains of different length have been used in 
emulsion based POM catalysts for ODS application. Several emulsion catalysts containing decatungstate 
(Q4.W12O32) POM anions and different quaternary ammonium cations Q+ including hexadecyltrimethyl 
ammonium (C16H33N

+(CH3)3), decyltrimethyl ammonium (C10H21N
+(CH3)3), dodecyltrimethyl am-

monium (C12H25N
+(CH3)3) and tetradecyltrimethyl ammonium (C14H29N

+(CH3)3) have been employed 
for ODS of diesel oil at 60 oC, showing that a maximum desulfurization (99%) efficiency could be at-
tained with catalysts containing long alkyl chain ammonium cation i.e. hexadecyltrimethyl ammonium 
(C16H32N

+(CH3)3) (X. Jiang et al., 2009). For POM based emulsion catalyst used in ODS reaction, the 
appropriate quaternary ammonium cations have been reported to be di- or tri-methylhexadecyl ammo-
nium cations i.e. C16H33NH+(CH3)2 and C16H33N

+(CH3)3 (J. Gao et al., 2006; C. Li et al., 2005; C. Li et 
al., 2004; H. Lu et al., 2007; H. Lu et al., 2010; Y. Zhang et al., 2010).

Figure 12. Oxidation of DBT in emulsion droplet system
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The reactivity of various organosulphur compounds in ODS reactions using emulsion catalysts in-
creases as follows,

BT < 5-MBT < DBT < 4,6-DMDBT 

This reactivity trend is similar to that observed in ODS using a H2O2/formic acid system (Otsuki et 
al., 2000), but opposite to that of in the presence of ordinary POM/H2O2 system (Collins et al., 1997; 
Te et al., 2001). This indicates that in the presence of emulsion catalysts, the alkylated aromatic sulfur 
compounds are more reactive in the emulsion system and the stearic hindrance due to alkyl subtituent 
is controlled. Furthermore, it has been shown that ODS in the presence of emulsion systems requires a 
lower amount of H2O2 than the ODS using organic peracids and ordinary POM oxidation systems (Z. 
Jiang et al., 2011).

5.5.6 ODS with Ionic Liquids (IL)

Ionic liquids (IL) are referred to the salts that exist in liquid state at ordinary pressure and temperature. 
Because of their high chemical and thermal stability, low vapor pressure, non-corrosiveness and non-
flammability, ILs are widely used in the fields of synthesis, separation, electrochemistry and catalysis 
(W. Zhang et al., 2010). In the field of petroleum desulfurization, ILs have been extensively used since 
the last decade. They are mostly used either directly for selective extraction of organosulphur compounds 
from liquid fuel, or in ODS process for different purposes like extraction, solvent or catalyst. The ap-
plication of IL for direct extraction of sulfur compounds has been previously described in the section for 
extractive desulfurization, therefore the role of IL in ODS reactions is discussed below.

The ILs can extract higher amounts of oxidized sulfur compounds than the organic solvents, hence 
in ODS process, the desulfurization yield is markedly enhanced when ILs are used for extraction as 
compared to the use of organic solvents. The ODS of light oil using a H2O2/acetic acid oxidation system 
and 1-butyl-3-methylimidazolium hexafluorophosphate and tetrafluoroborate (i.e. [BMIM]PF6 and 
[BMIM]BF4) as ionic liquids showed higher desulfurization yields than the simple extraction process 
(Lo et al., 2003). Generally, ILs cannot extract sulfur to appreciable levels on their own and the pres-
ence of an oxidant enhances the sulfur removal drastically. Thus, [HMIm]BF4 hardly attains a 6% sulfur 
removal, however, in the presence of H2O2 at 90 oC the sulfur removal increases to 93% (L. Lu et al., 
2006). Likewise, the ODS of model oil with H2O2 at 60 oC in the presence of N-methyl pyrolidonium 
tetraflouroborate [HNMp]BF4 reduced the sulphur level from 1550 ppm to about 1 ppm, in 1 h. The ionic 
liquid was found to maintain its efficiency to up to 7 times of recycling (WANG Jian-long et al., 2008).

In ODS with ILs, the deep desulfurization of real oil usually requires a high H2O2/S ratio, although 
the use of heterogeneous catalysts allows to reduce the H2O2consumption. Some of the common catalysts 
used include various organic acids (F. T. Li et al., 2009; Dishun Zhao et al., 2007), sodium molybdate 
(Zhu et al., 2008), vanadiumoxide (Xu et al., 2009), iron based catalyst (H. Li, W. Zhu, et al., 2009; J. 
Zhang et al., 2009) and POM catalysts (He et al., 2008; H. Li, L. He, et al., 2009; H. Li, X. Jiang, et al., 
2009; Zhu et al., 2007). Although the use of ILs in ODS process enables to attain high desulphurization 
yields, their industrial application is limited by their cost, sensibility to moisture and the high cost of 
their regeneration. Additionally, because of their high boiling point and high viscosity, IL are not suitable 
for application with heavy feeds (Javadli & Klerk, 2012).
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5.5.7 Photo-Oxidative Desulphurization

In the photo-oxidative desulphurization, the organosulphur compounds in the hydrocarbon stream are 
photo-chemically oxidized under the influence UV-light. Unlike the ordinary ODS in which the energy 
required for oxidation is supplied by heat, in photo ODS the energy is supplied by photo irradiation. The 
process operates under room temperature and atmospheric pressure in a specially designed photo-reactor 
equipped with a radiation source, usually a high pressure mercury lamp emitting the UV-visible radia-
tions. The oil and a suitable extraction solvent are mixed in a reactor and photo-irradiated for definite 
time duration, during which the sulfur compounds are photo-chemically oxidized to their respective 
sulfones. The sulfones subsequently shift from the oil to the solvent phase before being separated.

An experiment on photo-ODS of various model sulfur compounds i.e. DBT, 4-MDBT and 4, 6-DMD-
BT dissolved in tetradecane solvent, indicated that these compounds are quantitatively decomposed to 
SO4

-2 by photo irradiation under ambient conditions. The trend in reactivity of different the model sulfur 
compounds was as: DBT < 4-MDBT < 4,6-DMDBT. However, the presence of aromatics have shown 
to markedly hinder the photoreaction of sulfur compounds, and therefore the desulfurization efficiency 
in the photo-ODS of commercial oil is very low. For example, in the case of commercial light oil, the 
sulfur removal was about 20%, even for photo irradiation of 30 h. (Hirai et al., 1996). The application of 
a triplet photosensitizer such as benzophenone in the photo-oxidation of model oil led to an enhanced 
desulfurization efficiency (Hirai et al., 1997), but still in the presence of aromatics such as naphthalene 
the desulphurization yield was low. This revealed that during the photoreaction the triplet energy is 
probably transferred from photoexited DBT or benzophenone to ground state aromatics i.e. naphtha-
lene, which interferes the oxidation of sulfur compounds. The energy transfer from the photosensitizer 
or excited DBT in the presence of aromatics can be interrupted by the addition of H2O2 as oxidant; in 
such case the photosensitizer is excited by photo irradiation which further excites thiophenes, the excited 
thiophenes are then oxidized by H2O2. Experiments have shown that using H2O2 as oxidant, photo-ODS 
of commercial and model oil led to high yields of desulfurization, although the feed was rich in aromat-
ics. In case of commercial light oil containing plenty of aromatics, 75% sulfur removal was achieved 
during photo ODS in the presence of H2O2, benzophenone photosensitizer and after 24 hours of photo 
irradiation (Hirai et al., 1997).

Photo-ODS of light oil by 48 h of photo irradiation (λ > 280 nm) in the presence of H2O2 and ben-
zophenone followed by adsorption over alumina, decreased the sulphur content in light oil from 0.2% to 
about 0.05% (Shiraishi et al., 1999). The use of some heterogeneous photocatalysts such as Ti containing 
zeolites in the presence of H2O2 was found to sufficiently boost the desulfurization efficiency, close to 
90% in the case of model oil (D. Zhao et al., 2009).

Air or molecular oxygen can also be used as oxidants in the photo-oxidative desulfurization of model 
and commercial oil, exhibiting an improved efficiency. For example, the photo-oxidative desulphurization 
of thiophene dissolved in octane/water mixture was investigated using air as oxidant and riboflavin as 
a photosensitizer, and after 3 h of photo irradiation a desulphurization yield of 85% could be achieved 
for (D. Zhao et al., 2008). Similarly, photo-oxidation of DBT in octane/acetonitrile biphasic system, 
using molecular oxygen as oxidant and Zeolite adsorbent, resulted in about 96% desulfurization under 
5 h photo irradiation (λ = 365 nm), and during the reaction the DBT was converted to SO4

-2 and CO2 
(D. Zhao et al., 2007).



34

Sulfur in Petroleum
 

Although photo oxidative desulphurization is an efficient and an economic process for desulphuriza-
tion, it is not commercially viable as it is also fairly slow in response and requires long photo irradiations 
(Gaofei Zhang et al., 2009). Furthermore, the process chemistry has not been completely revealed yet, 
requiring additional research.

5.5.8 Ultrasound Assisted ODS

Ultrasound assisted ODS is a special type of ODS in which the energy required for oxidation of sulfur 
compounds is provided by ultrasound irradiation, rather than thermal energy as in ordinary ODS. In this 
process the oil and the oxidant are mixed in the reactor and irradiated by ultrasound for certain time. Dur-
ing the ultrasound irradiation the local temperature and pressure of the reaction medium rises for a short 
while, leading to the formation of free radicals in the presence of an oxidant that oxidizes the sulphur 
compounds into the respective sulfones and sometimes to sulfates. The oxidized sulfur compounds can 
be separated from the oil phase by extraction with a polar solvent (Gaofei Zhang et al., 2009).

A special type of ultrasound assisted ODS process is called UAOD, which involves the ODS of oil by 
ultrasound irradiation in the presence of emulsion or amphiphilic catalysts. The process is based on the 
oxidation of the sulfur compounds in the emulsion system with a higher efficiency than ordinary ODS. 
In the case of diesel oil, the UAOD process using H2O2, phosphotungstic acid as catalyst and tetraoctyl 
ammonium bromide as surfactants to form the emulsion system, achieved a sulfur removal of 99% in 
10 min at 75 oC (Mei et al., 2003). In a similar UAOD process for model oil and diesel oil, using POM 
catalyst and variety of phase transfer agents like tetra-octyl ammounium fluoride, about 99% of conver-
sion of BT and DBT was attained in model oil as well as in diesel (Wan et al., 2007).

The desulfurization efficiency of the ultrasound assisted ODS using other catalysts than emulsion 
catalyst has also shown to be very high. For example, during the desulfurization of diesel oil spiked with 
4,6-DMDBT by ultrasound irradiation using Na2CO3 as catalyst and H2O2 as oxidant, the concentration 
of 4,6-DMDBT decreased to up to 90% within 1 h at 60 oC (Deshpande et al., 2004). Similarly, phos-
phoric acid and formic acid as catalysts were also found to be very efficient when used in the presence 
of H2O2 as oxidants for the ultra sound assisted ODS of commercial diesel oil (Sun M Zh. et al., 2008).

A commercial process based on ultrasound assisted ODS called SulphCo technology uses H2O2 as 
oxidant in water oil emulsion system, and operates at a temperature ranging from 70 to 80 oC, with a 
residence time of one min in an ultrasound reactor. In this process the desulphurization efficiency for 
crude oil and diesel oil showed to be 80 and 98% respectively. The first desulfurization unit based on 
this technology was operated in Italy at IPLOM petroleum refinery, with continuous desulphurization 
capacity of 350 bbl of diesel oil/day (Babich & Moulijn, 2003).

Generally the efficiency of ultrasound assisted ODS process is very high; however this technique is 
associated with several problems such as application of ultrasound producing expensive device leads to 
scale up limitations and consumption of large quantity of H2O2 which is also very costly. In addition, 
mixing of H2O2 with oil leads to formation of stable emulsion which requires sufficient time to settle 
down or break (Gaofei Zhang et al., 2009).

5.6 Desulfurization Using Nanomaterials 

The nanomaterials, due to their versatile characteristics find application in petroleum desulfurization as 
adsorbents and catalysts. Various types of nanomaterials such as TiO2, Fe2O3, zero valent iron nanopar-
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ticles, modified single wall and multiwall carbon nanotubes etc. (Deneuve et al., 2011; Saleh et al., 
2014; Shang et al., 2004) have been found to efficiently remove sulfur compounds from petroleum by 
either direct adsorption or being used as catalyst in ODS process. Because of their large surface area, 
the nanomaterials show high reactivity and therefore exhibit high efficiency in desulfurization. Detailed 
discussion on this topic is given in the forthcoming chapters.

CONCLUSION

In petroleum, sulfur occurs as H2S, sulfides, thiophenes, benzothiophenes and dibenzothiophenes. The 
quantity and structural complexity of the sulfur compounds increases with the increase in the boiling 
point of the distillate fraction. The compounds of sulfur lead to various detrimental effects in petroleum, 
such as corrosion problems, catalyst deactivation and environmental deterioration by producing sulfurous 
emissions, which necessitates their removal from petroleum. Hydrodesulfurization is the only process 
used for desulfurization in the refineries, which is very expensive and is inadequate to completely de-
sulfurize the feed. Recently, many new desulfurization techniques have emerged, however none of these 
are mature enough to replace HDS. Adsorptive desulfurization is a simple and cost effective process 
but the process leads to the removal of aromatic components of the feed. Bio-desulfurization presents 
minimum requirements of energy; however, the disposal of microbial wastes, storage and handling of 
bacterial cultures in the industrial environment makes it an industrially unviable process. The side reac-
tions occurring in precipitative desulfurization limits the efficiency of the process. Similarly, oxidative 
desulfurization seems to hold a promise in substituting HDS, but the removal of the oxidized products 
in a separate step and the complex chemistry of the process hinder its industrial application. Hopefully 
these shortcomings could be overcome by the researchers in a near future and the refining industry could 
find a suitable alternative to HDS.
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KEY TERMS AND DEFINITIONS

Autoxidation: Oxidation reaction which occur in the presence of air or molecular oxygen and results 
in formation of peroxides and hydroperoxides.

Deep Desulfurization: Desulfurization of feed to less than 50 ppm sulfur.
Flux: The amount of feed components permeating through the unit area of the membrane in unit time.
Hydrogenolysis: Reaction which involve the cleavage of carbon-carbon or carbon-heteroatom bond 

by interaction with hydrogen.
Ionic Liquid: Salts which exist in liquid state at ordinary pressure and temperature, and exhibit high 

chemical and thermal stability.
Mutagenic: A chemical or physical agent causing gene mutation.
Photosensitizer: A molecule which can initiate a photochemical reaction, by first exiting itself and 

then transfer the energy to the desired reactant.
Refractory Sulfur Compounds: Alkylated benzo- and dibenzo thiophenes which are stable to 

thermal decomposition at high temperature in the HDS process.
Space Velocity: The quantity of feed entering the reactor per unit weight of catalyst in unit time.
Sulfur Enrichment Factor: The ratio of the amount of sulfur in feed to that in permeate.
Ultra Low Level Sulfur: The amount of sulfur ranging from 20-10 ppm.
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APPENDIX: LIST OF ABBREVIATIONS

HDS: Hydrodesulfurization
RFCC: Residue fluid catalytic cracked
FCC: Fluidized catalytic cracked
VGO: Vacuum gas oil
CCG: catalytically cracked gasoline
BDS: Biodesulfurization
PVP: Polyvinylpyrrolidone
CTA: Cellulose triacetate
TBPH: Tertiary butylhydroperoxide
EDS: Extractive desulphurization
DMF: Dimethyl formamide
DMSO: Dimethyl sulfoxide
NMP: N-methylpyrolidone
PV: Pervaporation
IL: Ionic liquid
BDS: Biodesulphurization
PEG: Polethyeneglycol
PDMS: Polydimethylsiloxane
PI: Polyimide
ODS: Oxidative desulphurization
4,6-DMDBT: 4,6-Dimethyldibenzothiophene
4-MDBT: 4-methyldibenzothiophene
DBT: Dibenzothiophene
BT: Benzothiophene
Th: Thiophene
POM: Polyoxometalates
TPA: Tungstophosphoric acid
CTAB: Cetyltrimethyl-ammonium bromide
UAOD: Ultrasound assisted Oxidative desulphurization
HBPS: Hydroxybiphenylsulfinate
HBP: Hydroxybiphenyl
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ABSTRACT

This chapter gives an overview of sulfur x-ray absorption near edge spectroscopy (XANES) studies per-
formed on some carbonaceous materials, viz. crude oil and related materials (asphaltenes, kerogens, 
bitumens, and resins), and coals. Thiophene, sulfide, sulfoxide, sulfone, pyrite, and sulfate are found 
in varying amounts in these materials. In source rock bitumens, sulfoxide is more abundant than in the 
kerogens, while within the kerogens, the less aromatic Type I samples show a smaller ratio of thiophenic/
sulfidic sulfur than in Type II samples. Petroleum asphaltenes have a similar sulfur chemistry, regardless 
of the source or the burial depth. Resins and oil fractions retain the polar sulfoxide species of the par-
ent oil similar to the more polar asphaltenes fractions. More aromatic sulfur species also dominate in 
the more matured coals than in the younger coals. Studies of nitrogen XANES also reveal that aromatic 
forms of nitrogen prevail in samples with increased aromatic carbon.

INTRODUCTION

Sulfur has been an age old impediment in the processing and utilization of fossil fuels, such as crude 
oil. The presence of sulfur in crude oil and its by-products can make refining tasks very difficult, as it 
reacts with catalysts and produces corrosive poisons. Noble metal catalysts used in refining processes 
form corrosive agents in the presence of sulfur, as sulfur can bond strongly with the catalysts (Ruiz-
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Guerrero, 2006), and corrode refining equipment (Manning & Thompson, 1991). Sulfur is sometimes 
found in the form of H2S in crude oils, and is lethal even at small concentrations (~100 ppm) and is a 
major concern in creating extreme brittleness in many metals. In addition, burning of fossil fuels with 
significant amounts of sulfur releases sulfur dioxide into the atmosphere causing environmental hazards 
(Orr & White, 1990). The presence of sulfur in fuels serves no useful purpose (Orr, 1990), as some of 
them contain only minor quantities of sulfur and generally removal of sulfur from fuels is a primary 
objective in processing. Sulfur removal for Athabasca bitumen has led to storage of elemental sulfur in 
huge yellow mounds as seen in Figure 1.

Sulfur chemistry also gives us a picture of the geochemical environment of the deposition of the 
source materials for the fossil fuel energy resources (Orr, 1990). Organo-sulfur compounds in crude oils 
provides information about the formation, migration, and thermal maturity of the oil. (Hughes, 1989; 
Lin, 1988; Wang, 2005; Radke, 1982). Sulfur content in kerogen and bitumen is an important indicator 
of how these fractions ultimately produce oil and gas (Pomerantz, 2013; Lewan, 1985, 1998; Seewald, 
1998; Sinninghe, 1989, 1990; Gransch, 1974). The presence of sulfur also affects solubility and other 
characteristics of the important fractions of crude oils, such as asphaltenes (Mitra-Kirtley, 2007).

Sulfur content in crude oils and bitumens ranges from a fraction of a percent to 14% (Orr 1990), 
making it generally the most abundant element after carbon and hydrogen. The world reserves of sweet 
crude oils (crude oils with low sulfur content) are becoming more limited as time progresses, making 
the refining of more sour (high sulfur content) varieties a necessity (Purcell, 2007; Swain, 1998). At-
mospheric and vacuum bottom residues are increasingly converted to lighter products (Purcell, 2007), 
and desulfurization of these reserves is becoming increasingly favored.

Sulfur in coal also reveals a wealth of information about the depositional environment. Much of the 
sulfur in low sulfur coals is derived from the deposited plant material. The presence of a brackish envi-

Figure 1. Sulfur removal from Athabasca bitumen is stored as elemental sulfur in exposed enormous 
yellow mounds
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ronment results in the presence of sulfates; these sulfates can get reduced to H2S by microbial action, and 
high sulfur coals derive most of their sulfur from this environment. (Calkins, 1994). Sulfur in coal has 
also been a major concern in the coal utilization, in particular for electric power generation. The familiar 
“acid rain” environmental problem is primarily due to production of sulfur oxides in coal combustion. 
As such, understanding sulfur chemistry in coal has been critical in optimization of resource utilization. 
Similar methods of sulfur chemical speciation apply to a host of carbonaceous materials such as crude 
oil, bitumen, kerogen, coal, and related products. (Mitra-Kirtley, 2007; Huffman, 1991; Mullins, 1993; 
Wiltfong, 2005; Waldo, 1992).

Other light heteroatoms are also of interest in carbonaceous materials, particularly nitrogen and oxy-
gen. In crude oil, many of the sulfur containing moieties are relatively nonpolar, with the exception of 
occasional occurrence of sulfoxides. In contrast, oxygen and nitrogen often appear in chemical moieties 
with moderate or large electric dipoles. Nitrogen in fossil fuels can be oxidized in combustion yielding 
nitric oxide, another major component of acid rain. Nitrogen containing hydrocarbons are also known 
to be responsible for forming coke on the catalyst surface, making the catalysts less efficient (Rodgers, 
2002). In addition, both nitrogen and oxygen containing organics tend to be polar impacting interfacial 
interactions, an important concern for crude oil production. In particular, rock wettability, thus oil recovery 
in reservoirs, is dependent on interfacially active components in crude oil. Nitrogen and oxygen can also 
mediate stronger intermolecular interactions of the heavy ends of crude oil, the asphaltenes, and thereby 
can impact processing of such resources. Also, naphthenic acids, which are released into wastewaters, 
can be harmful during petroleum refinery processes (Rodgers, 2002; Kane, 2002; Piehl, 1987).

SULFUR GEOCHEMISTRY IN SOME CARBONACEOUS MATERIALS

Kerogen is the insoluble organic matter in sediments, and bitumen is the solvent extractable organic 
fraction of sediment. Both kerogen and bitumen are responsible for petroleum generation via diagenesis 
and catagenesis processes, and the majority of oil production is from kerogen (Orr & Damaste, 1990). 
Under rapid heating condition, bitumen can serve as an intermediate in the transformation from kerogen 
to oil and gas (Miknis, 1995).

Sulfur in kerogen and bitumen has attracted much recent attention because of the revolution in oil 
and gas production from unconventionals (Alexander, 2011). Sulfur geochemistry is relevant to uncon-
ventional resources because sulfur impacts many of the processes relevant to petroleum generation and 
production. Petroleum generation occurs mainly by unimolecular decomposition of larger molecular 
weight kerogen and bitumen molecules into smaller molecular weight oil and gas. The activation energy 
of those reactions depends on the composition of the kerogen and bitumen. Sulfide functional groups 
(sulfur bonded to aliphatic carbon) represent one of the weakest chemical bonds found in kerogen, and 
the presence of that group can lower the activation energy required to generate petroleum (Lewan, 1998). 
As a result, kerogens with high sulfur contents (assuming the sulfur is present as sulfides) generate oil 
and gas at relatively low levels of maturity (Dembicki, 2009).

The recovery of oil and gas from unconventional resources is also impacted by adsorption. Some frac-
tion of the hydrocarbons are physically adsorbed to the rock surface, preventing their released until the 
reservoir pressure is low (loucks, 2009; Valenza, 2013). Hydrocarbon adsorption is typically mitigated 
by the polarizability interaction, and thiophene functional groups (sulfur bonded to aromatic carbon) 
can contribute greatly to the polarizability of kerogen.
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Hydrocarbon production from unconventional sources occurs after massive hydraulic fracturing. Ef-
ficient production therefore requires that the water introduced during the hydraulic fracturing does not 
interfere with the flow of hydrocarbons in the oil-wet pore system. Sulfoxide functional groups (sulfur 
double bonded to one oxygen) represent one of the most polar bonds in kerogen, with a dipole moment 
double that of water. Kerogens and bitumens comprised mostly of hydrophobic carbon and hydrogen 
can act as naturally occurring surfactants especially if they also contain a hydrophilic sulfoxide group, 
impacting the subsurface flow of oil and water (Pomerantz, 2014).

The introduction of sulfur in crude oils can have a number of origins. Sulfurization in the organic 
matter may happen at different stages of geological progression. Most of the sulfur incorporation can 
occur at an earlier stage, and the extent of sulfurization also depends on the state of maturation (Grant & 
Posthuma, 1973; Orr, 1990). Dissolved H2S and elemental sulfur account for only a small but important 
fraction of the total sulfur in crude oils, as most of the sulfur is organic in nature, with the highest con-
centration of organic sulfur found in high molecular weight compounds (Tissot, 1984; Hunt, 1979; Orr, 
1975, 1978). Sulfur content in pyrite and sedimentary organic matter is sometimes from H2S, formed as 
a result of activities from sulfate reducing bacteria at the surface of water or at shallow depths of sedi-
ments rich in organic material (Feux, 1977; Thode, 1965; Krouse, 1977).

Changes in the matured oils depend on other factors such as the degree of migration and reservoir 
environments (Gransch & Posthuma, 1974).The amount of sulfur in crude oils may depend on the 
reduction of sulfates by biodegradation in the later stages of maturation (Bailey, 1973, Davis 1967). 
Nevertheless, it is possible that sulfurization at low temperatures where microbial degradation takes 
place is not very common (Gransch, 1973). Orr (1990) et al. find that in heavy and asphaltic oils the 
effect of biodegradation on sulfurization is affected by removal of non-sulfur containing entities rather 
than addition of sulfur containing compounds.

In recent years heavy oils have been the focus of numerous studies. Heavy oils are often products of 
extensive biodegradation of lighter oils (Orr, 1990). In addition, heavy oils can form by accumulation of 
asphaltenes at the base of the oil column by convective currents within the oil (Mullins, 2013). Heavy oils 
usually have higher sulfur, nitrogen and oxygen content than the lighter kinds. (Purcell, 2007). The sulfur 
content of the heavier oils is mainly determined from the sulfur content of the un-degraded precursor 
original oil, with favored removal of non-sulfur components determined by the extent of biodegradation 
(Orr, 1990) or the extent of asphaltene accumulation (Mullins, 2013; Pomerantz, 2014).

Petroleum usually contains four fractions, viz. saturates, aromatics, resins, and asphaltenes (SARA). 
Asphaltenes affect the chemical and physical properties of crude oil and also play a significant role in the 
production, refinement, and transportation processes (Chilingarian, 1978; Bunger, 1981; Speight, 1980; 
Tissot, 1984). They are defined in terms of their solubility properties. One definition is that asphaltenes 
are soluble in toluene but insoluble in n-alkanes, such as n-heptane (Pfeiffer, 1950; Sheu, 1995). Resins 
may be defined as not extractable on an activated alumina column at room temperature in n-heptane and 
toluene but extractable in a 1/1 (v/v) dichloromethane/methanol solution. The composition of asphaltene 
molecules and aggregates is described by the Yen-Mullins model (Mullins, 2010, 2012, 2014). Asphaltenes 
have the appearance of dark friable solids, with a density of about 1.2 g/cm3 (Akbarzadeh, 2007). They 
have an average molecular weight of 750 g/mole, with an average of 7 fused aromatic rings generally in 
a single aromatic core. (Groenzin, 1999, 2000; Pomerantz, 2008, 2009; Sabbah, 2011). The Yen-Mullins 
model stipulates that in crude oils, asphaltenes can exist as isolated molecules, or in nanoaggregates 
containing ~6 molecules (Wu, 2014), or clusters containing ~8 nanoaggregates (Mullins, 2013; Dutta 
Majumdar; 2013; Eyssautier, 2011). Asphaltenes contain a higher heteroatom content than the parent 
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oil, up to 10 wt% (Tissot, 1984; Chilingarian, 1981). The concentration of asphaltene in conventional 
crude oils varies from 0-30% (Ching, 2010; Mullins 2013), impacted by factors such as maturity (Tis-
sot, 1984; Sheu & Mullins, 1995) and convective currents that concentrate asphaltenes (Mullins, 2013).

Kerogens are generally of higher molecular weight than bitumens. Thermal maturation results in 
the breaking of the macromolecules typically characteristic in kerogens, resulting in simpler molecules 
in bitumens (Pomerantz, 2014), making them soluble in some organic solvents. Bitumens in shales are 
formed before the oil generation, and are found in subsurface environments where, albeit being a reducing 
environment, oil and organic oxygen are still present (Durand, 1980). The weak carbon-sulfur bonds in 
kerogens are broken during catagenesis (Lewan, 1998), and the reactive sulfur radicals form sulfoxide 
groups in the presence of organic oxygen (Pomerantz, 2014) during the formation of bitumens. Similar 
processes in the laboratory have also resulted in the formation of sulfoxides and sulfones (Lewan, 1997), 
validating such causes of sulfoxide abundance in the bitumens. Asphaltenes extracted from petroleum, 
archeological bitumens, and oil seeps have also exhibited large sulfoxide contents (Sarret, 1999; Waldo, 
1992). Furthermore, the presence of sulfoxides in bitumens contribute to their solubility properties in 
polar and polarizable solvents. It is also noteworthy that bitumens act as surfactants, in part as a result of 
the polar sulfoxide groups; this interfacial activity can influence the flow of hydrocarbons in hydrauli-
cally fractured shales. Pyrite and sulfate are also often associated with kerogens due to their acid resistive 
character, and these minerals can appear in S XANES spectra.

When higher-order plants comprise much of the deposited sediments, then during early diagenesis 
the transformation usually leads to the formation of peat and brown coal (Killops, 1993). In peat bogs 
the humic substances transform into humic coals, the deeper layers preserving more of the organic mate-
rial. With increased diagenesis, less of the cellulose and lignin from the plants are preserved in the peat, 
increasing the amount of humic substances, which eventually transform into brown coal with a 60-65% of 
carbon content (Fuchs, 1931). Coals still contain fine grained remains of plant material, called macerals 
(Teichmuller, 1982), which have distinct physical and chemical properties, and are often characterized 
by their optical properties. Kerogens are often associated with different coal macerals, and similarities 
between ratios of H/C and O/C between different kerogen types and coal macerals are observed. Type 
I kerogens, originating mainly from alginates, particularly lacustrine, in low oxygen environments, are 
akin to liptinite coal macerals. Type II kerogens primarily originate in marine environments and contain 
cutinite, sporinite, resinite, and liptinite, all familiar in coal petrography. Type III kerogens originate 
primarily from vascular plants and are deficient in lipids and waxy material. Type III kerogen has 
macerals similar to vitrinite coal macerals; this type of kerogen is less likely to produce oil than Types 
I and II kerogens. High sulfur brown coals have S/C ratios of greater than 0.04, and low (~1.00) H/C 
and high (>0.20) O/C ratios. With increased thermal and chemical maturation, coals undergo changes 
in coal ranks, and ultimately can result in the formation of anthracite (Killops, 1993; Tissot, 1984). The 
increase in coal rank is characterized by an increase in carbon content and a decrease in oxygen content.

HETEROATOM CHARACTERIZATION IN FOSSIL FUELS

Researchers in the fossil fuel field have performed numerous studies to characterize sulfur chemical forms 
in petroleum, and many review articles have been published on the topic (Dean, 1967; Drushel, 1970; 
Mehmet, 1971; Gal’pern, 1971). X-ray absorption Near-Edge Structure (XANES) spectroscopy with 
synchrotron radiation has been very successful in determining the different chemical structures of vari-
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ous solid and liquid phase carbonaceous materials in a non-destructive manner, even when the materials 
are insoluble in organic solvents and difficult for chemical characterization. This chapter explains some 
of the various studies that have been performed on these materials. (Mitra-Kirtley, 1993, 1998, 2007; 
Mullins, 1993; Pomerantz, 2013, 2014; Huffman, 1991; George, 1989). Among other characterization 
techniques, gas chromatography has been used to separate sulfur compounds in petroleum (Martin, 
1965; Garcia, 2002; Depauw, 1997; Stumpf, 1998). Infra-red (IR) techniques have been successful in 
characterizing chemical forms of oxygen in asphaltene fractions in crude oils (Chiilingarian, 1978; Tis-
sot, 1984). Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR-MS) methodology 
has been successful at analyzing petroleum at the molecular level (Marshall, 2003, 2008; Rodgers, 2005; 
McLafferty, 2008; Shi, 2010). Electrospray Ionization (ESI) FT-ICR-MS has been used to analyze crude 
oil components (Purcell, 2007; Hughey, 2002; Wu, 2003; Mueller, 2005) including those components 
that contain sulfur (Purcell, 2007; Hughey, 2002; Wu, 2003).

Sulfur characterization of humic substances helps in the understanding of the complex processes of 
kerogen formation and conversion into oil (Vairavamurthy, 1997; Xia, 1998). Humic acids are regarded 
as important precursors in the formation of kerogen (Welte, 1974), and it is interesting to follow the 
chemistry of sulfur from humic substances to the formation of kerogen. Sulfur XANES studies on humic 
substances have shown that the sulfur content is mainly in many forms, such as sulfide/thiol, sulfoxide, 
sulfonate, sulfate, and thiophene (Xia, 1998). A separate study found that humic substances have oxidized 
forms such as sulfonates and reduced forms such as sulfides (Vairavamurthy, 1997). The reduced forms 
are detected in the layers closer to the surface of the organic matter, and the thiophenic sulfur that is 
found mostly in deeper layers is a result of increased diagenesis of the organic matter (Vairavamurthy, 
1997; Eglington, 1994; Alzenshtat, 1995). While the sulfides may have been produced in these samples 
by geochemical processes, it is possible that the ester bonded sulfates have been present in the organic 
matter of the source as a result of bacterial activity.

X-RAY ABSORPTION NEAR EDGE SPECTROSCOPY (XANES)

X-ray Absorption Near-Edge Spectroscopy, or XANES, is a direct, non-destructive, element-specific 
analysis tool, and successfully identifies the different chemical species of the element. This method is 
effective even when the element in question is present in very small (in the order of ppm) quantities, 
irrespective of whether the sample is in a solid or a liquid phase. This method is therefore particularly 
preferred for identifying chemical structures of elements in complex carbonaceous systems where the 
element is hard to detect by other characterization techniques. XANES methodology has been very suc-
cessful in determining heteroatom chemical structures, particularly of sulfur and nitrogen, in many fossil 
fuel samples. Sulfur XANES methodology has been employed in the study of kerogens (Wiltfong, 2005), 
bitumens (Pomerantz, 2013; Kasrai, 1994), asphaltenes (George, 1989; Mitra-Kirtley, 1998; Waldo, 
1992), as well as coals (Huffman, 1991). Nitrogen XANES has also been used for similar purposes on 
kerogens and bitumens (Mitra-Kirtley, 1993), and coals (Mullins, 1993).

In the XANES process, the core electron of an atom is excited by the incident x-ray photon, which 
then makes a transition to a higher energy level. In fluorescence detection of XANES, the de-excitation 
of the atom is accompanied by an electronic transition from a higher energy to fill the vacant hole (Figure 
2). In the Auger process of XANES, as one electron de-excites to a lower energy, another electron is 
ejected to the continuum (Mitra-Kirtley, 2007). In the case of sulfur K-edge XANES, an atomic picture 
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is sufficient to identify the important resonance. A typical sulfur XANES spectrum is characteristic of 
a narrow, intense signature resonance, or “white line” (Mitra-Kirtley, 2007), which can be explained 
with an atomic picture in mind, as the 1s→3p electronic transition.

For thin concentrated samples or in dilute thick samples, the fluorescence intensity, IF, is linearly 
proportional to the absorption A and, of course, to the incident intensity, Io. Thus,

I

I
AF

o

= . 

The concentration of the element in the sample is, therefore, of large significance, as deviation from 
the linear behavior in the theory, and consequently distortion in the spectrum, will result if the sample 
is not diluted enough for the element of study. Details of this theory is given elsewhere (Mitra-Kirtley, 
2007; Pomerantz, 2013).

For sulfur K-edge XANES, as the formal oxidation number of sulfur increases in the different chemi-
cal structures, the white line peak position shifts to higher energy. The simple atomic picture to explain 
this is as follows: as the formal oxidation number becomes more positive, the remaining electrons feel a 
stronger attraction toward the nucleus; thus a higher photon energy is needed to remove the core K-shell 
electrons. This shift of the white line to higher energy values with increasing formal oxidation numbers is 
almost linear and spans more than 10 eV. Figure 3 shows a plot of absorption spectra of different sulfur 
compounds with varying formal oxidation numbers, as a function of incident photon energy.

In the case of nitrogen, the K-edge XANES needs to be explained from a molecular point of view. The 
white lines can be ascribed to electronic transitions from 1s→π* and 1s→σ*states. Aromatic chemical 
structures show several π* transitions, while saturated structures show only σ* transitions. Pyridine and 
pyrrole molecules have the same formal oxidation number for nitrogen; nevertheless, their π*resonances 
are separated by several electron-volts. The red-shift in the π* transitions in pyridines arises from the 
fact that the lone pair of electrons in pyridine does not take part in the aromatic bonding, giving the 
electronegative nitrogen a partial negative charge. In contrast, in pyrrole, the lone pair of electrons on 

Figure 2. Fluorescence decay and Auger decay processes
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nitrogen both contribute to the aromatic sextet; the five-fold symmetry thereby yielding a partial positive 
charge on the nitrogen causing a blue shift of the white line. Details of these studies are given elsewhere 
(Mitra-Kirtley, 1993). Figure 4 shows the distinct energy positions of the white line features of pyridines, 
pyrroles, and aromatic amines.

XANES EXPERIMENTAL DETAILS

XANES methodology is very powerful when the x-ray source is a synchrotron radiation source. In a 
synchrotron radiation facility, electrons are accelerated through curved trajectories at relativistic speeds. 
The resulting electromagnetic radiation is focused in the forward direction, with very intense photon flux. 
All the XANES studies described here that have been performed by the author(s), have been obtained 
from National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory (BNL), and from 
Advanced Photon Source (APS) at Argonne National Laboratory (ANL). The sulfur data were collected 
from NSLS and APS, and the nitrogen data were collected at NSLS. Figure 5 shows an aerial view of 
APS, and Figure 6 shows a schematic diagram of the beamlines inside NSLS.

Synchrotron beamline 9-BM at APS has an energy range of 2.1-24 KeV. It is equipped with Si[111] 
and Si[220] double crystal monochromators for controlling photon energies, and the sulfur K-edge ex-

Figure 3. Sulfur K-edge XANES plot of different chemical structures; as the formal oxidation number of 
sulfur increases, the 1s→3p peak moves to higher photon energy, almost in a linear fashion.
(Pomerantz, 2014).
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periment used the former. This beamline operates on a bending magnet principle; a 250 μm Be window 
separates the high vacuum front end part of the beam from the part entering the sample hutch. The 
incident photon intensity was measured by an ion chamber, and a Stern Heald, or Lytle detector (Lytle, 
1988) (Figure 7) was used for fluorescence data collection. The three sections of the beamline inside 
the sample hutch, the windows upstream with the incident intensity (Io) detector, the sample chamber, 
and the fluorescence (IF) detector were separated from each other by a 5 micron thick polycarbonate 
membrane, so each of the sections could be purged separately. The Io ion chamber was purged with 
helium gas, as was the sample chamber; the IF detector was purged with nitrogen gas.

The sample holder at APS consisted of a Teflon sample holder where solid samples were directly 
loaded on the face of the holder, and liquid samples were placed inside an indented groove in the holder, 

Figure 4. Nitrogen K-edge XANES spectra of different nitrogen structures; the spectra of models belong-
ing to different structures are well separated in photon energies.
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which was sealed with aluminized Mylar. Care was taken so that there were no air bubbles in the path of 
the beam for the liquid samples. The typical beam size was 0.5 mm2. The monochromator was detuned to 
about 30% to mitigate the higher harmonics. A typical energy resolution near the sulfur K-edge energy 
was about 0.3 eV. The beamline characteristics and data acquisition were performed using Sun UNIX 
EPICS with VME, SPEC, and LabView programs.

The beamline at NSLS used for sulfur K-edge data collection was X-19 A. The same kind of Si[111] 
double crystal monochromator was used as at the APS. The sulfur data for kerogens was collected us-
ing a Passivated Implanted Planar Silicon (PIPS) detector by Canberra, and the coal data was collected 
with a Lytle detector. A Pentium PC (Windows OS) was used to monitor beamline characteristics and 
data collection. Small solid sample pellets were made, or the solid samples were mounted on a parafilm 
substrates or on Mylar films; liquid samples were held in place inside small Mylar bags (see Figure 8).

Data from the nitrogen samples discussed here (Mitra-Kirtley, 1993, Mullins, 1993) were collected 
at NSLS, beamline U4B (Chen, 1987). A grating monochromator, with grating of 600 lines/mm, and a 
multi-element germanium detector from Canberra (Cramer, 1991) in the fluorescent mode were used for 
the experiment. Details of the experiments are given elsewhere (Mitra-Kirtley, 1993, Mitra-Kirtley, 2007).

Figure 5. Aerial view of APS at Argonne National Laboratory
(https://www1.aps.anl.gov/Users-Information)

https://www1.aps.anl.gov/Users-Information
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XANES ANALYSIS

A number of data analysis software programs were used, including commercially available WinXAS, 
Kaleidagraph, and a program developed by some of the participants in the project. All the spectra were 
first calibrated using a standard sulfur model compound (elemental sulfur in the case of some of the 
kerogens, and coals, and sodium thiosulfate in the case of asphaltenes, kerogens, and bitumens). For each 
experimental session, all the data of the sulfur model compounds as well as the fossil fuel samples were 
adjusted to the same photon energy of that calibration model. The background was subtracted, and the 
spectra were then normalized at the same post-edge photon energy. Figure 9 shows a typical XANES sulfur 
K-edge spectrum of a sulfur model compound, elemental sulfur, normalized and background corrected.

Figure 6. A schematic representation of the layout of beamlines at NSLS, Brookhaven National Laboratory
(https://cdac.carnegiescience.edu/facilities/hp-nsls-facilities)

https://cdac.carnegiescience.edu/facilities/hp-nsls-facilities
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Figure 7. A fluorescence Lytle detector
(http://www.saga-ls.jp)

Figure 8. X-19A at NSLS, Brookhaven National Laboratory.

http://www.saga-ls.jp
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The fossil fuel spectra were also corrected from the background, and normalized. A deconvolution 
process of each spectrum was carried out into individual Lorentzian peaks, and an arctangent step 
representing excitation of the continuum. The near edge peaks were identified to the white lines of the 
different sulfur model spectra; characteristics of the white lines, such as the height, width, and position 
were kept at identical values in the fossil fuel spectra as in the model spectra. The arctangent step func-
tion, which represented the electronic transition to the continuum, was also kept as the model spectra. 
Figure 10 shows a figure of a fossil-fuel spectrum that is fitted with a superposition of XANES spectra 
of sulfur model compounds. The areas under the identified signature Lorentzian peaks were calculated, 
when needed, and the actual percent compositions of the individual sulfur chemical structures present 
in the fossil fuel samples were determined. In the different projects described here, many analogues of 
such analysis software programs were developed and tested, and the results were compared with each 
other for consistency.

RESULTS AND DISCUSSIONS

Sulfur K-edge XANES studies on the asphaltenes, resins, and oil fractions of crude oil show that the 
most dominant form of sulfur is in thiophenic form, followed by sulfidic form (Mitra-Kirtley 1998). 
Figure 11 shows the sulfur K-edge XANES spectra of several asphaltenes, resins, and oil fractions and 
of sulfur model compounds that are the major contributors to their sulfur content.

Table 1 shows the differences between the different sulfur chemical structures found in these samples. 
In the CAL sample, there is significant sulfoxide content in all the fractions, probably not a result of 
atmospheric exposure of the samples. The sulfide content in the oil fractions of both the parent crudes 
is found to be relatively higher than the corresponding asphaltene. This is consistent with the fact that 

Figure 9. Sulfur K-edge XANES spectrum of elemental sulfur
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Figure 10. Sulfur K-edge XANES spectrum of a fossil fuel spectrum and its deconvolution into constitu-
ent spectra, each representing a different sulfur chemical structure. A few standard chemical structures 
are identified here.

Figure 11. Sulfur K-edge XANES spectra of asphaltene, resin and oil fractions of two crude oils, and of 
dibenzyl sulfide, dibenzothiophene, and dibenzyl sulfoxide
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the oil fractions tend to be less aromatic than the other fractions (Yen, 1975). CAL crude oil is from 
shallower depths than UG8, and less mature. Consequently, the thiophene content in all the fractions 
from CAL is consistently lower than in the fractions from UG8.

The CAL asphaltene sample studied earlier (Waldo, 1992) yielded the same results as a later study 
(Mitra-Kirtley, 1998) indicating that atmospheric oxidation of the sample had been insignificant.

A recent study on sulfur chemical speciation was performed on asphaltenes extracted from reservoirs 
with large asphaltene gradients (Pomerantz, 2013) by XANES methodology. It is found that there is no 
observable difference in the different sulfur chemical structures in the samples even though the asphaltene 
gradient among the samples from the same reservoir varied considerably. Eight oils from two stacked 
reservoirs, each spanning a vertical distance of ~60 meters and a lateral distance of 100 kilometers were 
used in the study. The six oils from the reservoir had a large asphaltene gradient, with a range of 3% to 
31% (Mullins, 2013). Figure 12 shows the sulfur XANES spectra of all the eight asphaltene samples, with 
the one at the shallowest depth on the top, and the deepest at the bottom. The Flory-Huggins-Zuo (Zuo, 
2012, 2013) model of characterizing this gradient showed thee gravity term dominated with asphaltenes 
in the form of clusters from the Yen-Mullins (Mullins, 2010, 2012, 2013) model. It is evident from this 
study that the asphaltene sulfur chemistry is invariant; thus the large gradient in this oil column is due 
to asphaltene concentration differences, not asphaltene compositional differences.

In the suite of samples studied here, thiophene seems to be the most dominant structure; varying 
small quantities of elemental sulfur, sulfides, and sulfoxides are also found. In some instances, negli-
gible quantities of sulfones and sulfates have been observed, but all the secondary contributions are well 
within our error bars (~±5%). Similarities of sulfur chemical structures within samples from the same 
reservoir are noteworthy. All the samples had about 8-10% of sulfur content. Table 2 shows the relative 
abundances of sulfur chemical structures in all the samples. Earlier studies (Waldo, 1991) performed on 
oils and oil extracts showed that petroleum samples from similar sources have higher thiophenic con-
tent with greater thermal maturity. In addition, the source of the petroleum helps determine the relative 
concentration of sulfides and thiophenes; some carbonate-rich sources tend to produce thiophene-rich 
petroleum (Waldo, 1991).

Sulfur K-edge XANES analyses on kerogens and bitumens have been very successful, in spite of 
the insoluble nature of kerogens. Studies on groups of Type I and II kerogens reveal distinct differences 

Table 1. Relative abundances of different sulfur chemical forms in asphaltene, resin, and oil fractions 
of CAL and UG8 crude oils

Samples Sulfide Thiophene Sulfoxide Sulfone Sulfate

CAL

Asphaltene 15 29 50 5 1

Resin 11 27 59 1 1

Oil 24 27 46 1 1

UG8

Asphaltene 40 55 2 1 1

Resin 40 52 5 1 1

Oil 45 47 5 1 1
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(Wiltfong, 2005). Figure 13 shows the XANES spectra of several kerogens; Type I Green River kerogen 
samples show smaller thiophene/sulfide ratios than the Type II kerogens such as Woodford, Bakken, 
and IN limestone kerogens. This mimics the carbon story in that Type I samples have lower aromatic/
aliphatic carbon than Type II samples (Tissot, 1984). All of these samples show significant content of 
elemental sulfur and/or pyrite. The elemental sulfur in kerogens could be a result of oxidation of pyrite, 
or could be due to thermochemical and biological alteration of sulfates (Vairavamurthy, 1997). Moreover, 
the Type I samples in general show a larger content of sulfur-oxygen compounds compared to Type II 
samples, which supports the theory that with increased maturation the oxygen content usually decreases, 
as is also found elsewhere (Mitra Kirtley, 1993; Mullins, 1993). Table 3 shows the relative percentages 
of the different sulfur chemical structures found in these samples.

In a more recent study (Pomerantz, 2014), kerogens and bitumens have been isolated and extracted 
from shales, and analyzed. The kerogen and bitumen samples had three different sources: Green River 

Figure 12. Sulfur K-edge XANES spectra of eight different asphaltenes extracted from two different 
reservoirs; the top six spectra (blue) belong to samples from the first, and the bottom two (red) from 
the second reservoir. The samples are shown to deepest with depth expressed as True Vertical Depth 
subsea (TVDss). All the samples show similar spectra, with thiophenic signature as the dominant one.
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Table 2. Relative percentages of abundances of sulfur chemical structures in asphaltene samples extracted 
from different depths and different reservoirs; the samples are listed shallowest to deepest. The top six 
samples belong to the same reservoir while the bottom two belong to the second reservoir. The sulfur 
chemistry of all asphaltenes is quite similar.

Sample Elemental 
Sulfur

Sulfide Thiophene Sulfoxide Sulfone Sulfate

aa67 5 3 89 2 0 1

ac14 3 5 90 2 0 0

ac63 7 0 86 4 1 2

ad26 4 3 88 3 1 1

ad70 5 0 92 3 0 0

ad72 6 0 88 4 1 1

ag19 4 0 92 3 0 1

ai02 5 0 91 3 0 1

Figure 13. Sulfur XANES spectra of several kerogens; Woodford, Bakken, and IN limestone samples 
belong to Type II and the GR (Green River) samples belong to Type I. The kerogens from each type are 
similar to each other, but distinct from the other type.
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from Colorado, USA (Type I), Eagle Ford from Texas, USA (Type II), and Muwaqqar from Jordan 
(Type III). Analysis of these sulfur K-edge XANES spectra show that the sulfur moieties in kerogens are 
significantly different from those found in the bitumens (Pomerantz, 2014). Figure 14 shows the sulfur 
K-edge XANES spectra of several kerogens and bitumens, and it is clear that bitumens possess a huge 
sulfoxide fraction while the kerogens do not.

Table 4 tabulates the different sulfur forms in the kerogens and bitumens. The reduced forms of sul-
fur in the kerogens occur in the forms of elemental sulfur, aliphatic sulfide, and thiophene. In contrast, 
the bitumens contain significant quantities of sulfoxides. Dilution of the insoluble kerogen samples 
was samples was solved by diluting the samples in BN in a novel way. The samples were first cooled at 
liquid nitrogen temperatures, the resulting brittle pieces were then crushed by a wiggle-bug, and diluted 
in boron nitride. Experiments were performed at different sulfur concentration levels to ensure that the 
self-absorption effects in the spectra are not present. Naturally, pyrite, elemental sulfur and sulfates are 
carried with the insoluble kerogens as gleaned in Table 4. In the earlier studies (Wiltfong, 2005) where 
the kerogens were not separated from the bitumens, the samples showed presence of both the reduced 
as well as sulfoxide forms of sulfur (Figure 14).

This tendency of kerogens to contain little to no sulfoxides is not restricted to samples with only 
particular values of total sulfur content. In a separate study, three kerogens with much higher sulfur 
concentrations (14.6-26.9% by weight) from a US source were analyzed using the same XANES proce-
dures. Appropriate dilution of the samples were carried out carefully to avoid self-absorption effects and 

Table 3. Relative percentages of different sulfur chemical forms in Type I and Type II kerogens

Kerogen (Type) Sulfur Sulfide Thiophene Sulfoxide Sulfonate Sulfate

IN limestone (II) 29 2 59 2 9 <1

Bakken (II) 11 8 70 2 0 7

Woodford (II) 19 9 71 0 0 0

GR-1 (I) 9 22 39 8 9 11

GR-2 (I) 14 23 39 12 3 9

GR-3 (I) 31 4 22 7 11 24

Table 4. Relative percentages of different sulfur chemical forms found in kerogens and bitumens extracted 
from oil shales

Depth (ft) Pyrite Elemental Sulfide Thiophene Sulfoxide Sulfone Sulfate

Kerogen 1011 9 18 7 18 2 16 30

1977 19 27 0 20 3 9 21

2101 26 34 1 17 1 7 14

2101 19 24 0 21 4 10 21

Bitumen 1011 1 2 0 17 68 11 1

1977 3 0 0 24 57 15 0

2101 0 0 3 17 61 10 8

2101 0 0 6 18 61 7 8
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distorted data (Pomerantz, 2014), just as in the previous batch. Figure 15 is a plot of the spectra of these 
kerogens. Here, only one of the kerogens showed a very small amount (~3%) of sulfoxides, which falls 
well within the error bar of 5%, but neither of the other two did. In one of these samples the signature 
sulfate peak at around 2482 eV shows up prominently. It is clear that regardless of the total sulfur content 
and the occurrence of sulfates in kerogens, the sulfoxide content can be unaffected. The evidence of pyrite 
and sulfate in these samples is in part due to the presence of acid resistance minerals, as seen before.

Sulfur XANES studies in coal (Huffman, 1991) reveal yet again that the sulfur chemistry mimics 
the carbon chemistry as coals undergo geochemical transformation. More mature coals have a larger 

Figure 14. Sulfur XANES spectra of kerogen and bitumen samples extracted from oil shales at different 
depths; one of the major differences between the kerogen and the bitumen spectra is that the bitumens 
show a large sulfoxide signature. 
(Pomerantz, 2014).
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thiophenic/sulfidic ratios than less mature coals, supporting the fact that more matured coals are more 
aromatic. The sulfide to thiophene ratio ranged from 0 in the higher rank coals to 0.93 in the lower rank 
coals such as lignite. Coals were also found to contain some inorganic sulfur compounds such as pyrite. 
Figure 16 shows a fitted coal spectrum, showing the constituent peaks, each representative of a different 
sulfur chemical structure; the zero of the energy scale is taken at the 1s-3p resonance energy of elemental 
sulfur (Huffman, 1991). Extensive S XANES studies on coal macerals have also been performed. The 
fraction of sulfides is higher in exinites compared to inertinite and vitrinite consistent with the lower 
aromaticity of exinites (Huffman, 1991). However, even though inertinites are more aromatic than vi-
trinites, some inertinites exhibit larger sulfide/thiophene ratios. This could be tied to the high occurrence 
of pyrite in these samples; the labile nature of inorganic sulfides tend to produce larger quantities of 
organic sulfides in these samples. Coals also show varying degrees of sulfoxides, sulfones, and sulfates.

Nitrogen XANES studies have been conducted on different types of fossil fuel materials, such as 
asphaltenes (Mitra-Kirtley, 1993), kerogens and bitumens (Mitra-Kirtley, 1993), and coals (Mullins, 
1993). An overview of nitrogen XANES work on carbonaceous materials has been done (Sheu, 1995). 
Unlike in the sulfur case, the resonances in the nitrogen XANES spectra must be attributed to transi-
tions between molecular orbitals, viz. 1s→π*, and 1s→σ*. The 1s→π* transitions are the signatures of 
the aromatic moieties, while 1s→σ* transitions are prominent in the saturated structures. The pyridine, 
pyrrole, and aromatic amine signature resonances are well separated, again facilitating the identification 
and quantification of different nitrogen structures in a complex sample. Even though the nitrogen in 
pyridine and in pyrrole has the same formal oxidation state, the lone pair of electrons on the pyridinic 
nitrogen is in an sp2 orbital and not involved in the aromatic bonding. This localization of the lone pair 
of electrons, in addition to the high electronegativity of nitrogen, results in a partial negative charge on 

Figure 15. Sulfur XANES of three kerogens with large sulfur content; none of the kerogens show any 
sulfoxide content. Presence of pyrite and sulfate is in part due to the presence of acid resistant minerals.
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the nitrogen in the pyridine. In contrast, the lone pair of nitrogen electrons in pyrrole are both involved 
in the aromatic π-bonding, thus leading to loss of electron density at the nitrogen site. The nitrogen 
pyrrole hydrogen is acid, and the 1s→π* transition is blue shifted by several eV compared to pyridine.

Figure 17 shows the nitrogen XANES plot of several nitrogen model compounds. In all the samples 
studied, nitrogen is found to be present in organic forms. In the asphaltenes, virtually all of the nitrogen 
is found to be aromatic, with pyrrolic nitrogen forms being the most dominant (Mitra-Kirtley, 1993). 
Figure 18 shows the nitrogen spectra of several asphaltenes. As evident in the raw data, it was found 
that the pyridinic content in these samples varied significantly, and there were, at most, little quantities 
of saturated amines. Studies of kerogens and bitumens showed that again, nitrogen exists mostly in aro-
matic forms in these samples, dominated by pyrrolic forms were more dominant than pyridinic forms. At 
most, small fractions of aromatic amines are indicated. A few instances of samples containing metallic 
porphyrin and saturated amine were detected analyzed. The porphyrins contain ½ pyrrolic signatures 
and ½ pyrridinc signatures; it is not the number of atoms in the aromatic ring but rather the disposition 
of the nitrogen lone pair that determines the type of 1s→π* resonance. The asphaltenes did not show 
presence of any pyridone, possibly due to transformation of pyridone to pyridine during extensive matu-
ration leading to the formation of asphaltenes. Eight Argonne coals, ranging in rank from anthracite to 
lignite were also studied for nitrogen chemical speciation using XANES. Pyrroles, followed by pyridines 
again dominated the samples. The ratio of pyridone to pyridine decreased with higher rank, consistent 
with the fact that increased maturation drives away oxygenated molecules. The results did not show any 
atmospheric oxidation, as these samples were pristine, and not exposed to the atmosphere.

Figure 16. A typical fitted sulfur K-edge XANES spectrum of a coal; the zero of energy is at the 1s-3p 
resonance energy (continuum excitation) of elemental sulfur. The zero of energy is at the sulfur K-edge.
(Huffman, 1991).
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Figure 17. Nitrogen XANES spectra of several model compounds
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CONCLUSION

The formation of carbonaceous materials such as petroleum source rocks, oils, oil extracts and coals 
over geological time is very complex; nevertheless significant advances are being made understanding 
the corresponding chemistry. Detailing the chemistry of the heteroatoms sulfur and nitrogen in these 
materials acts as powerful probes for understanding the intricate geochemical processes that lead to 
their development. Heteroatoms are also important in the refining and utilization of these energy re-
sources, and often times these heteroatoms are impediments to their effective utilization. Knowledge of 
the chemical structures of the heteroatoms lead to more effective utilization of these resources. For all 
these reasons and more, speciation of heteroatom chemistry in these energy resources is very important. 
XANES methodology is a direct, non-destructive, fast and a robust method of deciphering the sulfur 
and nitrogen chemistry in fossil fuel materials. Here, an overall account of sulfur and nitrogen K-edge 
XANES results from different kerogens, bitumens, petroleum asphaltenes, is presented along with S 
XANES results for coals.

As fossil fuel resources mature with geological time, carbon tends to become more aromatized; this 
is observed in deposits that are both marine, which mostly end up in petroleum generation, and terres-
trial, which are mostly responsible for coal formation. Sulfur chemistry is also found to follow the same 

Figure 18. Typical XANES plots of petroleum asphaltenes
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path. Sulfur in more matured samples tend to be more aromatic following the carbon chemistry. Specific 
macerals also show trends, exinite, with its high saturated carbon content, exhibits a high fraction of 
(reduced) sulfide sulfur, again following the carbon chemistry.

Sulfur in kerogens has a distinct difference from that found in bitumens. Unlike kerogen, bitumen 
exhibits very high sulfoxide content, the origin of this difference is still under investigation. Possibly, 
this observation is due to a process where the weaker carbon-sulfur links in kerogens are broken during 
extensive thermal maturation, producing the reactive sulfur radicals in bitumens that find and react with 
oxygen. The complex macromolecules of kerogens are substituted by smaller molecules in bitumens, 
resulting in bitumens having a smaller molecular weight than kerogens. Some amounts of pyrite and 
sulfate are evident in some kerogens, due to the presence of acid resistive minerals in the deposits. Within 
the kerogens, Type I show less thiophenic/aliphaltic sulfur than Type II, consistent with the fact that 
Type I is less aromatic than Type II.

Asphaltenes are important fraction of crude oils, and have been the topic of numerous studies in 
recent years. As with the other fossil fuel materials discussed here, they are difficult to study because of 
their complex structures. XANES analysis has been successfully employed to probe into their sulfur and 
nitrogen chemical structures. Sulfur in petroleum asphaltenes generally have a similar chemistry regard-
less of the origin and the depth of the samples. Asphaltenes tend to contain large amounts of thiophene, 
followed by sulfide and elemental sulfur, and (usually) small amounts of oxidized sulfur is also present. 
Asphaltenes belonging to a connected and equilibrated reservoir tend to have almost exactly the same 
sulfur structures. Furthermore, asphaltenes, resins, and oil fractions extracted from the same crude oil 
have similar sulfur chemistry, even though the chemical nature of the fractions is quite different. Nitro-
gen in asphaltenes also show similar chemistry; pyrrolic nitrogen is generally dominant over pyridinic.

Sulfur and nitrogen studies on coals by XANES analysis also reaffirm the increased aromaticity of 
the coals with increased maturation. Sulfur in more matured coal is found to be rich in thiophenic content 
compared to less geochemically matured counterparts. Nitrogen in higher rank coals showed smaller 
pyridone to pyridine ratios than in low maturity coals.
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ABSTRACT

Today, SO2 pollution has become a glaring problem especially in India and China. Thus, desulfurization 
of fossil fuels has become an essential area of research. Advances in experimental sciences to explain the 
desulfurization mechanism will be beneficial to the rational designing of more effective HDS catalysts. 
Several reaction pathways involving desulfurization of thiophene have been compiled. Also, a repertoire 
of the desulfurization pathways encountered in the author’s laboratory has been provided. The results 
will not only throw light on some unusual mechanisms of desulfurization process but also break the 
popular belief that desulfurization is limited to C-S bond cleavage only. The reactions may also serve 
as a basis for engineering optimal catalysts for future applications.

INTRODUCTION

The air that we breathe is precious and life giving. However, we have taken it for granted for too long. 
In the worldwide zeitgeist of rapid economic growth and technological advancements, we have gambled 
away our very right to breathe fresh air. Since the beginning of the industrial revolution, widespread 
combustion of fossil fuels by humans has been adding a noxious cocktail of fumes into the atmosphere. 
Now, as the industrial setups encroach in our residential and agricultural areas, adverse effects on our 
environment and health have become evident. The world and specially the developing nations such as 
India, China and south-east Asia are shrouded in a blanket of smog, struggling for a breath of clean air. 
A state of emergency was declared during the Malaysian haze of 2005 when pollution levels (Air Qual-
ity Index (AQI)) sky rocketed beyond the permissible 500 mark. In 2013, the New York Times ran an 
article on Beijing’s air quality describing it as “Crazy Bad”. A recent report showed that a third of the 
urban population in India lives in cities where the PM10 (particulate matter less than 10µm in diameter) 
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levels were found to be “critical”. The gravity of the situation can be judged by the number of lives lost 
and the irreparable damage caused to our ecosystem. In 2008, nearly 3000 people died pre-mature deaths 
in Canada due to acute short-term exposure to air-pollutants. These excerpts distinctly reverberate the 
fact that air pollution, and particularly SO2 pollution is an environmental crisis that demands immediate 
attention.

SOx and sulfate aerosols are some of the major air pollutants responsible for incidents of smog. The 
Indo-Gangetic planes are especially vulnerable to a marked increase in the levels of black carbon and 
sulfate aerosols every year before monsoons, which adversely affect agriculture in this fertile area (Ra-
manathan et al., 2005; Ramana et al., 2010). A recent study by Burney and Ramanathan, 2014 showed 
that short-lived climate pollutants (SLCPs) such as black carbon, surface ozone and sulfate aerosols 
were responsible for about 36% decline in wheat production in India in 2010. If recent reports are to be 
believed, SO2 emissions in India escalated by over 40% during 2005-2010 (Klimont, Smith, & Cofala, 
2013). While China continues to be the world’s largest SO2 emitter, these findings catapult India to a 
close second.

SO2 is released into the atmosphere during volcanic eruptions and wild fires (natural sources) and 
by burning of fossil fuels at large stationary combustion units (anthropogenic sources). Fossil fuels’ 
combustion in coal-fired electric power and transportation sectors account for maximum anthropogenic 
SO2 emissions. Coal burning electric utilities are liable for 73% of the total SO2 emissions in US. (See 
US-EPA) The amount of sulfur in coal varies from less than 1% -over 12% (Calkins, 1994). SO2 gets 
oxidized to sulphuric acid in the atmosphere which in turn gets deposited as “acid rain” (Ehhalt, 1999). 
Precipitation can be many times more acidic than natural rain with a pH of 3 or less and poses serious 
environmental and health hazards. SO2 is also the prime precursor for anthropogenic aerosols. Sulfate 
aerosols are formed in the atmosphere by nucleation of gas-phase species such as SO2 and H2SO4. In 
a seminal paper Ward, 2009 shows that scientists may have, until now, underestimated the role of SO2 
in bringing about the climate change. His work, which spans the effect of volcanoes on climate change 
over the past 46,000 years, shows that each of the episodes of rapid global warming were concomitant 
with episodes of extreme volcanism (a large number of volcanic eruptions within a short time span). 
The bulk of the paper is flowing lava of evidence arguing the role of SO2, opposed to CO2, as the key 
initiator of global warming and climate change.

By the turn of the 20th century, anthropogenic SO2 influx had reached 150Mt of SO2 per annum. 
(Smith, Conception, Andres, and Lurz, 2004; Smith, Pitcher, and Wigley, 2001) Eliminating acid rain 
and curbing sulfur emissions from fossil-fuelled power plants has since then become an environmental 
goal. The US EPA Clean Air Act had made it mandatory to keep the S levels in gasoline and diesel 
within 30 to 50 ppm since the year 2005. The permissible limit was further reduced in 2009 to 10 ppm 
-15 ppm. (Brunet, Mey, Pérot, Bouchy, and Diehl, 2005) For fuel cells, using gasoline as feed the limit 
is even lower at 1ppmw. (Herna´ndez-Maldonado and Yang, 2004) Stricter environmental regulations 
to limit the sulfur content in coal, gasoline and diesel are steering us into a world of “zero” sulfur/sul-
fur free fuels. Traces of sulfur in diesel fuels act as poison for the oxidation catalysts in the emission 
control system thus reducing their efficiency to oxidize harmful carbon monoxide and hydrocarbons 
(Corro, 2002). In addition, rapidly declining resources of crude sweet oil makes it even more crucial to 
tackle the problem of sulfur removal from fuels. A commercially viable desulfurization process must 
be a catalytic process with a low energy pathway that involves cheaper and reusable catalyst. In order to 
develop efficient low energy pathways for fuel desulfurization, it is essential to master the underlying 
science. The reactions of transition metal and organometallic complexes in solution are often reproduced 
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on the catalyst surface, and a detailed study of the mechanism can prove to be fruitful in the synthesis 
of industrial catalysts. This chapter discusses some reported desulfurization reactions and their possible 
mechanistic pathways. The goal of this work is to analyse these reactions for their applicability in the 
ongoing research for S-free fuels and to serve as a guide to investigators exploring potential catalysts. The 
authors feel that a breakthrough in this field is possible by extensive study of such reactions which can 
provide new routes to desulfurization, which, in future may be mimicked to develop a catalytic process.

CONVENTIONAL HYDRODESULFURIZTION (HDS)

HDS is one of the most extensively studied and documented reaction, with the first reports dating back to 
1970s. Nevertheless, several aspects of this process such as reaction mechanisms, structure of the active 
sites etc. remain debatable. Without entering into details which are beyond the scope of this chapter, a 
brief description of the hydrodesulfurization process will be provided. In the sections that follow, we 
will examine:

1.  A brief outline of the hydrodesulfurization process;
2.  Limitations of HDS;
3.  Oxidative desulfurization and biodesulfurization as non-conventional desulfurization processes.

The Reaction-Overview

Conversion of organosulfur compounds to H2S and sulfur free hydrocarbons in presence of H2, over a 
heterogeneous catalyst, lies at the heart of hydrodesulfurization (HDS) process. At present, hydrotreat-
ing is a key step employed in industrial processes for desulfurization of fossil fuels. Sulfur is present 
most abundantly in the form of thiols, thiophenes (THs), benzothiophenes (BTs) and dibenzothiophenes 
(DBTs). Some of the organosulfur compounds which are important in hydrotreating process are listed 
in Table 1. Desulfurization is carried out by metal catalysed hydrogenolysis/hydrogenation (or both) of 
such organosulfur compounds to yield low-sulfur/sulfur free hydrocarbons and H2S. H2S is disposed of 
by oxidation to elemental sulfur by the Claus process. (Austin, 1984) Catalytic HDS is carried out at 
elevated temperatures (300-350 °C) and high hydrogen partial pressure 150−1000 psi.

Depending on their structure, the organosulfur compounds differ greatly in their reactivity, though 
some generalizations can be drawn based on the literature.

1.  The reactivity of thiols, sulfides and disulfides is significantly greater than those of thiophenic 
compounds. In fact, under classic HDS conditions, the aliphatic and alicyclic compounds are con-
veniently eliminated (Zaczepinski, 1996).

2.  Thiophenes and dibenzothiophenes, especially 4,6-dimethyldibenzothiophene are not easily reduced 
to H2S under similar reaction conditions. Kinetic studies by Nag and co-workers (Nag, Sapre, 
Broderick, and Gates, 1979) have shown that the order of reactivity is dependent on the number 
of rings in the substrate molecule (Table 2). For example, among thiophene, benzothiophene and 
dibenzothiophene, the order of reactivity was found to be as follows- thiophene > benzothiophene 
> dibenzothiophene (DBT).
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3.  The reactivity of alkyl substituted thiophenes and dibenzothiophenes are less than their unsubsti-
tuted counterparts. Among the family of thiophenes, the reactivity varies as follows- thiophene > 
2-methylthiophene > 2,5-dimethylthiophene (Satterfield, Modell, and Wilkens, 1980).

4.  Rate equations determined for different dibenzothiophenes indicates that the reactivity is effected 
by the number as well as the position of the alkyl substituents (Table 3). Following trend was 
observed: 2,8-dimethyldibenzothiophene (2,8-DMDBT) > dibenzothiophene (DBT) > 4-methyl-
dibenzothiophene (4-MDBT) > 4,6-dimethyldibenzothiophene (4,6-DMDBT).

Table 1. Some important organosulfur compounds encountered in HDS reactions

Table 2. Reactivity trends in some typical organosulfur compounds

(Nag et al., 1979).
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The presence of methyl groups at 4- and 6- positions sterically hinders the adsorption of these mol-
ecules on the catalyst surface. Experimental evidence to support this claim was provided by Ma et al. 
(Ma, Kim, and Song, 2003) who found that the adsorption selectivity of various dibenzothiophenes 
increased in the order:

4,6-DMDBT < 4-MDBT < DBT. These findings clearly indicate that the presence of alkyl substitu-
ents at 4- and 6- position hinders the interaction between the S atom and the active site of the catalyst.

The Reaction Mechanism

The mechanism for hydrodesulfurization of thiophenic compounds has been reviewed by a large number 
of research groups and the general conclusion drawn is that the reaction proceeds via two competing 
parallel pathways:

1.  Direct desulfurization (DDS) pathway which involves the hydrogenolysis of C-S bond.
2.  Hydrogenation (HYD) pathway involving tetra- or hexa-hydro intermediates followed by subsequent 

desulfurization.

The type of route followed depends on the nature of substrate as well as the chemical composition 
of the catalyst employed. Figure 1 shows the desulfurization of thiophene as proposed by Topsoe and 
Gates. (Topsoe, Clausen, and Massoth, 1996; Gates, Katzer, and Schuit, 1979)

Desulfurization of DBT and 4,6-DMDBT also proceeds through two parallels pathways: Direct desul-
furization (DDS) and hydrogenation (HYD). Houella and coworkers (Houalla et al., 1980; Houalla, Nag, 
Sapre, Borderick, and Gates, 1978) proposed a reaction network for desulfurization of dibenzothiophene 
on Co/Mo/Al2O3 catalyst consisting of these two competing pathways. (Figure 2)

The direct desulfurization (DDS) of 4,6-DMDBT leads to the formation of 3,3’-dimethylbiphenyl 
by cleavage of C-S bond. Hydrogenation (HYD) proceeds via saturation of an aromatic ring followed 

Table 3. Reactivity trends in some typical organosulfur compounds showing the effect of alkyl group 
substitution

* Houalla et al., 1980; ** Whitehurst, Isoda, and Mochida, 1998.
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by desulfurization of the hydrogenated intermediates to yield 3.3’-dimethylcyclohexylbenzene and 
3,3’-dimethyl-bicyclohexyl (Figure 3) (Bataille et al., 2000; Li, Wang, Egorova, and Prins,2007; Kim, 
Ma, Song, Lee, and Oyama, 2005).

Kinetic studies on 4-MDBT and 4,6-DMDBT have shown that the relative rate of hydrogenolysis 
vs. hydrogenation is less in the case of former (Houalla et al., 1980; Kilanowski et al., 1978; Kabe, 
Ishihara, and Tajima, 1992; Kabe, Ishihara, and Zhang, 1993). While dibenzothiophene is desulfurized 
predominantly by the hydrogenolysis pathway, desulfurization of 4,6-DMDBMT preferentially follows 
the hydrogenation pathway. Hydrogenation is believed to relieve some of the steric hindrance which 
makes subsequent sulfur removal easier (Kabe et al., 1993; Isoda, Nagao, Ma, Korai, and Mochida, 
1996). The resultant cyclohexyl ring can rotate and adopt such conformations in which the methyl groups 
are directed away from the sulfur atom, thus increasing the approachability of the S atom to the active 
site. Computer modeling studies have further revealed that desulfurization of 1,2,3,4,5,6,-hexahydro-
4,6-DMDBT is faster that for 4,6-DMDBT. (Landau, Berger, and Herskowitz, 1996) Ni/Mo/Al2O3 
catalysts are better hydrogenation catalysts as compared to Co/Mo/Al2O3which have higher activity in 
hydrogenolysis reactions. Thus, it is expected that Ni/Mo/Al2O3 would turn out to be a better catalyst 
for the conversion of 4,6-DMDBT. Indeed, Mochida and coworkers compared the reaction pathways on 
the two catalysts and found the HDS activity of Ni/Mo/Al2O3 to be higher for 4,6-DMBMT (Isoda et 
al., 1996; Ma, Sakanishi, Isoda, and Mochida, 1995).

Three types of metal thiophene complexes have been reported on the basis of their mode of bonding 
to the metal: C-bonded, S-bonded and π-bonded. Some of the earliest theories in this field are those 
given by Lipsch and Schuit who suggested an η1-S type of coordination (Figure 4a) (Lipsch and Schuit, 
1969). Later, Kwart et al. proposed a model according to which thiophene binds to the catalyst surface 
through a C=C bond in an η2 coordination mode. (Kwart, Schuit, and Gates, 1980) Partial hydrogenation 
of thiophene by surface SH groups weakens the C-S bond leading its cleavage through a β- elimination 
(Figure 4b). It was shown by Zaera et al. (Zaera, Kollin, and Gland, 1987) that thiophene binds on the 
Mo(100) surface in both η1-S and η5 manner.

Figure 1. Popularly accepted pathways for desulfurization of thiophene
Adapted from the work of Topsoe et al., 1996.
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The Catalysts

Transition metal sulfide (TMS) catalysts are the cornerstone of hydroprocessing industry due to the 
innate stability of their catalytically active phases. Since the beginning of the 20th century, TMS have 
played an important role in fuel upgradation. Ni-or Co- promoted MoS2 and WS2 on Al2O3 support are 
the most widely used catalyst systems in conventional HDS. (Whitehurst et al., 1998; Schuit and Gates, 
1973; Topsøe and Clausen, 1984; Prins, de Beer, and Somorjai, 1989; Topsøe, Clausen, and Massoth, 
1996; Iwata et al., 1998; Alonso and Chianelli, 2004; Song, 2003; Brunet, Mey, Pe´rot, Bouchy, and 
Diehl, 2005). Mössbauer emission spectroscopy (MES) and EXAFS techniques have enabled scientists 
to elucidate the complex structures and in situ activities of the sulfided Mo/Al2O3 catalysts. Various 

Figure 2. Reaction network for desulfurization of dibenzothiophene; catalyst used: Co-Mo/γ-Al2O3; k 
values represent pseudo first order rate constants
Adapted from Houalla et al., 1978.
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research groups have attempted to characterize the Co/ Mo- Al2O3 catalysts. The Co(Ni)-Mo-S structure 
has been unequivocally recognized as the active structure in the above catalysts. The popular adage “Co-
Mo-S” was first used by Topsøe et al., more than 30 years ago when describing the type of Co phases in 
a series of sulfided Co/Mo- Al2O3 catalysts. (Wivel, Candia, Clausen, Mørup and Topsøe, 1981) Three 

Figure 3. Course of reaction for the desulfurization of 4,6-DMDBT
Reproduced from Bataille et al., 2000 and Li et al., 2007.
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types of Co species were identified in the catalyst, two being the well-known structures- Co:A12O3 and 
Co9S8 and a third Co-Mo-S phase. In a study involving HDS of thiophene using different Co/Mo- Al2O3 
catalysts, Alstrup et al., 1982, established the catalytic significance of “Co-Mo-S” phase. For each series 
of catalysts, the activity was found to be directly proportional to the amount of Co present in the form 

Figure 4. Schematic representation of η1 (a) and η2 (b) mode of bonding of thiophene
Adapted from Dong, Duckett, Ohman and Jones, 1991.
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of “Co-Mo-S”. (Alstrup, Chorkendoff, Candia, Clausen, and Topsøe, 1982). Several models have been 
proposed to explain the morphology of MoS2 catalysts (supported and unsupported) and role of Co- and 
Ni- promoters in HDS catalysis.

The “Edge Decoration Model”

Structure is composed of MoS2 crystallites in which Co atoms occupying the edge position (Topsøe et 
al., 1984; Wivel et al., 1981; N.-Y. Topsøe and H. Topsøe, 1983; Byskov, Hammer, Nørskov, Clausen, 
and Topsøe, 1997; Smith and Johnson, 1994; Lauritsen, 2001; Miller, Marshall, and Kropf, 2001). The 
MoS2 crystals are arranged in layers and are anisotropic in nature. The basal planes are composed of 
coordinately saturated S atoms and are thus, chemically inert and the active sites are confined to the 
edge planes. (Sorensen, Clausen, Candia and Topsøe, 1985; Helveg et al., 2000)

The “Rim-Edge” Model

Daage and Chianelli, 1994 developed this model to derive a correlation between the layered structure 
and the selectivity of MoS2 catalysts for hydrogenolysis vs. hydrogenation reaction. They identified two 
different sites for catalysis, the rim sites and the edge sites. According to them, the MoS2 crystallites 
could be imagined as a stack of n number of discs, each having diameter d. Located at the top and bot-
tom layers are the “edge” sites which catalysed the hydrogenation of DBT as well as the final C-S bond 
cleavage to give cyclohexylbenzene. The sites forming the edges of the interior layers (the rim sites) 
were found to be active, exclusively, for the direct desulfurization of dibenzothiophene i.e. C-S bond 
cleavage. Selectivity, S (S=kTHDBT/kBP) is linearly related to 1/h where h is the stacking height. The rim 
edge model was propounded for unsupported MoS2 catalysts. Synchrotron X-ray scattering technique 
was used to determine the morphology of MoS2 in Co-promoted Mo/Al2O3 catalysts. The results show 
while Co promoters increase the stacking height of MoS2 phase, the very conditions of HDS, such as 
high H2 pressure (Peng et al., 2001), favour the “destocking” of layers. MoS2 was found to be present in 
the catalyst, primarily, in single layered form and mostly “rim” sites were present on supported catalysts 
(Berhault, Dela Rosa, Mehta, Yacaman, and Chanelli, 2008).

It is now well known that the activity of the catalysts emanates from the MoS2 phase (Topsøe, Clau-
sen, Topsøe, and Pederson, 1986). Studies show that activity of various TMS for HDS of DBT exhibit a 
typical “volcano” plot depending on their position in the periodic table. (Pecoraro and Chianelli, 1981). 
Sulfides of Ru, Rh, Os and Ir such as Rh2S3, RuS2, OsS2, and IrS2 showed the highest activity. Chianelli 
et al. were the first to relate these findings with the metal-sulfur bond strength, the heat of formation of 
the metal sulfides and the number of d- electrons in the highest occupied molecular orbital (HOMO) 
of the transition metals. (Harris and Chianelli, 1984) A comprehensive review on HDS promoters has 
been provided by Prins, Somorjai and coworkers (Prins et al., 1989) An important phenomenon ob-
served in bimetallic sulfide catalysts is the synergistic or promotion effect. It is measured as the ratio of 
the activity of the bimetallic catalyst to that of the corresponding Mo catalyst. (Kaluža, Gulková, and 
Zdražil, 2007) Harris and Chianelli proposed that the promoter atoms increased the electron density on 
Mo atoms. (Topsøe et al., 1986) Donation of electrons from Co to Mo weakens the metal-sulfur bond 
which amplified their HDS activity (Harris and Chianelli, 1986; Chianelli et al., 2002). Owing to its 
thermal and chemical stability, γ-Al2O3 is the most commonly used support in industries. (Xia et al., 
2003) The morphology of alumina is crucial in determining its physicochemical properties which in 
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turn influence the catalytic behaviour of the catalysts. Surface acidity of alumina (Chen et al., 2013) is 
the one of the most important features which controls the dispersion of Co-Mo phases and affects the 
metal-support interaction.

Co-or Ni/MoS2 catalysts are highly efficient in removing the aliphatic organosulfur species, however, 
removal of DBT and its alkyl substituents are extremely problematic. The MoS2 crystals have a layered 
structure and are anisotropic in nature. As a result, the metal atoms are exposed solely on the edge planes, 
leading to a low active site density. (Ghenciu, 2002) Thus, researchers are turning attention to new cata-
lytic systems wherein the metal atoms are exposed on all crystallographic faces (isotropic structures). 
Transition metal phosphates such as Ni2P, adopt isotropic structures and may replace the conventional 
TMS in the future due to their enhanced HDS activity (Prins and Bussell, 2012; Savithra et al., 2013). 
Addition of phosphorus (Poulet, Hubaut, Kasztelan, and Grimblot, 1991; Iwamoto and Grimblot, 2000; 
Sun, Nicosia, and Prins, 2003; Ramirez, Castano, Leclercq, and Lopez Agudo, 1992) and chelating agents 
(Sun et al., 2003) have shown to improve the catalytic activity of the Co-Mo-S system. Glasson et al. 
found that incorporation of carbon in CoMo catalysts lead to a positive increase in its HDS activity for 
thiophene (Glasson, Geantet, Lacroix, Labruyere, and Dufresne, ̀2002). Recently, noble-metal-supported 
catalysts have emerged as ideal candidates (Lin and Song, 1996; Song and Schmitz, 1997; Tang, Yin, 
Wang, Ji, and Xiao, 2007) since they are much better hydrogenation catalysts than conventional TMS. 
Hydrogenation, and successive desulfurization is a useful approach in removal of hindered sulfur com-
pounds. Supports other than alumina, such as carbon (Hensen et al., 2000; Farag, Whitehurst, Skanishi 
and Mochida, 1999; Ledoux, Michaux, Agostini, Panissod, 1986), aluminosilicates (Yue, Sun, and Gao, 
1997) mixed oxide supports formed by TiO2 (Kaluža et al., 2007; Ramı´rez et al., 1989; Okamoto, 1997) 
and zeolites (Solı´s, Agudo, Ramı´rez, and Klimova, 2006;) are also being explored to study their effect 
on the desulfurization activity. A new group of catalysts based on Mo-W-Ni, more popularly called the 
NEBULA are being touted as some of the most efficient next generation catalysts for production of ultra 
low sulfur diesel. These are known to reduce the sulfur content to 5 ppmw (Chitnis,Novak, Ortelli, and 
Lewis, 2005; Kerby, Degnan, Marler, and Beck, 2005).

Limitations

Till date, HDS technologies were considered efficient enough for abatement of SOx emissions from 
gasoline and diesel fuels. HDS and other adjunct technologies are commercially proven technologies, 
relatively inexpensive and robust. However, with the progressively increasing demand for Ultra-Low 
Sulfur diesel, the need for alternative solutions is beginning to be felt. In meeting the worldwide de-
mand for ultra-low or zero level sulfur, the efficiency of the hydrotreating process becomes a key issue. 
As of now, the hydrodesulfurization process cannot produce such zero level sulfur fuels. 4-MDBT and 
4,6-DMDBT have been found to be some of the most refractory sulfur compounds present in feedstock 
which are the major bottle necks in reducing the sulfur content of fossil fuels. The resistance is primarily 
attributed to the stability of the ring structure as well as the steric inhibition due to the substituents at 
4- and 6- positions. There are several other limitations with HDS. It is a high temperature, high pressure 
process. H2S produced during desulfurization, inhibits desulfurization of all organosulfur compounds. 
Both direct desulfurizations as well as the hydrogenation pathways are inhibited; however, the direct 
desulfurization pathway is inhibited to a much greater extent. (Egorova et al., 2004; Girgis and Gates, 
1991) Another challenge when meeting extremely low S content is the selective hydrogenation of or-
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ganosulfur compounds while maintaining a high octane number of fuels. (Ito and Rob van Veen, 2006) 
Thus, the classical hydrotreating processes are bound to become extremely expensive in order to meet 
the future legal specifications.

Unconventional Desulfurization Techniques

Lately, non-HDS based technologies have gained popularity among researchers (Babich and Moulijn, 
2003). Two interesting alternatives to HDS, oxidative desulfurization (ODS) and biodesulfuriztion (BDS) 
will be discussed in this section. Details of oxidative desulfurization and biodesulfurization have been 
succinctly described by Ito et al., 2006 and Srivastava, 2012. Here, we will only briefly touch the topics 
focusing on their advantages over hydrodesulfurization.

Oxidative Desulfurization

It involves the conversion of organosulfur compounds into corresponding sulfones and sulfoxides which 
are then removed from the stream by solvent extraction, adsorption and distillation (Tam, Kittrell, and 
Eldridge, 1990; Aida, Yamamoto, and Sakata, 2000; Dolbear and Skov, 2000). The polarity of sulfones is 
relatively higher than that of the parent molecules which makes their removal easier. ODS offers several 
advantages over HDS. ODS is operated under mild conditions (about 50 °C / atmospheric pressure) and 
in the absence of expensive H2 (Ali, Al-Maliki, El-Ali, Martinie, and Siddiqui, 2006). The most attrac-
tive feature of ODS, is, however, its relatively higher efficiency in converting DBTs, which are among 
the most recalcitrant compounds towards HDS. The reactivity trends are opposite to those observed for 
HDS. Thus, where the reactivity of a compound towards HDS decreased with the increase in number 
of aromatic rings, in ODS, electrophilic attack on S atom is favored by the presence of electron rich 
aromatic rings. Additionally, electron donating alkyl groups further increase the electron density on S 
atom, making it susceptible to electrophilic attack. Thus, the reactivity of molecules like 4,6-DMBMT 
is higher than dibenzothiophene for ODS. Some common oxidizing agents used are inorganic and or-
ganic peroxyacids, peroxysalts, catalyzed hydro-peroxides, NO2, tert-butyl-hydroperoxide, etc. (Babich 
et al., 2003; Ali et al., 2006; Vasile, Francois and Jacques, 2000; R. T. Yang, F. H. Yang, Takahashi, 
and Maldonado, 2002; Zaykina, Zaykin, Mamaonava, and Nadirov, 2002; H. Mei, B. W. Mei, and Yen, 
2003; Yu, Lu, Chen, and Zhu, 2005; Lu et al., 2006; Yang, Li, Yuan, Shen, and Qi, 2007). Oxidative 
desulfurization of dibenzothiophene can be simply represented as shown in Figure 5. Notably, hydrogen 
is not used in this reaction.

Biodesulfurization

A much more greener and environmental friendly take on desulfurization is the biodesulfurization. 
Microbes and bacteria using dibenzothiophenes as S source which metabolize (oxidize) them into 
water soluble compounds are abounding in nature. Examples include Pseudomonas, Arthrobacter, and 
Rhodococcus spp. Pseudomonas and Rhodococcus are the most widely researched species for oxidative 
desulfurization. (Grossman, Siskin, Ferrughelli, Lee, and Senius, 1999; Konishi, Yoshitaka, Kouichi 
and Suzuki, 1999) Soleimani et al.(Soleimani, Bassi, and Margaritis, 2007) have reviewed the BDS of 
refractory organic sulfur compounds in fossil fuels. Recently, it was discovered that a thermophilic bac-
terium Mycobacterium goodii X7B, has exceptional desulfurization characteristics. Li et al have shown 
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that the bacteria brought about an approximate 99% reduction in sulfur content of dibenzothiophene in 
just 24 hrs. (Li, Zhang, Feng, Cai, and Ping, 2007). The total sulfur content of the crude oil was brought 
down from 3600 ppm to 1478 ppm in 72 hrs. Studies have demonstrated that BDS of dibenzothiophenes 
usually occurs along two pathways:

1.  The Kodama Pathway (Soleimani et al., 2007; McFarland et al., 1998; Gupta, Roychoudhury, 
2005).

2.  The 4S Pathway (Monticello, Bakker and Finnerty, 1985).

Though extremely advantageous, none of the above processes are completely devoid of practical or 
economic problems. Oxidative desulfurization is associated with high cost of solvent extraction, frequent 
catalyst deactivation and low efficiency of oil recovery. (Zhang, Yu, Wang, 2009) Some major deter-
rents in commercialization of biodesulfurization is the slow rate of desulfurization (Goubin, Huaiying, 
Weiquan, Jianmin, and Huizhou, 2005), inhibition in bacterial growth and a lower efficiency (Rath and 
Upadhyay, 2014). The challenges and limitations linked with engineering advanced catalysts have been 
reviewed by Bej and co-workers (Bej, 2004; Bej, Maity, and Turaga, 2004).

SCOPE AND SIGNIFICANCE

Inspite of the rapid development of several non-hydrotreating technologies in the past years, HDS contin-
ues to remain a key process in every refinery. However, the chemistry of catalytic hydrodesulfurization 
still remains a subject of debate. Some pertinent questions which need to be answered revolve around 
the nature of bonding of thiophenes and dibenzothiophenes at the catalyst surface and the C-S bond 
cleavage step. Benothiophenes and dibenzothiophenes represent a class of compounds which are most 
averse to desulfurization. Mechanistic insights into the desulfurization of these compounds can, hence, 
provide plausible reaction sequence for their activation and desulfurization.

By investigating homogeneous desulfurization reactions, it may become possible to procure some 
insights into the working and improvement of candidate catalysts. Transition metal complexes are excel-

Figure 5. Oxidative desulfurization of Dibenzothiophene into its sulfoxide
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lent stoichiometric reagents to study the desulfurization reactions of thiols, thioethers, thiophene etc. 
The chapter attempts to describe the progressive research over the years in the area of modelling stud-
ies for desulfurization and its mechanism. Features of the desulfurization mechanism which need to be 
addressed include the binding mode to the catalyst and various reaction pathways adopted. The main 
motivation behind writing this chapter was to compile the many stoichiometric reactions which dem-
onstrate desulfurization through diverse reaction pathways. Selected studies and some major landmarks 
have been discussed. One might anticipate that such a study will lead to a better understanding of the 
desulfurization process and its various facets. Many such reactions show striking similarity.

A Review of the Desulfurization Reactions: 
Mechanisms, Models, and New Routes

Sulfur is abstracted from hydrocarbons on the catalyst surface mainly by the cleavage of C-S bond. The 
mechanism behind the scissoring of the C-S bond has fruitfully been studied by Ogilvy, Rauchfuss (Ogilvy, 
Draganjac, Rauchfuss, and Wilson, 1988; Ogilvy, Skaugset, and Rauchfuss, 1989; Feng, Krautscheid, 
Rauchfuss, Skaugset, and Venturelli, 1995), Curtis (Curtis and Druker, 1997; Riaz, Curnow, and Cur-
tis, 1994), Angelici (Chen, Daniels, and Angelici, 1996) and many others. Thiophene being relatively 
simple in structure has predominantly featured as substrate in model studies by Rauchfuss and cowork-
ers. Insertion of metal into the C-S bond possibly labilizes the bond and activates it for desulfurization. 
Homogeneous desulfurization of thiophene and alkyl substituted thiophenes by Fe3(CO)12 gives ferrols 
(1) and thiaferrols (2) (Ogilvy et al., 1988) (Figure 6 a,b). The thiaferroles, Fe2(2-MeC4H3S)(CO)6(3) 
and Fe2(2,5-Me2C4H2S)(CO)6 undergo a facile conversion to corresponding ferroles (4) in refluxing 
benzene solution. Benzothiophene reacts with Fe3(CO)12 yielding bezothiaferrole Fe2(C8H6S)(CO)6 (5) 
in about 50% yield. Hydrogenation of Fe2(C8H6S)(CO)6 generated ethylbenzene (41%) and substituted 
ethylbenzenes along with an insoluble iron containing product (Figure 6c). On the contrary, dibenzo-
thiophene was found to be unreactive under similar conditions. The finding offer conclusive proofs for 
the activation of C-S bond in thiophenic compounds following the insertion of Fe atom.

Reaction of [(η5-C5Me5)Rh(η4-C4Me4S)] (7) (formed by two one electron reduction of [(η5-C5Me5)
Rh(η5-C4Me4S)]2+(6))with Fe3(CO)12 gave (C5Me5)RhC4Me4Fe(CO)3 (8) with elimination of FeS. The 
product is analogous to that obtained in the reaction of thiophene with Fe3(CO)12 (Figure 7) It has been 
invoked that electron transfer leads to a change in the heptacity of the thiophene ligand from η5 to η4. 
Such η5 to η4 transformations can be expected to take place on the HDS catalyst surface as possible route 
in the desulfurization of thiophenes.

Thermal reaction of cyclic thioethers such as thiirane with a cationic thioether complex [(CpMo)2(S2CH2)
(μ-SMe)(μ-SMe2)]

+ (9) results in its desulfurization via the release of free dimethylsulfide and ethylene 
by an intramolecular hydrocarbon elimination (Gabay, Dietz, Bernatis, Rakowski and DuBois, 1993) 
(Figure 8) Similar facile desulfurization reactions have been reported for thietane and 2,5-Dihydrothiohene 
(2,5-DHT) yielding cyclopropane and butadiene as products respectively. The findings are in agreement 
with studies of Roberts and Friend who postulated an identical pathway for the desulfurization of thiirane 
on a Mo(110) surface. (Roberts and Friend, 1987). Thus, the reactions provide a homogeneous model 
for the formation of anionic vacancies on the sulfided Mo(110) surface (Gabay et al., 1993) It has been 
proposed that the S atom of the heterocyclic ring initially binds with one or both the Mo atoms followed 
by the elimination of a hydrocarbon.
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Adams and co-workers (Adams, Pompeo, Wu, and Yamamoto, 1993) showed that partially hydroge-
nated thiophenes are possible intermediates in the desulfurization of thiophenes. They proposed a ring 
opening route for the desulfurization of 2,5-THT on the Mo(110) surface. The mechanism has its roots 
in the transformations on the osmium carbonyl cluster as shown in Figure 9.

Figure 6. Reaction of Thiophenes and Benzothiophenes with Fe3(CO)12
Adapted from the work of Ogilvy et al., 1988.
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Among one of the earliest most extensive studies of the cleavage of C-S bond is that of Druker and 
Curtis, 1995. Electron deficient clusters have been presented as models for HDS studies. He showed 
that the electron deficient Cp’2Mo2Co2S3(CO)4 (10) (Cp’= C5H4Me) mediates the homolytic C-S bond 
cleavage of several organosulfur compounds such as RSH (R= tBu, Ph etc) and thiophene. Curtis and 
Riaz gave the following mechanism for the desulfurization (Figure 10). (Curtis, 1996) This system best 
resembles the heterogenous catalyst Co-Mo-S. They proposed that the apparent “mobility” of the sulfur 
atom on the “cluster surface” was responsible for the formation of transient intermediates with open 
coordination sites for the incoming organosulfur compound.

Discrete metal complexes have proven to be useful in studying the mode of binding of thiophene at 
the catalyst surface and its reactivity. (Angelici, 1990, 1997, 2001;Rauchfuss, 1991; Sánchez-Delgado, 
2002) Both π-bonded metal-thiophene and insertion of metal into the C-S bond have been suggested 
as probable intermediates in the HDS of thiophene. The DDS pathway takes place primarily through 
σ- bonding whereas the HYD route is initiated by π- coordination through the aromatic ring, as postu-
lated by Egorova and Prins, 2004. Lesch et al. studied the reactions of π-bonded thiophene ligand in a 
complex, Mn(CO)3(thiophene)+ (Lesch, Richardson, Jacobson, and Angelici 1984). This complex was 
highly susceptible to nucleophilic addition reactions. Nucleophilic addition at the C lying adjacent to 
the S atom of thiophene breaks the aromatic stabilization of the five membered thiophene ring. Under 
HDS conditions, this step may prove to be critical in decreasing the energy barrier for desulfurization. 
Li, Carpenter, and Sweigart, 2000 showed that η6 coordination of Mn(CO)3

+ to benzothiophene as well 
as dibenzothiphene made them susceptible for nucleophilic attack. Coordination of the electophilic metal 
fragment to the phenyl ring activates the C(aryl)-S bond in the adjacent heterocylic ring to attack by the 
nucleophile, Pt(PPh3)2(C2H4). The reactions provide crucial evidence that η6 coordination of benzo and 
dibenzothiophenes promotes insertion of metal in the C-S bond. (Figure 11) It has also been observed 
that thiophenes undergo C-S bond oxidative addition when heated with a complex, (C5Me5)Rh(PMe3)
(Ph)H (11). The reaction involves coordination of metal to S atom in η1 mode followed by insertion of 

Figure 7. Desulfurization of [(η5-C5Me5)Rh(η4-C4Me4S)]
Adapted from Ogilvy et al., 1989.
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metal into C-S bond of thiophene (Jones and Dong, 1991). Reaction of (C5Me5)Rh(PMe3)(Ph)H with 
benzothiophenes and dibenzothiophenes also results in formation the C-S inserted products, 12 and 13 
respectively. (Angelici, 2001) (Figure 12)

Strained ring thioethers such as thiirane and thietane quintessentially serve as a source of S atoms. 
Thus, it was expected that a reaction of thiirane with CpRu(PPh3)2OTf would yield a complex of the 
type [CpRu(PPh3)2S]4+ after cleavage of C-S bond. Instead, a transition metal analogue of the elusive 
episulfonium salt with the molecular formula [CpRu(PPh3)2(SC2H4)]OTf (14) was obtained in 80% yield 
(Figure 13a) (Amarasekera, Rauchfuss, and Wilson, 1988). In this complex, thiirane acts as a ligand 
and is bound to the central metal through the S atom. As shown earlier heterocyclic compounds may 

Figure 8. Desulfurization reactions mediated by dinuclear cyclopentadienylmolybdenum complexes



101

Cleaner Energy Fuels
 

bind to the metal centre in HDS through S atom. Another study, however, shows the synthesis of a new 
sulfido metal carbonyl complex, Mn2(CO)7(µ-S2) (15) by transfer of the sulfur atom of thiirane to the 
metal atoms of Mn2(CO)9(NCMe) (Figure 13b). (Adams, Kwon, and Smith, 2002)

Reaction of a substituted pyrazolyl ligand, bis-(3,5-dimethylpyrazolyl)methylphosphine sulfide, 
MeP(S)(3,5-Me2Pz)2 (16) with cuprous chloride in 1:1 ratio leads to the formation of a tetranuclear 
copper cluster. It has been proposed that initially, a complex 16.CuCl2 is formed. (Figure 14) The five 
coordinate phosphorus centre in 16.CuCl2 is attacked by H2O molecules giving the species 17. Ready 
desulfurization of 17 in form of H2S and a simultaneous hydrolysis of the P-N bond gives the polynuclear 
complex. (Chandrasekhar, Kingsley, Vij, lam, and Rheingold, 2000)

The 17-electron radical species, CpCr(CO)3• (Cp= η5-C5H5) have been investigated for their role 
in the facile cleavage of C-S bond. The radical species are extremely thiophilic and have been shown 

Figure 9. Ring opening of tetrahyrothiphene by a triosmium cluster
Adapted from Adams et al., 1993.
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Figure 10. Mechanism of desulfurization at the catalyst surface; M’= Mo(Cp’)
Adapted from Curtis, 1996.
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Figure 11. Benzothiophenes and dibenzothiophenes show η6coordination
Adapted from Li et al., 2000.
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to promote breaking of C-S in dithiocarbamate ligands. Reaction of [{CpCr(CO)3}2] (18)with 1 mol 
equivalent of tetraethylthiuram disulfide [Et2NC(S)S]2 at ambient temperature led to the isolation of 
[CpCr(CO)2(S2CNEt2)] (19) in quantitative yields (Figure 15a). Thermolysis of this complex leads to 
a mixture of products (Figure 15b). Among them, formation of [CpCr(CO)2(SCNEt2)] (20) is sugges-
tive of the cleavage of a C-S bond in 19. Synchronous cleavage of C-S bond of (19) and intermolecular 
coupling of C-C bonds between two dithiooxamide ligands gives the double cubane structure of (21) in 
which the dithiooxamide ligand links the two cubes via µ-η2,η4 binding mode (Goh,Weng, Leong, and 
Leung, 2001).

Analysis of the reactivity of organosulfur compounds towards discrete metal/organometallic com-
plexes having Mo or W as the metal centre is an extremely attractive prospect in view of the fact that 
most of the HDS catalysts are based on these two metal sulfides. Facile room temperature cleavage of 
a C-S bond of thiophene byMo(PMe3)6 at room temperature gave two products, the thiophene adduct 
(η5-C4H4S)Mo(PMe3)3 (22) and the butadiene-thiolate complex (η5-C4H5S)Mo(PMe3)2(η

2-CH2PMe2) 
(23). (Janak, Tanski, Churchill, and Parkin, 2002). Formation of the adduct is attributed to the cleav-
age of the C-S bond and hydrogenation of thiophene (Figure 16).Hydrogen necessary for this reaction 

Figure 12. Importance of η1 coordination in formation of C-S inserted products
Reproduced from Jones et al., 1991.
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Figure 13. a) Thiirane as a ligand; b) desulfurization of thiirane
a) Adapted from Amarasekera et al., 1988; b) Reproduced from Adams et al., 2002.

Figure 14. Reaction mechanism for synthesis of polynuclear complex by release of H2S
Adapted from the work of Chandrashekhar et al., 2000.
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is provided by the PMe3 ligand which itself gets converted to the ‘cyclometalated’ η2-CH2PMe2 ligand 
(L). The reaction proceeds via the formation of (κ2-C,S-C4H4S)Mo(PMe3)4 (24) which readily converts 
to (23) by the transfer of hydrogen (H*) from PMe3 to the C of thiophene lying adjacent to the S atom 
(Figure 17). Both the thiophene adduct as well as the butadiene-thiolate complex have been proposed 
as possible intermediates in the HDS reaction. The study forms the basis for pursuing reactions which 
occur on the Mo catalyst surface.

Diffusion of a solution of CuCl2. 2H2O into a solution of 2-mercapto-5-methyl-1,3,4-thiadiazole 
results in the formation of a one-dimensional polymeric compound, [Cu(H4C3N2S)Cl2]n. The reaction 
involves simultaneous desulfurization of the ligand leading to the removal of a side sulfur atom and its 
subsequent oxidation to sulfate anion (Song et al., 2003). Solvothemal reaction between cupric chloride 

Figure 15. Cleavage of C-S bond and C-C coupling in some chromium complexes
Reproduced from Goh et al., 2001.



107

Cleaner Energy Fuels
 

with pyridine-4-thiol ligand leads to the formation of a decanuclear Cu(I) cluster. Crystals of CuSO4.5H2O 
are procured from the reaction mixture as by-products. The reaction demonstrates an example where 
an in-situ desulfurization of the organosulfur moiety is followed by a redox reaction. S2- is oxidized to 
S6+ while Cu2+ reduced to Cu+. The yield of CuSO4.5H2O is, however, low implying that only a small 
amount of pyridine-4-thiol is desulfurized. (Cheng et al., 2005) Biphenyl-2-thiol is often proposed as 
an intermediate in the desulfurization of dibenzothiophene. Hence, a reaction involving a facile room 
temperature desulfurization of biphenyl-2-thiol is extremely significant. Reaction of an equimolar 
mixture of Nickel (I) dimer [(dippe)Ni(µ-H)]2(25) (dippe= 1,2-Bis(diisopropylphosphino)ethane) and 
biphenyl-2-thiol gives [(dippe)2Ni2(μ-S)] (26) and biphenyl while a 1:2 ratio yields the a mixture of 
products, [(dippe)2Ni2(μ-S)](26), [(dippe)Ni(η1-S-biphenyl-2-thiolate)2] (27) and complex (28) (Figure 
18). Furthermore, when the nickel complex and biphenyl-2-thiol were mixed in a 1:4 ratio respectively, 
compound 27 was formed as the only product. Variable Temperature NMR analysis of the first reaction 
in the temperature range of -80oC to 60oC was indicative of the following sequence of events leading 
to the formation of biphenyl (Figure 19). In the context of industrial HDS processes where Ni is often 
used as a promoter in catalysts, the compound [(dippe)2Ni2(μ-H)(μ-S-2-biphenyl)] (29) may most likely 
serve as a model intermediate. (Nieto, Brennessel, Jones, and Gracia, 2009)

Sattler and Parkin, 2011 studied the reaction of W(PMe3)4(η
2-CH2PMe2)H with various thiophenes 

and compared it with that of the analogous Mo system. It was demonstrated that similar to Mo com-
plexes, tungsten centers also bring about such transformations which are relevant to hydrodesulfuriza-

Figure 16. Reaction of Mo(PMe3)6 with thiophene
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tion of thiophenes. Cleavage of C-S bond in thiophenes by W(PMe3)4(η
2-CH2PMe2)H (30) yields the 

butadiene-thiolate complex (η5-C4H5S)W(PMe3)2(η
2-CH2PMe2) (31) which on hydrogenation liberates 

but-1-ene via the formation of a butanethiolate complex, W(PMe3)4(SBun)H3 (32)(Figure 20). Similarly, 
benzothiophene gets converted to the isomeric forms (κ1,η2-CH2CHC6H4S)W(PMe3)3(η

2-CH2PMe2) (33) 
and (κ1,η2-CH2CC6H4S)W(PMe3)4 (34), either of which subsequently get converted to ethylbenzene on 
hydrogenation followed by heating. Under the above reaction conditions, dibenzothiophene is ultimately 
transformed to biphenyl.

In the past few years, our research group has investigated several reactions in which the discrete metal 
complexes underwent desulfurization. As a part of our study on desulfurization processes we have encoun-
tered few unprecedented modes of desulfurization. While attempting to synthesise bis-dithiocarbamate 
complexes of Al(III) in our laboratory, cyclic ammonium salts were obtained as products via elimination 
of CS2 (Figure 21). (Chaturvedi, Bhattacharya, and Nethaji, 2008)

Figure 17. Formation of metallathiacycle and cleavage of C-S bond
Adapted from Janak et al., 2002.
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Figure 18. Reactions of Biphenyl-2-thiol with a dimeric nickel complex
Reproduced from the work of Nieto et al., 2009.
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The reaction was carried out in acetone and its role in cyclization is shown in the following scheme. 
Protonation of the N atom of dithiocarbamate, makes the cleavage of S2C-N bond energetically favour-
able leading to the formation of iminium ion (35). Following this, acetone, in its enol form attacks the 
iminium ion in a process popularly known as the Mannich Reaction. This electrophilic attack leads to 
formation of a new C-C bond and ultimate elimination of CS2 (Figure 22)

Synthesis and isolation of hydrosulfide complexes such as R3SnH is extremely difficult due to their 
easy condensation into corresponding sulfides, (R3Sn)2S. In this regard, preparation of triphenytin 
hydride is extremely important in the field of inorganic synthetic chemistry. Moreover, the chemistry 

Figure 19. Plausible mechanism of desulfurization leading to formation of biphenyl
Adapted from Nieto et al., 2009.
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of SH-containing complexes finds relevance in the study of hydrodesulfurization catalysis. (Singh and 
Bhattacharya, 2011) A novel route to the preparation of Ph3SnH was discovered in our laboratory via 
desulfurization of thiophosgene. Thiophosgene, a highly toxic liquid was desulfurized in a one pot reac-
tion by treating it with triphenyltinhydroxide in the presence of triethylamine (Figure 23). The reaction 
proceeds via SNi reaction mechanism leading to the formation of a triphenyltin hydride. The side products 
released are CO2 and HCl.

Figure 20. Hydrodesulfurization of Thiophenes via C-S bond cleavage
Adapted from the work of Sattler et al., 2011.
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Singh, Chaturvedi, and Bhattacharya, 2012 reported ready desulfurization of a metal thiocarboxylate, 
[(Phen)Cu(SCOth)2] (Phen=1,10-phananthroline, th=thiophene) under ambient conditions in the pres-
ence of water to give the corresponding carboxylate complex. The reaction proceeds through evolution 
of H2S (Figure 24).

As a rule, the C-C bonds are thermodynamically stable and extremely resistant to cleavage by metal 
complexes. We have successfully designed a reaction in which desulfurization takes place via cleavage 
of a C-C bond, resulting in the removal of thiirane (ethylene sulfide). (Sareen, N., Singh, S., and Bhat-
tacharya S., 2014) Reaction of triethylammonium salt of 2,2’-thiodiacetic acid (H2tda) with [Cu(TMEDA)
(NO3)2] (TMEDA = N,N,N’N’-tetramethyl ethylene-diamine) in a stoichiometric ratio yielded a simple 
ternary complex {[Cu(TMEDA)(tda)](H2TMEDA)(NO3)2·H2O} (36). However, when [Cu(TMEDA)
(NO3)2] was added in excess, a μ-oxalato complex {[Cu2(TMEDA)2(μ-ox)(H2O)2](NO3)2·2CH3CN} (37) 
was formed (Figure 25). Formation of (37) involved an unusual desulfurization of thiodiacetate moiety 

Figure 21. Synthesis of cyclic ammonium salts by elimination of CS2
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Figure 22. Probable mechanism for elimination of CS2
Reproduced from Chaturvedi et al., 2008.
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a new mechanism for desulfurization via elimination of ethylene sulfide (Figure 26). This reaction is of 
particular relevance to HDS. Firstly, scission of the C-C single bond in thiophenic compounds has been 
previously suggested as an alternative non-hydrogenative route for desulfurization (Landau et al., 1996) 
Secondly, the release of thiirane is also important: Thiiranes can act as ligands through coordination of 
sulfur atom (Amarasekera et al., 1988). Studies have shown that transfer of the sulfur atom of thiirane to 
the metal atoms of metal carbonyl complexes yield sulfido metal carbonyl complexes (Adams et al., 2002; 
Adams, O-Sung, and Smith, 2002). Also, thiiranes can be easily converted to olefins using organometal-
lic (organolithium, Grignard reagents) (Bordwell, Andersen, and Pitt, 1954; Schuetz and Jacobs, 1961) 
and organophosphorus compounds (Davis, 1958). Former is a synthetically important route for synthesis 
of certain thiophenols which cannot be prepared easily by standard methods (Bordwell et al., 1954).

CONCLUSION

With the rising concern over the increasing SO2 pollution levels, demand for sulfur free fuels has es-
calated. While HDS process is used worldwide to remove sulfur from fossil fuels, it suffers from some 
serious limitations. The wealth of knowledge that has been collected in the last decade regarding HDS 
reaction has been provided by applying transition metal complexes. Discrete transition metal/ organo-
metallic complexes serve as excellent models for deciphering the mechanism of desulfurization process. 

Figure 23. Desulfurization of thiophosgene by triphenyltin hydroxide
Reproduced from the work of Singh et al., 2011.
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Moreover, the reactions exhibited by the complexes in solution can be applied to the catalyst surface. 
Ligand transformations in metal complexes/clusters may be mimicked for catalyst. Study of reaction 
mechanisms of thiophene and its derivative with organometallic complexes has proved to be extremely 
useful in uncovering several facts about the mode of binding and C-S bond cleavage mechanism. A 

Figure 24. Room temperature desulfurization by elimination of H2S
Adapted from Singh et al., 2012.
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section of experimental chemists including us has reported several desulfurization reactions which are 
unique in one way or the other. One of the main highlights of the reactions is that, almost all of them 
either take place at room temperature or under very mild heating conditions. Though, non-catalytic, 
these reactions are fascinating from the point of their mechanistic study. It is hoped the reactions emerge 
as starting points to study modes of desulfurization other than C-S bond cleavage, which may help the 
design of new and more efficient catalytic systems in future.

Figure 25. Synthesis of complexes 36 and 37

Figure 26. Plausible mechanism for desulfurization of thiodiacetate moiety
Adapted from Sareen et al., 2014.
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KEY TERMS AND DEFINITIONS

Biodesulfurization: An innovative technology which uses microbes specially, bacteria as biocata-
lysts to specifically oxidize the refractory sulfur compounds found in crude oil in an enzymatic process.
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removal of sulfur compounds from fuels by their chemical oxidation into sulfones.
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ABSTRACT

Desulfurization (removal of S compounds) of fuels is an important research topic in recent years. Several 
techniques have been reported to remove the sulfur-containing compounds in fuels. One of these tech-
niques is adsorptive desulfurization (ADS) (removal based on chemisorption and physisorption) which 
has received much attention because of low energy consumption and facile operation condition. This 
chapter discusses the methods employed under this technique and the types of nanocomposites and hybrid 
materials (adsorbents) that have been investigated as potential adsorbents. The strategies to enhance 
sulfur adsorption capacity and main challenges will be discussed.

1. INTRODUCTION

Fossil fuels are the main source of energy worldwide; crude oil, which occurs naturally and comprises of 
several organic components (such as diesel, gasoline, jet fuels, kerosene etc.), serves as the major source 
of energy in the world. Crude oils are usually classified based on density and sulfur content. The lighter 
the crude oil the better its value and the lower the sulfur content in crude oil the better its profitability. 
Sulfur is the main important hetero-element found in crude oil and has the most significant effect on 
refining. It poisons catalyst, corrode refining equipment, and combustion of the products of sulfur from 
automobiles impair the emission control technology designed to meet the nitrogen oxides (NOx) and 
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particulate emission standards which leads to environmental pollution. It contributes to the deterioration 
of air quality and affects public health and the ecosystem. The maximum allowable sulfur content in 
highway diesel fuel in the US was 15 ppmw in 2006 and it will be less than 10 ppmw by 2017. Sulfur 
compounds found in crude oil are divided into aliphatic (mercaptans, sulfides, disulfides) and aromatic 
refractory group (thiophenes derivatives). The methods in use for the removal of sulfur compounds 
in fuels are either pre-combustion techniques or the post combustion techniques. The pre-combustion 
techniques are the best methods and they involve the decomposition of sulfur compounds, removal of 
the compounds without decomposition and final separation of the compounds followed by decomposi-
tion (Babich et al., 2003). The conventional method used by refineries for the removal of sulfur from the 
fuel is hydrodesulphurization (HDS) (Bej 2004). It is efficient in the removal of most aliphatic sulfur 
compounds from fuels e.g. thiols. However, it is not efficient in the removal of aromatic refractory sulfur 
compounds e.g. thiophene derivatives (dibenzothiophene (DBT) and 4, 6 dimethyl dibenzothiophene 
(DMDBT)) which are the least reactive and pose more serious danger to the environment. In addition, 
it requires high temperature, pressure and high dosage of catalyst before achieving the desired objective 
which is uneconomical (Ali et al., 2006).

Other methods of desulfurization in use to provide solutions to the problems of HDS include: Oxida-
tive desulfurization (ODS), ionic liquids desulfurization (ILD) (Prashant et al., 2010), bio-desulfurization 
and ADS (Mohammad et al., 2006; Guoxian et al., 2005; Soleimani et al 2007; Isam et al., 2013; Celia 
et al., 2010). Most of these methods utilize a catalyst to speed up the rate of sulfur removal and they are 
considered viable alternatives in desulfurization. In ODS, all refractory sulfur compounds are oxidized 
by oxidants (such as H2O2, H2SO4, tBuOOH, O3 and NO2) to less harmful polar derivatives (sulfoxides 
and sulfones) that can be easily isolated by adsorption or extraction at room temperature and pressure. 
Most petroleum refineries use solvent extraction to extract the sulfur compounds from fuels, thereby 
recovering the solvent by distillation (Babich et al., 2003). The major disadvantages of ODS are: one, 
in appropriate oxidant may cause unwanted side reactions with other components in the fuel that are of 
interest and second, solvent selection is critical because undesirable solvents may extract other compo-
nents of the fuel that will affect overall quality of the product. The use of IL in extractive and oxidative-
extractive desulfurization started in 2001 (Bösmann et al., 2001) and it has become an area of interesting 
research since then. IL are organic salts composed of anions and cations and they have a low melting 
temperature. They are nonvolatile, nonflammable, chemically and thermally stable and they are easily 
regenerated due to their negligible vapor pressure. Different types of anions and cations have been used 
in this process such as: [BF4]−, [PF6]−, alkylsulfates, thiocyanate or bis(trifluoromethylsulfonyl)imide, 
acetate, dialkylphosphate, alkylpyridinium, pyridinium, imidazolium, pyrrolidinium etc. Varying degrees 
of affinity and selectivity to sulfur compounds by different ionic IL have been noticed. Cost, lack of 
thermodynamic data, regeneration of the IL, effect of the liquids to other fuel constituents and corrosion 
related problems are the major drawbacks of this technology. (Zhang et al., 2002, 2004; Eber et al., 2004; 
Mochizuki et al., 2008; Cheruku et al., 2012; Holbrey et al., 2008; Borja et al., 2014). Biodesulfurization 
serves as an alternative to HDS due to its specificity, selectivity to sulfur compounds and mild operat-
ing conditions. In BDS, microbial species are used to consume sulfur compounds in fuels as their main 
energy source. They may either oxidize or reduce the sulfur compounds to sulfate or hydrogen sulfide 
respectively. Oxidizing the sulfur compounds is the most desirable pathway due to the fact that there will 
be no further treatment unlike the reduction pathway that requires further treatment of hydrogen sulfide 
through Clauss process to elemental sulfur. Various strains of microbes have been studied to increase 
desulfurization activity such as: Rhodocuccus, desulfovibrio desulfuricans, Arthrobacter, Brevibacterium 
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Pseudomonas, and Gordona spp. Slow reaction rate, cost and inability to recover biocatalyst, isolation 
of the microbial specie after the reaction, emulsion formation, and complex reactor design are the major 
problems limiting the commercialization of this technology (Srivastava 2012).

The use of nanomaterials and nanocomposites as adsorbents in ADS will be the main aim of this 
chapter. Variety of adsorbents are currently used in desulfurization for the selective removal of sulfur from 
petroleum products. It has advantages over other methods of desulfurization because of mild operating 
conditions, less expensive and does not have scaling or corrosion problems. It has ease of application, 
and some of the adsorbents have efficient sulfur removal and excellent regenerative ability (Kostas et 
al., 2014). The known adsorbent materials in use are: nickel based sorbents, zeolites based sorbents, 
alumina based sorbents, silica, activated carbon (AC), metal oxides, metal sulfide and reduced metals 
based sorbents (Ma et al., 2003; Fukunaga et al., 2003; Vinay et al., 2006; Hernandez et al., 2010). 
Current area of research in ADS focuses on the development of cost effective, efficient and reliable 
adsorbent materials that will have high sorption capacity and selectivity to reduce the sulfur content of 
fuel to minimal concentrations and to be easily regenerated to minimize environmental disposal impacts.

Principles of Adsorption

Adsorption is defined as the increase in the density of a fluid within the vicinity of an interface. Adsorp-
tion occur when a solid surface is exposed to a liquid or a gas, the gasses and liquids tend to adhere to 
the unoccupied spaces in solid particles due to the presence of unsaturated molecular forces within a 
solid material. The principle of adsorption is based on the removal of certain substances called adsorbate 
(liquid or gas) by an adsorbent (solid material). It can further be defined as the adherence of substances 
to solid materials. Nearly all substances may have trace capability for adsorption but depending on some 
favorable characteristics like surface area, active sites, pore size and volume, some materials are far better 
than others in the way and manner they adsorb particles.

Adsorption involves two types of forces viz: physical forces which may include dispersive forces, po-
larization forces, or dipole and chemical forces due to the interaction of electrons between solid particles 
and the atoms of liquids or vapor phase (Roop et al., 2005). There are three principal forces responsible 
for adsorption which include: van der Waal’s forces, chemical affinity and electrostatic attraction. There 
are two different types of adsorption: physiosorption, which is reversible, and chemiosorption that is 
irreversible (Zeki 2013). The adsorption process is primarily studied based on certain types of equations 
and models. The most widely used equations are: Freundlich which is based on empirical equations that 
describe the adsorption characteristics on heterogeneous surface (Freundlich 1906), Langmuir equation 
which is based on monolayer adsorption process on energetically homogeneous surface (Langmuir 
1918) and Brunauer-Emmett-Teller (BET) equation which is mostly used in gas phase adsorption and 
it is based on statistical analysis of adsorption sites occupied during a multi-layer adsorption of gasses 
(Brunauer et al., 1938).

2. TYPES OF ADSORPTIVE DESULFURIZATION

There are various forms of adsorptive desulfurization which will be discussed in this section and these 
include: reactive adsorption, polar adsorption, selective adsorption, integrated adsorption, π-complexation. 
The schematic showing different forms of desulfurization is given in Figure 1.
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Reactive Adsorption

Reactive adsorption is a form of ADS whereby the sulfur compounds in fuel are removed by chemical 
interaction between the fuel and the sorbent material. The reaction involves removal or transfer of the 
sulfur compounds from the fuel followed by attachment of the compounds to the sorbent material which 
will allow the sulfur free fuel to be collected in the main stream. The process uses metal-based sorbent 
for sulfur removal to form metal sulfide. The sorbent material can be regenerated by disposing off the 
sulfur compounds in the form of SO2, H2S, or elemental sulfur depending on the method employed. 
Reactive adsorption can be carried out at ambient conditions, at elevated temperatures and with the aid 
of hydrogen at elevated temperatures. The efficiency of reactive adsorption depends on the adsorption 
capacity of the sorbent material, its affinity to the sulfur compounds, its thermal and mechanical stability 
and its ability to be regenerated. The overall mechanism of the process is outlined in Figure 2.

This process is widely used in the US as the S Zorb process developed by Philips Petroleum for ef-
ficient desulfurization at higher temperatures of between 340 -410°C and lower pressure of H2 between 
2-20 bars. Reactive ADS combines the advantages of both the catalytic HDS and adsorption desulfuriza-
tion and thus highly efficient for deep desulfurization. Research Triangle Institute (RTI) has developed 
a technology called TReND based on reactive adsorption desulfurization that utilizes metal oxides as 
sorbents materials to effectively remove sulfur compounds from fuels in the presence of hydrogen at a 
temperature of 426-535°C. Mercaptans are completely removed from fuels in this process in the absence 
of hydrogen but thiophenes requires considerable amount of hydrogen for its successful removal (Turk 

Figure 1. Types of adsorptive desulfurization

Figure 2. Reactive adsorption of benzothiophene (BT) on sorbent material in the presence of hydrogen
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et al., 2001). Reactive adsorption can be aided with hydrogen at elevated temperatures using selective 
adsorbents. ZnO has been reported and industrially applied as a promising adsorbent for desulfuriza-
tion processes. Addition of hydrogen in the process helps in the complete removal of thiophene in fuel.

Polar Adsorption

Polar adsorption (IRVAD process) is a less expensive method of providing low sulfur gasoline and it 
was developed and commercialized by Black and Veatch Pritchard and Alcoa Industrial chemicals to 
address even low concentrations of sulfur compounds in fuels. Activated alumina in particular Alcoa 
Selexsorb is widely used as the sorbent material for the removal of polar compounds. The adsorption 
process is performed in a counter-current moving bed with alumina adsorbent in contact with liquid 
hydrocarbon in a multi stage adsorber. The adsorbent is normally regenerated using hydrogen at various 
temperatures due to its heat capacity, thermal conductivity and its availability. The regenerated adsorbent 
is then recycled for another round of the reaction. The process operates at lower pressures and does not 
consume high amount of hydrogen. The mechanism is based on the polarity of sulfur in gasoline and it 
is known to reduce sulfur from fuels to as low as 0.5ppmw.

Selective Adsorption for Removal of Sulfur Compounds (SARS)

The idea behind SARS is to remove sulfur compounds from fuels which constitute only less than 1% of 
the fuels at ambient conditions without hydrogen and to leave behind the remaining hydrocarbon contents 
of fuels which can be used as ultra-low sulfur fuels. This process was first demonstrated by Pennsylvania 
state university (Song et al., 2003) and if fully developed can be used in refinery operations and other 
mobile/stationary applications. The prime goal of SARS is to design appropriate adsorbents with surface 
sites having high affinity for sulfur compounds in the presence of aromatics. The adsorbents need to be 
effective, selective and apt for sulfur removal. Nickel based sorbents and air regenerable metal oxide 
based sorbents are the most common adsorbent materials used in this process. The basis for the SARS 
technology is that there is site specific interaction between sulfur and metal species that is possible with 
selected organometallic complexes. The likely adsorption configurations of thiophenic compounds 
on adsorbents used in SARS process can be explained from the known coordination geometries that 
thiophene exerted upon contact with organometallic complexes. Examples of coordination geometries 
are given in Figure 3. It is a known fact that both thiophenic sulfur compounds and non-sulfur aromatic 
compounds in fuels can interact with metal species by pi-electrons which is why the likely coordinating 

Figure 3. Coordination geometries of thiophene in organometallic complexes
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geometries that will best explain the interaction of sulfur atom of the thiophenic compounds with the 
adsorbent used in SARS are: ղ1S (sulfur atom of thiophenes and a metal relation) and S-µ3 (sulfur atom 
of thiophenes and two metal species).

Integrated Process Adsorption

This is a recent technology that combines selective adsorption with HDS technology using highly efficient 
catalysts for effective removal of sulfur compounds from fuels. It has added advantages like reduction 
in cost, better efficiency, faster desulfurization rates and reduction in reactor volumes than using single 
processes alone. The schematic diagram for the technology is outlined elsewhere by (Chunshan et al., 
2003).

ADS by π-Complexation

Adsorption by chemical complexation (π-complexation) has been reported by Yang group of researchers 
(Yang et al., 2001; Arturo et al., 2004; Yuesong et al., 2012). Cations such as Na+, Zn2+, Ni2+, Cu+, Ag+, 
Fe2+, Ce4+ are used mostly on zeolites due to their larger pores and pore volumes to adsorb large quanti-
ties of thiophene, BT and DBT from diesel, gasoline and jet fuels by forming π-complexes between the 
metals and the compounds of interest. The cations form σ-bonds with free s-orbitals and the d-orbitals 
will back-donate electron density to the antibonding π-orbitals in the sulfur containing ring of thiophenes. 
Bonds formed due to this interaction are stronger and yet easily broken by alternating the temperature 
or pressure which enhances the capacity and selectivity to sulfur compounds. ADS by π-complexation 
yields better results compared to the normal vanderwaals interactions occurring in adsorption studies. 
Aside from desulfurization, different sorbents have been developed based on this mechanism for ali-
phatic, olefins and aromatics separation (Takahashi et al., 2001). The mechanism is shown in Figure 4.

3. NANOMATERIALS AND HYBRID MATERIALS PREPARATION

A nanomaterial is a broad name given to all types of materials found at the nanoscale; it is a material 
that has a unit size between the ranges of 1-100 nm. They can be naturally occurring or chemically/
mechanically synthesized with zero dimension (0-D), one dimension (1-D), two dimensions (2-D) or 
three dimensions (3-D). They have a wide range of both structural and non-structural industrial appli-

Figure 4. ADS of DBT by π-complexation



135

Nanocomposites and Hybrid Materials for Adsorptive Desulfurization
 

cations due to their sizes, shapes, chemistry and high surface area. They are applied in most industrial 
applications to improve performance because their surface properties far exceed their bulk properties. 
Nano-materials such as alumina, zirconia, silica, and AC have been the subject of research recently due 
to their promise in adsorption desulfurization. Adsorbents are generally classified into organic sources 
and inorganic sources. Adsorption on commercial and industrial scale depends solely on the type, quan-
tity, economic cost and effectiveness of adsorbent material. This is why studies on adsorption studies 
currently focus on the development of better adsorbent materials for large scale industrial applications. 
Most materials used as adsorbents are relatively porous and have a wide surface area with pore diameter 
of tens of angstroms.

The most widely used adsorbents are: AC, silica gel, zeolites, molecular sieve carbon, activated alu-
mina, polymers and nanocomposites. Each of these materials has distinct physical and chemical charac-
teristics such as pore sizes and structure, porosity and nature of the adsorbing surface that are different 
from other materials. The materials that can be used as adsorbent should be thermally and mechanically 
stable, highly porous with balance between micro and macro-pores with high surface area, high affinity 
for the adsorbate and should be cheap and be easily regenerated. Table 1 outlines the classes and the 
applications of the major adsorbents.

The adsorptive capacity of any adsorbent material depends on the number of pores in the internal 
area relative to the number of pores on the outer surface. The internal area is much higher than the outer 
surface area which is the major reason why adsorbent materials adsorb large quantity of the adsorbate. 
These materials are further classified based on their pore sizes which determines which material they can 
adsorb into three classes viz: Micro porous adsorbents (between 2A° to 20A°), Meso porous adsorbents 
(between 20 A° to 500 A°) and Macro porous adsorbents (>500 A°). Where A° = Angstrom which 
is equivalent to 10-10 meters = 0.1 nm. Adsorption capacity or otherwise adsorption isotherm depends 
upon temperature and vapor pressure which help us to classify different forms of adsorbent. Adsorption 
isotherms are classified into six different classes (Sing 1982). The graphical illustration of the isotherms 
is shown in Figure 5.

• Type One Isotherms: They consist mostly of micro porous adsorbents. E.g. Silica gel and most 
carbons fall in this category

• Type Two Isotherms: They consist of non-porous surfaces and macro porous adsorbents. E.g. 
Graphitized carbon and some hardened powders of silica.

Table 1. Classes and applications of adsorbents

Adsorbent Applications

Carbons Widely used in the removal of hydrogen, nitrogen, odors, vinyl chloride, desulfurization of SOx and 
denitrogenation of NOx from gasses, in water treatment, and in the treatment of nuclear waste.

Alumina It is mostly used in drying of gasses (as a desiccant) and adsorption of fluoride, chromium, arsenic and 
selenium in water treatment. It is also used in desulfurization.

Silica It is used as a desiccant in drying of gasses, maintenance of relative humidity, and in desulfurization.

Zeolites 
Zirconia

• Helps in drying of gasses, water treatment, sweetening of gasses and liquids, aids in pollution control 
of SOx and NOx through desulfurization and denitrogenation, recovery of CO2, and in the separation of 
aromatics from paraffins etc. 
• Desulfurization, adsorption of gasses such as: CO, CO2, NH3, dentistry, biomedical, ceramics, and 
sometimes used as an alloying agent.
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• Type Three Isotherms: They consist of non-porous and macro porous solids. E.g. synthetic poly-
mers used as adsorbent materials

• Type Four Isotherms: This class exhibit special attribute of hysteresis which means capillary 
condensation showed by the mesoporous adsorbents. E.g. Low density silica gel

• Type Five Isotherms: This class exhibit hysteresis as well but they show similar characteristics 
to Type three isotherms.

• Type Six Isotherms: This isotherm share similar characteristics to type two isotherms but how-
ever, the adsorbent belonging to this class adsorb in a multilayered passion.

3.1. Synthesis Methods

Nanomaterials are synthesized using two different approaches viz; bottom-up approach and top-down 
approach. In the bottom-up approach, the nanoparticles are first obtained at the atomic level and later 
integrated into the desired material e.g. is the formation of nanoparticle from colloidal dispersion or 
the formation of powders from sol-gel method followed by a later stage of integration. The top-down 
approach starts with a bulk material at the macroscopic level followed by trimming of the material to 
the desired nanoparticles e.g. etching and ball milling. Schematic illustrations of the synthesis methods 
are provided in Figures 6 and 7.

Figure 5. Graphical illustration of different isotherms models

Figure 6. Synthesis of Nanomaterial
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The general outline for the production of nanomaterials involves three different processes; grinding, 
wet chemical processes otherwise called liquid phase processes and lastly the gas phase processes of 
producing nanomaterials. These processes are outlined below:

Synthesis of Nanocomposites

Nanocomposites are special classes of materials formed by combining two phases of different materials 
and they tend to retain the properties of each material used in their formation. A matrix (filler and resin) 
and a reinforcement (mostly fibers) are required for the formation of a composite. Properties of compos-
ites depends on the properties of each material, their relative amounts and overall geometry. In essence, 
nanocomposites are materials having one or more of their phases in the nanoscale size embedded in a 
polymer matrix, ceramic matrix or metal matrix. They have nanoparticle properties, high thermal and 
mechanical stability, multifunctional capabilities, chemical functionalization and huge interphase zone. 
The combination confer added advantage to them which is why they are currently utilized in various 
fields of science and technology. They are widely used in catalysis, nanosensors and nanoprobes produc-
tion, sorption process, chemical and biological applications, fuel cells, non-linear optics, bio-ceramics, 
batteries with greater power output, environmental protection, anti-corrosion agents, drug delivery, UV 
protection gels, as fire retardant material, in the production of lubricant and scratch free paints and in 
adsorptive studies with clear application in desulfurization.

There are various ways of synthesizing nanocomposites which will be outlined in this section. The 
processes do not take a specific method; the synthesis may involve combining two different methods 

Figure 7. Synthesis routes of nanomaterials
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or even more for the production. The mostly widely used methods are: Intercalation, sol-gel method, 
molecular composite formation method, high energy sonication, nanofiller direct dispersion method, hy-
drothermal synthesis, polymerized complex method, surfactant assisted processing, solution-evaporation 
methods, electrochemical synthesis of polymers, chemical vapor deposition, microwave synthesis, and 
ball milling process. Figure 8 outlines the methods involved in the synthesis.

• Sol-Gel Synthesis: This is the most effective and cost reliable method of producing nanomaterial, 
nanocomposites and powders recently. Earlier it was widely used in glass and ceramic industries. 
It involves hydrolysis of the alkoxides by water, alcohol, ammonia, or acid followed by condensa-
tion of the products formed to produce a glass like material. It is utilized when forming inorganic 
or hybrid composites at low temperatures and pressures. The factors affecting this method include: 
pH, starting material, and solvent to be used.

• Hydrothermal Synthesis: This involves combining the starting materials intended for compos-
ites synthesis with certain amount of water followed by acid digestion in a reactor at high tempera-
ture and pressure. The reactants may not dissolve completely using this method.

• Chemical Vapor Synthesis: This is a modification of the chemical vapor deposition where the 
process is directed towards the synthesis of nanomaterials instead of films. The whole idea of 
chemical vapor deposition is the attachment of solids produced from chemical reactions in the 
vapor phase to a heated surface. The energy needed for complete conversion of starting materi-

Figure 8. Synthesis routes of nanocomposites
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als to nanoparticles is provided by hot walls, plasma, flame and laser reactors. The availability of 
appropriate starting material is the major limitation of this technology. It is currently used in the 
production of monoliths, powders and films.

• Microwave Synthesis: Microwave synthesis technique has been used in organic synthesis since 
time immemorial. More than 2000 papers have been published relating to the application of this 
technique (Kappe 2004). It is in use in pharmaceutical, biochemical, medical, food, ceramic in-
dustries and academic institutions. Use of microwave synthesis in the production of nanocompos-
ites entails combining starting materials by microwave irradiation to yield desired nanomaterial. 
It is fast, economical and generate less by products.

• Solution-Evaporation Method: This is a method of composites formation which involves mix-
ing of nanotubes dispersion with a solution solely made up polymers that dissolves in solvents 
or thermoplastic polymers followed by evaporating the solvent. This will allow the nanotubes to 
move freely within the polymer matrix. The mixture can then be subjected to mixing and molding 
till desired shape is achieved. The mixing intensity and its duration will determine the distribution 
of the nanoparticles within the polymer. The major drawbacks of this technique is that the polymer 
has to be soluble in the same solvent used to disperse nanoparticles and the problem of solvent 
removal limits the application of this technique in major industries.

• Ball Milling Process: This is a technique that has been used in almost all industries for size reduc-
tion of materials. Nanocomposites production is no exception considering the recent utilization of 
high energy ball milling process for the production. Powdered materials are normally immersed 
for ball milling in the appropriate machine through movement of the balls, collision to the sup-
porting disc and centrifugal force exerted nanomaterials are easily formed. Mechanical alloying, 
mechanical milling and mechanochemical synthesis are the terms mostly used relating to the pro-
duction of materials by ball milling. This method is perfect for the production of nanomaterials 
because it is efficient, and cost effective.

• Intercalation Method: This is the most widely known method for the synthesis of polymer nano-
composites. The desired outcome depends on whether an intercalated or exfoliated hybrid is re-
quired. The process involves combining a starting material (a polymer) within layers of clay of 
material. When intercalate is required the organic material is immersed within the layers of the 
clay such that there will be expansion within the component mixtures. While in exfoliated mix-
ture, the whole layers of the clay material will be separated from each other but tied within the 
matrix of the organic component.

• Nanoparticle Direct Dispersion Method: This is a method of producing nanocomposites by 
chemically modifying nanoparticle to increase compatibility with polymers. The advantage of 
using this method is that total homogeneity is achieved without compaction. Zinc oxide nanopar-
ticles were prepared by combining zinc sulfate and ammonium bicarbonate in the study conducted 
by (Yujun et al., 2010).

• Molecular Composite Formation: This is a method of producing nanocomposites that have extra 
mechanical stability due to the reinforcement provided by molecular rods. A strong and durable 
polymer is normally combined with a malleable polymer matrix at molecular dimension with a 
solvent that will later be precipitated. An equilibrium compound is required as the third compo-
nent for this method which will aid in the formation and dispersing of fibrils within the composite.
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4. APPLICATIONS OF NANOCOMPOSITES AND 
HYBRID MATERIALS IN DESULFURIZATION

Significant number of papers have been published on the applications of nanomaterials and nanocom-
posites in adsorptive desulfurization. This section will discuss the use of zirconia, alumina silica and 
zeolite loaded with metals and metal oxides in desulfurization.

• Zirconia in Desulfurization.

Zirconia has a great promise in adsorption studies due to its moderate surface area, good structure 
and morphology, good thermal stability, possess both reducing and oxidizing properties and it has bi 
functional properties (acid/base). It is mostly synthesized through the sol-gel process using metal organic 
precursors. The particle size of zirconia is from 50-80nm and its crystallite size ranges from 2-10nm. 
It has good ADS properties; ODS of thiophene from n-octane and n-heptane using zirconia showed 
great promise (Wang et al., 2009). Adsorption by π-complexation of copper loaded on zirconia was 
demonstrated by (Baeza et al., 2008) for the removal of thiophene from n-octane at room temperature 
and pressure; the adsorption capacity increased simultaneously with increase in copper concentration. 
ODS of BT and DBT from model oil by chromium promoted sulfated zirconia prepared by wetness 
impregnation showed a good performance, however the reaction rate was very slow with optimum reac-
tion time, dosage, activation energy and surface area of 6h, 5g/l, 3.8kj/mol and 116.2m2/g respectively 
(Sachin et al., 2012). Different forms of zirconia viz: zirconia, calcined zirconia and calcined sulfated 
zirconia were used in the removal of thiophene derivatives from different solvents. The desulfurization 
process using zirconia is exothermic and its isotherm model best fit BET (Sachin et al., 2011). Zirconia 
is mostly used as a catalyst support in desulfurization according to the existing literature (Yatsuka et 
al., 2002). WOx/ZrO2 after calcination at different temperatures was used as catalyst for the oxidative 
removal of BT and thiophenes from model fuels and it showed promising result (Zubair et al., 2012). 
The optimum calcination temperature of the catalyst was around 700°C and the catalyst was reussed in 
ODS. Low selectivity of using Pt/ZrO2 catalyst for oxidizing SO2 from exhaust gas was demonstrated by 
(Yatsuka et al., 2002). Variety of equipment such as: X-ray photoelectron spectroscopy (XPS), FT-IR, 
XRD, SEM, TEM, EPMA and BET are used for characterization of zirconia used in desulfurization. A 
representative SEM image of zirconia is depicted in Figure 9.

Figure 9. SEM image of zirconia



141

Nanocomposites and Hybrid Materials for Adsorptive Desulfurization
 

• Alumina in Desulfurization.

The principle of ADS which allows an adsorbent material that is porous and has high surface area to 
be placed in contact with the aromatic sulfur compounds in fuels as the substrates has received a con-
siderable attention in recent years. Reports have tried to use alumina for ADS due to its better adsorptive 
characteristics and chemical stability. It has high surface area for adsorption, high thermal conductivity 
and highly insoluble in water. The major components in alumina are aluminum oxide and boehmite. 
Activated alumina have been used in ADS and denitrogenation though the result was not so successful 
in removing the sulfur compounds due to steric effect but it revealed that the selectivity of the adsorp-
tion depends on the acidic-basic interaction and the molecular electrostatic potential (Jae et al., 2006). 
On the contrary, reports showed how alumina can be used as a strong adsorbent in ADS of thiophene 
derivatives due to the presence of Lewis sites and carbon-oxygen functional groups on the surface of the 
adsorbent (Maria et al., 2002; Ankur et al., 2009). Alumina has been synthesized from array of sources 
for desulfurization. Alumina sorbents were prepared using cationic surfactants and microwave irradia-
tion for the removal of sulfur from petroleum products (Zaki et al., 2013).

Impregnation of silver on nanocrystalline aluminum oxide and nanocrystalline metal oxides to ad-
sorb thiophenes out of hydrocarbons showed a better performance. Nanocrystalline aluminum oxide 
was more effective compared to the nanocrystalline metal oxides in the desulfurization (Jeevanandam 
et al., 2005). The adsorbent has regenerative ability after heating at moderate temperature. Impregnated 
nanoparticles on alumina reduces DBT concentration in n-hexadecane from 250 ppmw to 0 ppmw in 
the absence of hydrogen after regeneration (Ali et al., 2014). XRD, FT-IR, and SEM are used to under-
stand the mechanism of thiophene derivatives adsorption on alumina and Langmuir isotherm best fit 
the adsorption pattern. The SEM image of blank alumina is given in Figure 10.

• Silica in Desulfurization.

Silica is a widely used adsorbent and it surface can be modified to desired form. Reports show the 
suitability of using silica in desulfurization. Mesoporous silica is effective in ODS, the adsorbent has high 
affinity for sulfur compounds, and high regeneration potential (Paolo et al., 2008). Mesoporous silica 

Figure 10. SEM image of blank alumina
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have been used in ADS and denitrogenation of refinery fuels. A report indicates the feasibility of using 
plain mesoporous silica (high surface area) and zirconia combined with mesoporous silica (lower surface 
area) in desulfurization. SEM images of the samples reveals both samples having diameter between 2-4 
µm. In addition, both adsorbent show effective desulfurization, denitrogenation and regenerative ability. 
However, the structure of the plain mesoporous silica collapses after treatment with deionized water 
(Jun-Mi et al., 2008). Mesoporous silica nanoparticles are also effective in desulfurization of DMDBT 
and can perform better than other adsorbents (Jessica et al., 2014). Lead loaded on mesoporous silica 
reduces 1000 ppm sulfur containing gasoline to 50 ppm in three rounds of adsorption/desorption cycle 
(Anne et al., 2014). Lithium modified mesoporous silica is also effective in desulfurization of natural 
gas (Anton et al., 2012).

• Zeolite in Desulfurization.

Using zeolites as adsorbents for sulfur removal has been reported by many workers. Weitkamp et 
al. examined the removal of thiophene from benzene under dynamic condition using ZSM-5 and the 
adsorption capacity was 15-17 mg thiophene per gram zeolite (Weitkamp et al., 1991). Zeolite 13X re-
duced the sulfur level in non- HDS treated naphtha solution from 36.62 (mg S\L) to 0.74 (mg S\L) and 
a non- HDS treated naphtha solution from 412.2 (mg S\L) to 287.3 (mg S\L), but this sulfur level does 
not meet environmental regulation (Salem et al., 1994). Hu et al. used a combination of ZSM-5/13X 
zeolites to extend the life of a reforming catalyst designed for portable power applications. The zeolite 
combination provided almost an additional 1 hr of life to the catalyst at 80% or better conversion. It shows 
that molecular sieves are promising options for onboard applications, particularly for unexploited options 
like the π-complexation adsorbents (Hu et al., 2003). Gongshin prepared sorbents using ion-exchange 
techniques to introduce d-block metals like Ag+, Cu+, Ni2+ and Zn2+ into zeolites (Gongshin 2006). 
Zeolites synthesized using coal fly ash were used for adsorption of TH and BTH in n-hexane solution. It 
was shown that the introduction of different heteroatoms into the framework of zeolites leads to different 
catalytic and adsorption properties (Ngamcharussrivichai et al., 2008). Gallium atoms introduced into 
the framework of Y zeolite was employed for desulfurization of various model fuels containing about 
500 mg sulfur/g. At ambient conditions, the breakthrough capacity for the adsorption of TH, THT and 
4,6-DMDBT were found to be 7.0, 17.4 and 14.5 mg of sulfur/g of adsorbent, respectively (Tang et al., 
2008). The removal of dibenzothiophene from model fuel was investigated by adsorption on commercially 
available adsorbents including an aluminum oxide, 13X and Y zeolite. The evaluation of the tested ad-
sorbents showed that the best adsorptive performance was achieved by the Y zeolite (Muzic et al., 2012).

• Nanocomposites in Desulfurization.

Doping of adsorbents with metals and metal oxides is known to enhance selectivity, reactivity and 
capacity for the sulfur compounds. Solid metal thiolates that are insoluble in hydrocarbons are formed 
when metal oxides react with thiophene derivatives; this allows there removal by filtration. Various 
nanocomposites have been reported of having potentials in ADS such as alkaline and alkaline earth 
metals, CuO, Cr2O3, NiO, Fe2O3, CeO2, ZnO etc (Saha et al., 1995; Ramaswamy et al., 2004). Most of 
the adsorbents adsorbs at ambient conditions and the desulfurization efficiency is dependent on the 
amount of metals and the type of sorbents used. Varying the nickel/cupper loadings on Ni/Alumina 
and Ni/Aluminosilicate-5 in ODS using hydrogen peroxide as the oxidant shows a dramatic change 
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in the desulfurization. Loading Ni on Alumina can completely treat sulfur in oil from 350 ppmw to 0 
ppmw (Sarda et al., 2012). Dispersion of metals and metal oxides on adsorbents increases adsorption 
efficiency. Ag/TiOx–Al2O3 and Ag/TiOx–SiO2 have been used as remarkable adsorbents for the ADS 
of jet and diesel fuels at ambient conditions. Dispersion of TiOx and loading of Ag on alumina or silica 
increases desulfurization performance. Ag/TiOx–Al2O3 has greatest affinity to BT and it reduces the 
sulfur content of ULSD from 1170 ppmw to 75 ppmw. It is equally regenerable (Shahadat et al., 2013). 
A high performance sulfur adsorbent (NiO–CeO2/Al2O3–SiO2) has been used for the desulfurization of 
Jet A fuels at ambient conditions. The composite reduces the sulfur content from 1140 ppmw to as low 
as 10 ppmw; it has sulfur adsorption capacity of 1.4 and 3.22 mg-S/g-ads at breakthrough points of 10 
and 50 ppmw respectively. The adsorbent was regenerated four times by calcinating helium gas for a 
short time before reaching half-life (Xinhai et al., 2014).

NiMCM-41 and NiY adsorbents have been used in vapor phase ADS of diesel under controlled 
condition. 1g of NiMCM-41 treated 20 ml of diesel and the sulfur concentration was reduced from 450 
ppm to 50ppm while 1g of NiY treated 25 ml of diesel and the sulfur concentration was reduced to <50 
ppm. Both composites were regenerated under controlled oxidation at approximately 450°C (Soumen et 
al., 2013). Zeolite-TiO2 have been tested for the photodegradation of DBT in fuels, β-zeolite adsorbed 
almost all the degradation product while TiO2 was used as a photo catalyst in the reaction. Over 88% of 
DBT was degraded (Faghihian et al., 2013).

π-complexation a form of a ADS using copper species on nanomaterials such as zeolites, AC, silica 
and alumina or nanocomposites to selectively remove thiophenic compounds in fuels at room tempera-
ture and pressure proves to be a promising approach in desulfurization (Yang et al., 2006; Wen-Hang et 
al., 2010). Complexes are formed between the bulk materials and the cuprous ions which is an essential 
step in the removal of sulfur compounds from fuels. The extent of removal depends on the amount of 
the copper species and the limit of dispersion of the species on the nanomaterials. The cuprous species 
for ADS can be directly introduced or formed from the reduction of cupric species.

An area of interesting research currently focuses on the utilization of membranes for efficient de-
sulfurization. Oleophilic polymer-inorganic nanocomposites are used for the pervaporative removal of 
organosulfur compounds from gasoline. The inorganic component (silica nanoparticles) can be synthe-
sized in-situ through biomimetic mineralization in confined space using an alkaline inducer catalyst. 
The membrane has a good performance permeation flux of 7.36 kg/ (m2h) and a selectivity of 4.98 to 
thiophene in gasoline (Ben et al., 2012).

5. MECHANISMS OF ADSORPTIVE DESULFURIZATION

ADS is based on physisorption or chemisorption process of organosulfur compounds on solid sorbents. 
The mechanism of desulfurization in general has not been extensively studied in full details. Most of 
the reports on this field proposed the mechanism theoretically or experimentally without proper insight 
into the subject. However, the studies of (Liang et al., 2010; Duan et al., 2014; Lichun et al., 2011) have 
outlined some of the mechanisms involved in ADS.

The mechanism of ADS based on the idea to regenerate sulfur-poisoned Ni catalyst in reduced at-
mosphere has been studied by (Tawara et al., 2000). Ni/ZnO and Ni/Al2O3 were utilized as catalysts for 
adsorptive ultra-deep hydro desulfurization of kerosene using hydrogen at 600K. The idea is based on 
the fact that sulfur poisoned nickel catalyst particles will be combined with ZnO or Al2O3 particles in the 
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presence of hydrogen, then each poisoned catalyst will release a few ppb of H2S which will be attached to 
the ZnO or Al2O3 particles. This process in turn will allow the effective regeneration of sulfur poisoned 
nickel catalyst. Residual sulfur was not detected in the treated kerosene with Ni/ZnO. The catalyst com-
pletely remove residual sulfur even after 800 h of operation and no methane was produced in contrast to 
the other materials used. Following the results outlined above, (Babich et al., 2003) further illustrates the 
mechanism. ZnO/Al2O3 was used as the main component of the sorbent while Ni was used as the main 
site for the hydro desulfurization. Thiophene in the second step of the reaction was decomposed on the 
Ni site after reacting with hydrogen. Further reaction with hydrogen lead to the removal and transfer of 
hydrogen sulfide to ZnO surface. Subsequent reactions with thiophene further converts ZnO completely 
to ZnS which may later be regenerated or discarded.

Reactive adsorption desulfurization of model oil containing DBT over a Ni/ZnO adsorbent has been 
outlined by (Lichun et al., 2011). The reaction mechanism under different atmospheres has been inves-
tigated. The result indicates different mechanisms when nitrogen and hydrogen were used respectively. 
Desulfurization over Ni/ZnO using nitrogen was achieved based on physical and chemical adsorption but 
the rate was very slow. However, the desulfurization under hydrogen turns out to be based on reactive 
adsorption desulfurization and the rate was very fast. Hydrogen is very important in reactive adsorption 
desulfurization when Ni/ZnO adsorbent is used, it aids in the decomposition of DBT on Ni species and 
in the formation of Ni3S2 and the transfer of sulfur moieties to ZnO. The kinetics of thiophene reactive 
adsorption on Ni/SiO2 and Ni/ZnO via thermal gravimetric analysis at 280–360°C under 5–40 mbar 
of thiophene in H2 was illustrated by (Bezeverkhyy et al., 2008). The interaction of Ni/SiO2 with thio-
phene followed a two-step reactions: surface reaction followed by bulk transformation into Ni3S2 (nickel 
sulfidation). The interaction of Ni/ZnO with thiophene is similar to Ni/SiO2 interaction, a surface reac-
tion was noticed due to increase in weight but there was no nickel sulfidation transformation instead a 
nucleation-controlled ZnO surface transformation was noticed followed by complete particle sulfidation.

The sulfur transfer mechanism in the presence of hydrogen involves three step reactions: first step 
involves the decomposition of DBT in the model oil on Ni surface of Ni/ZnO to form Ni3S2, the second 
step involves the reduction of Ni3S2 in the presence of hydrogen to form H2S followed by the release of 
active nickel species from Ni3S2. The final step involves the storage of H2S in the adsorbent followed by 
the final conversion of ZnO into ZnS. The mechanism is illustrated in Figure 11.

The mechanism involved in the removal of thiophene by reactive ADS from model fuels is illustrated 
by (Xuan et al., 2013). Reduced NiZnO/Al2O3-diatomite was used as the adsorbent in the studies and 

Figure 11. Mechanism of reactive ADS of DBT containing model oil over adsorbent of Ni/ZnO in hydrogen.
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the result indicated that S-M bonding of thiophene to Ni sites of the adsorbent was decomposed to form 
Ni3S2 and C4 olefins formed were further saturated by hydrogen to CH4 which was released back to the 
stream. The final step involves the transfer of sulfur from Ni3S2 to ZnO in a reduced atmosphere which 
will yield ZnS and a free Ni specie ready for another round of the reaction.

Zeolites are acid catalyst used in olefin hydroforming and aromatic conversion. They are also used 
in HDS and as bi-functional catalyst. Zeolites contains both acidic and a basic site. The lewis basic site 
on zeolites is responsible for the catalytic hydrogen desulphurization of most sulfur compounds in fuels; 
the bronsted acidic site has little or no role to play in the catalysis. Thiophenic ring cracking is the rate 
determining step in HDS of thiophene and DBT (Rozanska et al., 2003). A periodic density functional 
theory study of the thiophenic derivative cracking catalyzed by proton or lithium exchanged modernite 
(zeolite) can be a good method to prove the cracking of thiophene derivatives; benzothiothiophene is 
cracked by a catalyst where one of the oxygen atoms in the catalyst is the catalytic center for the reac-
tion. The mechanism of benzothiophene cracking is illustrated in Figure 12.

Mechanism of adsorption of DMDBT from solutions in hexadecane on three different nanopourous 
AC has been illustrated by (Kostas et al., 2014). Each of the nonporous carbons has microporous or 
combined micropores and mesopores structures. The capacity for 4, 6-DMDBT adsorption increases 
with increase in the volume of pores. The pores with diameter lower than 10 Å are said to adsorb better 
because the diameter is similar to that of 4, 6 DMDBT molecule. Acidic functional groups on the sur-
faces of the larger pores are said to contribute to the adsorption via polar interactions. Most noticeable 
functional groups are carboxylic acids because they interact with the oxidation products of 4, 6 DMDBT 
(sulfoxides, sulfones, and sulfonic acids) via hydrogen bond. Dispersive interactions between the delocal-
ized π-electrons within the benzene rings of 4, 6 DMDBT and the electron rich region on the nanoporous 
carbon aromatic ring also plays a major role in the adsorption. Figure 13 illustrates the mechanism.

Molecular simulation techniques are used for the illustration of reaction mechanisms involved in 
desulfurization using density functional theory. These techniques are reported by (Hideo et al., 2004; 
Shengli et al., 2012) and they provide useful information for better optimization and improvement of 
materials used in the desulfurization technology. The reactive adsorption desulfurization mechanism of 
thiophene over Zn3NiO4 (bimetallic oxide adsorbent) is illustrated using density functional theory. The 
gas phase thiophene molecule is adsorbed on the Ni site instead of the Zn-site on the adsorbent. Hydrogen 

Figure 12. Mechanism of BT cracking by zeolites
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plays a fundamental role in the cleavage of the C-S bond of the sulfur compound. The result indicates 
that thiophene is first decomposed on the Ni site of the adsorbent followed by reduction to nickel sulfide 
via two pathways. The first pathway is that nickel sulfide is reduced to H2S in the presence of H2 while 
the second pathway allows the transfer of sulfur from nickel site of the adsorbent to zinc site. A further 
illustration on the adsorption of thiophene on icosahedral Ni13 and Zn doped Ni13 clusters (Zn@Ni13 
and Ni@Ni11Zn1) is shown using density functional theory by (Ping et al., 2013). The results indicates 
that thiophene is preferentially adsorbed on Ni13 and Zn@Ni12 clusters with the whole ring π-bond to 
the hollow site (η5 bonding model) and the introduction of Zn to Ni13 leads to a small decrease in the 
bonding energy. Thiophene is preferred to be adsorbed on the Ni rather than on the Zn site.

6. SUMMARY AND OUTLOOK

The chapter discusses the synthesis and applications of nanomaterials and nanocomposites in ADS. Major 
effects of sulfur to the environment, health, economy and refining equipment have been discussed. The 
regulation set by USEPA on the level of sulfur in diesel and gasoline is currently 15ppm and various 
technologies are currently in use to achieve the set standard viz: HDS, ODS, BDS, ILE, and ADS. ADS 
is the most promising approach because it requires no hydrogen, oxidants or solvents and it operates at 
ambient conditions. It major drawback is lack of selective and regenerable adsorbents. The principle of 
adsorption that relies on chemiosorption and physisorption is based on the increase in the density of a 
fluid within the vicinity of an interface. The types of ADS have been discussed which include: reactive, 
polar, selective, integrated process adsorptions and an adsorption by π-complexation. Various classes 
of the adsorbents (AC, alumina, zirconia, zeolite, silica etc.) and their applications have been discussed 
however for efficient adsorption, the material should possess the following properties: high surface area, 
porosity, affinity to the adsorbate and they should be cheap with thermal and mechanical stability. The 
synthesis routes of nanomaterials and nanocomposites with their applications in desulfurization have been 
extensively discussed. The chapter concludes with possible mechanisms of ADS on various adsorbents.

Figure 13. The possible adsorption mechanism of 4,6 DMDBT on AC
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ABSTRACT

The special interest in ultra-low sulfur diesel (ULSD) is informed by the need to comply with the strict 
government policy on low sulfur content of transportation fuels. Better knowledge of different factors 
that concern deep desulfurization of fuels is important to achieve ultra-low sulfur fuels and cheaper 
way of producing ULSD. Both the capital and operating cost of the adsorptive desulfurization process 
is cheaper compare to the conventional hydroprocessing. The need to produce more volume of fuel such 
as diesel with very low sulfur content from low grade feed stocks like heavy oil and light cycle oil (LCO) 
in order to meet up with the global demand for sulfur-free fuels is pertinent. Several on-going researches 
are pointing to the use of adsorbents for removal of sulfur compounds from the hydrocarbon refining 
stream. In this chapter, varieties of carbon nanomaterials suitable for adsorptive desulfurization are 
discussed. The approach is feasible for commercial applications with any adsorbent of an adequate 
lifetime of activity as well as high capacity.

1. INTRODUCTION

Desulfurization is a vital unit operation in petroleum refining since the combustion products of sulfur 
compounds are the main reason for acid rain and environmental pollution. In addition, sulfur is also a 
catalyst poison during industrial processes. Compounds with sulfur are removed catalytically at high 
temperature and pressure. Desulfurization is gaining a lot of attention and efforts have been channeled 
towards investigating several methods that are effective and economically viable. The attention is warranted 
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by stricter environmental regulations on the amount of sulfur that should be present in transportation fuels 
(Song, 2003; Yang et al., 2004). Sulfur limit (mass percent) of 0.015, 0.035, and 0.2 for gasoline, diesel 
fuel and light fuel oil, respectively has been set. A new and more stringent limit of 0.003-0.005 mass 
percent (30-50 ppm) is imminent for transportation fuels in Europe and United States of America (Song, 
2003; State Announcer, 2001; Babich and Monlijn, 2003). It’s worthy to note also that; desulfurization 
processes have found applications in converting used tires and shale oil to fuel oils. Using calcium oxide 
in binding up sulfur oxide in emissions has been achieved for stationary applications in the desulfuriza-
tion of non-transportation fuels, but the use of the harmful compounds still a challenge (Svobodal et al., 
1994). Therefore, the need to innovate effective technologies for desulfurization processes is paramount.

Several methods of desulfurization processes have been investigated for many years. The need to 
achieve a lower level of sulfur in fuel oils has also called for different innovative ways of achieving deep 
desulfurization where the synergy of methods yielding better results (Agarwal and Sharma, 2010; Sun-
daraman et al., 2009). Hydrodesulfurization (HDS) is a popular process, but there is wide variation in 
reactivity of sulfur-containing heterocyclic compounds. Alkyl-substituted derivatives of dibenzothiophene 
like 4-methyldibenzothiophene and 4, 6-dimethyldibenzothiophene from fuel oils have been reported to 
be relatively unreactive towards hydroprocessing (Gate and Tropsoe, 1997). In order to achieve deep-
desulfurization and take care of attending challenges of hydrodesulfurization that include high hydrogen 
consumption, energy (heat) cost, catalyst volume etc. Many other methods are combined with HDS for 
better results (Rana et al., 2007). In recent years, efforts are being directed to other methods, including; 
adsorptive desulfurization, oxidative desulfurization where different catalysts are used (Kumar et al., 
2012) extractive desulfurization involving ionic liquids, photochemical activation, bio-desulfurization, 
ultrasonic-desulfurization, microwave desulfurization and electrochemical approach (Bhatia and Sharma, 
2006; Lam et al., 2012).

Adsorptive desulfurization where adsorbents are used to remove sulfur-containing compounds 
in fuel oils is holding future promise of ultra-clean sulfur-free fuel oils. Adsorption processes can 
be performed at ambient temperature and pressure, thus saving a lot of energy as compared to other 
methods of desulfurization (Seredych et al., 2009). Therefore, intensive research is ongoing to produce 
new adsorbents with great emphasis on good selectivity, high capacity for adsorption and regeneration 
of the adsorbents with special attention to the mechanism of adsorption (Yang et al., 2007). Various 
materials have been reported to be good adsorbents for different adsorption processes. These materials 
include; different types of zeolites and metal-impregnated zeolites such as MCM-22 zeolites (Delitata 
et al., 2008), MCM-41 (lanthanum loaded, sorbents for diesel fuel) (Subhan et al., 2012), Y-zeolites 
with exchanged cation (NaY) and carbon nanotubes (CNT) as a template, Ag- and Cu-beta zeolites 
among others. A deep desulfurization method was presented by Daimler-Chrysler AG (2000) where 
the adsorption process is used for engine fuel with TiO2, MgO, Al2O3 or SiO2 (with metal additives) as 
adsorption materials. Dibenzothiophene (DBT) and 4, 6-dimethyldibenzothiophene (4, 6-DMDBT) can 
also be removed from diesel by using mesoporous carbon synthesized from silica HMS (template) and 
phenolic resins (sources of carbon) (Zhou et al., 2009). Due to high thermal stability, large surface area 
and well-arranged mesoporous structure (Arbia and Parvin, 2011) of carbon molecular sieves (CMK-1, 
3 and 5), they have been implicated as promising adsorbents of DBT in petroleum fuels.

The following sections will highlight a general classification of carbon materials based on their con-
stituents; discuss major techniques commonly used in their preparation and evaluation of these valuable 
materials towards desulfurization.
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2. CLASSIFICATION OF CARBON-BASED MATERIALS

This section discuses carbon-based materials and their classification based on constituents (Figure 1).

2.1 Carbon Structures as Substrates

Structure indeed determines properties. Different allotropes of low dimension can be formed from car-
bon, such as; graphene, CNT and C-60. The superiority in properties exhibited by CNT among other 
1-D nanomaterials can be traced to its special stereogenic structure. Several attentions have been paid 
to CNTs over the past two decades; this is due to nothing but unique mechanical, thermal, electrical 
properties among other key applications in many fields of science and technology (De Volder, et al., 
2013; McEuen, et al. 2002; Terrones, 2003; Zhang, 2013).

Over the years, carbon has been used as catalyst support employed for different applications in the 
chemical industry owing to its fascinating surface nature. The orientation of graphene layers can be 
varied with respect to the axes of carbon nanofibres (CNFs) giving different morphologies, which make 
available different pores for catalysts’ nanoparticles (Salernitano et al., 2014). Carbon paper substrate 
with 3-D fibre network is appropriate in fuel cells with Silicon-Carbon composite deposited alongside 
the fibre network on the electrode (Matsiu et al., 2013). Carbon blacks and typically, acetylene black, 
have been deeply investigated electrochemically (Kinoshita and Bett, 1973) and gained applications in 
many areas, like catalysis, energy storage and fuel cell technology (Zhang, et al., 2010). An effective 
interaction (oxidation-reduction active species) is owned to a large surface area of carbon (particle size 
1-50 nm, commercially available).

Although carbon black is not well defined structurally like CNT, graphene materials or nano-onions 
but their activities in carbon-based nano-sensor, polymer nanocomposites (selective shape sensing), fuel 
cell and energy storage are very excellent (Iijima, 1991; Molina-Ontoria, et al.,2013; Novoselov, et al., 
2014 ; Loo, et al., 2013; Li, 2009; Blanco-L_pez, et al., 2004). Correct choice of nanocarbon substrate is 
very vital in electrocatalysis and fuel cells, the effects of this have been critically reviewed (Dribinskii, et 
al., 1989). Pt– carbon nanomaterial composites have found application in fuel cells that is characterized 
by CO2 reduction (Perathoner, et al., 2007). With adequate optimization for stable operational conditions, 
carbon blacks give allowance for gas flow into catalysts’ reactive layers.

Figure 1. Classification of carbon-based materials
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2.2 Carbon with Single Nano-Metal

Carbon possesses ordered structure which provides its framework with good porosity. However, their 
uses are limited due to poor solubility, thus limited functionalized nanocomposites of metals and CNTs 
can be achieved (Ebbesen et al., 1996). However, the increasing development of CNTs chemistry makes 
possible the preparation of hybrid materials (metals and CNT) with enhanced performance (Ding et al., 
2012; Li et al., 2011). These hybrid materials can function as chemical sensors due to their high conduc-
tive (electrical) power and selective chemical nature. Another vital property they possess is reasonably 
large surface area, which provide them with good catalyst, sites in reaction catalysis (Ding et al., 2012). 
Nanomaterials of low dimension can now be used for electronic applications, chemical sensors, adsorption 
(desulfurization) e.t.c (Geim AK, 2009). In the same manner, graphene supported metal nanoparticles 
also performs well (Huang et al., 2012; Bai and Shen, 2012).

Metal-carbon interactions play critical roles in catalytically growing carbon nanotubes and graphene 
via CVD as well as in controlling the structures of these carbon allotropes and, consequently, have been 
intensively investigated in order to elucidate the catalytic mechanisms(Jourdain and Bichara, 2013; 
Mattevi, 2011; Li, 2010; Ding, 2008; Edwards, 2013; Seah, 2014; Cheng and Guo, 2002). Fe and Cu 
are two metal systems exhibiting distinct interactions with carbon (Naidich, 1981). With partially filled 
3d-orbitals, Fe exhibits a high affinity for carbon. Carbon has a finite solubility in Fe at high tempera-
tures (0.022% carbon by weight in α-Fe at 727 o C and 2.14% carbon by weight in γ-Fe at 1147 oC) and 
forms metastable iron carbide (Fe3C, 6.67% carbon by weight) with Fe (Jourdain and Bichara, 2013; 
Mattevi, 2011).

Due to its strong interactions with carbon, Fe was among the first catalysts and has been most inten-
sively used for CVD growth of single-wall carbon nanotubes (SWCNTs). In contrast, with completely 
filled d-orbitals, Cu displays a low affinity for carbon. The carbon solubility in Cu is much lower than 
in Fe (~ 0.008% carbon in Cu by weight at 1085 oC) and there is no carbide formation (Jourdain and 
Bichara, 2013; Mattevi, 2011). Due to the weak Cu-C interactions, Cu was once considered unsuitable 
for CVD growth of carbon nanotubes (Deck and Vecchio, 2006). However, this notion did not stop the 
exploration of using Cu as the catalyst. In fact, it has been demonstrated that Cu can catalyze the growth 
of SWCNTs (Yoshida et al., 2009; Zhou, 2006) and, furthermore, it is a better catalyst for developing 
SWCNT system using quartz and silicon as substrates (Li et al., 2010 and Cui et al., 2010). In terms of 
the metal-catalyzed CVD growth of graphene, the different interactions with carbon between Fe and 
Cu result in the formation of few-layer graphene (FLG) on Fe foil (Xue et al., 2011) and monolayer 
graphene on Cu foil (Li et al., 2009). With the formation of methane, carbon hydrogenation reverses 
the reaction for CVD growth of carbon nanotubes and graphene using methane as the carbon source. It 
was demonstrated that Fe is an active catalyst in producing methane and in etching channels in graphite. 
Though an initial study showed that Cu was inactive in catalyzing the hydrogenation of graphite, Cu was 
later found to be active in catalytic etching channels in graphite (Baker, 1981 and 1995).

Metals of transition series are good options for growing graphene or CNTs. The metal-carbon system 
can be built by performing the growth and contacting in a single step with the same metal. However, a 
pressing challenge here is oxide layer formation on exposure of nanoparticles of metal to air as it tarnishes 
and form oxide coating. The formation of the oxide coatings is largely due to large surface-volume ratio, 
which translates to high oxidation process. The oxidation process at the metal surface can, however, is 
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prevented in the procedure (Geim AK, 2009). Scanning electron microscope (SEM) reveals the porosity 
of carbons is paramount to their adsorptive properties. Figure 2 shows SEM images of different carbon 
structures such as activated carbon (AC), CNT and graphene.

2.3 Carbon-Based Composites

The good surface chemistry, stable structure and very large surface area are factors enabling the fine 
surface templating property of graphitic supports (carbon nanospheres (CNSs), CNT, and graphene) and 
their decoration with metal nanoparticles (Iwamoto and Grimblot, 1997). The composites formed show 
enhanced or even synergistic activity in their applications (Salem and Hamid, 1997). The surface 
chemistry of the composites, however, is not fully established and still open to further studies (Nagai 
et al., 2000).

Carbon nanomaterial composites made by decorating carbon (graphene, carbon nanospheres, and 
carbon nanotubes) with transition metals (oxides or salts) are receiving great attention. Carbon-supported 
metal nanoparticles (MNPs) for example; cobalt, iron, or nickel based nanoparticles (CoOx–CoP/C or 
FeOx–CoP/C) have been confirmed to be catalytically active for oxygen reduction reaction (ORR); this 
is due to the nature of the transition metals oxide nanoparticles (Stephanie, et al., 2010). The confirma-
tion of this great activity is shown in the less activity of cobalt porphyrin (CoP/C) when it is adsorbed 
on unmodified carbon. Sometimes a synergistic activity is observed (Salem, 1997).

In the investigation of the potency of activated carbon materials for desulfurization and denitrogena-
tion gas oils, MAXSORB-II adsorbent, is an effective adsorbent for organosulfur compounds’ adsorption 
at ambient temperature (Mochida et al, 2004a and 2003c). This material can be prepared by activating 
carbon prepared from petroleum coke with KOH. Oxidizing agents as HNO3 and H2O2 were also used 

Figure 2. SEM images of nano-structured carbons of AC (a), CNT (b) and graphene (c)
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to further enhance the adsorptive power of commercially available activated carbon, which is then heat 
–treated (Mochida et al., 2004b, 2003d). These oxidizing agents aid the release of CO (600-800 0C) at 
the carbon surface, which thus enhances the absorption power.

3. PREPARATION OF CARBON STRUCTURES

There are three main techniques of preparing carbon nanomaterials such as CNT, CNS, CNF, graphene 
etc.(Iijima, 1991; Yudasaka et al., 1997; Li et al., 1996). These techniques are listed in Figure 3. Other 
techniques that are commercially less developed compare to the above-mentioned three which involve the 
use of flame, solar, electrolysis in their syntheses (Yuan et al., 2001; Hsu et al.,1996; Laplaze et al., 1998).

In the arc discharge technique (Figure 4), with a space of less than 1 mm between graphite electrodes, 
a direct current is passed under inert environment argon at a low pressure. An illustration of arc dis-
charge technique is depicted in Figure 3. The carbon anode vaporizes on generation of plasma of very 
high temperature on the application of current and the carbon material is deposited alongside other by-
products of carbon at the cathode (Popov et al., 2004; Journet et al., 1998). The production of MWNTs 
with diameters ranging from 2 to 20 nm and micrometer-scaled lenght can be achieved (Ebbesen and 
Ajayan, 1992). Similarly, SWNTs of above 70% yield and diameter of close to 1.4 nm can be prepared 
(Journet et al., 1997).

In the laser ablation technique, the principle is not so different from the arc discharge. The heating 
is done in a furnace with the aid of pulsed laser source under inert surrounding. In this technique, high 
temperature carbon vapor is generated from the surface of the graphite as illustrated in the Figure 5 
(Journet et al., 1997). The carbon vapor is transported by the flowing helium or argon and then collected 
on copper-collector as illustrated in Figure 3.

These first two techniques produce high quality carbon nanomaterials in a large amount. However, 
some shortcomings have been identified; the reliance on high temperature graphitic surface evaporation 

Figure 3. Techniques used in preparation of carbon structures
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Figure 4. Schematic representation of arc discharge technique for synthesis of carbon nanomaterials

Figure 5. Schematic representation of laser ablation technique for carbon synthesis
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of carbon that is not cost effective as this leads to high-energy consumption and the adhering impurities, 
which will require further purification of the carbon nanomaterials produced by such methods (Popov 
et al., 2004).

In view of the above challenges of the two techniques mentioned previously, chemical vapor deposi-
tion (Figure 6) is the most commonly used technique. CVD ensure a better control of carbon (e.g. CNT) 
growth than laser ablation and arc discharge, this makes it a more feasible method (Dai, 2002). It makes 
use of hydrocarbons as precursors in the presence of metal catalysts at temperature ranging from 500 
to 1000 0C. The hydrocarbons get decomposed at this relatively low temperature and thus the growth of 
CNTs as the system cools. This techniques is simpler in that lower temperature is involved because the 
precursor is not solid thus consumes less energy (Journet, 1998). Of a vital advantage of CVD worthy 
of mentioning is that, it is very versatile. Virtually all the major components involved in the growth can 
be switched; catalyst and precursor can be in liquid or solid form, the particular precursor to be used, 
possibility of incorporating other materials like nitrogen, temperature and pressure of the reaction etc. 
(Nikolav et al., 1999). The choice of catalyst plays important role in decomposition and dispersion of 
liquid hydrocarbon as precursor to allow in situ decomposition. It allows for better dispersion if liquid 
hydrocarbon is used or in solid form for large-scale synthesis if loaded on large surface area template as 
well as a well-patterned growth with nanoparticles (Allen et al., 2009; Hart and Slocum, 2006).

Graphene is commonly prepared by four techniques (Anton et al., 2007; EMTSEV, 2009; Reina, 
2009; Lomeda, 2008) listed below:

• Direct sonication of graphite or scoth tape approach (known as mechanical cleavage of graphite);
• Growth on SiC (epitaxial);
• Metal substrates CVD;
• Graphite oxide reduction.

Figure 6. Schematic illustration of carbon vapor deposition (CVD)
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Some other approaches being reported are; electrochemical process using graphite electrode and 
unwrapping of carbon nanotubes (Kosynkin et al., 2009; Liu et al., 2008). The most common approach 
for large-scale preparation is the reduction of graphite oxide by, firstly, oxidize graphite with acids then 
convert the oxide formed to graphene by reduction. The reduction process can be carried out thermally, 
chemically or photo catalytically (McAllister et al., 2007; Lomeda et al., 2008; Williams et al., 2008).

4. EVALUATION

4.1 Properties

Carbon nanomaterial, graphene for example, is a monoatomic layer of carbon atoms that is sp2 hybrid-
ized (Geim and Novoselov, 2007). The good electrical properties in ballistic transport of electrons can be 
traced to its 2D pattern (Novoselov et al., 2004). Graphene also possesses large surface-volume ratio, fast 
electron transfer mechanism, good tensile strength and very interesting elastic character (Park and Ruoff, 
2009; Rao et al., 2009; Yang et al., 2010). A very good stacking is possible with graphene, thus, layers 
can be varied from single to many of up to 10 layers and the resulting materials are equally interesting.

Multi-walled carbon nanotubes (MWNTs) comprise of several single-walled nanotubes Single-
walled carbon nanotubes (SWNTs). The one dimensional SWNTs like graphene sheet (0.4 to 2.0 nm 
diameter) are rolled-up to form MWNTs (2 to 100 nm diameter) (Baughman et al., 2002; Yang et al., 
2010). Largely, MWNTs can possess several surface morphologies such as hollow tubes, stacked cups, 
carbon filaments etc (Kiselev et al.,1998; Iijima, 1991; Delgado et al., 2008; Allen et al., 2008). The 
classification of SWNTs can be done based on chiral vectors (ch = na1 + ma2 = (n, m)) where n and m 
are integers that correspond to the two graphene vectors (Figure 7) (Avouris, 2002) as shown in Figure 
6. The following are few classes:

• Zigzag (m = 0);
• Arm-chair (n = m);
• Chiral (n ≠ m).

The particular class and vectors provide information about electronic properties; if (n – m) gives a 
multiple of 3, then the SWNTs of arm-chair type is metallic.

Depending on the diameter of SWNTs, which have inverse proportionality with band gap, SWNTs are 
good semiconductors and have metallic character. Normally, MWNTs also have similar characteristics 
with SWNTS because the effect of a cylinder on its adjacent cylinder is very minute (Baughman et al., 
2002; Charlier, 2002). However, the lack of definite control of chiralities for individual nano-cylinders 
results into MWNTs with SWNTs of different chiralities, thus a metallic properties similar to graphite 
(turbostratic) will be observed (Cao, 2004).

4.2 Applications towards Desulfurization

The very unique dimensions of CNTs (1-D) and graphene (2-D) are enabling features for their outstanding 
electrical conductivity and stability. They are of good surface chemistry for easy decoration with desired 
functionalities, which in turn guaranteed their use in adsorption (desulfurization), electrochemical and 
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other applications. This include energy generation via fuel cells and photovoltaic (Brandon et al., 2003; 
Kauffman et al., 2010), energy storage (batteries, super-capacitors, hydrogen storage) (An et al., 2001) 
field-effect transistors (Katz, 2004; Kruger et al., 2010) sensors and biosensors (Kauffman and Star, 
2008; Ronkainen et al., 2010; Yang et al., 2010). However, there are challenges, like the non-uniformity 
of materials and their hybids (Jacobs et al., 2010), lack detailed understanding of structure as related 
to property and possible contaminants from synthetic precursors/catalysts (Dai, 2002; Kruusma, 2007; 
Pumera and Miyahara, 2009). These are tasking challenges but provide an avenue for further detailed 
studies. In the following sections, the systems and processes used for desulfurization by carbon-based 
materials are highlighted.

Graphene and carbon nanotubes are considered good candidates for the removal of liquid phase 
aromatic sulfur compounds and of gas phase hydrogen sulfide through the adsorption method by metal 
oxide/graphene or nanotube composites. More specifically, the effects of their oxides as substrates are 
promising for liquid phase sulfur removal. Their structures that possesses π orbitals can adsorb aromatic 
sulfur compounds through π-π interactions.

4.2.1 Testing Systems

• Batch System: Adsorptive desulfurization studies of organosulfur compound removal from naph-
tha (550 ppmS) feed stocks can be carried out in a batch system. The use of adsorbents such as ze-
olites (5A and 13X) and activated carbon is effective. These two adsorbents (carbon and zeolites) 
demonstrated a unique performance in their adsorption capabilities; activated carbon has larger 
capacity but the percentage of sulfur removal (65% at 80 0C) is lower compare to the zeolitic ad-
sorbent with relatively smaller capacity but a larger percentage of sulfur (100% at room tempera-
ture and 800g adsorbent/L feed) can be removed. In line with these observations and for industrial 
application, a two-bed approach gives a better desulfurization process (Salem and Hamid, 1997).

Figure 7. Schematic representation of a graphene sheet with unit hexagonal lattice vectors (a1 and a2)
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• Fixed Bed System: Adsorption studies in a fixed bed set-up can be achieved also with the use 
of different adsorbents. Alumina, carbon-supported nickel as well as activated carbon can to a 
large extent remove sulfur and nitrogen from diesel feed with aromatics, nitrogen and sulfur com-
pounds. Activated carbon shows better selectivity in removing refractory sulfur and nitrogen com-
pounds especially with alkylated dibenzothiophene (4, 6-DMDBT) (Kim et al., 2006; Ko et al., 
2007). A superior selectivity for nitrogen removal is observed with alumina as compare to the 
other two adsorbents. This selectivity with alumina is great when basic nitrogen compound is 
involved hydrocarbon streams.

4.2.2 Types of Desulfurization Process

There is no generalized classification for desulfurization techniques. However, some classification can 
be made based on the involvement of hydrogen, what happened to sulfur compound during desulfuriza-
tion and whether desulfurization occurs physically or chemically or both. Considering the change that 
happened to sulfur compounds; three situations are possible; either the sulfur compounds get decom-
posed and removed, removed from process stream without decomposing or decomposed only. From the 
perspective of the hydrogen involvement; a broad classification desulfurization process can be made; 
hydrodesulfurization (HDS)-based and non HDS-based groups (Babich and Moulijn, 2003). Hydrogen 
is involved in the decomposition of sulfur compounds for all HDS-based processes while the non HDS-
based processes do not involve hydrogen for desulfurization to occur. However, to eliminate sulfur, in 
most cases, hydrogen is involved with few exceptions as in the case of selective oxidation. Catalytic 
conversion of sulfur compounds and subsequent removal of sulfur is a well-established desulfurization 
process. Such processes are hydroprocessing, distillation, extraction, adsorption, oxidation, precipitation, 
etc. (Figure 8). Their different combinations have been identified as promising.

During the process of desulfurization, sulfur compounds, for instance, benzothiophene or diben-
zothiophene can be removed from the stream and then decomposed separately in a vessel. A very low 
level of sulfur in transportation fuels can be achieved through this process. This process provides an 
insight for removing sulfur compounds in fuels through distillation with the help of catalysts. It’s also 
possible that some sulfur products (solid or gas) are generated with just decomposition of of organosulfur 
compounds with only the hydrocarbons (without sulfur) remaining in the process stream (example is 
hydro desulfurization). The last class is just a simple removal of organosulfur compounds from process 
stream. This can be done by conversion of the organosulfur compounds to different compounds that can 
be removed easily if direct removal is difficult or impossible; however, disposal of the removed sulfur 
compounds becomes a great challenge for this type of class. This classification is depicted in Figure 9.

• Extractive Desulfurization: Extractive desulfurization employs the use of solubility as the key 
factor for organosulfur removal. Organosulfur compounds tend to be more soluble in some specif-
ic solvents. The sulfur compounds, due to this reason, are transferred from oil feed into the solvent 
and therefore hydrocarbons are easily separated with the aid of a separator. The sulfur compound 
free hydrocarbons can now be further charged for the next process or discharged as final product. 
The mixture of organo-sulfur compounds and the solvent used for it extraction will then be sub-
jected to distillation thus solvent is recovered and can be re-used.



165

Carbon-Based Nanomaterials for Desulfurization
 

Depending on the number of extraction cycles, several solvents have been identified to be suitable 
for this purpose with sulfur compound removal of up to 90%. Acetone, glycols, nitrogenous-solvent 
(Horri, 1996), ethanol are good solvents for extractive desulfurization because they have their boiling 
points different from those of organo-sulfur compounds and relatively cheap (Forte, 1996; Funakoshi 
and Aida, 1998).

Figure 8. Classification of desulfurization processes base on the nature of the process

Figure 9. Classification of desulfurization process according to the changes that occur with sulfur 
compounds
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• Desulfurization by Precipitation: Desulfurization can also be achieved via precipitation by 
forming an insoluble complex of organosulfur compounds and then eliminating them. When a 
pi acceptor (e.g. tetranitro fluorine) is missed with alkylated-DBT (e.g.4, 6-DMDBT) in fuels, an 
insoluble complex is formed which can be conveniently removed by filtration and the tetranitro 
fluorine is recovered by adsorption process with the aid of suitable adsorbent (Meille et al., 1997; 
Milenkovic et al., 1999). This approach does not remove a significant amount of sulfur (< 25%) as 
some other hydrocarbons in the feed compete in complex formation (Hernandez-Maldonado and 
Yang, 2004a; 2004b; 2004c).

• Bio-Desulfurization (BDS): This process involves the use of micro-organisms (e.g. bacteria) for 
removal of organosulfur compound. In this process, the sulfur is removed from its parent com-
pound under mild condition and with availability of oxygen and water without degradation of 
carbon structure present. One very vital feature of this process is that it does not require hydrogen 
thus a cheaper process than HDS.

• Selective Oxidative Desulfurization: Desulfurization by selective oxidation involves oxidation 
of organosulfur compounds and then purification (Aida et al., 2000). Processes like sulphCo and 
photochemical desulfurization employ oxidation as a vital operation. Organosulfur compound can 
be oxidized selectively and processes like adsorption, distillation or decomposition by heating can 
subsequently be used to separate the oxidized oganosulfur compounds from the process stream.

The combination of distillation with selective oxidation is not reported in any literature until date. 
Considering the principle involved, the approach is promising since sulfones, sulfuroxides are the products 
of oxidation of organosulfur compounds, and they increase their boiling points. (Ford et al., 1997). This 
process can therefore be likened to the conventional distillation process provided that only separation 
of organosulfur compounds is desired and subsequent treatment will be done separately. However, the 
formation of carbonmonoxide and carbon (IV) oxide as by-products and process safety are major issues.

• Adsorptive Desulfurization: This is the use of adsorbents for removing sulfur compounds in the 
fuels. The efficiency of this process lies in the ability of the adsorbents to selectively remove the 
target sulfur compounds from oil processing stream, durability and regenerability of adsorbent 
and capacity for adsorption. Desulfurization via adsorption (ADS) can be broadly classified into 
two based on the nature of interaction of the sulfur compounds and the adsorbent: physical and 
chemical adsorption. These two classes are briefly explained below.

• Physical Adsorption (Physisorption): In physical adsorptive desulfurization, organosulfur com-
pounds adhere to the surface of the solid adsorbent without chemical reaction thus the hydrocar-
bon refining stream is free of sulfur. Adsorbent regeneration is done by passing suitable solvent on 
the adsorbent or heating to get rid of adhered sulfur compounds. Several good materials have been 
used as adsorbents, namely; activated carbon, transition metals supported on zeolites and different 
metal oxides supported on carbon structures (Ma et al., 2002 and 2005; Velu et al., 2003; Kim et 
al., 2006). Both denitrogenation and desulfurization can be done simultaneously using activated 
carbon for adsorption process. For every 1 gram of adsorbent, 0.04 g and 0.1 g of nitrogen and sul-
fur can be removed from fuel respectively at a temperature close to the room (Sano et al., 2004a; 
2004b). Nitrogen and organosulfur compounds are removed in the first stage of the two-step pro-
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cess shown in Figure 8. Only very little amount of sulfur is removed at this stage but nitrogen is 
removed to a large extent. The HDS step removes most of the sulfur and the final adsorption step 
get rid of remnant nitrogen and sulfur present.

Adsorptive desulfurization processes only decrease the concentration of organosulfur compounds in. 
Further downstream operation, like hydro processing, needs to be performed at high pressure in order to 
remove sulfur to achieve ultra-low diesel fuel. For commercial application, certain process parameters 
have to be set at optimum points. These parameters include but not limited to; fuel feed to adsorbent 
ratio, particle size of the adsorbent, adsorption cycles, temperature of reactivation etc. To further enhance 
desulfurization process, a combined adsorption and HDS (Landau et al., 2008) for denitrogenation and 
desulfurization can be performed as illustrated in Figure 10.

• Chemical Adsorption (Chemisorptions): In chemical (reactive) adsorption desulfurization pro-
cess, the sulfur in the fuel feed combines and reacts to form compound such as hydrogen sulfide 
(H2S) which is then adsorbed on the surface of the adsorbent (Figure 9). For diesel fuel desulfur-
ization, the reaction to form H2S can occur at temperature of 500-700K and pressure of 19-35 bars 
in the presence of transition metal catalyst. In view of this, many hybrid materials of transition 
metals supported on carbon, zeolites and several other solid porous materials have been prepared 
(Slater et al., 2002; Park et al., 2008; Landau et al., 2008). A simple adsorption scheme together 
with reactivation of spent adsorbent is as illustrated in Figure 11.

SUMMARY AND OUTLOOK

Recently, there has been a remarkable growth in research on achieving ultra-low sulfur level in trans-
portation fuels. Several research groups from different academic institutions and industrial research 

Figure 10. An illustration of combined adsorption and hydrodesulfurization (two-step) process
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laboratories have published a great number of rich scientific papers. Lower harmful exhaust emissions 
can easily be achieved with ULSD thereby enhancing air quality. The desulfurization of least active 
dibenzothiophene (DBT) derivative like 4, 6-DMDBT (sterically hindered) can now be easily achieved 
by optimizing certain factors such as; kinetics and thermodynamics, feed quality, inhibitory effects, 
catalytic sites, etc. In the future, the need to produce more volume ULSD from low grade feed stocks 
like heavy oil and LCO to meet up with the global ULSD demand is pertinent. Other needs like better 
calorific value, reduced aromatics content and density are also worthy of expectation. These, are chal-
lenging, but with enormous economic gain. In order to achieve this great milestone, adsorptive method 
of desulfurization can play a very big role. ADS does not require hydrogen so it is cheap. It is capable 
of desulfurizing organ-sulfur compound (e.g. DBT) preferentially. The ADS can be used to achieve a 
sulfur level of less than 10ppm from the initial sulfur content of 500ppm in diesel fuel.
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ABSTRACT

Organosulfur compounds show a negative environmental impact because of SOx emissions by com-
bustion of fuel oils. As a consequence, removal of sulfur is becoming a worldwide challenge. The hy-
drodesulfurization (HDS) process achieves limited performances in the case of refractory S-containing 
aromatic compounds, such as thiophene and substituted benzothiophenes (BTs), which require highly 
energy-demanding conditions (high temperature and pressure conditions). Oxidative desulfurization 
(ODS) is considered the most promising alternative to HDS. During ODS treatment, the organosulfur 
compounds are oxidized to corresponding sulfoxides and sulfones, which can be successively removed 
by extraction with polar solvents. Different stoichiometric oxidants have been used in the ODS processes 
with a different degree of efficacy and environmental impact. The design and development of catalytic 
procedures can increase the ODS energy efficiency as well as make it more economical and environ-
mentally acceptable. Here we describe the advances in nanostructured organometallic catalysis and 
biotechology applied to ODS treatment.
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INTRODUCTION

The removal of sulfur compounds in petroleum and fuels represents an important topic for the protec-
tion of the health of our planet, (Oliveira et al., 2013; Teixeira, Oliveira, Cristofani, & Moura, 2013). 
As a consequence of the combustion process, sulfur compounds are oxidized to corresponding sulfur 
oxides and acids that significantly influence the composition and stability of the atmospheric ozone 
layer, as well as the formation of acid rain, (De Souza, Guimaraes, Guerreiro, & Oliveira, 2009). These 
environmental risks prompted the U.S. Environmental Protection Agency (EPA) to issue a maximum 
sulfur content (15 ppm) in diesel fuel, a limit that was further reduced in the Euro V standard protocol 
(10 ppm). Thus the development of new technologies for deep sulfur removal has become an enormous 
challenge for production of clean fuels, (Song, 2003). The conventional procedure for the removal of 
sulfur contaminants in fuel is hydrodesulfurization (HDS), (Satterfeld, 1991; Speight, 1998). The HDS 
process consists in the hydrogenolysis reaction at elevated temperatures (ranging from 300 to 400 °C) 
and elevated pressures (10-130 atm) in the presence of catalysts, which are typically based on alumina 
or silica supports impregnated with different metal species (such as cobalt, molybdenum and nickel), 
(Schuit & Gates, 1973). The more challenging problems of HDS stem from the recalcitrant nature of 
aromatic sulfur compounds, such as benzothiophene (BT), dibenzothiophene (DBT) and other methyl 
substituted derivatives, which can irreversibly plug the active sites of catalyst, influencing the kinetic 
and the flow distribution in the reactor, (Babich & Moulijin, 2003). The oxidative desulfurization 
(ODS) is a promising alternative to HDS for the production of ultra low sulfur fuels, (Zannikos, Lois, 
& Stournas, 1995). In the ODS process, the stable and difficult-to-reduce DBT derivatives are oxidized 
to corresponding sulfones and sulfoxide under low temperature and pressure conditions. These polar 
derivatives are successively separated from the fuel by either extraction or adsorption units, (Campos-
Martin, Capel-Sanchez, Perez-Presas, & Fierro, 2010). The ODS process is complementary to HDS, since 
some sulfur compounds, such as disulfides, are easy to be reduced but oxidize slowly. For this reason, 
ODS process is mainly applied for the treatment of fuel with low content of sulfur contaminants (500 
ppm), already depleted of oxidation stable species, (Gatan, Barger, Gembicki, Cavanna, & Molinari, 
2004). The oxidation of organic sulfur compounds is usually accomplished by the use of stoichiometric 
oxidants, such as potassium permanganate (KMnO4), (Gokel, Gerdes, & Dishong, 1980) sodium bromate 
(NaBrO3), (Shaabani, Behnam, & Rezayan, 2009) different carboxylic peracids, (Kubota & Takeuchi, 
2004) sulfonic peracids (Kluege, Schulz, & Liebsch, 1996) and many other oxidants, (Shefer & Rozen, 
2010; Hudlicky, 1990). On the other hand, increasing environmental concerns raised the interest to 
develop benign, selective and economical procedures, based on catalytic methods. Exhibiting both ho-
mogeneous and heterogeneous catalytic properties, nanocatalysts allow for rapid and selective chemical 
transformations, taking advantages of excellent conversion of substrate, product yield and easiness of 
catalyst separation and recovery (Zhang, Xu, & Wang, 2014). The high performance of these systems is 
related to the possibility of design nanomaterials with specific and carefully tuned catalytic properties 
by specific nanosized methodologies, including metal-metal oxide, metal-metal, metal-non-oxide and 
metal alone supporting procedures (Polshettiwar & Varma 2010). Nanosized materials show additional 
unique properties compared to macroscale (Campelo et al., 2009) which are associated at the high surface 
to volume ratio (S/V) of the catalytically active material (Teunissen, Bol, & Geus, 1999). Nanocata-
lysts, with dimensions of less than 100 nanometers (100 nm), have been used in ODS processes in the 
last years to activate primary oxidants, such as hydrogen peroxide (H2O2), alkylperoxides and peracids. 
In the following sections, a large panel of well recognized nanocatalysts for ODS will be described, 
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classifying them in terms of different families on the basis of their prevalent catalytic shape like, that 
is nanocomposites, nanoparticles, nanotubes and more. This choice focuses on the role played by the 
physical form of the catalyst in synergy with the chemical properties of the metal (or metals) species 
in the system. Since several nanosized catalysts perform in a way similar to enzyme, a biodesulfuriza-
tion (BDS) paragraph was introduced at the end to the manuscript, to better describe the scenario of 
environmental friendly procedures.

NANOCOMPOSITES

Nanocomposite are multiphase porous inorganic media in which the matrix is reinforced by one or more 
nanomaterials in order to improve the performance and the catalytic properties (Ray & Okamoto, 2003). 
Usually, the matrix of nanocomposites is composed by colloids, gels, ceramics, polymers (and their pos-
sible combinations), and metals with ordered and repeated properties (e.g. diameter, grain size, cross 
section, layer thickness) between the different phases that make up the material (Manias et al. 2001). The 
physical and chemical properties of nanocomposites differ markedly from that of the single component 
material, as well as, from that of conventional composite materials, mainly due to the exceptionally high 
surface to volume ratio of the reinforcing phase which is typically an order of magnitude greater than 
conventional composite materials (Hussain, Hojjati, Okamoto, & Gorga, 2006). Jordana et al. (2005) 
showed that, depending on the type of the reinforcing phase, nanocomposites can be classified into:

1.  Metal oxide/metal oxide based nanocomposites,
2.  Polymer-based nanocomposites,
3.  Ceramic (glass)-based nanocomposites,
4.  Carbon-based nanocomposites, and
5.  Noble-metal based nanocomposites.

An example of application of noble-metal based nanocomposites strategy in ODS is the use of gold 
nanoparticles supported on red mud. The red mud is a wastewater produced in large amount during the 
Bayer process for the extraction of alumina (Al2O3), which contains active metal species (e.g. ferric oxide, 
Fe2O3) (S. Kumar, R. Kumar, & Bandopadhyay, 2006; Rivas Mercury et al., 2011). In these nanocom-
posites, the gold nanoparticles [as gold complex, Au(en)2Cl3] play the role of coordination centers for 
sulfur compounds on the basis of the known high affinity between sulfur and gold (soft/soft interaction) 
(Pasquali et al., 2009; Noh et al., 2007; Rodriguez et al., 2009). The nanoparticles have been embed-
ded on the surface of three different mud supports, namely dried raw red mud (Rm), hydrogenated red 
mud (RmH2), and chemical vapor deposited ethanol red mud (RmEt). At difference of Rm, the RmH2 
and RmEt supports showed magnetic properties without leaching phenomena. X-ray diffraction (XRD) 
analysis and Mössbauer spectroscopy of Au/Rm, Au/RmH2 and AuRmEt, showed different distribu-
tions and nature of the iron phases, the hematite α-Fe2O3 prevailing in Au/Rm (beside to maghemite 
and goethite), while magnetite Fe3O4, was the most abundant phase in the other catalysts. Noteworthy, 
multiwalled carbon nanotubes (MWCNTs) were observed in TEM images of Au/RmEt, probably as a 
consequence of the EtOH deposition and successive pyrolysis. When applied in the oxidation of DBT 
as a simplified ODS model (performed in a biphasic medium with H2O2), Au/RmEt was more active 
than Au/Rm and AuRmH2, probably as a consequence of the highest content of Fe2+ necessary for the 
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generation of OH∙ radicals via the Haber-Weiss reaction (Figure 1) (Moura et al., 2005; Nogueira, Trovò, 
da Silva, Villa, & de Oliveira, 2007; Costa, Moura, Ardisson, Fabris, & Lago, 2008; Aguiar, Ferraz, 
Contreras, & Rodriguez, 2007).

Au/RmEt was more efficient than RmEt, confirming the benign role of Au nanoparticles in the 
coordination (and concentration) of dibenzotiophene in the oxidant phase. Moreover, the presence of 
MWCNTs increased the interaction of Au/RmEt with the substrate by increasing its amphiphilic proper-
ties. Ceramic (glass)-based nanocomposites have been also used for the activation of titanium silicalite 
in ODS. Titanium silicalite of type-1 (TS-1) are efficient catalysts for the deep removal of sulfur from 
fuel, due to their high activity in the oxidation of low electron density organic sulfur compounds, such 
as tiophene (Napanang & Sooknoi, 2009). Studies have been performed by Sengupta et al. (2012) on 
the immobilization of TS-1 nanoparticles on the surface of porous glass prepared by subcritical water 
treatment, avoiding the formation of TS-1 aggregates and contributing to easy recovery of the catalyst 
from the reaction mixture (Seung-Tae, Kwang-Eun, Soon-Yong, & Wha-Seung, 2012). Porous glass 
beads were treated with tetrapropyl ammonium hydroxide (TPAOH), titanium ethoxide (TEOT) and 
thetraethyl-orthosilicate (TEOS) to yield a uniform distribution of TS-1 nanoparticles on the matrix. 
The novel catalyst were efficient catalysts in the oxidation of DBT and other methylated derivatives, 
like 4,6-dimethyl dibenzotiophene (DMDBT), using cumene hydroperoxide (CHP) as oxidant at 343 K 
(Figure 2). The conversion of substrate and yield of sulfone was tuned by the amount of Ti in the porous 
glass beads, reaching 92% conversion within 5 minutes in the presence of 0.41 wt% of Ti (Shen, Wang, 
Xu, & Luo, 2015). In accordance with studies previously reported by Wang et al. (2013), coordinated 
Ti species (anatase phase) were the active centers for the oxidation.

Note that the oxidation rate slowed down during the time as a consequence of the deposition of 
DBT molecules on the surface of the catalyst, (Kong, Li, Wang, & Wu, 2006). For this reason, the high 
temperature regeneration of the catalyst was required when the system turned to yellow. A significant 
improvement in the catalytic activity of TS-1 in ODS was achieved by reducing intra-crystalline dif-
fusional phenomena in zeolites with small size micropores (Taguchi & Schuth, 2005). In particular in 
according to Kong & Wang (2004), titanium mesoporous materials in the range of nanosized dimen-
sions, (Tanev, Chibwe, & Pinnavaia, 1994) in which the bulky organic sulfur compounds can easily 
reach the active sites, were prepared. Zhao et al. (1998) described the preparation of structurally ordered 
mesoporous TS-1 (meso/TS-1) by a template procedure based on nanoporous CMK-3. The treatment of 
CMK-3 with TPAOH and TEOS (as the silica source) was performed in the presence of TiO2 and SiO2. 
The resulting meso/TS-1 were characterized by the presence of hexagonal-shaped nanocrystals (20-30 

Figure 1. Oxidation of DBT with Au/RmEt nanocomposite by the Haber-Weiss reaction
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nm) in accordance with the study of Jun et al. (2000), arranged in a random packed network with an 
average mesopore distribution centered at 3.65 nm, (Fang & Hu, 2007). Meso/TS-1 efficiently catalyzed 
the oxidation of thiophene and DBT to corresponding sulfones, using H2O2 as primary oxidant at 60°C 
in n-octane solution (Figure 3). Meso/TS-1 were catalysts more efficient than simple TS-1, reaching 
100% conversion of DBT after only 30 min.

Mesoporous titanium dioxide (TiO2)/ phosphotungstic acid (PWA) nanocomposites have also been 
prepared by Huang et al. (2006a) using a quaternary ammonium bromide salts as structure-directing 
agents. Tetrabutyl titanate and the appropriate quaternary ammonium bromide salt were added to PWA, 

Figure 2. Oxidation of DBT and 4, 6-DMDBT with CPH in the presence of TS-1/porous glass nano-
composite

Figure 3. Oxidation of aromatic sulfur compounds with mesoporous zeolite/TS-1 nanocomposites; 
hexagonal-shaped nanocrystals (20-30 nm) are arranged in random packed networks with an average 
mesopore distribution centered at 3.65 nm.
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and the resulting solid was treated at 500°C for 3h, (Huang, Wang, Cui, & Luo, 2008). The pore size-
distribution of mesoporous TiO2 nanoparticles (meso-TiO2) was finely tuned by the chemical properties 
of the salt, that is the pore size increased by increasing the organic chain length, the highest value being 
obtained with octadecyl trimethyl ammonium bromide (STAB, 4.42 nm). The formation of hydrogen 
bond networks between PWA and hydroxylated tetrabutyl titanate, as well as, that between the salt 
and hydroxylated TEOS, contributed to yield larger volume and pore size. Meso-TiO2 exhibited good 
performance in the oxidation of DBT in octane at 70°C using H2O2 as primary oxidant. In the optimal 
reaction temperature (that is the optimal amount of catalyst and oxidant, and optimal initial concentra-
tion of DBT), 98% removal was obtained from a 300 ppm total sulfur mixture in only 2 minutes. The 
amount of PWA was a crucial parameter for the formation of titania mesoporous structures. For example, 
20-30% in weight of PWA were required in the synthesis of TiO2 nanocomposites starting from tetra-
butyltitanate [Ti (C4H9O)4] and Pluronic P123 (EO20PO70EO20) as structure-directing agent, (Yan et al., 
2009). Under these experimental conditions, the mesoporous HPW/TiO2 nanocomposite (meso-HPW/
TiO2) was characterized by a network of TiO2 nanoparticles of approximately 8 nm size as anchorage 
site for PWA. Further increase of PWA content to 40% accelerated the hydrolysis of [Ti(C4H9O)4] with 
concomitant formation of polymeric Ti-PWA entities that can’t easily assemble with the template caus-
ing the degradation of the mesostructured, (Huang, Wang, Yang, & Luo, 2006b). In accordance with the 
degree of structural organization, the meso-HPW/TiO2 containing 30% in weight of PWA was the best 
catalyst in the oxidation of DBT with H2O2 in petroleum ether at 33 K. Tungsten peroxo compounds of 
zirconium dioxide (WOX-ZrO2) have been used in both homogeneous, (Ciclosi et al., (2008) and het-
erogeneous ODS conditions, (Ramirez-Verduzco, De los Reyes, & Torres-Garcia, 2008). Experimental 
and theoretical data showed that the oxidative efficiency of WOX-ZrO2 species (expressed as number of 
W-atom in the system) increased by increasing the surface density of Bronsted acid sites, reaching the 
maximum value with the W-atom loading in the range of 4 and 7 W-atom/nm2, (Rodriguez-Gattorno, 
Galano, & Torres-Garcia, 2009). Thus, n-meric domains of WO3-x nanoparticles immobilized on the 
zirconium surface are more efficient than simple monomeric, dimeric and three-dimensional structures. 
The optimal reactive surface is characterized by aligned Bronsted sites on which the peroxyl radicals 
can add to generate active peroxotungsten intermediates, (Figueras et al., 2004). Solid heteropolyacids 
are efficient catalysts for the activation of H2O2 in the oxidation of several organic compounds, (Huang 
& Wang, 2006c). Tangestaninejad et al. (2008) showed that these systems increase their activity after 
immobilization on solids with high surface areas such as titanium dioxide (TiO2), mainly due to benign 
interaction between the active species and the support. For example, nanocomposites formed by anatase 
sandwich type with polyoxometalates have been prepared by Sharifzadeh Baei and Rezvani (2011) sup-
porting (Bu4N)7 bH3[P2W18Cd4(Br)2O68] on TiO2. In particular, a thin film of [P2W18Cd4 (Br)2 O68] was 
coated on a bed of anatase nanoparticles with average size about 10 nm. The catalytic activity of [P2W18Cd4 
(Br)2O68]-TiO2 (POM-TiO2) system was tested in the oxidation of BT, DBT, 4-methyldibenzothiazole 
(4-MDBT) and 4,6-DMDBT with H2O2 in n-heptane (Figure 4). The nanocomposite POM-TiO2 was a 
catalyst more efficient than homogeneous POM. Sulfones were obtained as the only recovered products 
with the following order of reactivity: DBT>4,6-DMDBT>4-MDBT>BT. In the case of DBT, up to 
98% removal of sulfur was obtained after 12 min. at 60°C. The POM-TiO2 catalyst retained its activity 
for at least three runs.

The recoverability of nanocomposites from the reaction mixture was improved by immobilization of PWA 
on magnetic mesoporous silica rods, previously coated with the ionic liquid 1-methyl-3-[(triethoxysilyl)
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propyl)]imidazolium chloride. Magnetite (γ-Fe2O3) nanoparticles (with an average diameter of 10 nm) 
were embedded on magnetic ordered mesoporous silica by treatment with cetyltrimethyl ammonium 
bromide (CTAB) and tetraethoxysilane (TEOS) (Figure 5, step A), (Kim et al., 2006).

The magnetic mesopourous silica road particles (MMSR) were successively functionalized with 
triethoxysilane and 1-methylimidazole, followed by immobilization of PWA to yield MMSR-IL-PA 
(Figure 5, step B). TEM analysis of MMSR-IL-PA showed a rod-like network structure characterized 
by an average diameter of 60 nm, length in the range of 100-200 nm, specific surface area 385.2 m2/g 
and pore volume 0.35 cm3/g. The reduced value of surface area and pore volume after loading of the 
PWA suggested that the acid was into the pores of the support, (Chen et al., 2013). MMSR-IL-PA was 
then used for the oxidation of DBT with H2O2 in CH3CN. Optimal conversion of DBT to correspond-
ing sulfone (99%) was obtained at 323 K after 4 h. The mechanism of oxidation of DBT by PWA and 
H2O2 was previously reported, (Zhang et al., 2011). Noteworthy, MMSR-IL-PA was easy recovered 

Figure 4. Oxidation of BT and other sulfur derivatives with nanocomposites based on polyoxometalate 
immobilized on TiO2 anatase phase

Figure 5. Magnetic mesoporous silica road particles (MMSR) functionalized with triethoxysilane and 
1-methylimidazole, followed by immobilization of phosphotungstic acid
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from the reaction medium applying an external magnetic field and used for further transformations. 
Besides to H2O2, dioxygen (O2) can be used as primary oxidant in the ODS processes at relatively high 
reaction temperature. In this latter case, the presence of active metal species are required to catalyze 
the generation (and successive desorption) of reactive singlet oxygen species 1O2 at the surface of the 
catalyst, (Vishnetskaya, Tomskii, & Khim, 2009). Different sulfur containing aromatic derivatives have 
been efficiently oxidized by O2 in the presence of microsized vanadium and molybdenum mixed oxides 
(V2O5/MoO3 systems) at temperature below 350°C, (Boikov, Vakhrushim, & Vishnetskaya, 2008) . The 
performance of the system was increased by moving from microsized to nanosized vanadium and mo-
lybdenum mixed oxides, (Sviridova, Stepanova, & Sviridov, 2012). The mixed oxides with elemental 
composition V: Mo = 1: 1 showed nano-crystallites with an average dimension of 50 nm and were mainly 
composed by hydrated vanadium oxide (with some vanadium ions replaced by molybdenum ions) and 
hexagonal molybdenum trioxide. The mixed oxides showed a significant catalytic activity in the oxida-
tion of thiophene (in gas-phase), even if a conversion no higher than 40% was obtained.

NANOPARTICLES

The size of nanoparticles spans the range between 1 and 100 nm. Metallic nanoparticles show physical 
and chemical properties different from that of native metals, such as specific optical properties (differ-
ent colour or different absorption coefficients), lower melting points, increased mechanical strengths, 
higher specific surface areas, and same times, magnetization capability, (Eustis & El-Sayed, 2006). In 
this latter context, paramagnetic nanoparticles have been used for the immobilization of catalysts in 
ODS. The procedure requires three main steps: a) preparation of magnetic silica nanospheres (MSN) 
with an internal Fe3O4 core; b) functionalization of MSN with a quaternary ammonium salt, e.g. 
3-(trimethoxysilyl)-propyldimethyloctadecyl ammonium chloride (AEM) and; c) the immobilization of 
[(C18H37)2N

+(CH3)2]3[PW12O40] (PTA) through ion-exchange procedure (Figure 6), (Cui, Yao, Li, Yang, 
& Hu, 2012).

The presence of the quaternary ammonium salt increased the amphiphilic nature of the catalyst al-
lowing the easier access to active sites of PTA. Under the optimal conditions, 1% in weight of AEM 
furnished the highest catalytic activity. Under these experimental conditions the interaction of PTA with 
H2O2 was higher than in the presence of a large excess of the quaternary salt. MSN showed an average 
diameter of 20 nm with the Fe3O4 magnetic particles densely entrapped within the SiO2 shell. AEM and 
PTA layers covered the surface of a particle as a gel. DBT was efficiently oxidized by MSN/AEM-PTA 
in decahydro naphthaline with H2O2 (30% water solution) at 60°C. High conversion of substrate and 
yield (90%) of sulfone were obtained. Moreover, the MSN/AEM-PTA magnetic nanoparticles were easily 
recovered from the reaction mixture by simple exposition to an external magnetic field. Photocatalytic 
oxidative desulfurization (PODS) is an alternative to conventional ODS, during which the recalcitrant 
sulfur compounds are first extracted by different polar phases and then oxidized to corresponding sul-
fones in the presence of O2 and appropriate photocatalysts, (Lin et al., 2012; Li et al., 2012). TiO2 is 
one of the most used photocatalyst in PODS, mainly due to its low toxicity, chemical stability and high 
reactivity, (Vargas & Nunez, 2008). The mechanism of action of TiO2 is based on the electron transfer 
from the valence band (VB) to conduction band (CB) by photon absorption, which causes the formation 
of an electronic hole. The molecular oxygen or water molecules adsorbed on the mineral surface can be 
trapped by the hole to generate reactive superoxide anion radical (O2

–•) or hydroxyl radical (OH•) spe-



188

Advances in Nanotechnology Transition Metal Catalysts 
 

cies, respectively, (Nagaveni, Hegde, Ravishan-Kar, Subanna, & Madras, 2004). The balance between 
this phenomena and the simple recombination of electron-hole pairs determines the reactivity of TiO2. 
The composition and dimension of TiO2 nanoparticles affect the rate of electron-hole pairs recombina-
tion. For example, TiO2 nanoparticles (anatase phase) with different dimensions (average diameter in 
the range of 4.74 nm to 7.65 nm) have been produced by microwave assisted hydrolysis of titanium 
isopropoxide (TTIP) in ionic liquid 1-buthyl-3-methyl imidazolium tetrafluoroborate [Bmim] BF4 and 
water mixture. These nanoparticles showed an increased activity in the oxidation of DBT, the activity 
being increased by decreasing the value of their diameter, (Wang et al., 2012). 98.2% sulfur removal 
was obtained after 10 h in a model oil mixture. Spectrophotometric measurements conducted by Li et al. 
(2010) confirmed that the activity was correlated to the rate of generation of (OH•) radical intermediates 
(Figure 7). The system TiO2/ionic liquid was recycled by simple evaporation and retained its reactivity 
at least for five runs. Doped activated carbon is a selective adsorbent for aromatic sulfur compounds 
showing photocatalytic activity, (Balzani, Credi, & Venture, 2008).

For example, polymer-derived sulfur and phosphorus doped activated carbon nanoparticles (WVA) and 
commercial available phosphoric acid activated carbon nanoparticles (CP) showed a strong photocatalytic 
activity under UV and visible light range. In a way similar to TiO2, these materials generate electrons 
and holes, which are the driving-force for the activation of O2 (Petit, Peterson, Mahle, & Bandosz, 2010; 
Seredych, Khine, & Bandosz, 2011).

The presence of nitrogen and phosphorous groups increase the activity of doped carbon materials by 
decreasing the gap of energy between the valence and conduction bands, and by increasing the adsorp-
tion of DBT and DMDBT, (Strel Ko, Kutz, & Thrower, 2000; Seredych & Bandosz, 2011). EitherWVA 
and CP catalyzed the oxidation of DBT and DMDBT to corresponding sulfones. Moreover, some 

Figure 6. Multisteps preparation of paramagnetic nanoparticles by functionalization of silica nano-
spheres with a Fe3O4 core
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product of over oxidation, characterized by aromatic ring opening, (such as, among others, 3-hydroxy-
2-formylbenzothiophene, 3-hydroxy-7-methylbenzothiophene-2-carbaldehyde and 7-methylbenzothio-
phene-2, 3-dione), were detected (Figure 8). WVA and CP were active also in dark conditions, (Seredych 
& Bandosz, 2013). Computational procedures have been used to model the oxidation of sulfur organic 
compounds in fuel. For example, the optimal experimental conditions and the most critical parameters 
concerning the oxidation of benzothiophene with Ti-beta nanoparticles and H2O2 were evaluated by the 
use of theoretical artificial neural network model (ANN), (Nikolas, Stergiade, Papadopoulou, & Karat-

Figure 7. Photocatalytic oxidative desulfurization (PODS) with TiO2 (anatase phase) in the presence 
of ionic liquid [Bmim] BF4

Figure 8. PODS of aromatic sulfur compounds by functionalized activated carbon nanoparticles (WVA) 
and commercial phosphoric acid activated carbon nanoparticles (CP); products of oxidative ring open-
ing were detected besides to expected sulfones derivatives.
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zas, 2008; Elmolla). The ANN is a computational method based on multi-layer of individual calculation 
units, namely neurons, which are connected together in a large network able to transform any input to a 
specific target output, (Giroto, Guardani, Teixeira, & Nascimento, 2006).

In particular, the oxidation of BT with Ti-beta was est imated using a three layered feed forward back 
propagation network comprising five reaction parameters (time, catalyst loading, BT initial concentra-
tion, temperature and H2O2 to substrate ratio) as the five main nodes in input layer, and the conversion 
of BT (as %) as the only output node. The input data were experimentally recovered by oxidation of 
BT in isooctane with Ti-beta zeolite, (Tatsumi & Jappar, 1998). Ti-beta zeolites were characterized by 
crystallites with an average size of 30-50 nm and BET surface area and micropore volume of 346.7 m2/g 
and 0.143 cm3/g, respectively. The computational study demonstrated that the reaction time, initial BT 
concentration and reaction temperature, were the most sensitive parameters for the optimization of the 
ODS process, (Maity, Basu, & Sengupta, 2013).

The extractive properties of ionic liquids are very useful in multi-phases ODS processes based on 
highly dispersed poly-oxometalates (POMs) nanoparticles. In particular, POM Na2H2Law10O36· 32 H2O 
was immobilized on mesoporous silica nanoparticles by electrostatic interaction with a positively charged 
(3-aminopropyl)triethoxysilane (APTES), (Chen, Zhao, & Song, 2013). The lanthanum content was 
87 µmol/g, with a surface area of 135 m2/g and a pore volume of 0.34 cm3/g. The ODS efficacy of the 
novel catalyst was tested by oxidation of DBT with H2O2 in tri-phasic systems formed by n-octane (as 
fuel model), ionic liquid, and aqueous H2O2. Among the ionic liquid [bmim]BF4 was the most active, 
affording 99% removal of sulfur after 80 min at 70°C. The catalyst was efficiently recycled and reused 
for at least ten runs without any appreciable decrease in the catalytic performance. Metal organic frame-
works (MOFs) are a large family of organic/inorganic hybrid compounds with high catalytic activity 
associated to efficient dispersion of active sites, microporosity and tunable physicochemical proper-
ties, (Bae et al., 2007; Sun et al., 2013; Herm et al., 2013). In MOFs, the metal oxide is coordinated 
by organic ligands containing electron rich moieties, such as OH, NH2 and heterocyclic groups, able 
to tune the reactivity and selectivity of the system, (Pintado-Sierra, Rosero-Almansa, Corma, Iglesias, 
& Sanchez, 2013). After extensive reduction at high temperature, MOFs perform as templates for the 
formation of reactive carbon-metal materials with increased chemical and thermal stability and reduced 
leaching of metals, (Su et al., 2013). In this context, Kim et al. (2013) reported a novel procedure for the 
preparation of titanium oxide nanoparticles supported on nanoporous carbon (Ti/NC) by carbothermal 
pyrolysis of Zn-based MOF. As schematically reported in Figure 9, IRMOF-3 was functionalized with 
titanium isopropoxide by formation of coordinative bond with the 2-amino-terephtholic moiety to yield 
IRMOF-3/Ti, followed by pyrolysis at 550°C under helium atmosphere. The novel material showed a 
high surface area (> 1000 m2/g), high dispersion of metal oxide nanoparticles (zinc oxide and titanium 
oxide, respectively), average diameter of 4nm, mesopore volume of 1.19 cm3/g, and micropore volume 
of 0.35 cm3/g. Carbon supported nanoparticles were used for the oxidation of DBT in decane/dodecane 
mixture using tert-butyl hydroperoxide (TBHP) as primary oxidant. Ti/NC catalyst was more efficient 
than simple titanium oxide immobilized on activated carbon by simple wetness impregnation. Moreover, 
Ti/NC was enough stable to be recycled for more runs.

The efficacy of TS-1 in the oxidation of bulky substrates was increased by increasing the diameter 
of the pores, thus enhancing the diffusibility to active titanium sites in the framework, (Zhang, Koyama, 
Yamada, Imagaki, & Tatsumi, 1996) as in the case of ordered Ti-MCM-68 and so on, (Kubata, Koyama, 
Yamada, Imagaki, & Tatsumi, 2008). Stable and reactive mesoporous titanium silicates have been 
prepared by increasing their crystal properties, (Poladi & Landry, 2002) by direct assembly employing 
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zeolite seeds, (Yang et al., 2012) by hard and soft templates techniques, (Wang, Li, Liu, & Liu, 2012a) 
or by supramolecular structure produced by interaction of zeolite nanosheets with bifunctional surfac-
tants, (Wang et al.,2012b). Li et al. (2014) prepared nanosized hierarchical TS-1 (HTS-1) containing 
both micro- and mesopore structures (particles of 140-200 nm) using a hydrothermal procedure. The 
presence of the organo silane (with a lipophilic character) facilitated the separation and recovering of 
the catalyst from the solution (Figure 10). HTS-1 showed a catalytic activity higher than mesoporous 
Ti-MCM-41 in the oxidation of BT, DBT and 4,6-DMDBT, with H2O2. The final removal rate of sulfur 
compounds was nearly 100%.

Stable silica nanosized spheres of POMs have been developed for ODS. Usually, POMs are immobi-
lized on silica supports by electrostatic interaction with positively charged groups, such as NH2-modified 
mesoporous silica or silica supported ionic liquids, (Balula et al., 2013). Alternatives are represented by 
encapsulation procedures, during which the active species is entrapped in reverse micelle with or without 
the use of surfactants. Neves et al. (2013) described the possibility of incorporation of POMs on cross-
linked organic/inorganic structures to afford well dispersed nanosized silica spheres. In these materials, 
the core is formed by [PW11Zn(H2O)O39]5 linked to support by an appropriate amine organosilane (AP-
TES) and coated by a silica shell, (Noguera et al., 2014). These materials were efficient catalyst for the 
oxidation of DBT and 2, 4-DMBT in the biphasic system octane/MeCN using H2O2 as primary oxidant. 

Figure 9. Preparation of titanium oxide nanoparticles supported on a matrix of nanoporous carbon (Ti/NC)

Figure 10. Preparation of nanosized hierarchical TS-1 (HTS-1) containing both micro- and mesopore 
structures, with particles of 140-200 nm
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MeCN plays the role of extractive for sulfur compounds and optimal reaction medium for the oxidation. 
The reaction required an induction period (3h for DBT, and 4h for 2, 4-DMDBT) for the formation of 
the active W=O catalytic species, producing 100% of sulphur removal. It is interesting to note that silica 
nanosized spheres of POMs were more reactive than corresponding homogeneous POMs, confirming 
the benign role of the immobilization procedure. Organometallic compounds are also used in ODS pro-
cesses, as in the case of methyltrioxorhenium (CH3ReO3, MTO). MTO is able to activate H2O2, (Saladino, 
Crucianelli, & De Angelis, 2010). In these reactions, the active catalytic forms are monoperoxorhenium 
[MeRe(O)2(O2)] and bisperoxorhenium [MeRe(O)(O2)2] complexes, which efficiently oxidize sulfides, 
disulfides, and sulfoxides to corresponding sulfones, (Hwang, Bryan, Goldsmith, Peters, & Scott, 2013). 
Heterogeneous rhenium catalysts based on the immobilization of MTO on commercially available organic 
resins, such as poly (4-vinylpyridine) (PVP) and poly(4-vinylpyridine)-N-oxide (PVPN), or by physical 
microencapsulation of MTO on polystyrene, have been prepared and used for the selective oxidation of 
BTs and DBTs derivatives in CH2Cl2, n-octane and in a model of fuel oil (MF), with H2O2 at 50°C. Ir-
respective to experimental conditions, the quantitative conversion of substrates was obtained in several 
of the studied cases, to afford selectively the corresponding sulfones after only 1 h of reaction time. The 
general reactivity trend was BT’s < DBT’s. In the case of MF, the sulphur derivatives were oxidized at 
a faster rate than as isolated substrates, suggesting the presence of synergic or autocatalysis effects, (Di 
Giuseppe, Crucianelli, De Angelis, Crestini, & Saladino, 2009)

CARBON NANOTUBES AND NANORODS

Carbon nanotubes (CNTs) are supramolecular allotropes of carbon with a cylindrical nanostructure and 
unusual properties, which are very useful for nanotechnology, electronic, catalysis and optic applications, 
(Vairavapandian, Vichchulada, & Lay, 2008). They are members of the fullerene family with a hollow 
structure characterized by one-atom-thick sheets of graphene walls. Depending on the number of walls, 
carbon nanotubes are classified as single-walled nanotubes (SWNTs) and multi-walled nanotubes 
(MWNTs), in which the layers are held together by van der Waals (pi-stacking) interactions. Diameters 
of SWNTs and MWNTs are typically 0.8 to 2 nm and 5 to 20 nm, respectively. The CNT lengths range 
from less than 100 nm to several centimetres, (Xiea, Maia, & Zhoub, 2005). CNTs, either as SWCNTs 
or MWCNTs, show several benign properties, such as high surface area, biocompatibility, mechanical 
resistance and favourable electrochemical properties, (Volder, Tawfick, & Baughman, 2013). The dimen-
sion of nanorods (NRs) range from 1 to 100 nm, of 3 to 5 length to width ratio. During the preparation 
of NRs, specific ligands are used to bond the facets of the growing structure with different strengths. 
This allows the growing of the faces at different rates producing an elongated object, (Wang & Shi, 
2014). The low-temperature hydrothermal procedure has been proposed to prepare different phases of 
MnO2 NRs, based on a template-free synthetic method (i.e. without any surfactant or polymer matrix). 
Single-crystalline MnOOH (γ-MnOOH) and MnO2 NRs (β-MnO2 and α-MnO2) have been synthesized 
by Sampanthar et al. (2007) applying redox reactions at various pH values (temperature range of 120–180 
°C), obtaining a distribution of the surface area in the range of 20–80 nm. The catalytic performances 
of α-MnO2 NRs were studied for the selective oxidation of 4, 6-DMDBT to the corresponding sulfone, 
in n-tetradecane at 150 °C, using air as primary oxidant. In some cases, the α-MnO2 NR samples showed 
higher activity than commercial MnO2, affording a quantitative oxidation of starting material in only 2 
hours. The ability of titanium incorporated into microporous materials such as zeolites (Ti-ZSM-12, 
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Ti-Beta, TS-1) and MCM-type mesoporous titano-silicates (Ti-MCM-41, Ti-HMS), in the oxidation of 
olefins, phenols, alcohols, thioethers, and sulfoxides, using H2O2 or TBHP as oxidants, has been described, 
(Moreau, Hulea, Gomez, Brunel, & Di Renzo, 1997; Hulea & Dimitriu, 2004; Hulea, Fajula, & Bousquet, 
2011). Nevertheless, the microporosity of these systems can limit their application in the oxidation of 
large molecules. Chica et al. (2006) demonstrated that Ti-MCM-41, with a larger pore size than zeolites 
(i.e. about 4.0 nm), is able to desulfurize diesel in a continuous fixed bed reactor with high catalytic 
activity and long lifetime. Within this context, titanium oxide nanotubes (TiNTs), prepared by hydro-
thermal synthesis, have attracted special attention because these materials can be potentially used in 
several catalytic applications due to three main advantages: high specific area, low cost, and practicabil-
ity to be produced in large quantities, (Bavykin, Friedrich, & Walsh, 2006; Kasuga. Hiramatsu, Hoson, 
Sekino, & Niihara, 1998). Most of the catalytic studies so far performed using TiNTs, have been lim-
ited to the use of nanotubes as support for highly dispersed metal nanoparticles, (Bavykin et al., 2006). 
Only a few publications have explored the properties of pristine titanate nanotubes in the field of ca-
talysis, which includes photo-oxidation of organic contaminants and its use as solid-acid catalysts, 
(Kiatkittipong, Scott, & Amal, 2011; Kitano, Nakajima, Kondo, Hayashi, & Hara, 2010). Due to the 
ability of Ti (IV) sites to interact with H2O2 producing active radical species, (Antcliff, Murphy, Griffiths, 
& Giamello, 2003) these heterogeneous materials have shown interesting performances in oxidative 
transformations, (Kim et al. 2012). The use of large surface area Ti-containing materials, such as meso-
porous Ti-modified SBA-15 (Ti-SBA15) and TiNTs, could be interesting alternatives in ODS pro-
cesses. The activity of these catalysts in the oxidation of DBT, 4-MDBT, and 4, 6-DMDBT, with H2O2 
under two (liquid-solid, L-S) or three (liquid-liquid-solid, L-L-S) phases systems, was studied by 
Cedeno-Caero et al. (2011). While Ti-SBA15 (19 wt. % of TiO2) showed a low activity, calcined and 
un-calcined Ti nanotubes (containing more TiO2-anatase active phase) behaved like highly active cata-
lysts, ensuring almost quantitative DBT oxidation in 1 hour at 60 °C. In the L-L-S three phase system, 
the mass transfer between liquid phases limited the sulfur removal. In a different case, nanotubular tita-
nia have been used to support WOx species to obtain active WOx-TiO2 catalysts, (Cortes-Jacom et al., 
2007). These catalysts were synthesized by impregnating aqueous (NH4)2WO4 on hydrous titania nano-
tubes, followed by annealing in air at 500 °C. After this treatment, the structure of the support was 
transformed from orthorhombic to tetragonal, yielding anatase nanoparticles decorated by tungsten 
nanoparticles on their surface. Interestingly, the nanotubes released residual Na+ ions from the inter-
layer space, which reacted with tungstate species to change the W coordination from octahedral to tet-
rahedral (that is exclusively W6+ oxidation state). The reaction rate of DBT oxidation by H2O2 at 60 °C 
increased linearly with the W content, reaching the maximum value at W surface density of 6.9 W/nm2. 
The turnover rate suggested that isolated W atoms (in tetrahedral coordination) were at least twice as 
active as octahedral ones. No results on recycling experiments have been reported. TiNTs with either, 
high sodium content (Na–TiNTs) or in the protonated version (H–TiNTs), have been recently synthesized 
by alkaline hydrothermal treatment of anatase TiO2, in order to test the catalytic activity in the oxidation 
of DBT with H2O2, (Lorecon et al., 2014). Interestingly, the catalytic properties appeared to be strongly 
dependent on the counter-ion present in TiNTs structure: indeed, while Na–TiNTs were found to be 
inactive, probably due both to low DBT adsorption capacity and low radical production, H–TiNTs showed 
excellent catalytic performance under the same experimental conditions. Optimization studies showed 
that high concentrations of H2O2, and elevated temperatures, reduced the catalytic activity. Instead, room 
temperature and a 4:1 ratio H2O2/substrate were the most useful operating conditions. H–TiNTs was also 
recycled for four times without significant decrease in activity, while maintaining very high turnover 
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numbers (about 30.000). Lorecon et al. 2014 observed that N-containing compounds (quinolines) may 
be simultaneously removed within the same reaction. Recent advances in carbon materials have focused 
on the use of one, two, and three dimensional carbon materials, (Lam & Luong, 2014). Multiwalled 
carbon nanotubes (MWCNTs) doped with titanium species have been extensively studied, (Chen, Zhang, 
& Oh, 2009; Woan, Pyrgiotakis, & Sigmund, 2009; Gui et al. 2010). MWCNTs have a large electricity-
storage capacity, and therefore, they may accept photon-excited electrons. For these reasons, the com-
bination of MWCNTs with TiO2 can reduce charge recombination, enhance reactivity and enhance 
photocatalytic ability of the photoactive species. Such composite materials have been fabricated by 
various methods like the sol–gel method, (Jitianu, Berger, Benoit, Beguin, & Bonnamy, 2004; Wang, 
Serp, Kalck, & Faria, 2005) electro-spinning, (Aryal et al., 2008; Cho, Schaab, Roether, Boccaccini, 
2008) and electrophoretic deposition, (Corrias et al., 2003). Recently, composites of MWCNTs and TiO2, 
with uniform microstructure, were prepared through the heterogeneous gelation method, with the aim 
of studying their activities in PODS of DBT and 4, 6-DMDBT, in n-tetradecane, and commercial diesel 
(total sulfur content of 714 ppm). The irradiation was performed with high-pressure Hg lamp at room 
temperature, (Vu et al., 2012). After treating with the MWCNTs/TiO2 composite for 120 min, followed 
by absorption of the sulfone and sulfoxide mixture with silica-gel, the sulfur content in the diesel was 
completely removed, in comparison to a residual sulfur content of 400 ppm after commercial TiO2 treat-
ment. This result confirmed the presence of synergic effect between TiO2 and MWCNTs. Having in 
mind the issue of increase the recyclability of these types of heterogeneous catalysts for ODS applica-
tions, a composite system based on MWCNT supported Cs2.5H0.5PW12O40 (Cs2.5H0.5PW12O40/MW-
CNT) by impregnation technique, has been described, (Kozhevnikov, 2002; Wang, Yu, Zhang, & Zhao, 
2010).The latter catalyst was very effective for the removal of DBT, with a desulfurization efficiency 
of up to 100%, using H2O2 at 60 °C for less than 3 hours. Noteworthy, after recycling tests, the recovered 
catalyst showed quite close catalytic activity to that of the fresh one, thus confirming the potential reli-
ability of its use for industrial diesel desulfurization processes. Due to the hydrophobic surface of CNTs, 
it is difficult to achieve dispersion stability in polar solvents so, their functionalization (with concen-
trated solution of HNO3 and H2SO4) by introducing oxygenated groups such as OH and COOH, has been 
reported to increase the wetting characteristics, and consequently, to increase the dispersion of metal 
particles on their surface (so called functionalized MWCNT, FMWCNT) (Mazov et al., 2012; Kundu, 
Wang, Xia, & Muhler, 2008). As an example, these oxygenated groups may serve as anchors for metal 
particles or metal oxides to the CNT surface. The preparation of FMWCNT supported MnOx nano-
catalysts (MnOx/FMWCNT) has been reported to investigate their performance in deep desulfurization 
of sour naphtha with H2O2, Meman, Pourkhalil, Rashidi, & Zarenezhad, 2014a). The nanocatalyst was 
prepared by a wetness impregnation technique, using an appropriate amount of Mn (NO3)24H2O as the 
precursor for MnOx. MnOx/FMWCNT (about 10 wt% of MnOx) showed good performances in ODS, 
with a sulfur removal efficiency of 99.85% after 30 min at room temperature and atmospheric pressure. 
The results of recycling experiments confirmed that there was no significant decrease in the catalyst 
activity even after four runs. The same researchers applied this methodology for the preparation of 
FMWCNT supported palladium nanocatalyst (Pd/FMWCNT), (Meman, Zarenezhad, Rashidi, Hjjar, & 
Esmaeili, 2014b). FMWCNTs were impregnated using appropriate amount of aqueous solution of Pd-
Cl22H2O, then dried at 110 °C for 2 hours. Under optimized conditions, almost 90% of sulfur components 
were removed at 25 °C, in 30 min. The heterogeneous nanocatalysts were reusable several times for deep 
desulfurization of fuel as well. Interestingly, the latter authors compared their quite satisfactory results 
with those already reported by other groups in previous papers, by impregnating palladium catalysts on 
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different heterogeneous phases such as Al2O3, Al2O3-MgO and ZrO2. The results they have obtained 
proved to be better, in terms of conversions in the oxidation of sulfur compounds, in comparison with 
those previously reported, (Zapata, Pedraza, & Valenzuela, 2005; Salmones, Galicia, Wang, Valenzu-
ela, & Aguilar-Rios, 2000; Wang et al., 2004).Very recently, CNTs have been proposed as catalysts itself 
for the ODS in a model fuel containing BT, DBT and 4, 6-DMDBT, (Zhang et al., 2014). CNT alone 
showed to be selective catalysts, affording the corresponding sulfones for each type of sulfur compounds 
in following order of reactivity: BT < DBT < 4, 6-DMDBT. By means of X-ray Photoelectron Spec-
troscopy (XPS), the content of various oxygen-containing functional groups on the surfaces of CNT 
catalysts, including C=O, –OH and adsorbed water, were quantitatively analyzed. Their molar fractions 
changed before and after the ODS reaction, thus strongly suggesting their active role in the catalytic 
process, (Liu, Su, & Schlogl, 2011; Su et al., 2005; Mestl, Maksimova, Keller, Roddatis, & Schlogl, 
2001). A reaction mechanism proposed by authors suggested the following steps: i) molecular oxygen 
gains electrons from surface hydroxyl groups giving rise, simultaneously, to active oxygen species and, 
carbonyl groups; (ii) DBT is oxidized to DBTO2 by the active oxygen while the carbonyl groups gain 
electrons to be reduced to hydroxyl groups (Figure 11). In this model, the electron-transport rate is 
mainly governed by the graphitization degree (that is the ratio between ordered sp2-hybridised and 
amorphous or disordered carbon atoms) of the CNT, (Begin et al., 2009). This could be due to the fact 
that higher degrees of graphitization would allow CNTs to have higher electric conductivity. In these 
conditions, the transfer of electrons involved in the oxidation–reduction reaction should increase, also 
improving the catalytic activity of the CNTs. CNT sample having a higher degree of graphitization 
showed the highest catalytic activity in the oxidation of DBT.

Interestingly, authors stated that deactivated CNTs were effectively regenerated by heat treatment 
under an argon atmosphere, at 900°C, and then recycled with an almost completely recovered catalytic 
activity. In comparison to conventionally microporous and mesoporous inorganic materials, the MOFs 

Figure 11. Proposed mechanism for the direct oxidation of DBT with functionalized MWCNTs (FMW-
CNTs) at 150°C in air
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stuctures exhibit the potential for more flexible rational design, by controlling the size and the func-
tionalization of the organic linkers, (Li, Eddaoudi, O’Keeffe, & Yaghi, 1999). In this context, porous 
materials based on chromium (III) terephthalate metal organic frameworks [Cr-MIL(101)] and their 
new composites with vanadium oxide has emerged as a potential catalyst because of their high specific 
surface area, tunable pore size, and unique structure. Recently, a series of mesoporous vanadium contain-
ing metal organic framework NR catalysts [V@ MIL (101), 4.2% of vanadium loading] were prepared 
by wet impregnation method, with the aim to study their activity toward functionalized aryl and alkyl 
sulfides, with H2O2. This catalyst was able to reduce the total sulfur level of commodity gasoline from 
1423 g/g to 232 g/g, (Fazaeli, Aliyan, Moghadam, & Masoudinia, 2013). Heterogeneous vanadium con-
taining catalysts, namely polymer-anchored oxovanadium(IV) catalysts like poly-[VO(sal-AHBPD)] and 
poly[VO(allylSB-co-EGDMA)] (Figure 12), have been also recently published for catalytic oxidation 
of organosulfur compounds, (Ogunlaja, 2013).

In this paper, the novel polymer-supported systems were employed as catalyst for the oxidation of 
thiophene (TH), BTH, DBT and 4, 6-DMDBT, with t-BuOOH, under a continuous flow system at 40 °C. 
These experimental conditions were selected with the aim to combine both the advantages of heteroge-
neous catalysis and of continuous flow process. Authors observed the maximum conversion values at a 
flow rate of 1 mL/h, with overall conversions ranging from 71% to 99%, being poly [VO (sal-AHBPD)] 
the better catalyst. Moreover, the stability of vanadium species within the polymer support (functional-
ized Merrifield beads) was confirmed for both catalysts by the very low level of vanadium leaching. 
The catalytic oxidation reactivity followed the order: BTH< 4, 6-DMDBT < DBT, according to the 
electron density and order of steric hindrance of the organosulfur compounds. After the oxidation, the 
sulfones were adsorbed using chitosan nanofibers through the hydrogen bonding interaction between 
sulfone groups and amine or hydroxyl residues of chitosan, as well as the sulfone imprinting properties. In 
these conditions, up to 84% of sulfones removal was obtained in diesel sample. As well known, sorbents 
materials such as molecularly imprinted polymers (MIPs) fabricated through imprinting of polymers 
with specific templates, act as potential adsorbents for the adsorption of these compounds, (Aburto & 
Le Borgne, 2004). Adsorbents for the selective extraction of sulfone compounds have been described 
in recent articles referring to cross-linked chitosan microspheres and electrospin produced chitosan 

Figure 12. Heterogeneous vanadium containing catalysts, namely polymer-anchored oxovanadium (IV) 
catalysts like poly-[VO (sal-AHBPD)] and poly[VO(allylSB-co-EGDMA)]
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nanofibers. These materials were produced by molecularly imprinted polymer techniques, through the 
formation of recognition sites which are complementary to benzothiophene sulfone (BTO2), dibenzo-
thiophene sulfone (DBTO2) and 4,6-dimethyldibenzothiophene sulfone (4,6-DMDBTO2), (Ogunlaja, 
du Sautoy, Torto, & Tshentu, 2014). The nature of molecular interactions occurring between imprinted 
chitosan adsorbent and sulfones was investigated by molecular modeling using the density functional 
theory (DFT). The results confirmed that interactions took place via hydrogen bonding. The molecu-
larly imprinted polymer adsorbents gave better selectivity for the apsorbtion of sulfones with respect to 
non-imprinted polymers. The properties of molecularly imprinted polybenzimidazole (PBI) nanofibers 
(prepared by analogous procedure) toward the adsorption of BTO2, DBTO2 and 4, 6-DMDBTO2 sulfone 
model compounds, were investigated, (Ogunlaja et al., 2014). Also in this case, DFT studies indicated 
that hydrogen bond interactions occurred between sulfone oxygen groups and NH moiety of the PBI, 
along with the positive role of the π–π stacking interactions between both, the benzimidazole and the 
aromatic sulfone compoundS. PBI nanofibers showed good sulfur removal abilities after continuous 
flow adsorption, below the limit of detection, corresponding to 2.4 mg/L.

DRAWBACKS DURING THE OXIDATION AND EXTRACTION STEPS

Even if the catalytic ODS efficiency is very high, as witnessed by the examples given in this review, 
some critical points still have to be solved. There are two major problems associated with ODS. First, 
the oxidants chosen do not always act selectively. Some oxidants cause unwanted side reactions on other 
components of the fuel, such as alkenes and aromatic hydrocarbons,that reduce the quantity and quality 
of the authentic oil, thus lowering the selectivity of the process. The second problem is the selection of 
a suitable solvent for the extraction of the oxidized sulfur compounds. Aromatic compounds in real fuels 
have structures that are analogous to sulfur containing substrates like DBT. If these compounds are easily 
extracted by the solvent, this could decrease the oil recovery. For example, contrasting opinions have 
been expressed toward acetonitrile that is frequently employed as solvent, due to its synergic action in 
the extraction−oxidation of DBT, along with a comparatively low dissolving capacity for aromatic com-
pounds, (Tian, Yao, Zhi, Yan, & Lu, 2015). The employment of the wrong solvent may result in removing 
desirable aromatic/olefinic compounds from the fuel or, alternatively, extracting less than the desired 
amount of the sulfur compounds from the fuel. The use of ionic liquids to remove sulfur compounds 
from hydrocarbons by solvent extraction is the object of ongoing research. Most of the publications in 
this front, however, present two serious drawbacks: they are not based on rigorous thermodynamic data, 
and they do not consider the effect of the ionic liquid on the different fuel constituents, (Rodriguez-Cabo, 
Rodriguez, Rodil, Arce, & Soto, 2014). Moreover, adsorption solvents recyclability and recovery be-
comes challenging due to the similar properties (such as boiling point) that they share with the extracted 
compounds. Thus, a need to develop materials (adsorbents) that can selectively extract/remove sulfone 
compounds and be easily recycled is increasingly becoming important. About the catalyst leaching, in 
the design and application of processes based on the use of metal nanoparticles, the sintering or ag-
gregation of metal nanoparticles is the main drawback leading to the reduction of catalytic activity or 
complete deactivation of the catalyst, (Chung, Erathodiyil, & Ying, 2013). In addition, irrespective to 
the nature of the employed catalytic systems, under ODS liquid phase processes, catalyst deactivation 
can occur due to metal leaching of soluble species, thus affording deactivated systems and vanishing the 
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advantages of catalyst recycling, (Chica et al., 2006). In this review, many selected examples of ODS 
nanostructured catalysts to illustrate certain principles of catalytic activity enhancement via control of 
their dispersion, morphology, composition, oxidation state, and interaction with their supports, have been 
throughout analyzed. Developing various strategies to prevent the aggregation, sintering, or leaching 
of catalyst nanoparticles represents a stimulating but also a challenging issue for the effective synthesis 
and utilization of nanoparticles catalysts with desirable dimension and improved catalytic performance, 
irrespective to the type of catalytic technological process involved. The future of nanocatalyst based 
research on the ODS field lies in the judicious design and development of nanocomposite catalysts able 
to be stable and resistant to sintering and leaching, and yet highly active, even after multiple runs. It is 
highly desirable that, within the very important ODS technology, the research can continue especially for 
what it concerns the designing and finding of the most appropriate environment friendly and selective 
catalytic conditions, provided that the high fuel quality is maintained, (Scrivastava, 2012).

BIODESULFURIZATION (BDS)

So far, also biological methods have shown good potential for deep desulfurization of fuels. They can 
be classified as aerobic or anaerobic procedures depending on the nature of microorganism selected 
for the treatment. Irrespective to conditions applied, the reaction can proceed by aromatic degradation 
without sulfur removal or by removal of sulfur with production of H2S or other sulfur low molecular 
weight derivatives, (Soleimani, Bassi, & Margaritis, 2007; Mohebali & Ball, 2008). The anaerobic 
desulfurization of aromatic sulfur derivatives such as BT and DBT with production of H2S has been 
obtained using different anaerobic strains, including Desulforibrio desulfuricans, (H.Y. Kim, T. S. Kim, 
& B. H. Kim, 1990) Desulfomicrobium scambium, and Desulforibrio long reachii, (Yamada, Minoda, 
Kodama, Nakatani, & Aesaki, 1998; Yamada, Morimoto, & Tani, 2001) Usually the reaction proceeds 
through reduction of the thiophene ring and formation of biphenyl as the main product. Unfortunately, 
anaerobic processes are expensive and require difficult conditions to maintain active the microbial strains, 
(Armstrong, Samkey, & Voordan, 1995).

Aerobic Desulfurization

In principle, the aerobic desulfurization affords the degradation of aromatic moieties with retention 
of sulfur in the products (the so called destructive biodesulfurization) or by removal of high-oxidation 
sulfur derivatives from the starting molecule (specific oxidative desulfurization). Figure 13 reports the 
Kodama aerobic destructive pathway described for the treatment of DBT with Pseudomonas species, 
(Gupta & Raychondhury, 2005; Hartdegen, Cobrun, & Roberts, 1984). Briefly, the oxidation of the 
phenyl ring yield a catechol intermediate (A) which is further oxidized with concomitant ring-opening 
and side-chain scission to afford 3-hydroxy-2-formyl-benzothiophene (HFBT) and pyruvic acid (PA). 
Alkyl substituted DBT derivatives are recalcitrant to this degradation probably due to steric hindrance 
during the first hydroxylation step, (Kropp, Anderson, & Fedorak, 1997). Unfortunately the accumulation 
of water-soluble highly oxidized metabolites can determine the inhibition of microbial growth.

The general scheme for specific oxidative desulfuration, as proposed by Kilbane, is reported in 
Figure 14, (Kilbane, 1989). In this latter case DBT is oxidized to corresponding sulfoxide DBT(SO) 
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and sulfone DBT(SO2) derivatives, followed by ring opening of the thiophene moiety with formation 
of a biphenyl sulphinic acid intermediate (HBPS) and final removal of inorganic sulfate (SO4

2-) to yield 
hydroxybiphenyl derivative (HBP).

Alternatives for this reaction pathway have been reported by conversion of DBT (SO2) to benzoate 
using Brevibacterium sp. (Afferden, Schacht, Klein, & Truper, 1990) and Arthrobacter sp. K3b (DBTS2), 
(Noijiri, Habe, & Omori, 2001). In other cases, as in the case of Cunnighamella elegans, the oxidation 
at the DBT (SO2) step and sulfur could not be detached from the molecule (Figure 15), (Crawford & 
Gupta, 1990).

Figure 13. Schematic representation of the Kodama aerobic DBT destructive pathway

Figure 14. The oxidative biodesulfuration scheme as proposed by Kilbane
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Highly efficient specific aerobic desulfurization were obtained with Rhodococcus rhodochrous 
and Bacillus sphaericus strains by mutation procedures after treatment of native microorganism with 
1-methyl-3-nitro-1-nitrosoguanidine, (Kilbane, 1996). These strains showed a selective oxidation of the 
C-S moiety removing up-to 90% of the total sulfur in the sample, (Kilbane & Jackowski, 1992). In these 
process, the accumulation of sulfate ion or HBP in the reaction medium could suppress desulfurization 
when the whole cells are used for the oxidation, (Oshiro, Hirata, & Izumi, 1996). On the other hand, 
isolated desulfurization enzymes usually show a low activity, (Oshiro, Kanbayashi, Hine, & Izumi, 1995). 
In particular, the conversion of DBT to DBT (SO), and that of DBT (SO) to DBT (SO2) is catalyzed 
by two closely associated enzymes; NAD(P)H:FMN oxidoreductase and monooxygenase, (Xi, Squires 
Monticello, & Childs, 1997). Other strains such as Rhodococcus erythropolis H-2 and Microbacte-
rium sp. ZD-M2 showed a relatively high efficiency in the oxidation of substituted DBT derivatives, 
including 3,4-benzoDBT, 2,8-DMDBT and 4,6-DMDBT, (Oshiro, Hirata, Hashimoto, & Izumi, 1996; 
Li, Zhang, Wang, & Shi, 2005). Even if Rhodococcus erythropolis IGTS8 is the bacteria mostly used 
for desulfurization processes, the overall reaction is energetically expansive due to the requirement of 
high reducing equivalents to support the oxidative steps. Genetically modified organisms can solve this 
problem. Thus, chimera have been produced starting from Pseudomonas introducing genes cloned from 
Rhodococcus erytropolis IGTS8 and the flavinoxido reductase (hpaC) (to catalyze FMNH2 production) 
from Escherichia coly, (Caro, Baltes, Leton, & Garcia-Calvo, 2007). This strain showed a significant 
enhancement of the DBT desulfurization efficacy in both aqueous and biphasic media, using hexadec-
ane as model oil. While inhibition effects by products accumulation were observed in aqueous media, 
the activity was stable in the biphasic system. Noteworthy, Rodococcus rhodochrous strain was used in 
desulfurization of DBT also after immobilization on silica bed. In this latter experimental conditions the 
highest conversion of DBT was obtained with a long catalytic bed, larger dimension of silica particles 
and lower substrate flow in the reactor. As expected for heterogeneous conditions, the Rhodococcus cells 
were recovered at the end of the oxidation and used for more transformations, (Dinamarca et al., 2014).

Figure 15. Oxidation scheme of DBT with Cunnighamella elegans
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CONCLUSION

The ODS process is a valid alternative to HDS, especially in the case of fuels which are rich in aromatic 
sulphides, such as BT, DBT and derivatives thereof. Many of the nanosized catalysts reported in the 
literature are effective for the deep removal of sulfur, even in the presence of complex mixtures. The 
specific properties associated with their nanosize ensure high reactivity and efficiency compared to 
systems that are qualitatively similar but of larger size. The high number of catalysts described in the 
literature does not allow the easy comparison between their structure and the efficiency observed in ODS, 
although some general considerations can be made. First, the shape of the catalyst does not seem to be a 
crucial parameter for the efficiency in the oxidation. Nanocomposites, nanoparticles and nanotubes are 
all generally very active in the oxidation of sulfur derivatives. The main role of the shape of the catalyst 
might be envisaged in relation to the operating conditions of the catalytic bed and in the specific opera-
tive units of the plant, but only few data are available about this topic. As a general trend, the catalysts 
that are characterized by the presence of selective recognition sites for sulphur derivatives (e.g. Au 
sites), in addition to normal reactive sites, offer greater efficiency measured in terms of reaction times, 
conversion and reaction temperature. In a similar way, the systems that employ extracting solvents are 
generally more active than those lacking it. The processes of leaching is usually very limited, probably 
due to high stability of the catalysts. Despite the fact that the secondary reactions, which can significantly 
reduce the quality of the fuel, are rarely declared, it is reasonable to expect that alkenes, alkynes, and 
the same aromatic hydrocarbons, are significantly oxidized, especially in the case of catalysts able to 
produce radical species as reaction intermediates. This aspect certainly requires more attention. Next to 
chemical catalysis, the BDS represents a further alternative for the processes of ODS. Many advances 
have been achieved thanks to the application of selection techniques and genetic engineering,that sig-
nificantly improve the yields of the processes. Indeed, problems remain to be solved, especially in the 
optimization of plant processes, so that the BDS becomes a highly efficient procedure.
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ABSTRACT

The aim of this chapter is to present the Ni/ZnO nano-sorbent for reactive adsorption desulfurization 
(RADS) of refinery oil steams. The preparation and modification of nano-sorbent are reviewed. Various 
characterizations involving in the relation of properties with components, structures and dynamic phase 
change during RADS, are extensively provided. The mechanisms of desulfurization, sulfur transfer and 
sulfur adsorption are proposed. The contradictories in literature about active structures and reaction 
mechanism are discussed and the solutions are suggested. This chapter unfolds the impressive applica-
tion of RADS of Ni/ZnO nano-sorbent to produce a cleaner gasoline. It also delves into the inadequately 
engineer areas which require further attention so as to make the RADS process more economic and more 
efficient. The perspective applications other than gasoline desulfurization are also presented.

INTRODUCTION

Desulfurization is one of the most important processes in the petroleum refining industry. The conventional 
measure is by hydrodesulfurization (HDS) where molybdenum or tungsten supported on an alumina 
carrier with addition of cobalt or nickel is used as catalyst (Babich and Moulijn 2003). For eliminating 
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the detrimental impact of acid rain, many governments have made more stringent regulations controlling 
the sulfur content in fuels. For example, in the new Europe V standard, the sulfur content in gasoline and 
diesel is limited below 10 ppm. But the HDS process faces challenge to achieve this objective. Thus other 
desulfurization technologies are heavily investigated. Among them, reactive adsorption desulfurization 
(RADS) emerges as a perspective direction, which uses a sorbent to remove the sulfur impurity from 
oil stream and keeps the sulfur in the sorbent. The great challenge for RADS technology is to develop 
a sorbent with high desulfurization activity and high sulfur capacity. Nano Ni/ZnO sorbent is found an 
ideal candidate for this objective, where metallic Ni catalyzes the HDS of sulfur-containing compounds, 
meanwhile ZnO component as a sulfur acceptor regenerates Ni species from the sulfided to the metallic 
(Tawara et al. 2000, 2001a).

Ryzhikov et al. (2008) observed that NiO/ZnO can be reduced in situ and shows better RADS of 
thiophene than pre-reduced counterpart. It was suggested that the H2 pretreatment results in the forma-
tion of Ni-Zn alloy and agglomeration of nano particles, leading the decrease of activity. However, 
the pre-reduction for NiO/ZnO-SiO2-Al2O3 sorbent improves the desulfurization capability (Fan et al. 
2010), which is attributed to the additives of alumina and silica stabilizing the particles (Wen et al. 2012, 
Meng et al. 2013). Decreasing the size of ZnO nano particles increases the efficient contact between 
Ni and ZnO particles and enhances the desulfurization ability and sulfur adsorption capacity (Zhang et 
al. 2012a). But ZnO particles are not stable under the calcination or reaction conditions, the sinter of 
particles lead a noticeable drop of activity (Bezverkhyy et al. 2008). Thus structure additives, such as 
diatomite, perlite, attapulgite, silicasol, pseudoboehmite or their mixtures are often added to reinforce 
the texture of nano sorbent (Shangguan et al. 2013, Zhou et al. 2013).

Babich and Moulijn (2003) proposed a RADS mechanism of Ni/ZnO sorbent. H2S as a sulfur carrier 
transfers the sulfur from Ni surface to ZnO bulk. It has been accepted by a lot of authors, but the recent 
DFT calculation showed that the direct sulfur transfer from Ni site to Zn site has lower energy barrier. 
This suggests a new mechanism that sulfur may be transferred through the interface between Ni and 
ZnO phases (Zhang et al. 2012b). The sulfur accumulation in the sorbent leads a gradual deactivation. 
Regeneration at above 500 oC can partly recover the RADS activity. However, the formation of new 
species, such as Ni2SO4, ZnSO4, NiAl or AlZn spinel, influences the performance of regenerated sorbent 
(Wen et al. 2012, Meng et al. 2012).

The RADS of Ni/ZnO nano sorbent has been successfully applied in the desulfurization of gasoline. 
The S-Zorb technology is the representative one. It was first developed by Conoco Philips Petroleum 
Co. and then was bought out by China Petroleum & Chemical Corp. (Sinopec). This RADS process was 
demonstrated to possess some valuable features like low hydrogen consumption and low loss in octane 
number (Khare 1999, Gyanesh 2001). The first commercial S-Zorb unit was run at Borger refinery in 
April of 2001. And over thirty units have been built and operated by the end of 2014 (Jia et al. 2014).

This chapter discusses the new emerged and fast developing RADS technology. It begins with the 
preparation of nano Ni/ZnO sorbent as well as its modification. Various characterization methods are 
used to reveal the structures and properties of the sorbent. Based on these data the relation of structure 
with reaction activity and adsorption capacity is built. The RADS paths are simulated by DFT method. 
And the reaction mechanism is postulated. The controversies regarding active structures and reactive 
mechanism are raised hoping to be solved in future. The commercial application of Ni/ZnO nano sorbent 
for RADS is presented. S-Zorb RADS technique is introduced historically and compared with HDS 
technologies. The perspective of RADS is provided. And further engineering research is proposed.
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BACKGROUND

The conventional HDS technology was originated from the coal hydrogenation and liquefaction in 1930s 
and was introduced for the sulfur removal in petroleum refining prior to World War II. But recently, it 
faces with challenges. On the one hand, the sulfur content in petroleum continually rises. On the other 
hand, the environmental regulation places increasing severe restrictions on the sulfur content in the 
product fuels. This poses a major driving force for introducing novel desulfurization technology or 
improving the HDS ones.

It notes that the quality of fuel product can be impacted by desulfurization. For gasoline, deep HDS 
leads the loss of octane number owing to the saturation to olefins. Thus a process of octane number re-
covery is usually followed, such as isomerization or addition of high octane-number compounds MTBE. 
This is especially true for the fluidized catalytic cracker (FCC) gasoline, which contains large olefins 
and refractory sulfur compounds thiophene and its derivatives. In modern refining, there is a trend to 
make more light fractions from the heavy fractions. This lead the FCC gasoline increase apparently. 
For the deep desulfurization of FCC gasoline, avoiding hydrogenation to olefins is preferred. But as 
for diesel, the hydrogenation for aromatics can increase the cetane number; the objective of diesel deep 
desulfurization is to enhance HDS activity of catalysts.

To meet the strict regulations of sulfur content, alternative desulfurization techniques are extensively 
explored, including physical adsorption (Pawelec et al. 2010; Samokhvalov and Tatarchuk 2010), oxida-
tion extraction (Chica et al. 2006; Rodriguez-Gattorno et al. 2009), bio-desulfurization (Monticello 2000; 
Davoodi-Dehaghani et al. 2010) and RADS (Ania and Bandosz 2006a; Huang et al. 2010a). Among 
these, RADS is deemed the most promising one and is viewed as a better option to conventional HDS 
for gasoline desulfurization (Sharma et al. 2013).

Ni/ZnO was found an excellent sorbent for the RADS. The metallic Ni captures sulfur from the sulfur 
containing compound in feed forming NiSx, then the sulfur is transferred to the ZnO component in the 
presence of hydrogen, and the Ni active center is regenerated, while the hydrocarbon portion of the sulfur 
containing compound is released back into the process stream. Due to the dual identities of Ni/ZnO, as 
both catalyst and sorbent, it has been called different names in references, such as “catalyst”, “sorbent”, 
or “adsorbent” etc.. In this chapter, for the consistence, we adopt the term “sorbent”. For RADS sorbent, 
there are three key specifications, one is the activity of desulfurization, another is the sulfur capacity, 
namely possible adsorbed sulfur quantity when sulfur content is kept below some limit, and the third 
is the selectivity to olefin hydrogenation. Many methods have been used to improve the properties of 
RADS sorbents. The activity and sulfur capacity can be remarkably improved by controlling the nano 
morphology and structures of Ni/ZnO sorbent (Zhang et al. 2012a). Addition of Mn forms the new phase 
of ZnMnO3, which enhances activity and regenerability (Zhang et al. 2013). Substitution ZnO component 
with MnO increases the sulfur capacity (Tang et al. 2015). Introduction of second metal, such as Co, Fe, 
Cu, Silver, can inhibit the hydrogenation to olefins (Khare 1999, Gyanesh 2001).

Other reactive sorbents investigated for desulfurization include chemical modified carbon (Jiang et 
al. 2003; Ania and Bandosz 2006b; Seredych et al. 2011); Polymer-derived activated carbons (Seredych 
et al. 2010), organic waste derived carbon (Ania et al. 2007); Metal supported activated carbons (Ania 
and Bandosz 2006a); Ni nanoparticles supported mesoporous silica (Park et al. 2008); Zeolites (Yang 
et al. 2003; Chica et al. 2005), and organic sulfur sorbent (Shalaby et al. 2009) etc.. But these sorbents 
are studied only in laboratory, which are beyond the scope of this chapter.
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Conoco Philips Petroleum Co. was the first one using the nano-Ni/ZnO sorbent for the RADS of 
gasoline in refinery. They termed this technology “S-Zorb” (Johnson et al. 2001). Using the latest sor-
bent and circulated fluidized bed technology, the clean gasoline can be produced with sulfur content 
below 10 ppm and little octane number loss (Qiu et al. 2013). Recently the fix bed technique of RADS 
has also been developed.

In Ni/ZnO RADS, there are two important cycles, one is the micro-cycle; the Ni active sites are con-
tinually auto-regenerated by the process of sulfur transfer from the Ni surface to the ZnO component. 
Another macro-cycle, the deactivated Ni/ZnO sorbent is regenerated periodically by oxidation and then 
H2 reduction. Understanding the two cycles and making them run effectively warrant the excellent perfor-
mance of Ni/ZnO nano sorbent for RADS. We will unfold this chapter revolving around these two cycles.

REACTIVE ADSORPTION DESULFURIZATION OVER NANO SORBENT

Until now, Ni/ZnO is the most effective sorbent for RADS. In this section, we bring readers insight into 
the intrinsic structures and properties of Ni/ZnO and its reaction mechanism. We start with the prepa-
ration and modification of nano sorbent, which is then characterized by BET, XRD, TGA, TEM and 
XANES. The possible reaction processes are investigated by density functional theory (DFT), and the 
reaction mechanisms are proposed. At end, the relation of structures with RADS activities and sulfur 
capacity is provided.

Preparation and Modification of Ni/ZnO Sorbent

1.  Co-Precipitation Method: NiO/ZnO composite can be prepared by co-precipitation technique. It is 
fit for the preparation of sorbent with high Ni content. In a typical example (Ryzhikov et al. 2008), 
Zn(NO3)2‧6H2O and Ni(NO3)2‧6H2O were dissolved in water to make 0.2 M solution. Equimolar 
quantity of 0.5 M solution of Na2CO3 was dropped under vigorous stirring. The suspension was 
stirred for another 12 h, and then filtered, washed with water thoroughly and dried in oven over-
night at 100 oC. The sample was then calcined in air at 400 oC for 4 h. Co-precipitation by Na2CO3 
alkaline allows a highly dispersed solid. But the Na+ ions must be washed out totally avoiding the 
negative influence (Huang et al. 2010a). Replacing of Na2CO3 precipitant with (NH4)2CO3 can 
decrease the washing times.

2.  Impregnation Method: By impregnation method, NiO can be sufficiently dispersed on the ZnO 
nano particles. Versatile manufacture methods of ZnO particles have been reviewed by Moezzi 
et al. (2012). One example is given here. Zinc acetate was dissolved in i-propanol under vigorous 
stirring at 50 ◦C and quenched in ice bath. After addition of PVP, the reaction mixture was kept 
stirring for 12 h. The hydrolyzation was performed by the addition of NaOH solution in i-PrOH 
under ultrasonic agitation for 2 h. The solvents were removed by rotavaporization. The resulting 
mixture was washed with water, then was centrifuged and dried in vacuum. The samples show dif-
ferent particle sizes when calcined at different temperature. Ni was supported on ZnO by incipient 
wetness impregnation and then calcined at 300 ◦C (Zhang et al. 2012a).

3.  Kneading Method: Zinc oxide and nickel sesquioxide is sufficiently mixed, then pseudoboehmite 
or/and diatomite is added to the mixture to achieve the desirable strength and attrition resistance. 
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Next, dilute nitric acid is added to the mixture to make slurry. After intrusion and drying, the result-
ing materials were calcined at 600 °C. Sorbent prepared with this method showed improvement of 
regeneration (Meng et al. 2013).

4.  Modification: The pure ZnO particle is not stable. Calcination usually results in sinter and ag-
glomeration of nano particles. Addition of structure auxiliaries, such as diatomite, perlite, at-
tapulgite, silicasol or pseudoboehmite, increases the strength and resistance to abrasion (Meng 
et al. 2013; Babich & Moulijn 2003), and the texture properties can be kept during reaction and 
regeneration. But the desulfurization activity and sulfur capacity may be impacted by the additives, 
thus a compromise among various components is necessary for the best performance of RADS 
sorbent. Addition of Mn forms the new phase of ZnMnO3, the sorbent 5%NiO/8%MnO-ZnO was 
found improving the desulfurization and regenerability (Zhang et al. 2013). With MnO replacing 
the ZnO as the adsorption component, the Ni/MnO sorbent showed higher sulfur capacity than its 
counterpart Ni/ZnO (Tang et al. 2015).

Preparation parameter and procedure determine the structure and morphology of sorbents, as well as the 
properties. Nano ZnO can present versatile morphologies, like needle, bar, disk etc., with different crystal 
surfaces exposed. Thus Ni/ZnO sorbents may be prepared with different morphologies and structures. 
This can bring new chances to improve the sorbent.

It is noteworthy that the nano sorbent is always under change during RADS process. The metallic Ni 
and ZnO are transformed to NiSx and ZnS, respectivley. This brings the expansion of volume of nano 
particles, even the collapse of pores. Thus the sorbent must has some tolerance to the structure expan-
sion. Except for addition of low density materials, other measures may be considered, such as using the 
low expansion MnO adsorption component.

The inhibition to olefins hydrogenation is scarcely investigated in references, but it is very important 
for the application of deep desulfurization of gasoline. Patents of Khare 1999 and Gyanesh 2001 provided 
the clues by addition of second metal, such as Co, Mo, Cu and Ag. More study is requisite to illustrate 
the mutual interaction of metals and find the better combination of them.

Characterizations of Ni/ZnO Nano Sorbents

1.  XRD: Comparison of XRD patterns between calcined and reduced NiO/ZnO, it is found that the 
calcined sample (Figure 1a) contains the peaks characteristic of the hexagonal ZnO. The additional 
peak (at 2θ = 43.2o) corresponds to NiO. For the sample reduced in H2 at 360 oC for 6 h, a similar 
additional peak which is slightly displaced to 2θ= 43.7o is observed (Figure 1c), this may belong to 
the pattern of a Ni-Zn alloy (Homs et al. 2006). To verify this, a reduction treatment for a shorter 
time in order to reduce Ni but avoid the alloy formation was done. The peak in this case is situ-
ated at 2θ= 44.1 o which is close to metallic Ni (Figure 1b). This nicely illustrates that the species 
obtained after a longer treatment is metallic Ni-Zn alloy.

The change of crystal phases during diesel RADS was detected by XRD (Figure 2). The NiO was com-
pletely reduced to metallic Ni after 2h on stream. The ratio of I28.6(ZnS)/I36.3(ZnO) grows from 26 to 122 h, 
indicating that the ZnS content in the sorbent increases monotonously with the time on stream. The peak 
of Ni3S2 appears after 98 h on stream, which correspond the apparent deactivation of sorbent. It was 
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found that the reduction resulted in the increase of crystallite sizes of ZnO and Ni species. During the 
RADS process, however, the crystallite sizes of ZnO and Ni phases were basically stable.

After RADS reaction of thiophene, a complex XRD pattern was observed. It contains the peaks 
characteristic of sphalerite, wurtzite-2H, metallic Ni and Ni3S2 (heazlewoodite). ZnO was completely 
sulfided, while nickel was only partial sulfided. And after reaction Ni0 adopts the hexagonal structure 
rather than the cubic one in the initial sample (Ryzhikov et al. 2008).

The synchrotron radiation XRD was carried out to follow the reaction between reduced Ni/ZnO 
(containing NiZn alloy) and thiophene (Figure 3). In the beginning, the alloy was decomposed, produc-
ing metallic Ni particles. Their cell parameter (a =3.68 Å) indicates that the structure of Ni phase is 
dilated (a = 3.55 Å of pure cubic Ni). After decomposition of the NiZn alloy, the dilated Ni particles 
remained unchanged throughout the ZnO sulfidation, but yielded the hexagonal Ni3C phase after ZnO 
transformation completed. It was tentatively proposed by authors that the expansion of lattice is due to 
the permeation of carbon.

2.  TGA: The thermal gravimetric analysis (TGA) was conducted to study kinetics of reduced Ni/
ZnO sorbent reacted with thiophene/H2 (Bezverkhyy et al. 2008). It was observed that reaction 
between Ni/ZnO and thiophene goes through three different stages. The first one is that the me-
tallic Ni surface is fast sulfided by the thiophene HDS. Second one is kinetically dominated by a 
nucleation-controlled sulfidation of ZnO surface. The sulfur on Ni surface is continually transferred 
to ZnO, leading the regeneration of Ni surface. At the third stage, the surface of ZnO has totally be 

Figure 1. XRD patterns for NiO/ZnO samples after calcination (a) and after reduction in H2 at 360 oC 
for 30 min (b) and for 6 h (c)
(Ryzhikov et al. 2008; Copyright 2008 Elsevier).
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sufided and the reaction rate decreases. The thiophene HDS on NiSx surface and sulfur diffusion 
from surface to ZnO bulk have comparable rates and their contributions vary with temperature due 
to the difference in activation energies.

3.  TEM: The instability of Ni/ZnO sorbent was observed by comparing unreduced sample before and 
after RADS reaction. TEM shows that initial sample consists of strongly agglomerated shapeless 
particles of about 10-30 nm (Figure 4a). Sulfidation significantly changed textural properties of 
the solid (Figure 4b): particle size is visibly increased and the smaller particles, observed in the 
initial sample, disappear. This observation is in line with a decrease of BET surface area from 60 
to 26.3 m2/g after sulfidation. The shape of the particles was changed after reaction. An irregular 
corrugated structure of the facets and a strong variation of contrast throughout a particle point out 
to a polycrystalline nature and a complex morphology of the particles in sulfide solids.

Figure 2. XRD patterns of the calcined adsorbent (a) and used adsorbents after the RADS of diesel oil 
for different reaction times on stream (b, c, d, e, f, g, and h represent 2, 6, 12, 26, 75, 98, and 122 h on 
stream, respectively; *, NiO; Δ, Ni; +, Ni3S2; o, ZnO; #, ZnS);RADS conditions:350 oC, 6 MPa, H2/
diesel = 500, LHSV = 3.20 h-1

(Huang et al. 2010b; Copyright 2010 Elsevier).
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4.  In Situ XANEX: The in-situ XANES technique was performed to study the phase transformation 
during RADS reaction of diesel oil. Figure 5 shows the sulfur K-edge XANES spectra of the stan-
dard samples NiS, Ni3S2 and ZnS and the Ni/ZnO sorbent at different times on stream in RADS of 
diesel. The relative concentrations of each sulfur species can be evaluated by least-squares fitting 
(LSF) of the spectra with those of standard samples; combined with the total sulfur content in the 
sorbents, the contents of each sulfur species can be estimated (Figure 6). At the beginning, the 
sulfur content in Ni3S2 is higher than that of ZnS. The content of ZnS increases steadily with the 
reaction time on stream, while the content of Ni3S2 keeps relatively stable. The content of Ni3S2 
in the sorbent is in the level of 0.08 g-S/g-NiO/ZnO and changes little with reaction time; and the 
steady-state activity of RADS is attained. After 75 h, the content of Ni3S2 increases gradually, ac-
companied with the slow decrease of the desulfurization efficiency of Ni/ZnO. But using XRD, 
the Ni3S2 phase cannot be detected until the apparent deactivation of sorbent (Huang 2010b). This 
illustrates that the early formed Ni3S2 is amorphous. Different from the thiophene RADS, the Ni3C 
was not observed. It was proposed that the metallic Ni should be responsible for keeping the high 
HDS activity of the diesel. Ni3S2 corresponds to the final state of Ni species and has low HDS 
activity for desulfurization.

Figure 3. XRD patterns of the NiO/ZnO sample after reduction in H2 flow at 360 oC for 3 h (A) and its 
further reaction with thiophene at 360 oC for 30 min (B), 150 min (C), and 260 min (D). All unmarked 
peaks are those of ZnO and/or ZnS.
(Bezverkhyy et al. 2009; Copyright 2009 American Chemical Society).
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Figure 4. TEM micrographs of the unreduced Ni/ZnO sample before (a) and after reaction at 360 oC 
and 20 mbar of thiophene (b)
(Ryzhikov et al. 2008; Copyright 2008 Elsevier).
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Density Functional Theory Revealing the Reaction 
Path on Ni/ZnO Nano-Sorbent

1.  The Process of Reactive Adsorption Desulfurization: DFT calculation has become an important 
tool for investigation of the reaction path; in this regard experiment is usually difficult to conduct. 
Using the DMol3 software Zhang et al. (2012b) investigated the adsorption and desulfurization of 
thiophene over a Zn3NiO4 cluster. They observed that thiophene is favored to adsorb on Ni site. It 
then decomposed on the Ni site to form nickel sulfide. The reduction of the nickel sulfide is through 
two reaction pathways. One is to form H2S by the attack of H2 with an energy barrier of 0.859 eV. 
The other is that sulfur is directly transferred from Ni site to Zn site in the cluster passing a barrier 
of only 0.634 eV. This result provides a clue that direct sulfur transfer from Ni to ZnO may be a 
favored path.

Figure 5. Sulfur K-edge XANES of the standard samples (a, NiS; b, Ni3S2; c, ZnS) and the used Ni/ZnO 
catalysts after the RADS of diesel oil for different times on stream (d, e, f, g, h, i, and j represent 2, 4, 
12, 26, 75 98, and 122 h on stream, respectively)
(Huang et al. 2010b; Copyright 2010 Elsevier).
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2.  The Sulfurization on the ZnO Sorbent by H2S: For Ni/ZnO sorbent, thiophene adsorbs and 
decomposes on Ni active sites by hydrogenation and hydrogenolysis. The sulfur atoms adsorbed 
on the Ni surface then are transferred to ZnO to form ZnS where H2S is proposed as the sulfur 
carrier (Babich and Moulijn 2003). Ling et al (2013) investigated the sulfurization on ZnO (10 1
0) by H2S. The paths of H2S decomposition and H2O formation is showed in Figure 7, the stable 
and transient structures are presented in Figure 8. It is observed that the dissociative adsorption of 
H2S molecule on the ZnO (10 1 0) surface is preferred. The most stable configuration for SH ad-
sorption on the ZnO (10 1 0) surface is that the S atom is bonded to two adjacent Zn atoms via the 
bridge bond mode. The S atom bridging a Zn-O bond is the most stable configuration for single S 
atom adsorption. The H atom is preferentially adsorbed on the O-top site. In the coadsorption 
structure of SH and H, the adsorption sites are the same as the sites of SH and H adsorption sepa-
rately. But in the coadsorption of S and 2H, the most stable structure is that the S atom is adsorbed 
on two adjacent Zn atoms via the bridge bond mode, and two H atoms are located on the O-top 
sites. The surface adsorbed hydrogen atoms can further combine to form H2 by the dehydrogenation 
processes, or react with oxygen to form H2O. The H2O-forming via H2S-ZnO interaction is the 
most probable reaction route. An oxygen vacancy is generated on the surface after the formation 
of H2O, and the H2S can adsorb on the vacancy.

The RADS Reaction Mechanism of Ni/ZnO Nano-Sorbent

1.  Mechanism of Thiophene RADS: Based on the data of Tawara et al. (2000, 2001a), Babich and 
Moulijn (2003) proposed the mechanism of reactive adsorption desulfurization of thiophene over 
Ni/ZnO sorbent. The NiO is firstly reduced to metallic Ni, which serves as the active site for ad-
sorption and hydrogenolysis of thiophene. The sulfur species on Ni surface is transferred to ZnO 
forming ZnS by H2S under hydrogen atmosphere, and the Ni active surface is regenerated.

Figure 6. Amounts of different sulfur species adsorbed in NiO/ZnO samples collected after RADS of 
diesel oil with the reaction time on stream: (a) Ni3S2; (b) ZnS; (c) total sulfur
(Huang et al. 2010b; Copyright 2010 Elsevier).



227

Ni/ZnO Nano Sorbent for Reactive Adsorption Desulfurization of Refinery Oil Streams
 

This mechanism has been accepted by most of authors to explain their results of RADS. But DFT study 
shows that the sulfur direct transfer from Ni to Zn site goes through lower energy barrier than the transfer 
by H2S (Zhang et al. 2012c). It has been observed that the Ni (111) surface has the highest adsorption 
energy to sulfur among the different surfaces of Ag (111), Au (111), Cu (111), Ir (111), Ni (111), Pd 
(111) and Pt (111) (Alfonso 2008). This illustrates that the sulfur on Ni surface is the most difficult 
to be desorbed. Marécot found that Ni catalyst poisoned by sulfur lost the hydrogenation activity and 
cannot be reversed by hydrogen treatment. Thus this RADS mechanism may need further investigation.

2.  Mechanism of Dibenzothiophene RADS: Huang et al (2011) proposed a three-stage mechanism 
of Ni/ZnO sorbent of diesel RADS. At the beginning, the surface Ni regenerating rate is basically 
equal to its poisoning rate and the reaction activity is kept at a stable state. In the second stage, the 
Ni regeneration rate is lower than the Ni poisoning rate; the sulfur transfer from Ni3S2 to ZnO is 
slowed down owing to the decrease of the active surface of ZnO. As a result, the content of Ni3S2 
is increased gradually at the expense of metallic Ni phase. Thus a gradual deactivation occurs. In 
the last stage, most of ZnO is converted to ZnS and the sulfur transfer rate is access zero; the DBT 
conversion is mainly ascribed to the HDS catalyzed by Ni3S2. At this stage sulfur removed from 
the fuel product is mainly released to the effluent as H2S.

3.  Relation between Structures and RADS Reaction of Ni/ZnO Sorbent: Some important features 
can be drawn from the discussion above. The pre-reduction of NiO/ZnO sorbent may be unnecessary. 
The reduction of NiO can be achieved under reaction condition, meanwhile avoiding the formation 
of Ni-Zn alloy and the agglomeration of nano particles. The metallic Ni phase is partly sulfurized 
to form Ni3S2 when contacting with sulfur containing compounds. Carbon species originated from 
the decomposition of organic compound may dissolve into Ni phase and slows down the sulfur 
poison to Ni bulk. The sulfur atoms on Ni surface is continually transferred to ZnO phase to form 

Figure 7. Potential energy profiles for the interaction of H2S and ZnO(10 1 0) surface. The energies are 
relative to that of the adsorption structure of H2S.
(Ling et al 2013; Copyright 2013 Elsevier).
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ZnS, thus the Ni active sites can be auto-regenerated. After an induced time, a balance between 
sulfur deposition and sulfur transfer is built, the ratio of Ni0 (or carburized Ni) is kept constant, 
and RADS reaction is in stable state. With the accumulation of ZnS, the sulfur transfer and sulfur 
diffusion in ZnO bulk are inhibited, and the content of Ni3S2 increases with the expanse of Ni0. 
The sorbent begin deactivated until a quick drop of activity. At last the Ni surface has been totally 
covered by Ni3S2, and ZnO have been transformed into ZnS completely. The H2S formed by HDS 
on Ni3S2 surface is released directly into effluent gas. Regeneration of the deactivated sorbent is 
required for the next cycle usage. The growth of nano particles and the collapse of pores seriously 
influence the regeneration effectiveness. Thus additives of structure are often used to stabilize the 
active components.

Figure 8. The structures of transition states and products
(Ling et al 2013; Copyright 2013 Elsevier).
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The fundamental research helps us understand the micro-cycle process of Ni/ZnO sorbent. It was 
found that the Ni surface is auto-regenerated by the sulfur transfer from Ni phase to the ZnO particles. 
But some important issues have to be solved. For example, why is the adsorbed sulfur transferred to 
the ZnO component rather than diffuse into the Ni bulk? Does the carbon permeation during RADS 
reaction inhibit the sulfidation of Ni bulk? Whether is the sulfur transferred by H2S or directly through 
the interface? Thus deeper fundamental investigation is prerequisite for the better application of nano 
RADS sorbent.

APPLICATION OF RADS TECHNOLOGY

The S-Zorb Technique for RADS of Gasoline

The History of S-Zorb Technique

S-Zorb technique was firstly developed by Conoco Philips Petroleum Co. for desulfurization of gasoline 
and diesel. The first industrial unit of S-Zorb was built at Borger refinery in September of 1999 and 
started operation in April of 2001. During the test period, it was found that the attrition resistance of 
sorbent can be noticeable enhanced with expanded perlite replacing diatomite as structural additive.

After the 1st generation sorbent, the 2nd generation sorbent was developed by Süd-Chemie AG, which 
could produce clean gasoline with sulfur content less than 30 ppm. The 3rd generation S-Zorb sorbent 
was researched by Engelhard Co. A new expanded perlite was used and the preparation process was 
optimized. But this sorbent is inferior to the followed sorbent of Süd-Chemie AG (4th generation) in 
desulfurization activity and attrition resistance. It was given up before application. A new mineral was 
used in the 4th generation S-Zorb sorbent. The strength of attrition resistance was largely increased. 
Owing to the excellent desulfurization activity and attrition resistance, this S-Zorb sorbent has been 
commercially used to produce clean gasoline since 2002 (Table 1). The 5th generation sorbent was pre-
pared with simpler method, there was only one key step-spray drying. The cost was decreased and the 
preparation efficiency was improved remarkably. Test showed that the 5th generation sorbent had very 
high activity of desulfurization and high ability of keeping octane number. However, it produced much 
more fine powders than the 4th generation sorbent, influencing the stable run of unit. Thus it has not 
been commercially applied.

In 2007, the S-Zorb technique was bought out by Sinopec, which began developing new generation 
sorbent. Based on the concept formulation provided by Conoco Phillips Co., the Research Institute of 
Petroleum Processing of Sinopec developed the FCAS sorbents and applied them successfully. Twenty 
four S-Zorb units have been built in the refineries of Sinopec by September 2014; the total process-
ing capacity has reached over 30 Mt/y. And another 10 units are under design. The RADS technique 
of Sinopec has also been transferred to two other refineries in China. There are another six refineries 
producing deep desulfurized gasoline with S-Zorb units; they are Borger refinery, 0.25 Mt/y; Ferndale 
refinery, 0.85 Mt/y; Lake Charles refinery, 1.57 Mt/y; Wood River refinery, 1.30 Mt/y; Pasadena Refin-
ing Systems refinery, 1.60 Mt/y; Western Yorktown (Giant) refinery, 1.20 Mt/y.
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The Circulating Fluidized Bed Process of S-Zorb

The S-Zorb technique uses the circulating fluidized bed process to produce clean gasoline with low sulfur 
content and high content olefins (Figure 9) where the partly deactivated sorbent is continually regener-
ated by oxidation and reduction. For the reactor, the temperature and pressure at inlet is controlled at 
about 420 oC and 2-3 MPa with a temperature rising about 22 oC and a pressure drop about 0.17 MPa, 
the LHSV and the mole ratio of H2/oil is about 4 h-1and <0.3, respectively. At this condition, the sulfur 
capacity of sorbent is about 8 wt%. The H2 consumption compared with feed is about 0.2 wt%, and the 
loss of (RON+MON)/2 are about 0.3. The regenerator is run at about 525 oC and 0.1 MPa with 0.2 
v/v% O2 as a regeneration gas. The cycle time of sorbent is 20 min/per cycle (Hou and Zhuang, 2013). 
The supplement of sorbent are needed due to the abrasion loss. The sorbent are made with at least two 
additives to increase the strength and the resistance to the volume expansion from ZnO to ZnS. It is 
especially fitful to dispose the FCC gasoline fraction, which usually contain high contents of refractory 
thiophene analogs and olefins. The industrial application shows that this process can decrease the sulfur 
content in FCC gasoline from 1000 to 10 ppm with little loss of octane number.

Engineering parameters are very important for the smooth run of circulating fluidized bed. The 
sorbent must be tolerated the fast move and the friction among particles. The ratio of H2/oil impacts the 
depth of desulfurization, hydrogen consumption and octane number of product. For different oil stream, 
the reaction temperature and pressure need adjustment to achieve the best desulfurization. The tempera-
ture and gas components in regenerator directly influence the structure and components of regenerated 
sorbent. Usually the sulfur in sorbent is not burnt out totally for the cause of energy efficiency and the 
protection to the sorbent. Improvements of the engineering technique parameters will accelerate the 
application of RADS nanotechnology.

The Regeneration of Sorbent

During the RADS reaction, the sorbent is transformed into a mixture of sulfides and gradually deacti-
vated. To extend the lifetime of sorbent, it is necessary to regenerate deactivated sorbent in a two-step 

Table 1. 4th generation of S-Zorb process for RADS of gasoline

Unit 1 (Ferndale) Unit 2 (Western)

Pressure /MPa 1.64 2.5

Temperature /°C 429 440

LHSV /h-1 3.5 2.8

H2/oil mol/mol) 0.5 0.42

S content in feed /ppm 1000 840

S content in product /ppm 13 8

desulfurization degreee /% 98.7 99

RON loss 1 1.6

(Adapted from Hou and Zhuang 2013).
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process: sulfides are firstly calcined to obtain oxides which are than treated in H2. As for S-Zorb process, 
the ZnAl2O4 and Zn2SiO4 spinel analog are formed in regenerated sorbent, which decrease remarkably 
the content of the active component ZnO. Furthermore, the sorbent is easily crushed with the ZnAl2O4 
and Zn2SiO4 in sorbent. The ZnSO4 and NiSO4 were found in regenerated sorbent also by XRD and XPS 
(Meng et al. 2013, Qiu et al. 2013). The formation of ZnSO4 should be avoided. But the NiSO4 seems to 
have some positive effect due to its Lewis acidity. The formation of Zn3O(SO4)2 was observed in Wang 
et al.’s (2010) study.

Meng et al. (2013) investigated the regeneration over NiZnO/Al2O3-diatomite adsorbent. The regen-
eration was achieved in two-step: 1) nickel sulfide and zinc sulfide species are oxidized to nickel oxide 
and zinc oxide species using air at 480-550 °C for 1-2 h; 2) nickel oxide species is reduced to Ni0 using 
hydrogen at 370 °C for 1 h. Figure 10 compares the RADS results of the fresh one with the regenerated 
ones after different regeneration cycles. 480 °C was found too low to regenerate the deactivated sorbent. 
The adsorptive capacity is recovered to 90% that of the fresh sorbent after regeneration at 550 °C for 
1 h. As the regeneration time extends to 2 h (cycle-3 in Figure 10), the regeneration performance has 
recovered further. In fact, the desulfurization activity in cycle-3 is slightly higher than that in the fresh 
process. This was postulated as NiSO4 gradually formed, increasing the Lewis acidity in the regenerated 
sorbent. However, in the following cycles, the loss of the NiO activity component in the regenerated 
sorbent inevitably causes the decrease of the RADS activities.

Figure 9. The scheme of circulating fluidized progress of S-Zorb
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Fix Bed Techniques for RADS of Gasoline

The fix bed technique affords the advantages of low cost and easy maintenance. Several RADS processes 
have adopted this technique. A fix bed unit of RADS with ability of 0.5 Mt/y had started up success-
fully at Huizhou refinery of China National Offshore Oil Corporation (CNOOC) at the end of 2013. 
This technique was collaboratively developed by Beijing Haishunde Titanium Catalyst Co. Ltd. and 
CNOOC. The produced gasoline can meet the V national standard of China, which is corresponding to 
the Europe V standard. The YDCADS technique developed by Dalian Institute of Chemical Physics and 
Shaanxi Yanchang Petroleum (Group) Corp. Ltd. was tested in a pilot plant in July, 2013. It decreases 
the sulfur content in gasoline from 100 ppm to below 10 ppm. The loss of octane number is lower than 
0.8 units and the hydrogen consumption is less than 0.2 wt%. Institute of Coal Chemistry, CAS applied 
the RADS fix-bed technique for ultra-deep desulfurization of arene raffinate oil in three petro-chemical 
enterprises. The sulfur content can be reduced below 0.1ppm.

Other Potential Application of RADS Technology

Tawara et al. (2001a and 2001b) investigated the RADS sorbent for the ultra-deep desulfurization of 
kerosene of the fuel cell (FC). A 13% Ni/ZnO sorbent was certified to decrease the average sulfur con-

Figure 10. Adsorptive desulfurization curves in successive RADS cycles of NiZnO/Al2O3-diatomite ad-
sorbent using model fuel
(Meng et al. 2013; Copyright 2013 American Chemical Society).
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tent of kerosene to less than 0.03 ppm for 1 year. They predicted that 1-year operation of petroleum feed 
FC cogenerations and 1110 thousand-km running of FC vehicles are possible by applying this sorbent.

Ni/ZnO sorbent can be effective for producing low-sulfur diesel. Huang et al. (2010) observed that 
the sulfur content in the diesel oil is reduced from the original 560.0 ppm to below 10 ppm after an in-
duced period over a NiO/ZnO sorbent with 36.6 wt% Ni content. However, the sulfur content increased 
slowly after 12 h on stream, until to 120.0 ppm at 122 h on stream. This primary results illustrates that 
for diesel RADS the sulfur capacity and desulfurization ability are necessary to be largely improved 
before application.

RADS can be applicable for deep desulfurization in the production of chemicals. The sulfur level can 
be dropped to very low (<0.03 ppm); and the process disposing the pollutant H2S gas can be omitted 
due to the adsorption of ZnO to sulfur. This is favored for the small chemical plants.

The Comparison of RADS Technology with HDS Technology

RADS technology has good activity for the deep desulfurization of gasoline. Because the hydrogenation 
of olefins is inhibited, the hydrogen consumption can be decreased largely. And the octane number has 
little drop. This brings the merits of cost. But the circulating fluidized bed process is complicated; the 
operation parameters are more difficult to be controlled. Meanwhile there is high demand for the strength 
and resistance to abrasion of sorbent. Although fix-bed technology has been developed, the sorbent still 
need frequently regeneration.

HDS technology can be used for deep desulfurization of versatile feeds. But the hydrogenation to olefin 
results in the loss of octane number of gasoline. This can be solved with a followed process recovering 
octane number. But the cost is usually higher. On the other hand, the fix bed process is simpler, and the 
catalysts usually have longer life.

Both technologies will play important roles in the deep desulfurization of petroleum refining. The 
RADS shows its merit to deep desulfurization of FCC gasoline, while HDS is more fitful for deep de-
sulfurization of diesel.

FUTURE RESEARCH DIRECTIONS

With the more stringent regulations regarding the sulfur content in gasoline, the extensive application 
of RADS for deep desulfurization of gasoline can be expected. But not limit to this, the RADS may also 
be used in the deep desulfurization of kerosene, diesel and petro-chemicals in future. The successful 
application relies on the further improvement of sorbent and related technique. But some key problems 
need to be resolved. For example, the active structure for desulfurization is carbided Ni, metallic Ni or 
partly sufided Ni is not clear yet. It has not be answered that if the auto-regeneration of Ni active sites 
can be fulfilled by direct sulfur transfer through the interface. From the perspective of engineering, the 
structure additives need to be investigated deeply. If the formation of ZnSO4, ZnAl2O4 and Zn2SiO4 can 
be inhibited, the regeneration of sorbent can be improved further. The relation of double metals with 
the olefin hydrogenation should be researched in future. The RADS represent one of fastest developing 
field in petroleum refining industry. Its effective and extensive application needs the good cooperation 
between researchers and engineers.
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CONCLUSION

The fundamental research reveals the micro-cycle of Ni/ZnO sorbent. During the RADS reaction the Ni 
active center are auto-regenerated continually by the sulfur transfer from Ni surface to the ZnO particles. 
Thus the metallic Ni catalytic centers does not be poisoned by sulfur, the desulfurization activity can be 
kept stable although the ZnO phase is always sulfided. The deactivation does develop after longer reac-
tion time due to the inhibition of sulfur transfer by the accumulation of ZnS on the surface of ZnO; this 
can be partly recovered by the regeneration. But the deactivation by the sinter of sorbent is difficult to be 
recovered, thus the structure reagent, such as alumina, silica or perlite, are usually added into the sorbent 
to increase the strength and resistance to the abrasion. The formation of spinel during regeneration has 
negative influence on the performance of sorbent. The macro cycle, namely the periodic deactivation-
regeneration of Ni/ZnO sorbent, guarantees the long time usage of sorbent in commercial application.
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KEY TERMS AND DEFINITIONS

Circulating Fluidized Bed (CFB): A process in which the deactivated or partly deactivated catalyst 
in reactor are continually moved out, and then into regenerator to be regenerated, and then are transferred 
back into reactor, achieving the continually cycle of reaction, deactivation and regeneration of catalyst.

Density Functional Theory (DFT): A computational quantum mechanical modelling method 
used in physics, chemistry and materials science to investigate the electronic structure (principally the 
ground state) many-body systems, as well as adsorption, desorption and reaction in particular atoms, 
molecules, and the condensed phases. With this theory, the properties of a many-electron system can 
be determined by using functionals, i.e. functions of another function, which in this case is the spatially 
dependent electron density. Hence the name density functional theory comes from the use of functionals 
of the electron density.

Fluid Catalytic Cracking (FCC): One of the most important conversion processes used in petroleum 
refineries. It is widely used to convert the high-boiling, high-molecular weight hydrocarbon fractions of 
petroleum crude oils to more valuable gasoline, olefinic gases, and other products with an acid catalyst.

Hydrodesulfurization (HDS): A catalytic chemical process widely used to remove sulfur (S) under 
hydrogen atmosphere from natural gas and from refined petroleum products such as gasoline or petrol, 
jet fuel, kerosene, diesel fuel, and fuel oils. The purpose of removing the sulfur is to reduce the sulfur 
dioxide (SO2) emissions that result from using those fuels in automotive vehicles, aircraft, railroad lo-
comotives, ships, gas or oil burning power plants, residential and industrial furnaces, and other forms 
of fuel combustion.

Hydrogenolysis: A chemical reaction whereby a carbon-carbon or carbon-heteroatom single bond is 
cleaved or undergoes “lysis” by hydrogen. The heteroatom may vary, but it usually is oxygen, nitrogen, 
or sulfur.
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Reactive Adsorption Desulfurization (RADS): A process using a sorbent with the metal-based 
catalytic component for sulfur capture to form metal sulfide in the presence of hydrogen, then the sulfur 
is transferred and retained on the sorbent component, while the hydrocarbon portion of the sulfur con-
taining molecule is released back into the process stream.

Thermogravimetric Analysis (TGA): A method of thermal analysis in which changes in physical and 
chemical properties of materials are measured as a function of increasing temperature, or as a function 
of time. It can provide information about physical phenomena, such as second-order phase transitions, 
including vaporization, sublimation, absorption, adsorption, and desorption. Likewise, it can provide 
information about chemical phenomena including chemisorptions, desolvation (especially dehydration), 
decomposition, and solid-gas reactions (e.g., oxidation or reduction).
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ABSTRACT

The more stringent environmental regulations enacted throughout the world have increased the need 
of more active hydrotreating (HDT) catalysts, in the petroleum refining industry. Usually, the catalysts 
used for diesel oil hydrotreatment are γ-Al2O3 supported molybdenum or tungsten sulfides promoted 
with cobalt or nickel. Current strategies for the design of novel HDS catalysts often include variations 
in the support formulation, catalyst preparation method and active phase formulation. In this sense, the 
new generations of catalysts, such as NEBULA®, are based on a totally different concept of bulk-like. 
In this chapter, we present recent research related to the synthesis, characterization and performance 
of trimetallic sulfide nanocatalysts for hydrodesulfurization. The present chapter analyses the state of 
art of the ternary sulfide hydrotreating catalysts.

1. INTRODUCTION

Traditionally, in the early 1990s, sulfur used to be removed from petroleum-derived feedstocks by a 
hydrodesulphurization (HDS) process using γ-Al2O3-supported Mo or W sulfide catalysts promoted by 
Co or Ni (Topsøe et al., 1996; Ho, 2004 and 2008). However, because the thermodynamic limitations of 
bimetallic Co(Ni)Mo(W)/Al2O3 catalyst formulation to perform deep HDS reactions at high temperature, 
it was impossible to satisfy stringent legislative requirements for ultra-low sulfur transport fuels using 
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those catalysts. After many efforts in the design novel catalyst formulations, supports and new prepara-
tion procedures, the recent catalyst developments and technologies allow production of ultra-low sulfur 
diesel (ULSD) (Soled et al., 2000; Topsøe et al., 1996). However, the determination that catalyst could 
be used depends on the specific refinery configuration, feedstock blends employed, and it might be a 
simple matter of economics (Topsøe et al., 2005).

The S-containing refractory compounds, which should be removed from the feedstock’s, are dibenzo-
thiophene (DBT) and alkyl-substituted DBT. For those molecules, the HDS reaction occurs mainly via 
hydrogenation (HYD) and direct desulfurization (DDS) pathways. For the HDS of DBT reaction (see 
Box 1), direct desulfurization pathway (DDS) leads to formation of biphenyl (BP), whereas hydrogena-
tion pathway (HYD) leads to formation of tetrahydrodibenzothiophene (THDBT), cyclohexylbenzene 
(CHB) and dicyclohexyl (DCH) (Ho, 2004 and 2008). It is well established that DDS route of this reac-
tion is favored for the Co-promoted catalysts whereas Ni-promoted ones exhibit enhanced HYD route 
of DBT transformation, as it was confirmed for the all catalysts studied in this chapter. The presence of 
alkyl groups in the highly refractory 4,6-dimethyldibenzothiophene (4,6-DMDBT) hardly affects the 
hydrogenation (HYD) pathway whereas the DDS pathway is severely inhibited. The hindrance of the 
C-S bond cleavage in the THDBT was claimed to be the most probably reason for the low reactivity of 
4,6-DMDBT (Ho, 2004 and 2008). To overcome this problem, novel HDS catalysts exhibit enhanced 
hydrogenation function.

Actually, many refineries used a BRIMTM hydroprocessing technology developed by Haldor Topsøe 
(Topsøe et al., 2005) whereas others successfully employed unsupported catalysts called NEBULA (Soled 
et al., 2000; Plantenga et al., 2003). The Ni-Mo/Al2O3 catalysts based on the BRIMTM hydroprocess-
ing technology possess Mo(W)S2 phases having a large amount of “brim sites”. Owing their metallic 
character, those catalysts exhibit enhanced hydrogenation function, and in consequence, display superior 
hydrodesulphurization activity and excellent stability (Lauritsen et al. 2004a, b).

Box 1. General reaction scheme for the hydrodesulfurization of dibenzothiophene over unsupported and 
supported trimetallic catalysts

HYD: hydrogenation reaction route
DDS: direct desulfurization reaction route
DBT: dibenzothiophene
THDBT: tetrahydrodibenzothiophene (nd.: non 
detected) 
BP: biphenyl
CHB: cyclohexylbenzene
DCH: dicyclohexyl
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A totally different concept of bulk-like materials was developed in 2001 by ExxonMobil, Akzo Nobel 
and Nippon Ketjen (Soled et al., 2000; Plantenga et al., 2003). Those unsupported catalysts, so-called 
NEBULA, possess Ni-Mo-W trimetallic formulation especially suitable for production of fuels with 
ultra-low sulfur content and for nitrogen elimination and saturation of aromatic compounds in diesel 
(Soled et al., 2000; Plantenga et al., 2003). In the catalyst formulation, molybdenum is partially substi-
tuted by tungsten. As a consequence, the unsupported Ni-Mo-W exhibit enhanced activity relative to 
unsubstituted (Ni-Mo) phase.

Because the surface properties of bulk catalysts can be easily tuned by supporting them on different 
substrates, the research into novel and improved ternary Co(Ni)MoW sulfide catalysts for hydrotreatment 
has renewed interest. However, as compared with unsupported bimetallic Co(Ni)-Mo(W)S2 systems, 
the number of reports about supported trimetallic Co(Ni)-Mo-W catalyst formulations is limited being 
alumina- and silica-supported catalysts mainly studied. Moreover, the number of active sites is still 
not precisely known although common understanding is emerging about the structure of the sulfided 
trimetallic Co(Ni)-Mo-W catalysts. (Olivas et al., 2009; Huirache-Acuña et al., 2009; 2010 and 2012; 
Guzmán et al., 2013).

In general, for the supported ternary Ni(Co)-Mo-W sulfide catalysts, the use of Ni as promoter dem-
onstrated to be more effective than Co (Huirache-Acuña et al., 2012). On the contrary, for unsupported 
ones prepared ex thiosalts, the activity results obtained for Co-promoted samples were considerably better 
than those for Ni-promoted counterparts, as demonstrated by Olivas et al. (2009). However, the effect of 
type of promoter depends not only on the support, but also on the reaction conditions employed. Indeed, 
at low H2 pressure and high space velocities, Co-promoted catalysts exhibited often better activity than 
Ni-promoted ones (Topsøe et al., 2005).

A disadvantage of mixed oxides is their low surface area, as it was confirmed for Ni-Mo-W mixed 
oxide nanostructures by Paraguay-Delgado et al. (2008). Moreover, different phases such as WO3, 
W0.4Mo0.6O3, MoO3 and NiWO4 can be obtained after hydrothermal annealing (Paraguay-Delgado et 
al., 2008). To overcome this, anisotropic layered precursors, such as alkylthiometallates, could be used 
to obtain mixed oxides with high surface areas if in situ decomposition of thiometallates was employed 
(Nava et al, 2005). This type of precursors generally produces volatile compounds during calcination, 
which may generate porosity and therefore high surface areas. Furthermore, since a bimetallic precursor 
compound is obtained by mixing of the metals at a molecular level, a good mixing of the active metals 
is expected after calcination and subsequent sulfidation (Quintana-Melgoza et al., 2001; Amaya et al., 
2014) (see Table 1). However, the textural properties and the catalyst response in the HDS of DBT reac-
tion are strongly affected by the nature of alkyl groups of thiometallates (Huirache-Acuña et al., 2006 
(a)), the precursor decomposition conditions (ex situ and in situ modes) (Bocarando et al, 2009(a)), the 
type of precursor employed (Ni, Co) (Huirache-Acuña et al., 2006(a),(b)), and the effect of the amount 
of Ni promoter (Bocarando et al., 2009(b)). With respect unsupported ternary Ni-Mo-W sulfide systems, 
Olivas et al. (2009) demonstrated that the synergistic effect of Ni is higher in bimetallic (Mo,W)S2 than 
in monometallic MoS2 and WS2 phases studied separately. Such a behavior was attributed to the forma-
tion of metallic states in the Ni-Mo-W-S catalyst due to the electronic interaction of Mo with W and 
Ni, as shown by Extended Hückel calculations (Olivas et al., 2009). According to these calculations, 
the combination of Mo and W atoms forming binary (Mo,W)S2 compounds change the semiconduc-
tor character of MoS2 or WS2 to the metallic one. Incorporation of Ni to form trimetallic Ni(Mo-W)S2 
compounds increases additionally availability of electrons over the Fermi level. It was hypothesized that 
the favorable position of Ni in the Mo(W)S2 structure might enhance this effect (Olivas et al., 2009).
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Within this scenario, in this chapter we present some of the recent research related to the synthesis, 
characterization, and catalytic performance of unsupported and supported trimetallic sulfide catalysts. 
A new metals promoter and dopants support are identified. Examples are given to show the superiority 
of the use of trimetallic catalyst formulation with respect to the bimetallic one.

2. UNSUPPORTED TRIMETALLIC CATALYSTS FOR HDS

Unsupported trimetallic catalysts could be prepared by sulfidation of the metal oxide precursors or 
by thiosalt decomposition. The former method has the disadvantage of imperfect catalyst sulfidation 
leading to a lower catalyst activity whereas the latter method is a simple and reproducible method for 
obtaining Co(Ni)-Mo-W catalysts. The main advantage of the thiosalt decomposition method resides 
in the fact that the catalyst activation by sulfidation should be avoided (Lumbreras et al., 2010). More-
over, the preparation of unsupported sulfide systems by sulfidation of their oxide precursors present 
a disadvantage due to the low surface of mixed oxides (Quintana-Melgoza et al., 2001). To overcome 
this, layered precursors could be used to obtain the mixed oxides with high surface areas and porosity 
generated during calcination by production of volatile compounds (Amaya et al. 2014). Furthermore, 
since the mixing of the metal promoters occurs at a molecular level, one might to expect a good mix-
ing of the active phases during solid’s calcination and its subsequent sulfidation. On the contrary, the 
thiosalts already have sulfur bound to the metal atoms in a tetrahedral coordination, thus, its position 
did not change during thiosalt decomposition.

Table 1. Summary of synthesis reports using oxide precursors

Catalysts Synthesis Method Conditions Reference

NEBH2S
NEB DMDS
NEBDMS

Two aqueous solutions were prepared (A and B). Solution A consisted of ammonium 
heptamolybdate and ammonium metatungstate dissolved in water at 363 K under stirring. The 
pH of this solution was maintained at about 9.8 by adding NH4OH. Solution B consisted of 
nickel nitrate dissolved in water at 363 K, while stirring, solution B was slowly added to solution 
A at 363 K, a precipitate was formed, then the solid was filtered, washed with hot water and 
dried at 393 K. The molar ratio Mo:W:Ni of precipitate was 1:1:2 and was represented as NH4-
Ni-Mo0.5 W0.5-O. Sulfidation was carried out in a tubular furnace at 673K for 2 h using H2S, 
DMDS or DMS (10 vol.% in hydrogen).

Gochi et al. 2005

Mo-Ni-W Ammonium heptamolibdate, ammonium metatungstate and nickel nitrate were used as reagents 
with an atomic ratio of 1:1:1. The mixture was stirred at 333 K for 48 h. Then 20 mL of the 
resulting solution was diluted with 20 mL of deionized water and acidified with 2.2 N of 
nitric acid (2 mL) in order to adjust the pH to 1.5. The solution was transferred to Teflon-lined 
stainless steel autoclave and heated up to 473 K for 48 h. Resulting materials were washed, 
filtered and dried for 5 h. Finally, Mo-Ni-W compound was annealed at 823 K and 1173 K, 
respectively.

Paraguay-
Delgado et al. 
(2008)

Ni-SR673 
Ni-SR798 
Co-SR673 
Co-SR798

The precursors were synthesized by co-precipitation (CoMoW) and hydrothermal (NiMoW) 
methods. Solutions containing the metal salts were separately prepared and then mixed, always 
adding the nickel (or cobalt) solution to the other ones; ammonia was used as a precipitating 
agent. In the co-precipitation method, the slurry produced was maintained at 298 K under 
stirring during 4 h. In the hydrothermal method, additionally, the mixture was heated at 473 K 
for 96 h in Teflon-lined autoclaves. After the heating, the solids were filtered, washed with water, 
and dried at 373 K. Ni-O and Co-O were sulfided by heating ex-situ under a H2S/H2 (15%, v/v) 
mixture from 298 K to 673 or 798 K for 4 h with a heating rate of 5 K/min.

Amaya et al., 
2014
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2.1. Catalysts Prepared by Sulfidation of Oxide Precursors

One way to prepare unsupported trimetallic catalysts for HDS is through metal oxide precursors, which 
are subsequently activated by sulfidation with H2S/H2 gas mixture or by using a feed containing sulfur 
compounds and H2. In this sense, it was found that the use of different sulfiding agents does not only 
influence on the degree of sulfidation, but also leads to catalysts with different crystalline phases and 
surface areas. In particular, it was found that the sulfiding agent plays a very important role in the catalyst 
morphology, as revealed by XRD, scanning electron microscopy (SEM), TEM and BET results (Gochi 
et al., 2005).

The influence of the type of sulfiding agent employed for the catalyst activation on the final catalyst 
response in the HDS of dibenzothiophene (DBT) reaction was investigated by Gochi et al. (2005). The 
Ni-Mo-W catalytic system was prepared according to the patent reported by Soled et al. (2000) using 
a trimetallic precursor (NH4-Ni-Mo0.5W0.5-O) (Table 1). The catalyst was sulfided using H2S, dimethyl 
disulfide (DMDS) and dimethyl sulfide (DMS). Results suggested that dimethyl sulfide (DMDS) can be 
used as sulfiding agent instead of H2S to generate catalyst with high activity. This is because the sulfida-
tion with DMDS yielded a catalyst with greater specific surface area and elemental mapping showed 
that all elements (Mo-W-Ni) are homogeneously distributed. On the contrary the study by Gochi et al. 
(2005), Huirache-Acuña et al. (2006) observed that the precursor decomposition at reductive atmosphere 
(H2S/H2) had a beneficial effect on the HDS activity.

Thermal decomposition of Ni and Co layered precursors is effective method to obtain unsupported 
Ni(Co)-Mo-W catalysts with high surface area. Using this preparation method, the purpose of the works 
by Rodemerck and Linke (2009) and Amaya et al. (2014) was to establish the relationship between the 
activation temperature and the catalytic properties of the Ni(Co)–Mo–W oxides. NiMoW layered pre-
cursor, which was synthetized by Rodemerck and Linke (2009), was prepared using solutions contain-
ing the metal salts separately prepared and then mixed, always adding the nickel solution to the others; 
ammonia was used as a precipitating agent. After ex-situ sulfidation, all catalysts showed structural, 
textural, and morphological changes that were reflected by the formation of several nickel phases such 
as Ni3S2, NiS and NiS2, decrease in the values of surface area, and defects of mixed stack and curvature 
of layers observed in the TEM micrographs which were attributed to the activation temperature. A linear 
tendency was observed between the activation temperatures (from 673 to 823 K) and DBT conversion. 
The unsupported NiMoW catalysts demonstrated to be structurally stable and active during HDS of DBT 
reaction. Thus, it was concluded that the NiMoW layered material and NiMoW mixed oxide were good 
precursors of the sulfide catalysts (Rodemerck and Linke, 2009).

Recently, the catalytic response of the unsupported Ni-Mo-W and Co-Mo-W catalysts was investigated 
also by Amaya et al. (2014). The catalysts were prepared by calcination at 673 K of the layered precursors 
(NH4)H1.4Ni2.3O(OH)(MoO4)1.4(WO4)0.6 and (NH4)H2Co2O(OH)(MoO4)1.6(WO4)0.4, respectively (Amaya 
et al., 2015). After ex-situ sulfidation at 673 K or 798 K, the catalyst activity was evaluated in the HDS 
of DBT reaction carried out in a batch reactor at 593 K and 5.5 MPa. The catalyst characterization by 
different techniques demonstrated that type of metal precursor (Ni vs. Co) together with sulfidation tem-
perature (673 K or 798 K) strongly influenced on the textural properties and morphology of the sulfided 
catalysts. The best catalytic behavior was obtained with unsupported Ni-Mo-W catalysts sulfide at 798 K.
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2.2. Catalysts Derived from Thiosalts Decomposition

The use of S-containing precursors like thiometallates is another interesting alternative of catalyst 
preparation procedure of trimetallic Ni-Mo-W sulfide catalysts because several important features, e.g. 
high purity and high dispersion properties, can be achieved by hydrothermal syntheses. Their catalyst 
behavior depended strongly on the way in which the promoter atoms are introduced on the Mo(W)S2 
phases, the reacting atmosphere and heating conditions (Huirache-Acuña et al., 2006(a), (b)). Mo(W)
S2 phases synthesized by hydrothermal method has a needle-like morphology. The length of slabs is 
generally larger than those obtained by sulfidation of oxide precursors (generally over 10 nm), while the 
layer number is not very high (Zhang, 2015).

The use of ammonium thiometallates was extensively studied as potential active phase precursors for 
HDS catalysts with the objective to better understand the correlation between the electronic structure of 
transition metal sulfides and the hydrodesulphurization catalytic activity (Bocarando et al., 2009(b)). 
In this sense, interesting results on the synthesis of trimetallic Ni-Mo-W sulfide catalysts were reported 
by Olivas et al. (2009). The optimal composition and distribution of atoms in the precursor was ob-
tained by controlling the reactions occurring during the preparation steps yielded a very active catalyst. 
It was found that the trimetallic NiMoW sulfide catalyst with Ni/(Mo+W) ratio of 0.85, prepared by 
the impregnation of bimetallic ATMW thiosalts, showed good Ni dispersion, adequate mesoporosity, 
significant synergistic effect and twofold larger activity (in a weight basis) than an industrial NiMo/
alumina catalyst. For this trimetallic catalyst, the synergistic effect of Ni was found to be higher than 
for Ni(MoS2) and Ni(WS2) studied separately.

Recently, improved textural and catalytic properties were obtained by substituting the sulfur-containing 
precursors by tetraalkylammonium thiometallates (Alvarez et al., 2004; Poisot et al., 2007; Trakarnpruk 
et al., 2007; Alvarez et al., 2009). These effects could be related to the generation of carbon-containing 
metal-sulfide sites, as previously patented (Naumann and Behan, 1981; Chianelli and Pecoraro, 1985). 
Thus, active species of the type Mo(W)SxCy have been considered (Alonso et al., 1998; Sundaramurthy 
et al., 2008). The use of carbon-containing precursors with different C/Mo ratios offers the possibility to 
evaluate the influence of carbon on the genesis of the metal sulfide catalysts. In this sense, the study by 
Nava et al. (2006) demonstrated that the type of alkyl group of the precursors has a strong influence on 
the HDS activity. The Ni–Mo–W catalysts activated by in situ decomposition of alkylthiomolybdotung-
states (where alkyl is methyl, propyl, butyl or cetyltrimethyl groups) exhibited appropriate morphological 
properties and enhanced HDS activity compared to NiMo/Al2O3 reference systems.

In the study by Alvarez et al. (2004) particular attention was devoted to the use of carbon-containing 
precursors, such as tetramethylammonium thiomolybdate (TMATM) and tetrapropylammonium thio-
molybdate (TPATM), and to the mode of their decomposition (ex situ or in situ) to synthesize unsup-
ported MoS2 and CoMoS2 catalysts. The catalysts were activated ex situ by precursor’s decomposition 
under a H2S/H2 flow before the hydrodesulphurization of dibenzothiophene or by direct decomposition 
under HDS conditions (in situ decomposition). It was found that in situ decomposition of precursors led 
to catalysts with larger superficial areas than those obtained with the ex situ method. It was found that 
the cobalt synergetic effect depends both on the method of activation and the use of carbon-containing 
precursor. For in situ activated catalysts, the use of carbon containing precursor enhanced the promo-
tional effect of cobalt while an opposite effect was observed for ex situ activated catalysts. Their results 
suggested that a certain amount of carbon could replace surface sulfur atoms at the edges of the Mo(W)
S2 layers taking part of the active phase (Chianelli and Berhault, 1999). However, the catalysts prepared 
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by Huirache-Acuña et al. (2006(a)) using tetramethylammonium thiomolybdates and thiotungstates 
showed the highest C/(Mo+W) atomic ratio and the lowest catalytic activity. Thus, contrary to the work 
by Chianelli and Berhault (1999), the excess of carbon formed during HDS reaction played negative role 
by reducing the number of active sites accessible for adsorption of DBT molecules.

The strong influence of the type of alkyl groups of the precursors on the HDS activity was also 
confirmed recently by Espinoza-Armenta et al. (2014) for unsupported CoMoW sulfide catalysts. The 
catalysts were prepared by in situ decomposition of ammonium and alkyltrimethylammonium-thiomo-
lybdate-thiotungstate-cobaltate (II) precursors having lauryl (dodecyl, C12), myristil (tetradecyl, C14), 
cetyl (hexadecyl, C16), and stearyl (octadecyl, C18) as alkyl groups. It was found that the catalyst derived 
from the precursor containing the tetradecyl group exhibited the highest catalytic activity (k = 421 × 
10−7 mol/g s). However, it was concluded that the surface area and high catalytic activity do not show 
direct correlation with the length of the hydrocarbon chains of the precursors.

The nature of alkyl groups, the precursors pretreatment, and the type of promoter (Co vs. Ni) on the 
HDS activity of unsupported Ni(Co)-Mo-W sulfide catalysts was investigated by Huirache-Acuña et 
al., 2006 (a,b)). The catalysts were prepared by ex situ hydrothermal decomposition of ammonium and 
tetraalkylammonium thiomolybdates and thiotungstates, and Ni(Co)Cl2·6H2O. The unsupported catalytic 
systems prepared by this method exhibited a low specific surface area and a large amount of carbon 
was formed, but they displayed good catalytic performance in the HDS of dibenzothiophene reaction 
carried out in a batch reactor (T= 623 K, H2 pressure of 3.1 MPa). The highest activity was observed 
for the Ni-Mo-W catalyst prepared ex ATM/ATW (Figure 1). The catalysts prepared ex ammonium and 

Figure 1. Comparison of the HDS activities of unsupported and zeolite-supported NiMoW sulfide catalysts 
prepared using different metal precursors: ATM(W): ammonium tetrathiomolybdate/tetrathiotungstate 
(ATM(W); tetramethylammonium thiomolybdate/thiotungstate (TMATM(W)); tetrapropylammonium 
thiomolybdate/thiotungstate (TPATM(W))
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propylammonium thiomolybdates and thiotungstates) showed a slightly higher activity in HDS of DBT 
than a commercial NiMo/ Al2O3 catalyst (Huirache-Acuña et al., 2006(a)). Moreover, it was found that 
an increase in the size of the alkyl groups led to a decrease in the HYD/DDS selectivities ratio. Contrary 
to the Ni-promoted catalysts, the Co-promoted ones showed a marked tendency for the DDS reaction 
pathway (see Box 1). Ni-Mo-W catalysts exhibited a marked decrease in the stacking of Mo/W)S2 lay-
ers along the c direction when alkyl groups were incorporated to the precursor, as confirmed by XRD 
and HRTEM.

Similar promising results were reported recently by Yi et al. (2011), which claimed that unsupported 
NiMoW catalysts could be promising candidates for wide application in hydrotreating of fuel oil. The 
catalysts were prepared by thermal decomposition of mechanically ground tetramethylammonium thio-
molybdotungstate and Ni(NO3)2 6H2O. After ex situ precursor’s decomposition, the sulfide catalyst was 
passivated by exposure to air at room temperature. To remove the passivation layer, the catalyst was 
activated upon H2 flow at 613 K for 0.5 h, and then tested in the HDS of DBT reaction. From the catalyst 
structure-activity correlation the authors concluded that catalyst structure and its catalytic properties 
strongly depend on the nickel content and thiosalt decomposition conditions. It was found that the use 
of low Ni content is more beneficious for the HDS activity than use of its large content. As expected, 
it was found that the addition of nickel to MoW catalyst promoted the hydrogenation route of DBT 
transformation (see Box 1).

Concerning the double promotion, results reported by Ho et al. (2012(a,b,c)) demonstrated that 
doubly promoted unsupported molybdenum sulfides prepared by thermal decomposition of metal amine 

Table 2. Metal sulfide precursors employed for the synthesis of unsupported Co(Ni)MoW catalysts

Catalysts Metallic Precursors/Synthesis Method Reference

NiMoW • Ammonium thiomolybdate (ATM) 
• Ammonium thiotungstate (ATT) 
• Ni(NO3)2.6H2O

Nava et al., 2005
Huirache-Acuña et al., 
2006(a)

NiMoW–methyl 
NiMoW–propyl 
NiMoW–butyl 
NiMoW– cetyltrimethyl

• Ammonium thiomolybdate (ATM) 
• Ammonium thiotungstate (ATT) 
• Tetraalkylammonium bromide (TAAB): 
Alkyl: methyl; propyl; butyl; cetyltrimethyl

Nava et al., 2005

NiMoW-methyl 
NiMoW-propyl

• (R4N)2MoS4 and (R4N)2WS4 (R = methyl or propyl),
• Ni(NO3)2.6H2O

Huirache-Acuña et al., 
2006

Ni(Co)MoW • Ammonium thiomolybdate (ATM) 
• Ammonium thiotungstate (ATT) 
• Ni(Co)Cl2.6H2O

Huirache-Acuña et al. 
2006(b)

Ni(Co)MoW-Methyl 
Ni(Co)MoW-Propyl

• Tetramethyl(propyl)ammonium chloride 
• Ammonium thiomolybdate (ATM) 
• Ammonium thiotungstate (ATT) 
• Ni(Co)Cl2.6H2O

Huirache-Acuña et al. 
2006(b)

CoMoWP-C12 
CoMoWP-C14 
CoMoWP-C16 
CoMoWP-C18

• Alkyltrimethylammonium thiomolybdate 
• Alkylltrimethylammoniumthiotungstate 
• Co(NO3)2•6H2O
where alkyl= dodecyl, tetradecyl, cetyl and octadecyl

Espinoza-Armenta Y., et 
al., 2014

Fe0.5 Cr0.5 Moy • Ammonium thiomolybdate (ATM) 
• Ethylenediamine 
• Cr(en)3Cl3
• FeCl2·4H2O

Ho et al., 2012
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thiomolybdates were highly active in HDN and HDS reactions. Using iron as promoter, it was observed 
that the Ni0.5Fe0.5Mo and Co0.5Fe0.5Mo trimetallic sulfides were more active than the FeMo, NiMo and 
CoMo bimetallic sulfides (Ho et al. (2012(b,c)). A subsequent study showed that chromium was a more 
effective promoter than iron (Ho et al. 2012(b)). The predominant phases in the chromium-containing 
catalysts were nanocrystalline MoS2 and amorphous Cr2S3. The Fe0.5Cr0.5Moy (1 ≤ y ≤ 1.5) trimetallic 
sulfide was more active and selective for HDN than FeMo and CrMoy bimetallic sulfides. Thus, it was 
concluded that chromium and iron were synergistic co-promoters for enhancing the HDN activity of 
MoS2 (Ho et al. (2012(b)).

Table 3. Reaction rate constants and HYD/DDS selectivities ratio (at 5 h) of different unsupported 
Ni(Co)-Mo-W sulfide catalysts tested in the HDS of DBT (batch reactor, 623 K, total H2 pressure of 3.1 
MPa); Data of a commercial NiMo/Al2O3 catalyst are included (reference sample).

Catalyst Phases Detected 
(XRD)

k
(x 10-7 mol/g s)

    HYD/DDS     Ref.

NiMo/Al2O3 (commercial) NiMoS 
MoS2

12 Alonso et al.
2005

Unsupported 
NiMoW-H

NiS 
MoS2
WS2

25.4 1.26 Huirache-Acuña et al.
2006(b)

Unsupported 
NiMoW 
ex methyl

NiS 
MoS2
WS2

10.3 1.25 Huirache-Acuña et al.
2006(b)

Unsupported 
NiMoW 
ex propyl

NiS 
MoS2
WS2

4.7 0.88 Huirache-Acuña et al.
2006(b)

NEBH2S(2) NiS 
MoS2
WS2

17.11 1.15 Gochi et al,
2005

Unsupported 
NiMoW-H

NiS 
MoS2
WS2

17.2 0.51 Nava et al. 2005

Unsupported 
CoMoW-H

CoS1.097
Co9S8
CoMoS3.13
MoO3
WS2

20.0 0.39 Huirache-Acuña et al.
2006(b)

Unsupported 
CoMoW 
ex methyl

CoS1.097
Co9S8
CoMoS3.13
WS2

16.2 0.39 Huirache-Acuña et al.
2006(b)

Unsupported 
CoMoW 
ex propyl

Co9S8
WS2

15.6 0.36 Huirache-Acuña et al.
2006(b)

Unsupported 
Ni(Mo-W)S2

NiS 
MoS2
WS2

23 1.24 Olivas et al.,
2009

Unsupported 
CoMoW-H 
in situ

MoS2
WS2
CoS1.097
Co9S8

    16 0.49 Huirache-Acuña et al. 
2015
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The detrimental effect of phosphorous addition during synthesis of unsupported Ni-Mo-W catalysts 
was observed by Nava et al. (2006). The unsupported trimetallic Ni–Mo–W catalysts were prepared by in 
situ activation of nickel-containing tetramethylammonium thiomolybdotungstate and tested in the HDS 
of dibenzothiophene (DBT) reaction (Nava et al., 2006). X-ray diffraction showed that the structure of 
unsupported Ni-Mo-W sulfide catalysts corresponds to a low-stacked and poorly crystalline 2H–MoS2 
or 2H–WS2 structure. It was found that phosphorus induced the formation of less-folded slabs without 
modifying the dispersion along the basal plane or the stacking degree. However, the main effect of phos-
phorus was favored segregation of nickel sulfide and the loss of the promotional effect. This phenomenon 
would probably result from the stronger interaction of Mo and/or W with P than with Ni during the in 
situ preparation of these trimetallic NiMoW catalysts (Nava et al., 2006). Moreover, phosphorus led 
to a strong decrease in BET specific surface area (from 46.9 m2/g to 14.3 m2/g) due to pore plugging.

3. SUPPORTED TRIMETALLIC CATALYSTS

Bulk HDS catalysts possess high HDS activity, but they have the disadvantage of low utilization of ac-
tive phases and high cost. Thus, many efforts have been developed to enhance the active sites dispersion 
by using different supports. Alumina is doubtless the most used support for this purpose (see Section 
3.1). The origin of the almost exclusive use of alumina as support has been ascribed to its outstanding 
textural and mechanical properties and its relatively low cost (Satterfield, 1996). However, the pres-
ence of undesirable strong metal-support interactions in the alumina-supported catalysts has triggered 
research devoted to the development of new supports for HDS applications. In this sense, the use of 
ordered mesoporous siliceous molecular sieves as supports has been intensively investigated (see Sec-
tion 3.2). In particular, the use of SBA-15 as support was investigated because of its a hexagonal array 
of uniform mesopores, a narrow pore size distribution, high surface area, high sorption capacity and 
thermal stability (Zhang et al., 2005). As compared with alumina and siliceous molecular sieves, the 
number of reports on the use of other materials for supporting trimetallic catalysts is very limited (see 
Section 3.3). The materials used as supports were only three: carbon (Severino et al., 2000), Al-Ti mixed 
oxides modified with MgO (Cervantes-Gaxiola et al., 2012) and natural Mexican zeolite clinoptilolite 
(Huirache-Acuña et al., 2014).

3.1. Alumina-Supported Catalysts

For technical and economic reasons, the impregnation method is the one most frequently used for prepar-
ing supported Co(Ni)-Mo-W catalysts with a high surface area in order to improve the accessibility of 
active sites. This impregnation method was employed by Thomazeau (2007) for preparation of Co- and 
Ni-promoted MoW/γ-Al2O3 catalysts tested in thiophene HDS and gas oil conversion. Using DFT calcula-
tions, an approach based on a linear interpolation model of surface ΔEMS between the binary XMoS and 
XWS phases (X = Co and Ni) it was proposed. According to the interpolated ΔEMS values, the distinct 
catalytic effects of the two Ni and Co promoters on the MoxW1-x S2 solid solution were anticipated. The 
ΔEMS value of NiMoWS phase was improved, becoming closer to the volcano curve’s optimum and a 
new synergy effect with respect to NiMoS and NiWS phases was subsequently expected. In contrast, 
Co was expected to reveal no new synergy effect in CoMoWS2 phase with respect to CoMoS and CoWS 
phases due to the too high ΔEMS value. The prediction by DFT calculations and the linear interpolation 
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model were supported by the catalytic activity measurements. In model reaction or gas oil feed conver-
sion, the catalytic activity’s enhancement in the range of 30% was obtained for NiMo0.5W0.5S2 catalyst. 
On the other hand, the CoMo0.5W0.5S catalyst does not reveal any new synergy effect. These ternary 
sulfide catalysts designed with the use of DFT calculations show that the best HDS catalysts must exhibit 
sulfur metal bond energies close to NiMo0.5 W0.5 S2 system, meaning between NiMoS and NiWS ones.

The impregnation solution-based combustion method using urea as fuel was employed by González-
Cortés et al. (2014) for the preparation of γ-alumina-supported Ni-Mo-W catalysts. The catalyst activ-
ity was evaluated for deep hydrotreating using various feedstock’s and the results have been compared 
with a commercial alumina-supported NiMo catalyst. It was concluded that the addition of Ni and Mo 
to WOx-loaded alumina facilities a strong interaction between NiO and MeOx species, which promotes 
the reducibility of the metal oxides deposited on alumina. The impregnation solution based combustion 
method in the controlled combustion mode avoids the formation of crystalline mixed-metal oxides such 
as Al2(MoO4)3, NiMoO4 and/or NiWO4, instead it facilitates a strong interaction of NiO with MeOx spe-
cies that could enhance the promoter effect of Ni on the edges of Mo (and/or W) sulfide.

The number of reports about alumina-supported Co-Ni-Mo is limited (Severino, et al., 2000; Homma, 
et al., 2005). Moreover, contradictory activity results have been reported in the literature because an 
increase in activity or a decrease were observed in different laboratories (Cáceres et al. 1986; Benyamna 
et al. 1998; Severino et al. 2000; Homma et al., 2005). For example, it was reported that trimetallic 
CoNiMo/Al2O3 catalysts were less active than their analogous CoMo or NiMo for thiophene HDS per-
formed at atmospheric pressure (Benyamna et al. (1998). On the other hand, at the same raction condi-
tions, an increase of HDS activity was observed by others (Cáceres et al. 1986). Considering the study 
by Cáceres et al. 1986, the differences in the catalyst behavior could be linked with different Co/(Co+Ni) 
atomic ratio and different catalyst preparation methods employed. The loss in activity was explained as 
due to the formation of a separate mixed Co–Ni sulfide phase, which results by lowering the amount of 
promoted catalytic sites (Benyamna et al., 1998).

Klimova et al. (2010) reported the possibility of increasing the HYD ability of the conventional 
NiMo/γ-Al2O3 catalyst by the incorporation of small amounts of different noble metals (Pt, Pd, Ru) in 
order to make it more appropriate for deep HDS. The catalysts were characterized and tested in 4,6-di-
methyldibenzothiophene HDS reaction. Pt and Pd-containing ternary catalysts showed activity 10–20% 
higher than the reference conventional NiMo/γ-Al2O3 sample, while Ru addition had a negative effect 
on the catalytic activity.

Recently, another interesting approach for the novel catalyst formation was presented by Díaz de 
León et al. (2012). The NiW/Ga-Al2O3 catalysts with vary Ga loading (0.6-3.0 wt.%) were prepared by 
classical wetness impregnation method of the Ga-modified alumina. The catalyst activity was evaluated 
in the HDS of dibenzothiophene and 4,6-dimethyldibenzothiophene reactions. It was found that gallium 
addition leads to a significant increase of conversion in both reactions, with a maximum of promotion 
observed for the catalyst modified with optimized gallium content (2.4 wt.%).

Contrary to the unsupported Ni-Mo-W catalysts (Nava et al, 2006), the phosphorous addition has 
positive effect for the HDS and HDN activities of NiMoW/γ-Al2O3 sulfide catalysts (Sigurdson et al., 
2008). Both HDN and HDS activities steadily increased with the P content up to an optimum concen-
tration of 1.6 wt.% At this concentration, the P-doped trimetallic catalyst showed better hydrotreating 
activity than the bimetallic and commercial catalysts. It was apparent from DRIFT spectroscopy that 
the P doping creates new acidic sites in NiMoW/γ-Al2O3 catalysts. The acidic sites brought about by 
phosphorus incorporation accelerates the C–N bond breaking, a rate determining step, and promotes the 
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HDN activity to a higher degree than the HDS activity with coker gas oil. In addition, the hydrotreating 
performance of Ni2P-NiMoW/γ-Al2O3 catalysts has been carried out and compared with NiMoW/γ-Al2O3 
and the commercial catalysts (Lan et al., 2011). These results demonstrated that the Ni2P promoted 
NiMoW/γ-Al2O3 catalysts were highly active in HDS and HDN of diesel fuels. The Ni2P was introduced 
into the γ-Al2O3 supported NiMoW catalyst by thermal decomposition of nickel hypophosphite at low 
temperature. The moderate decomposition did not change the surface area, pore size and volume, acidic 
site, strength and B/L ratios of the support, but provided highly dispersed Ni2P species over the catalyst. 
Owing to the high hydrogenation capability of Ni2P species, the as-prepared supported Ni2P-NiMoW 
catalyst exhibited high HDS and HDN activities in the HDS of DBT and diesel hydrotreating reactions.

Recently, the effect of Ni2P promotion of γ-alumina-supported NiMoW catalysts was reported by Lan 
et al. (2011). The catalyst response was evaluated in the HDS of DBT reaction and in FCC diesel oil 
hydrotreating experiments carried out in a fixed bed reactor under typical industrial conditions. It was 
found that the presence of Ni2P in the catalyst formulation brought a strong promotional effect on the 
HDS activity using both model compound and the real feedstock containing both S and N compounds. 
The as-prepared Ni2P-Ni-MoW/Al2O3 catalyst exhibited better hydrotreating performance than its Ni2P-
free counterpart and commercial sample. This was ascribed more to the effect of new active sites of Ni2P 
than that of acidity modification.

3.2. Silica Supports

Among different ordered mesoporous silica materials, SBA-type substrates (SBA = Santa Barbara 
Amorphous) were the most frequently employed as supports (Zhang et al., 2005). This is because their 
interesting textural properties, such as large specific surface areas (above 1000 m2·g−1), uniform-sized 
pores (in range 4–30 nm), thick framework walls, small crystallite size of primary particles and comple-
mentary textural porosity. The advantage of the use of SBA-15 material as support includes also its high 
surface-to-volume ratio, variable framework compositions and high thermal stability (Rahmat et al., 2010). 
The superiority of the trimetallic NiMoW/SBA-15 sulfide catalysts with respect to binary NiMo(W)/
SBA-15 ones was confirmed for both HDS of DBT and 4,6-DMDBT reactions by Mendoza-Nieto et al. 
(2013). Their results point out that it is possible to prepare highly active trimetallic catalysts using co-
impregnation method and SBA-15 as support. The importance of the high dispersion of the active phases 
on the HDS activity was confirmed also by Liu et al. (2010), which observed the superior HDS activity 
of the silica-supported NiMoW catalysts with respect to unsupported NiMoW ones synthetized using 
ammonium molybdate and ammonium metatungstate as Mo and W precursors, respectively. Concerning 
the influence of the support morphology on the catalyst activity, one might to expect that larger pore 
size might to favor diffusion of large molecules such as DBT into the inner pore network of the catalyst. 
This was confirmed by Huirache-Acuña et al. (2012) by the comparison of the catalytic response of 
HMS- and SBA-16-suported catalysts. Under the reaction conditions used, the catalyst supported on 
hexagonal mesoporous silica (HMS) demonstrated to be more active than its counterpart supported on 
SBA-16 mesoporous silica having cage-like structure.

Since purely siliceous materials have no Brønsted acidity, the attempt was made to generate acidity 
by support modification with phosphorous (Huirache-Acuña et al., 2009; (Guzmán et al., 2013). Box 2 
shows the possible mechanism of acid sites generation by impregnation of mesoporous silica material 
with phosphoric acid.



252

Trimetallic Sulfide Catalysts for Hydrodesulfurization
 

To create acid sites in the silica-based materials, the isomorphous substitution of Si4+ ions by triva-
lent Al3+ cations Al3+ ion was employed also (Huirache-Acuña et al., 2012, 2014). However, the study 
by Huirache-Acuña et al. (2012) demonstrated that the presence of extraframework AlNO3 phases on 
the support surface compromised the catalyst behavior because of the forced formation of less active 
“onion-type” Mo(W)S2 structures. The effect of promoter (Ni vs. Co) and support morphology (Al-HMS 
vs. Al-SBA-16) on the HDS activity of ternary Ni(Co)-Mo-W catalysts was investigated. The activ-
ity results revealed that use of Ni as promoter was much more effective than the use of Co. The HDS 
activity was markedly influenced by the textural properties of support and the dispersion of the active 
phases on the catalyst surface. The use of Al-HMS as support was found to be more effective than the 
use of Al-SBA-16 with cage-like structure. To explain this, the effect of Al modification of the SBA-16 
substrate was deeply evaluated for Co-Mo-W/Al-SBA-16 systems (Huirache-Acuña et al., 2014). The 
catalyst activity was studied in the HDS of DBT carried out in a batch reactor at 623 K and total H2 
pressure of 2.3 MPa. As expected, it was found that Al incorporation into a SBA-16 substrate produces 
both Brønsted and Lewis acid sites, which was beneficial for the catalyst activity. For all catalysts, the 
DBT transformation proceeded mainly via direct desulfurization reaction pathway (see Box 1). However, 
it was concluded that the direct synthesis method of Al-SBA-16 supports did not result in appropriate 
supports for HDS catalysts because a low amount of Brønsted acid sites were formed (Huirache-Acuña 
et al., 2014).

The effect of the SBA-15 and SBA-16 modification with phosphorous was reported by Huirache-Acuña 
et al. (2009). Regardless of the support morphology (SBA-15 against SBA-16), the addition of phosphate 
was found to be detrimental for catalytic HDS activity of both CoMoW/SBA-15 and CoMoW/SBA-16 
sulfide catalysts (Figure 3). However, the catalysts tested in a reaction of hydrodesulfurization (HDS) 
of dibenzothiophene (DBT) at 623 K and 3.1 MPa of total H2 pressure demonstrated to be more active 
than a CoMo/Al2O3 commercial catalyst containing a small amount of phosphorous in its formulation. 
In general, the SBA-16 material proved to be a better substrate to developing a large density of Mo(W)
S2 clusters on the surface (see Figure 4) than its SBA-15 counterpart (Figure 5). The irregular oxide 
Mo6+ and W6+ particles were proposed to be the precursors of the active phases formed upon sulfidation. 
Moreover, it was found that the density of the active phases on the support surface, together with the 
inhibitor effect of the phosphate on the coke formation, are two important factors which govern the HDS 
activity of CoMoW catalysts supported on mesoporous silica substrates (Huirache-Acuña et al., 2009). 
The inhibition effect of phosphorus was reported also for unsupported NiMoW catalysts tested in the 
HDS of DBT at the same reaction conditions (Nava et al. 2006). For both SBA-15 and SBA-16 catalyst 
series, the inhibition of the HDS activity of catalysts by phosphorus was mainly due to a decrease in the 
metal–support interaction leading to formation of a large metal sulphide clusters, and a pore plugging 
phenomenon (Huirache-Acuña et al., 2009).

Box 2. The possible mechanism of acid sites generation by impregnation of mesopoous silica material 
with phosphoric acid.
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The effect of SBA-16 support modification with phosphorous was investigated also for ternary Ni-
MoW/SBA-16 catalyst formulation (Guzmán et al., 2013). X-ray diffractograms of oxide precursors of 
those catalysts evidenced the formation of crystalline Mo1-xWxO3 and NiMoO4 phases on the surface 
of oxide catalyst precursors with high P-loadings (1.0 and 1.6 wt.%). After sulfidation by H2S/H2 gas 
mixture, the sulfided catalysts were tested in separate HDS of dibenzothiophene (DBT) and 4,6-dimeth-
yldibenzothiophene (4,6-DMDBT) reactions performed in a batch reactor at 320°C and H2 pressure of 
5.0 MPa. For both HDS reactions, the initial catalyst activity displayed a volcano-type curve indicating 
that catalyst behavior depends strongly on the phosphorous loading being all catalysts more active in 
the HDS of DBT then in the HDS of 4,6-DMDBT. The NiMoW/SBA-16 catalyst loaded with optimized 
amount of phosphorous (1.0 wt. %) showed superior initial activity than the P-free counterpart (see Figure 
3). This effect was attributed to the enhancement of active phase dispersion on the support surface, as 
revealed by High Resolution Transmision Microscopy (HRTEM) measurements (Guzmán et al., 2013).

3.3. Other Supports

The use of carbon as support has many advantages:

1.  A low metal-support interaction, which facilities complete sulfidation of oxides,
2.  Large specific surface area with controlled pore volume,

Figure 2. FT-IR spectra of adsorbed pyridine for the calcined CoMoW/SBA-16 modified with Al; an 
increase of Al loading led to an increase of Bronsted-to-Lewis acidities ratio influencing positively on 
the HDS activity.
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3.  Variable amount of surface functional groups,
4.  Reduced coked propensity due to lower polarity, and finally
5.  Easy metal recovering by burning of the carbon support (Pawelec et al. 2001).

The effect of double promotion of MoS2 phase by Co and Ni was investigated for carbon-supported 
CoNiMo catalysts by Severino et al. (2000). The CoNiMo/C catalysts were prepared by a two-step 
impregnation method. All samples exhibited MoO3 loading of 10 wt.% and CoO+NiO concentration of 
5 wt.%. The Co/(Co + Ni) atomic ratios of the catalysts was in range 0.0- 1.0. Minimum HDS activity 
was observed for the catalyst having the intermediate value of Co/(Co+Ni) atomic ratio, contrasting with 
previous findings reporting a maximum for alumina-supported CoNiMo catalysts.

Figure 3. Inhibition of the HDS activities of sulfided CoMoW/SBA-15(16) catalysts by support modifica-
tion with phosphorous
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The use of Al2O3-TiO2-MgO mixed oxides for supporting trimetallic Ni-Mo-W sulfide catalysts was 
investigated by Cervantes-Gaxiola et al. (2012). MgO was added to the Al-Ti mixed oxides in order to 
obtain more favorable interaction between the support and acidic molybdenum species leading to the 
formation of highly dispersed sulfide species (Klicpera and Zdražil, 1999). In the support formulation, 
the role of binary Al2O3-TiO2 was to facility redox processes for the active phases of Mo and W, and 
therefore, to facility the formation of active octahedral-type sites of Mo oxide species. NiMoW trime-
tallic catalysts were synthesized using the co-impregnation method with constant atomic ratio Ni/[Ni 
+ (W + Mo)] = 0.5 and a molar ratio of W:Mo 1:1 (18 wt.%). As precursors were used: ammonium 
thiomolybdate, ammonium thiotungstate and Ni(NO3)2.6H2O. The activity and selectivity of NiMoW/

Figure 4. HRTEM images for CoMoW/SBA-15 catalyst

Figure 5. HRTEM images for CoMoW/SBA-16 catalyst
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Al-Ti-Mg sulfide catalysts was evaluated in the HDS of DBT reaction carried out in a continuous flow 
tricked-bed microreactor at 563 K and total H2 pressure of 3 MPa. The activity results obtained were 
discussed in terms of the effect of MgO loading to the Al-Ti support. Although for all catalysts the direct 
desulfurization pathway was favored, it was found that the modification of the NiMoW/Al-Ti catalyst by 
the addition of 5 wt.% MgO improved slightly the catalyst hydrogenation function. Thus, it was claimed 
that NiMoW/Al-Ti-Mg modified with optimized amount of MgO could be a promising catalyst for deep 
hydrodesulphurization of petroleum fractions (Cervantes-Gaxiola et al., 2012).

On the other hand, Huirache-Acuña et al. (2014) investigated the properties of ternary Ni–Mo–W 
catalysts supported on natural Mexican zeolite clinoptilolite to explore the potential use of this zeolite 
as support for HDS catalysts. Considering that the role of nickel in the ternary Ni–Mo–W formulation is 
to act as the promoter of W(Mo)S2 phases, all catalysts were prepared by sequential support impregna-
tion using metal precursor concentrations appropriately selected to obtain Ni/(Mo + W) atomic ratio of 
0.5 and a total metal content of 26 wt.%. The ammonium thiotungstate, ammonium thiomolybdate and 
nickel nitrate were employed as precursors of W, Mo and Ni, respectively. The HDS of DBT reaction 
over NiMoW sulphide catalysts supported on natural Mexican zeolite (clinoptilolite) was performed in a 
batch reactor at 623 K and under 3.1 MPa of H2 pressure (Figure 1). All catalysts exhibited a low activity 
and a lower hydrogenation function with respect to their unsupported counterparts (Huirache-Acuña et 
al, 2006). DBT was mainly transformed via direct desulfurization reaction pathway (see Box 1). It was 
found that catalyst activity and hydrogenation function increased with decreasing Mo(W)S2 crystallite 
size. The ammonium thiometallates were found to be more efficient precursors of Mo(W)S2 species than 
the tetraalkylammonium ones. The most active catalyst in the HDS of DBT reaction showed the largest 
density of active phases on the support surface determined from HRTEM measurements.

4. FINAL REMARKS

On the basis of the present revision of the recent progress in the synthesis of unsupported and supported 
Co(Ni)-Mo-W, one might to conclude that considerable progress has been made in understanding their 
functionality in the hydrotreating reactions. Despite this progress, a number of fundamental questions 
persist. In general, the revised literature information strongly suggested that the use of trimetallic catalyst 
formulation could be more effective than those of binary ones.

In general, the catalysts prepared through hydrothermal technique were more active than their coun-
terparts prepared by sulfidation of the oxide precursors. The main advantage of the catalyst synthesis 
through hydrothermal technique was a variety of controllable parameters. However, more investigation 
can be carried out on the improvement of the synthesis procedure and/or on the type of metal precur-
sor employed. In addition, besides the exceptional wok by Sigurdson et al. (2008), no study has been 
performed for hydrotreating a real feedstock with either unsupported or supported trimetallic catalysts. 
Moreover, contrary to CoMo/Al2O3 and NiMo/Al2O3 systems (Topsøe et al. 2005), the active phases of 
the Ni(Co)-Mo-W systems were not cleared yet. In general, the literature results strongly suggest that 
the formation of ‘‘onion-type’’ Mo(W)S2 phases on the catalyst surface could be detrimental for the 
HDS activity of ternary systems (Huirache-Acuña et al. (2012); Guzmán et al., 2013; Rivera-Muñoz et 
al., 2015). This is probably because a low edge-to-basal sites ratio was obtained (Rivera-Muñoz et al., 
2015). Moreover, concerning the carbon-containing precursors, the question is what is the role of carbon 
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in trimetallic sulfide catalytic materials? Evidence presented by Lumbreras et al. (2010) indicated that 
the use of the carbon-containing precursor (hexamethylenediammonium) for the preparation of Ni-
Mo(W) sufide catalysts was more beneficial for the final HDS catalytic activity than using the classical 
ammonium tetrathiomolybdate (ATM) without carbon. This was explained as due to a correct nickel 
accommodation on the WS2 edges (Lumbreras et al., 2010). However, the results obtained by Huirache-
Acuña et al. (2009(b)) point to the inhibitory effect of the presence of carbon on the catalyst surface for 
the HDS activity. Finally, concerning the novel supports, the use of zeolites for supporting trimetallic 
systems can be more in deep investigated. This is because their unique crystal and pore structure which 
allows the preparation of highly dispersed supported metal sulfide catalysts. They also combine a large 
number of acid sites distributed through the network of channels and cavities, which provide bifunc-
tional HDS catalysts. In particular, the use of natural Mexican zeolite clinoptilolite for supporting HDS 
catalysts should be explored because it is the most common zeolite occurring in nature. However, this 
material requires previous modification of its textural properties in order to make it suitable as support, 
as one might to deduce from the comparison of the HDS activities of unsupported and zeolite-supported 
catalysts (Figure 1). The studies in this direction are in progress.
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ABSTRACT

The Catalytic oxidative desulfurization (Cat-ODS) comprises of molybdenum based catalyst, tert-butyl 
hydroperoxide (TBHP) as oxidant and dimethylformamide (DMF) as solvent for extraction. A series of 
polymolybdates supported alumina were prepared using the wet impregnation method. This potential 
catalyst was characterized by FTIR, FESEM-EDX and XPS for its physical properties. From catalytic 
testing, Fe/MoO3-Al2O3 calcined at 500°C was revealed as the most potential catalyst which gave the 
highest sulfur removal under mild condition .The sulfur content in commercial diesel was successfully 
reduced from 440 ppmw to 88 ppmw under mild condition followed by solvent extraction. Response 
surface methodology involving Box-Behnken was employed to evaluate and optimize Fe/MoO3/Al2O3 
preparation parameters (calcination temperature, catalyst loading, and Fe loading) and their optimum 
values were found to be 550 ºC, 10 g/L, and 10%. of calcination temperature, catalyst loading, and Fe 
loading. Based on these results, the reaction mechanisms of peroxy oxygen were proposed.

INTRODUCTION

Diesel can be considered the most potential fuel for transportation following gasoline. However, sulfur 
containing compounds in diesel are the main sources of acid rain and air pollution. In many countries 
around the world, environmental regulations have been introduced to reduce the sulfur content of diesel 
fuel and other transportation fuels to ultra-low levels (10–15 ppm)(Zongxuan et al. 2011).

Hydrodesulfurization (HDS) is the conventional method for lowering sulfur levels in diesel oil, but 
this technology requires severe conditions and is expensive. Hence, oxidative desulfurization (ODS) has 
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been considered as an alternative technology for deep desulfurization of light oil (Wang et al., 2012).
The aim of the present work was to develop alumina-supported polymolybdate oxide-based catalysts - 
tert-butyl hydroperoxide system - in oxidative desulfurization activity. Secondly, the potential catalyst 
was applied to be used in investigating oxidative reaction mechanism. This work also aimed to produce 
ultra-low sulfur diesel (< 15 ppm-S).

BACKGROUND

Various studies on catalytic oxidation systems have been reported such as, H2O2/Mo/Al2O3 (García 
Gutiérrez et al 2006) and Fe2+-CH3COOH-H2O2 (Bhasarkar et al. 2013, Bolla et al. 2012). Tert-butyl 
hydroperoxide (TBHP) has been considered a powerful oxidant amongst sulfur compounds, and the 
best result is achieved when utilizing TBHP with heterogeneous catalysts (Wan Abu Bakar et al. 2012). 
Among heterogeneous catalysts, transition metal oxides such as Cu, Ti, Cr, Fe, Co, W and V are intensely 
studied in oxidation reactions (Al-Shahrani et al. 2007); (Bagiyan et al. 2004) ; (Murata et al. 2004). 
However, this kind of process was limited to monometallic oxides catalysts and most studies focused 
on model diesel.The use of alumina supported polymolybdate based catalyst for the activation of TBHP 
is an interesting alternative as it is the most desirable improvement of the ODS process (Abdullah et al. 
2015). To date, the polymolybdate oxide catalyst doped with Fe has never been reported and explored 
for ODS reaction. Thus, the performance of new supported bimetallic oxide catalysts in commercial 
diesel will be reported. Secondly, the potential catalyst was also used to investigate the activity and 
oxidative reaction mechanism. This work was focused on developing a cost effective catalyst for ODS 
of commercial diesel under mild reaction conditions. Response surface methodology (RSM) is a set 
of techniques used to develop models from experimental or simulation data and can be used to obtain 
an optimal response (Dube et al. 2013). Compared to other RSM designs, Box-Behnken design (BBD) 
is the most frequently employed and offers some advantages; requiring few experimental points and 
high efficiency (Box et al. 1960). A Box-Behnken design was applied to determine the optimum sulfur 
removal, and also to explain the relationships between sulfur removal and three parameters, calcination 
temperature, catalyst loading and Fe loading.

METHOD

Materials

All solvents and chemicals were used without further purification. Phosphomolybdic acid hydrate 
and tert-butyl hydroperoxide (aqueous, 70wt%) were obtained from Across Organic. Iron(III) nitrate 
nonahydrate (99%), copper(II) nitrate trihydrate (99.5%) and cobalt(II) nitrate hexahydrate (99%) were 
obtained from QRëc. λ-Al2O3 beads (3-5 mm diameter) was obtained from Sigma-Aldrich, and di-
methylformamide (DMF) was purchased from MERCK. Commercial diesel fuel (440 ppm sulfur) was 
obtained from Petronas, Malaysia.
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Preparation and Characterization of Catalyst

Fe -doped Mo/Al2O3 solution was prepared by dissolving 1 g phosphomolybdic acid with 0.05 g iron(III) 
nitrate nonahydrate in 4 mL of water. The procedure was repeated using copper(II) nitrate trihydrate 
and cobalt(II) nitrate hexahydrate. The solution was used for the impregnation of Al2O3 (surface area: 
292 m2/g) at room temperature. The sample was dried overnight at room temperature, and was finally 
calcined from 400ºC to 900ºC for 5 h in air atmosphere. FESEM-EDX analysis was accomplished by 
using a Philips XL 40 microscope with energy of 15.9 kV coupled with EDX analyzer and bombarded 
using electron gun with tungsten filament under 25 kV resolutions to get the required magnification 
image. XPS surface study was conducted using X-ray photoelectron spectrometer (Omnicon Technology 
Instrument) with Al Kα X-ray source 20 Ev. The FTIR were recorded using Perkin Elmer Spectrum One 
Spectrometer with a resolution of 4 cm-1 and 15 scans in the mid IR region (500-4000 cm-1).

Catalytic Oxidative Desulfurization

Each ODS reaction was conducted in a 100 mL round-bottom flask, equipped with a magnetic stirrer 
and fitted with condenser. In a typical run, the oil bath was first heated and stabilized at a constant 
temperature (45°C). Then, 10 mL of commercial diesel (440 ppm) was poured to the flask, followed by 
the addition of sulfur/TBHP in a ratio of 3 and 0.12 g catalyst. Each mixture was refluxed for 30 min-
utes under vigorous stirring at atmospheric pressure. The oxidized diesel was extracted with DMF at a 
ratio of diesel/solvent = 1. Extraction was performed by stirring the solvent for 30 minutes followed by 
phase separation. The treated diesel was then analyzed using a gas chromatograph (GC, Agilent 6890N) 
equipped with a FPD detector. Dibenzothiophene (DBT) was used as the model compound to study the 
ODS mechanism of commercial diesel using TBHP. The oxidation steps were performed as previously 
described for the ODS procedure. Samples were drawn from the flask at regular intervals for analysis. 
The GC-FPD was used to identify the oxidation products.

Experimental Design

The sulfur removal in ODS was optimized by response surface methodology using Box-Behnken design 
(BBD) with three independent variables: calcinations temperature, X1 (400-600ºC), catalyst loading, 
X2 (3-15 g/L), Fe loading, X3 (5-15%). The statistical software Design Expert 7.0 was used for the analysis. 
Three independent variables with their levels are presented in Table 1. The following quadratic equa-

Table 1. The amount and levels (coded and uncoded) of the independent variables in experimental design

Independent Variables Range and Level

-1 0 1

Calcination temperature ºC, X1 400 500 600

Catalyst loading, g/L, X2 3 9 15

Fe loading, %, X3 5 10 15
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tion was used for the optimization process. The response variable (sulfur removal,%) was fitted with 
a full quadratic model (given in Equation (1) in order to correlate it to the experimental parameters or 
independent variables.

Y x x x x
i i ii i ij i j

= + + +∑ ∑ ∑β β β β
0

2  (1)

where Y is the response variable, i.e. sulfur removal,% . β0, βi, βii and βij are coeffecients of the intercept, 
linear, square and interaction effects. xi and xj are coded independent variables.

MAIN FOCUS OF THE CHAPTER1

Hydrogen peroxide (H2O2) and TBHP are the most popular oxidants in the Cat-ODS process due to 
their appreciable oxidation power, thus they were chosen as oxidants in this study(Abdullah et al 2015). 
Their efficiency for the desulfurization of diesel fuel was compared in the presence of a metallic cata-
lyst. Results clearly showed that reactivity of the MoO3/Al2O3 catalyst was significantly increased when 
TBHP was used compared to H2O2 (Table. 2). A total removal of about 76% sulfur was achieved in the 
first extraction with the TBHP polymolybdate based catalyst system. In addition, MoO3/Al2O3 has been 
reported to be an active oxidation catalyst, suitable for oxidation of thiophenic compounds with TBHP 
using a flow-type reactor (Otsuki et al 2001) . It can be expected that tert-butyl hydroperoxide is better 
oxidant than hydrogen peroxide in the oxidation of dibenzothiophene in commercial diesel, because of 
more hydrophobic property of tert-butyl hydroperoxide.

According to a previous study Sampanthar et al(2006), transition metal oxide catalysts supported on 
Al2O3 have been effective in catalyzing the oxidation of sulfur impurities in diesel to the correspond-
ing sulfoxide or sulfone. In this study, MoO3/Al2O3 was doped with Fe, Co and Cu. The catalysts were 
tested in order to find the best catalyst for the oxidation process. Table 3 shows the effect of dopants on 
MoO3/Al2O3 catalyst on the ODS reaction for calcination temperature of 500°C.The results showed that 
the catalytic activity of the alumina supported Mo catalyst decreased in the order: Fe/Mo > Mo> Co/
Mo >Cu/Mo. Thus, Fe was regarded as the best dopant for the molybdenum-based catalyst. Fe-MoO3 
(10:90)/Al2O3 calcined at the optimum temperature of 500°C showed 80% sulfur removal. In terms of 
catalytic activity, it was revealed that Fe/MoO3 (10:90)/Al2O3 calcined at 500°C gave the optimum cal-
cination temperature, with 82% of sulfur removal.

Table 2. Effect of oxidants on the ODS reaction 
in commercial diesel in presence of MoO3/Al2O3

Type of Oxidant Sulfur Removal, %

TBHP 76

H2O2 70

Catalytic oxidation = O: S molar ratio = 3:1, solvent DMF, 
commercial diesel/solvent ratio 1, oxidation T: 45 ºC, oxidation 
time: 30 min.

Table 3. Effect of different dopants

Dopants Sulfur Removal, %

Fe/ MoO3/Al2O3 82

Co/ MoO3/Al2O3 74

Cu/MoO3/Al2O3 69

Without dopant 76

Effect of the dopants on MoO3/Al2O3 catalyst on the ODS 
reaction in commercial diesel. Catalytic oxidation = O:S molar 
ratio = 3:1, solvent DMF, commercial diesel/solvent ratio:1, 
oxidation T: 45 ºC, oxidation time: 30 min.
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Table 4 shows the effect of calcination temperatures of bimetallic catalyst, calcined at 400, 500,600, 
700 and 900ºC on the ODS reaction of commercial diesel.In terms of catalytic activity, it was revealed 
that Fe/MoO3 (10:90)/Al2O3 calcined at 500°C gave the optimum calcination temperature, with 82% 
of sulfur removal. The catalytic activity increased up to 500°C and slowly decreased at calcination 
temperature of 900°C. These results are in good agreement with Vaudagna et al (1998), who observed 
that the higher the calcination temperature, the smaller the surface area, and thus decrease in catalytic 
conversion of sulfur compounds. Besides, it was suggested that mild calcination temperatures assured 
that the surface of metal oxides were fully oxidized and dispersed and that the formation of solid solu-
tions or compounds were avoided (Wachs 1996).

Effect of Fe/MoO3/Al2O3 catalyst loading calcined at 500 ºC in ODS of commercial diesel is shown 
in Table 5.It is clear that the oxidative removal of sulfur increased gradually with increased of catalyst 
dosage because higher m(catalyst)/m(oil) could provide more opportunity for the sulfide and the catalyst 
to be in contact, making the sulfide be more easily oxidized and removed as also discussed by Qiu et 
al(2012). When the ratio of catalyst to oil was increased from 6 to 9, the catalyst provided more active 
sites for sulfur compounds to react. Therefore, the removal of sulfur was increased. However, when the 
catalyst loading exceeded 12 g/L, the catalytic activity decreased with increasing catalyst dosage. As 
reported by Li et al (2012), this was due to the decrease of contact area between fuel and catalyst as a 
result of the reunion of catalyst.

Table 6 shows the oxidation activity of commercial diesel in the presence of Fe/MoO3/Al2O3 catalyst 
at various Fe loading. The highest sulfur removal was observed at 10% Fe loading .At a higher Fe/Mo 
ratio such as 20%, the catalytic activity was decreased slightly. These results suggested that Fe which 
acted as a promoter was only required in a small quantities. An excess of Fe in the catalyst caused the 
agglomeration of molybdenum oxide on the catalyst surface which lowered the degree of dispersion of 
molybdenum, hence weakening the catalytic activity. As reported by Sampanthar et al(2006), the surface 
area and total pore volume of the catalyst decreased with increased iron oxide loading possibly due to 
the blockage of the inner pores, especially smaller ones, by iron. This is in agreement with our results 
which showed that the surface area decreased around 24% upon the increase of Fe loading to 20wt%. 
The activity of a catalyst only occurs on the surface of a metal oxide. Hence, it can be concluded that the 
presence of Fe at 10wt% was sufficient, as a structural promoter, to significantly enhance the catalytic 
activity and selectivity of the catalyst.

Table 4. Effect of calcination temperature

Calcination Temperature 
(ºC)

Sulfur Removal, %

400 76

500 82

600 73

700 69

900 60

Effect of calcination temperature of bimetallic catalyst on the 
ODS reaction in commercial diesel. Catalytic oxidation = O:S 
molar ratio = 3:1, solvent DMF, commercial diesel/solvent ratio: 
1, oxidation T:45ºC, oxidation time: 30 min.

Table 5. Effect of the catalyst/oil ratio on the 
desulfurization rate

Catalyst Loading g/L Sulfur Removal, %

3 59

6 62

9 76

12 73

Effect of on the catalyst/oil ratio on the ODS reaction in 
commercial diesel. Catalytic oxidation = O:S molar ratio = 
3:1, solvent DMF, commercial diesel/solvent ratio: 1, oxidation 
T:45ºC, oxidation time: 30 min.
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The presented results in Table 7 show that there is no significant decrease in catalyst activity even after 
four recycled runs indicating the superior performance of the fabricated catalyst in this work. Indeed, it 
explains that Fe/MoO3/Al2O3 catalyst exhibits high catalytic activity for the ODS of commercial diesel 
and high resistance to sulfur poisoning.

The effect of the number of extractions of sulfur from oxidized diesel was further studied (Table 8). 
The extraction process was conducted via two methods; a single extraction and double extractions. The 
result showed that the single extraction process gave sulfur removal of 82%, while the double extraction 
method successfully removed 96% of sulfur from oxidized diesel. It was suggested that the single extrac-
tion was insufficient to remove sulfones or sulfoxides, and that two successive extractions would be better.

Characterization of Catalyst

Figure 1 shows the infrared spectra for Fe/MoO3/Al2O3 and MoO3/Al2O3 calcined at 500ºC. The exis-
tence of bending vibration of H-O-H at 1638 cm-1 .revealed that the crystalline water was coordinated 
as H2O molecules, the broad band around 3448 cm-1 and 3433 cm-1 was assigned to OH stretching of 
the hydroxyl groups or adsorbed H2O.(Harb et al 1989). According to Imamura et al 1998, the peak at 
around 897 cm-1 can be ascribed to isolated M=O species while the band at 650 cm-1 was due to bridged 
M-O-M or O-M-O octahedral polymolybdate species (see Figure 1).

Table 9 shows the textural properties and elemental analysis of the bimetallic oxide catalysts, ob-
tained by N2 physisorption and EDX analysis. The elemental analysis by EDX confirmed the presence 
of Mo, P and Fe in the catalyst. The surface area of Fe/MoO3/Al2O3 catalyst increased after calcination 
process at 400°C. This result was attributed to the elimination of organic precursors which covered the 

Table 6. Effect of Fe loading in alumina-supported 
Fe/MoO3/Al2O3 catalysts calcined at 500ºC on 
ODS of commercial diesel

Dopants Loading Sulfur Removal, %

5 78

10 82

15 76

20 74

The Effect of Fe loading on the ODS reaction in commercial 
diesel. Catalytic oxidation = O:S molar ratio = 3:1, solvent DMF, 
commercial diesel/solvent ratio: 1, oxidation T:45ºC, oxidation 
time: 30 min.

Table 7. Reproduciblity test

Cycles Sulfur Removal, %

1 82

2 81

3 80

4 77

Effect of reproducibility on the ODS reaction in commercial 
diesel. Catalytic oxidation = O:S molar ratio = 3:1, solvent DMF, 
commercial diesel/solvent ratio: 1, oxidation T:45ºC, oxidation 
time: 30 min.

Table 8. Effect of number of extraction on ODS reaction in commercial diesel

Number of Extractions Sulfur Removal, %

1 82

2 96

Catalytic oxidation = O:S molar ratio = 3:1, solvent DMF, commercial diesel/solvent ratio 1, oxidation T:45 ºC, oxidation time 30 min.
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catalyst surface and pore into metal oxide as stated by Vicente et al (2004). Further increment calcina-
tion temperature of Fe/MoO3/Al2O3 catalyst from 500°C to 600°C led to catalyst denatured, and hence 
diminished the surface area.

Fe/MoO3/Al2O3 calcined at 500ºC gave a more homogeneous structure and smaller particle size as 
shown in the FESEM micrographs (Figure 2b). However, calcination of Fe/MoO3/Al2O3 at 400ºC and 
600ºC led to the formation of aggregates and agglomerates with undefined shapes and mixture of larger 
and smaller sized particles (Figure 2a and 2c).The particle sizes of the catalyst is less than 100nm which 
categorized as nanoparticle size.

Figure 3 shows the Mo 3d XPS spectra of Fe/MoO3/Al2O3 catalyst calcined at 400ºC, 500ºC, 600ºC 
versu MoO3/Al2O3 calcined at 500°C. XPS analysis for the surface of Fe-MoO3/Al2O3 calcined at 400ºC 
showed the binding energy Mo 3d5/2 230.6 eV and Mo 3d3/2 233.8 eV corresponding to Mo5+, as also 

Figure 1. IR spectra of a) Fresh Fe/MoO3/Al2O3 and b) MoO3/Al2O3 calcined at 500ºC

Table 9. Textural properties and elemental analysis of the bimetallic oxide catalysts

Catalysts Calcination T (°C) *SBET 
(m2/g)

Loadinga (wt.%)

Mo P Fe

Al2O3 - 253 - - -

Fe/MoO3 (10:90)/Al2O3 400 299 14 0.5 1

Fe/MoO3 (10:90)/Al2O3 500 239 14 0.40 2.1

Fe/MoO3 (10:90)/Al2O3 600 202 18 0.45 -
aMeasured by energy dispersive x-ray spectroscopy (EDX).
*SBET: Surface Brunauer-Emmett-Teller (BET).
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observed by Li et al (2014). At higher calcination temperatures of 500ºC and 600ºC, Mo5+ had trans-
formed to Mo6+. Spectral deconvulation indicated the presence of two signals at Mo 3d5/2 231.7 eVand 
Mo 3d3/2 235.2 eV for Fe/MoO3/Al2O3 catalyst calcined at 500ºC while at 600ºC, showed equipvalent 
peak at the binding energy of Mo 3d5/2 232.7 eV and Mo 3d3/2 236.1 eV. As reported by Garcia-Gutierrez 
et al(2006), these binding energies corresponded to the Mo6+. For MoO3/Al2O3 catalyst, the binding 
energy around Mo 3d5/2232.28 eV and Mo 3d3/2 237.3 corresponds to Mo6+.Besides that, the binding 
energy due to spinel compound of Al2(MoO4)3 can be seen at Al-Mo 3d5/2 233.3 eV and Al-Mo 3d3/2 236 
eV. As reported by Wan Abu Bakar et al. (2012), this attested that the presence of MoO3 was probably 
due to the solid state reaction with Al2O3 to produce well crystallized Al2(MoO4)3. From this results, 
the existence of iron, as dopant in Fe/MoO3/Al2O3 inhibit the formation of spinel compound and thus 
enhance the catalytic activity (refer Figure 2).The presence of iron and phosphate in the Mo catalyst 
cannot be detected because of very low concentration as shown in EDX analysis in Table 3. As reported 
Spojakina and Kraleva (2005), when the concentration of Fe and P is too low, deconvulation of the XPS 
peak is very difficult (see Figure 3).

Figure 2. FESEM micrographs of Fe/MoO3/Al2O3 /Al2O3 calcined at (a) 400°C (b) 500°C (c) 600°C, 
magnification: 50k, scale bar: 1µm
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Optimization of the Fe/MoO3 /Al2O3 Catalyst

In the Box-Behnken design, 15-experimental observations were taken at random orders for the optimi-
zation of sulfur removal in the ODS process. Table 10 presents the data resulting from the experiments 
which involved their actual values and the corresponding responses (predicted values). Three variables 
were selected; calcinations temperature (X1), catalyst dosage (X2) and Fe loading (X3) and the experi-
mental results were analyzed through RSM to obtain an empirical model for the best response. The 
final quadratic equation was obtained to explain the mathematical relationship between the independent 
parameters and the dependent responses (Y) and is presented below:

Y X X X X X

X X X X X

= + + +

+

81 02 0 54 0 52 0 44 0 83

2 13 0 36
1 2 3 1 2

1 3 2 3 1

. . . – . .

– . – . 22
2
2

3
25 49 3 66– . – .X X

 

The results of analysis of variance presented in Table 11 shows the successful fitting of the experi-
mental data to the quadratic model. The degree of freedom values (F-test) for the model was found to be 
752.92, which implied that the model was significant; and only a 0.01% chance that F-value this large 
could occur due to noise. A low p-value (p < 0.05) indicate that the model is statistically significant for 
sulfur removal. Therefore, obtained model ensures an accurate representation of the experimental data. 

Figure 3. X-ray photoelectron spectra of the Fe/MoO3/Al2O3 catalyst calcined at a) 400ºC, b) 500ºC c) 
600ºC and d) MoO3/Al2O3 catalyst calcined at 500°C
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Table 10. Box-Behnken design matrix

Observation Actual Values Sulfur Removal

X1 X2 X3 Yexp Ypred Residual

1 400 15 10 74.20 74.34 -0.14

2 600 15 10 77 77.06 -0.06

3 500 9 10 81 81.02 -0.02

4 600 9 15 78 78.01 -0.10

5 600 9 5 77 76.98 0.02

6 500 15 5 75 74.96 0.03

7 500 9 10 80.97 81.02 -0.05

8 400 9 15 75 75.03 -0.02

9 600 3 10 74.50 74.36 0.14

10 500 3 15 73 73.04 -0.03

11 500 15 15 70 69.84 0.16

12 500 3 5 69.50 69.66 -0.16

13 500 9 10 81.10 81.02 0.077

14 400 9 5 78.01 77.91 0.10

15 400 3 10 75 74.94 0.06

Table 11. Analysis of variance (ANOVA) for conversion

Source DFb SSb MSb Fb Pb CE

Modela 9 181.32 20.15 752.92 <0.0001

Calcination temperature, X1 1 2.30 2.30 85.97 0.0002 0.54Z

Catalyst loading, X2 1 2.20 2.20 82.40 0.0003 0.52

Fe loading, X3 1 1.54 1.54 57.55 0.0006 -0.44

X1X2 1 2.72 2.72 101.74 0.0002 0.83

X1X3 1 4.02 4.02 150.23 <0.0001 1.00

X2X3 1 18.06 18.06 675.02 <0.0001 -2.13

X1
2 1 0.48 0.48 17.92 0.0082 -0.36

X2
2 1 111.20 111.20 4155.79 <0.0001 -5.49

X3
2 1 49.47 49.47 1848.84 <0.0001 -3.66

Residual 5 0.13 0.027

Lack of fit 3 0.12 0.042 8.96 0.1021

Pure error 2 0.009 0.004

Total 14 181.46
aR-Sq = 99.93%, R-Sq (adj) = 99.79%, R-Sq (pred) = 98.89%.
bDF: degree of freedom of different source, SS: sum of square, MS: mean of square, F: degree of freedom, P: probability, CE: coefficient 

estimate.
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A very high R2 (R-Sq) value of 0.9993 indicated that the predicted quadratic model was reasonably 
well fitted with the data. The predicted R2 (Pred R-Sq) value of 0.9889 is in line with the adjusted R2 
(Adj R-Sq) value of 0.9979 The comparison between experimental and predicted values of Y is shown 
graphically with a 45 -line in Figure 4.

The importance of each of three independent factors (calcination temperature, catalyst loading and 
Fe loading) on sulfur removal was determined by illustrating the response surfaces as three dimensional 
(3D) plots. In Figure 4 (a), the Fe loading was kept constant at 10%, while the catalyst loading and calci-
nation temperature were kept constant at 9g/L and 500ºC in Figure 5 (b) and (c) . As can been seen from 
Figure 5 (a), the sulfur removal increase as increase the catalyst loading. It was obvious from Figure 5(a) 
that the variation of catalyst loading is more important than calcinations temperature on sulfur removal. 
Meanwhile, as can be understood from Figure 5 (b), the variation of Fe loading remarkably affects the 
sulfur removal, while the variation of calcination temperature was less important. Moreover, the ellipti-
cal of the contour plot of Fe loading and calcination temperature indicated that the interaction between 
these variables is effective on sulfur removal, as the calcinations temperature has a larger effect on the 

Figure 4. Comparison between experiment and predicted Y
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sulfur removal when the Fe loading was high. Figure 5 (c) represents the effect of catalyst loading and 
Fe loading on sulfur removal while keeping the calcination temperature at 500ºC. Figure 5 (c) clearly 
stated that as the catalyst amount and Fe loading increases, the sulfur removal improved. Desulfurization 
reactions were intensified because more sulfur molecules were adsorbed in the more active center of the 
catalyst surface (Wang et al 2013). Overall, the important degree ofthese parameters on sulfur removal 
was: calcinations temperature > catalyst loading > Fe loading.

Optimization Response and Verification Test

The main objective of the optimization was to determine the optimum conditions of Fe/MoO3 /Al2O3 
catalyst preparation for optimizing sulfur removal in commercial diesel. The factor setting can be adjusted 
to get the initial solution. The values of the independent variables are obtained by considering the starting 
values of calcination temperature, catalyst loading and Fe loading of 400ºC, 3g/l, and 5%, respectively. 

Figure 5. 3-D surface plots of sulfur removal as a function of (a) calcination temperature and Catalyst 
loading), (b) calcinations temperature and Fe loading and (c) catalyst loading and Fe loading
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The sulfur removal was estimated as 81.1% within these optimum conditions (calcinations temperature 
550ºC, catalyst loading 10 g/L and Fe loading 10%). An additional experiment was conducted under the 
optimum conditions to confirm the agreement of the model and experimental results. The experimental 
value 82% is in great agreement with the predicted result and hence validated the findings of response 
surface optimization.

Mechanism Proposal for Fe/MoO3/Al2O3 Catalyst in ODS Reaction

DBT was used as a model compound to study the oxidative desulfurization process over TBHP-Fe/
MoO3/Al2O3 system at a time of interval 5 min, 30 min and 45 min. The GC-FPD chromatogram of 
model compound of DBT extracted by DMF in presence of catalyst are shown in Figure 6. The results 
of GC-FPD analysis in the model compound of DBT extracted by DMF of Fe/MoO3 /Al2O3 catalyst 
showed that the desulfurization products were DBT sulfoxide and DBT sulfone. It was observed that 
the DBT sulfone was increased with increased oxidation time because longer time could provide more 
opportunity for the DBT and the catalyst to be in contact, making the DBT be more easily oxidized 
into sulfone. From this result, it is important to highlight that catalyst is vital in the desulfurization for 
oxidation of DBT into DBT sulfone (see Figure 6).

Figure 6. Chromatogram of GC-FPD analysis for DBT oxidation desulfurization by TBHP after 5 min, 
30 min and 45 min using Fe/MoO3 /Al2O3 catalyst
Catalytic oxidation= O: S molar ratio=3:1, solvent= DMF, commercial diesel/solvent ratio=1, oxidation T= 45ºC, oxidation 
time= 30 min.
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To understand the reaction mechanism of oxidative desulfurization with TBHP- Fe/MoO3 /Al2O3 
system, the surface of the catalysts were analyzed by FTIR. The FTIR spectra of TBHP, model DBT and 
surface of Fe/MoO3 /Al2O3 catalyst after 0 min, 5 min, 30 min and 45 min oxidation are shown in Figure 
7. From IR spectrums of TBHP and surface Fe/MoO3/Al2O3 catalyst after 0 min and 5 min oxidation, 
the broad band at 3333 cm-1 and 1638 cm-1 were observed, which were assigned to –OH stretching and 
bending vibration band of H–O–H respectively (Harb et al 1989). The presence of water molecule and 
OH group due to presence of water in TBHP. After 30 min and above, the peaks that assigned to TBHP 
disappeared on the catalyst surface. From this result, it showed that the TBHP was completely reacted 
with the active sites on catalyst surface after 30 min (see Figure 7).

On the basis of above-mentioned results, our proposed peroxidic oxidation mechanism of DBT on Fe/
MoO3/Al2O3 catalyst with TBHP is shown in Figure 8. The reaction pathway proceeded initially through 
the nucleophilic attack of TBHP on Fe/MoO3/Al2O3 to form species (1). The oxidation process must pro-
ceed by nucleophilic attack of the sulfur in the DBT (2) on the positively charged peroxometallic complex 
(1) to form DBT sulfoxide (3) and regenerated polymolybdate species, respectively. Subsequently, the 
sulfoxide (3) undergoes further oxidation to form DBT sulfone (4) (Tang et al 2013). Phosphate would 
help withdraw electron density from the polymolybdate species, thereby conferring a higher electrophilic 
character to the Mo (VI) atoms .At the same time, Fe dopant will provide a relatively more positive net 
charge on the polymolybdate catalyst surface. This property will enhance the reaction of TBHP with 
the catalyst to form active species. In overall, the activation mechanism of peroxy oxygen is according 

Figure 7. IR spectra of a) model DBT, b) TBHP, Fe/MoO3 /Al2O3 catalyst after c) 0 min, d) 5 min e) 30 
min and f) 45 min oxidation
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to Garcia Gutierrez et al (2006) in which the peroxide reacts with DBT to produce DBT sulfoxide, and 
further oxidation produces the corresponding sulfone in presence of Fe/MoO3/Al2O3 catalyst (see Figure 8).

CONCLUSION

It is possible to reduce the level of sulfur in Malaysian commercial diesel from 440 ppm to 18 ppm 
under mild conditions using a Fe/MoO3/Al2O3 catalyst calcined at 500ºC. A screening of catalytic test-
ing showed that the Mo catalyst provided a higher conversion of sulfur for removal in the presence of a 
transition metal as promoter. These results were also verified using Box-Behnken experimental design. 
The obtained model equation using BBD showed the high coefficient of determination (R2 = 0.9993) 
indicating that the predicted data well fitted with the actual data. According to the statistical design 
method, the optimal operation conditions were determined at calcinations temperature = 550°C, cata-
lyst loading = 10g/L and Fe loading = 10%. Verification experiment was performed at the optimum 

Figure 8. A proposed cyclic mechanism for the oxidation of dibenzothiophene by TBHP in the presence 
of Fe/MoO3/Al2O3 catalyst
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conditions and the experimental value (82%) closely agreed with predicted value (81.1%). The results 
indicate that alumina supported polymolybdate based catalyst has the potential to be used as a catalyst 
in Cat-ODS to meet the regulation of sulfur in diesel fuel.
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ABSTRACT

Desulfurization of fuel oils is an essential process employed in petroleum refineries to reduce the sulfur 
concentration in fossil fuels in order to meet the mandated environmental protection limit of 10 ppm 
sulfur. The hydrodesulfurization (HDS) process, which is currently being employed for desulfurization, 
is limited in treating refractory organosulfur compounds as it only reduces sulfur content in fuels to 
a range of 200-500 ppm sulfur. Oxidative desulfurization (ODS) is considered a new technology for 
desulfurization of fuel oils as the process is capable of desulfurizing fuels to reach the ultra-low sulfur 
levels and can serve as a complementary step to HDS. The chapter discusses, briefly, the oxidation 
of refractory sulfur compounds found in fuels using vanadium as a catalyst to form organosulfones, 
a first step in ODS process. The chapter also discusses, in detail, the chemistry involved in molecular 
imprinting of organosulfones on functional polymers, and the electrospinning of the polymeric matrix to 
produce molecularly imprinted nanofibers employed for selective adsorption of organosulfones from the 
oxidized mildly hydrotreated fuels, a second step in the ODS process. Chemical interactions, apart from 
the imprinting effect, that can be exploited in molecularly imprinted polymers for selective extraction 
of organosulfones, such as hydrogen bonding, π-π interactions, van der Waals forces and electrostatic 
interactions, were discussed by employing density functional theory calculations. The possibilities of 
electrospinning on a large scale as well as prospects for future industrial applications of functional 
molecularly imprinted nanofibers in desulfurization are also discussed.
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INTRODUCTION

Crude oil is a complex blend containing thousands of hydrocarbons, non-hydrocarbon compounds and 
heavy metals (Sami et al. 1994). The hydrocarbons are mixed with variable quantities of sulfur-, nitrogen-, 
and oxygen-containing compounds. Crude oil is expected to be the source of energy in the world for 
several decades to a century, and the crude oil reserves are distributed around all the continents (Figure 
1). The Middle East has the highest reserves of over 750 thousand million barrels and the Asia pacific 
region having the least reverses of just over 40 thousand million barrels of oil. Generally, crude oils are 
refined to separate the complex mixture into simpler fractions that can be used as fuels, lubricants, and 
as intermediate feedstock for petrochemical industries.

However, it is known that over 70% of the world’s oil reserves tend to be of heavier and sourer 
composition, i.e. have a high sulfur content. The sulfur content distribution in some crude oil reservoirs 
around the world is depicted in Figure 2. It can be seen that the sulfur content of crude oils varies ap-
preciably from one reservoir to another. The low sulfur containing crude oils are referred to as sweet 
oils, while the high sulfur containing crude oils are referred to as sour crudes and are less desirable 
due to the high cost involved in refining the oils (Source: EPA, 2013; Crude oil reserve, 2013). Sulfur 
oxides are produced from fuel containing sulfur compounds during combustion and these emissions 
constitute a serious environmental hazard such as acid rain and the generation of airborne particulate 
(such as smog and sulfates). Sulfur oxides also poison and deactivate catalytic converters in vehicles, 

Figure 1. Crude oil reserves distribution around the continents of the world
(Source: EPA, 2013; Crude oil reserve, 2013).
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while smog and particulates on the other hand can cause serious respiratory illness such as asthma when 
inhaled. The lowering and/or elimination of the emission of sulfur in fuels is currently being addressed 
through regulation of sulfur in diesel and gasoline by the environmental protection agencies (EPA) and 
other regulatory bodies.

The current process employed for the removal of sulfur compounds from crude oils is hydro-desul-
furization; in this process hydrogen gas passes through a stream of crude oil under high temperature and 
pressure in the presence of a catalyst (such as Co–Mo/ɣ-Al2O3). Hydrogen sulfide gas is produced, and 
it is scrubbed off and converted to elemental sulfur in the Claus process. The environmental regulating 
agencies have mandated stringent legislation with the aim of reducing sulfur levels in fuels to an ultra-
low level of between 10-15 ppm by 2015 (Figure 3) (Barbara et al. 2011; Song et al. 2003; Ogunlaja 
A.S. et al. 2013).

Investigations by researchers demonstrated that sulfur compounds remaining in diesel fuels at sulfur 
level lower than 500 ppm are dominantly the dibenzothiophenes and dibenzothiophenes with alkyl sub-
stituents at the 4- and/or 6-position (Song et al. 2006; Whitehurst et al. 1998; Badich et al. 2003, Ma et 
al. 1996; Andersson et al. 2006, 2007). These species are lower in hydro-desulfurization (HDS) reactiv-
ity, and are termed refractory sulfur compounds. Steric hindrance and electronic factor were reported 
as factors responsible for the observed low HDS reactivity of DBTs and 4- and 6-substituted DBTs (Ma 
et al.1995). The HDS reactivity of sulfur species in fuel have been reported in detail (Ma et al. 1994, 

Figure 2. Sulfur distribution in crude oils in the world (1 wt.% Sulfur = 10000 ppm)
(Source: EPA, 2013; Crude oil reserve, 2013).
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1996); the authors employed a high-resolution gas chromatograph (GC) with a sulfur-selective flame 
photometry detector (FPD) to quantify the sulfur species in diesel and gas fuel oils. It was observed that 
dibenzothiophenes and dibenzothiophenes having alkyl substituents at the 4 and/or 6 positions are the most 
resistive to hydrodesulfurization. Hydrogen sulfide (H2S) formed during the HDS process also inhibits 
HDS catalyst activity by modifying the catalyst surface (Topsoe et al. 1996; Song et al. 2006). Topsoe 
and co-workers reported that high concentrations of H2S are known to increase the density of Brönsted 
acid sites on a commercial catalyst and it is also responsible for the poisoning of mainly hydrogenolysis 
sites on a sulfided Co-Mo/ɣ-Al2O3 catalyst. This leaves the sulfur content relatively high. However, if 
the HDS processing conditions are further pushed to produce ultra-low sulfur fuels, the aromatic and 
polynuclear aromatic content would fall outside the requisite specification. Some other fuel specifications 
that could be altered are cetane index, polyaromatic hydrocarbons (PAH), and T95 distillation temperature 
(Barbara et al. 2011). Several techniques have been developed for the elimination of sulfur in fuel to the 
ultra-low levels, v.i.z. bio-desulfurization (BDS) and oxidative-desulfurization (ODS).

ODS process is carried out under mild conditions in the presence of a catalyst (metal ions mostly 
transition metals in high oxidation states) and an oxidant agent, and the oxidized sulfur compounds 
(sulfones) are subsequently removed by extraction, adsorption, or distillation (Abdullah et al. 2015; 
Wang et al. 2003; Ishilara et al. 2005; Chica et al. 2006; Zhou et al. 2007; Kuznetsova et al. 2008; 
Prasad et al. 2008; Torres et al. 2011). The main advantage of ODS is that refractory sulfur compounds 

Figure 3. Trends in diesel sulfur fuel specifications from the United States (US), United Kingdom (UK), 
European Union (EU) and South Africa (SA) over the years; the SA target is not yet legislated.
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can be removed without using hydrogen, at relatively low temperatures and at atmospheric pressure. 
A suitable extraction solvents is always important for effective ODS process. Extraction solvents have 
been reported to extract large quantity of aromatics along with sulfones hence altering fuel specification 
(Campos-Martin et al. 2010). Lyondell chemicals (Karas et al. 2008; Karas et al. 2004) and EniChem/
UOP (Kocal et al. 2001; Kocal et al. 2002) independently patented the ODS process. In the Lyondell 
process, solvent extraction was used for separation of sulfones while EniChem/UOP process removed the 
sulfone species by adsorption. In both processes, tert-butylhydroperoxide was employed as the oxidant 
due to its solubility in fuel. Lyondell chemicals and EniChem/UOP ODS processes produced tert-butyl 
alcohol after the oxidation step, and this compound was employed as potential octane-booster compound 
for gasoline. Heterogeneous catalysts have been prepared using a variety of support materials, such as: 
alumina, zirconia, titania, zeolites, silica, polymer microspheres and Metal-Organic Frameworks (MOFs) 
(Campos-Martin et al. 2010; Barbara et al. 2011; Karas et al. 2008). Molybdenum oxide was investigated 
in the catalysed oxidation of hydro-treated fuels (Prasad et al. 2008) and it showed good ODS activ-
ity. The catalyst was employed as a heterogeneous catalyst, by incorporating molybdenum (Mo) unto 
alumina (Mo/ɣ-Al2O3) (Prasad et al. 2008; Abdullah et al. 2015). Other heterogeneous catalysts which 
are more stable during use have been investigated; some examples of such catalysts include Ti, Mo, V, 
W (Campestrini et al. 1988), gold (Au) (Si et al. 2008) and rhenium (Re) (Di-Giuseppe et al. 2009). 
Titanium catalysts gave the best results in catalysed oxidation step during oxidative-desulfurization 
(Chica et al. 2006). However, titanium (Ti) is known to be expensive and the use of titanium in catalysed 
reactions in industry, generally, would result to an increase in cost of production. Hence, the search for 
a cheaper and more robust potential catalyst that can be applied industrially in the ODS process as well 
as a robust material with a high surface area that can selectively remove sulfones without changing the 
fuel specification. Vanadium lends itself useful in this regard.

The chapter, therefore, discusses briefly the oxidation of refractory sulfur compounds found in 
fuels using oxidovanadium(IV) as a catalyst to form organosulfones, a first step in ODS process. The 
chapter also discusses, in detail, the chemistry involved in molecular imprinting of organosulfones on 
functional polymers, and the electrospinning of the polymeric matrix to produce molecularly imprinted 
nanofibers employed for selective adsorption of organosulfones from the oxidized mildly hydrotreated 
fuels, a second step in the ODS process. Chemical interactions, apart from the imprinting effect, that 
can be exploited in molecularly imprinted polymers for selective extraction of organosulfones include 
hydrogen bonding, π-π interactions, van der Waals forces and electrostatic interactions, and these have 
been discussed by employing density functional theory calculations. The theoretical calculations are 
instrumental in predicting suitable polymers for adsorption of organosulfones. In this chapter, the use 
of molecularly imprinted chitosan, polyvinyl alcohol, polyvinyl phenol, polyvinyl benzyl alcohol and 
polybenzimidazole, respectively, as sorption materials for the removal of organosulfones is discussed 
in detail. The chemical possibilities for adsorptive removal of organosulfones from fuels are presented 
while the potential industrial application of the functional nanofibers is recommended.

METHODS OF DESULFURIZATION

The refining process employed for the elimination of sulfur in the production of cleaner fuels is known as 
desulfurization. Amongst others, the following three methods of desulfurization will be described briefly:
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1.  Bio-desulfurization,
2.  Hydro-desulfurization,
3.  Oxidative-desulfurization, and
4.  Adsorptive desulfurization.

Bio-Desulfurization (BDS)

Bio-desulfurization involves the use of micro-organisms (e.g. bacteria) to desulfurize fuels under biological 
processes.4 Microorganisms require sulfur for their growth and biological activities. The dried weight of 
bacterial cells comprises 0.5-1% sulfur atoms. Sulfur generally occurs in the structure of some enzyme 
cofactors (such as co-enzyme A, thiamine and biotin), amino acids and proteins (cysteine, methionine, 
and disulfide bonds). Depending on their metabolic pathways, micro-organisms may have the ability to 
obtain the sulfur from different sources. Some micro-organisms consume the sulfur in thiophenic com-
pounds such as dibenzothiophene (DBT), thus reducing the sulfur content in fuel. Energy BioSystems 
Corporation (EBC) was initially the only commercial venture dedicated to the development of bio-
desulfurization technology. EBC’s concept of a bio-desulfurization process was to treat diesel, but also 
to produce a value-added surfactant by-product to achieve a more economical process (Monticello et al. 
2000; Chang et al. 2000; Soleimani et al. 2007; Chang et al. 1998). Bacteria that convert dibenzothio-
phene and alkyl sulfides are relatively well known while fewer bacteria are found for benzothiophene, 
and only a few bacteria detected for thiophene (Campos-Martin et al. 2010 and Kodame et al. 1973).

The two main pathways known for the utilization of dibenzothiophene by bacteria are: destructive 
(degradation) pathway and sulfur-specific (desulfurization) pathway.

Ring Destructive Pathway

Rhodococcus erythropolis and Pseudomonas stutzeri bacteria strains are mostly employed for ring 
destructive biodesulfurization mechanistic process, also known as the ‘Kodama pathway’ (Scheme 1) 
(Campos-Martin et al. 2010 and Kodame et al. 1973), involves the initial dioxygenation of the peripheral 
aromatic ring of dibenzothiophene, followed by cleavage of the ring which finally leads to the accumulation 
of 3-hydroxybenzothiophene-2-carbaldehyde as a water-soluble end product with lower carbon content 
than dibenzothiophene. In this pathway, no desulfurization occurs; the dibenzothiophene (organosulfur 
compound) is converted to a more polar compound which can be stripped off.

Sulfur-Specific (Desulfurization) Pathway

The sulfur-specific desulfurization pathway can take place in the presence of isolated bacteria strain 
Brevibacterium sp. capable of using dibenzothiophene for growth as the sole source of carbon, sulfur and 
energy (Campos-Martin et al. 2010; Kodame et al. 1973). It involves the oxidation of dibenzothiophene 
(DBT) to dibenzothiophene sulfoxide (DBTO), dibenzothiophene sulfone (DBTO2), sulfinate and hy-
droxybiphenyl in the presence of oxygen and water under ambient temperature and pressure conditions 
(Box 2). Enzymes also show potential in the desulfurization of DBT to DBTO2 following a similar mecha-
nistic pathway as the isolated bacteria strain (Brevibacterium sp.). Dibenzothiophene monooxygenase 
(DszC) catalyzes the conversion of dibenzothiophene (DBT) to dibenzothiophene sulfone (DBTO2). The 



287

Molecularly Imprinted Polymer Nanofibers for Adsorptive Desulfurization
 

dszA gene encodes dibenzothiophene-5,5- dioxide monooxygenase (DszA) catalyzes the conversion of 
DBTO2 into 2-hydroxybiphenyl-2-sulfinic acid. While dszB gene encodes 2-hydroxybiphenyl-2-sulfinate 
sulfinolyase (DszB) catalyzes the conversion of 2-hydroxybiphenyl-2-sulfinic acid into biphenyl-2-ol 
and sulphite (Campos-Martin et al. 2010; Kodame et al. 1973). Specific oxidative biodesulfurization 
of DBT degradation. catalyzes the conversion of HBPSi I nto 2-hydroxybiphenyl (2-HBP) and sulfite 
(Scheme 2), (Campos-Martin et al. 2010; Kodame et al. 1973).

In general, the bio-desulfurization process does not show very deep desulfurization, the maximum 
sulfur content limit of 50-200 ppm sulfur at best has been achieved (Barbara et al. 2011). However, the 
bio-desulfurization process suffers the following limitations:

1.  Production of active resting cells (biocatalysts) with a high specific activity;
2.  Preparation of a biphasic system containing oil fraction, aqueous phase and biocatalyst;
3.  Bio-desulfurization of a wide range of organosulfur compounds at a suitable rate;
4.  Separation of desulfurized oil fraction, and recovery of the biocatalyst and its return to the bioreac-

tor; and
5.  Efficient wastewater treatment (Booth et al. 2001).

Scheme 1. Kodama pathway of dibenzothiophene (DBT) degradation
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Hydro-Desulfurization

The hydro-desulfurization (HDS) process has been employed for the removal of sulfur compounds from 
as early as the 1930’s. In the HDS process, crude oil is heated, mixed with hydrogen, and fed to a reac-
tor packed with a pelleted CoMo/Al2O3 catalyst. The reactor temperatures range from 300 to 350°C in 
a pressure range of 15 to 90 bars to generate a mixture of the treated/desulfurized crude oil, hydrogen 
sulfides (H2S) and hydrogen gas. H2S is further recycled through a Claus process to recover the elemental 
sulfur (Song et al. 2003; Babich et al. 2003). HDS occurs directly through the hydrogenolysis pathway 
(Scheme 3a).

The addition of hydrogen to sulfur compounds at higher temperatures activates carbon-sulfur (C-
S) bond cleavage as shown in the reaction Scheme 3b for the hydro-desulfurization of thiophene. Two 
mechanistic routes are presented in Scheme 3, and in the first route, hydrogenation of thiophene precedes 
by C-S bond scission, and in the second route, C-S bond scission occurs, before hydrogenation takes 
place. Both mechanistic routes produce carbon and sulfur, which can easily be absorbed into mesoporous 
aluminosilicate molecular sieves (Song et al. 2003; Song et al. 2003; Babich et al. 2003). Commercial 
hydrotreating catalysts are, typically, sulfides of Mo or tungsten (W) supported on Al2O3 and promoted 
by either Co or Ni.

Scheme 2. The pathway of biological desulfurization of DBT relies on biocatalysts for specificity. NADH 
is reduced nicotinamide adenosine dinucleotide; FMN is flavin mononucleotide.
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HDS process is however limited in treating refractory sulfur compounds such as dibenzothiophenes 
(DBTs) and especially the alkylated derivatives such as 4,6-dimethyldibenzothiophene (Song et al. 
2003; Song et al. 2004; Schulz et al. 1999; Babich et al. 2003; Andersson et al. 2006, 2007; Nolte et 
al. 2013). These are the main non-reactive organosulfur compounds in the hydrogenation process. The 
HDS reactivity of various sulfur compounds decreases in the order of disulfides > sulfides, thiols > 
thiophenes > BTs (benzothiophenes), NTs (naphthothiophenes) > BNTs (benzonaphthothiophenes), 
DBTs (dibenzothiophenes) > DBTs with alkyl group(s) at the 4- and or 6-position(s) (Song et al. 2003, 
2004). Table 1 lists some sulfur compounds found in crude oils, the order of reactivity of these sulfur 
compounds are governed by electron density of sulfur in the compounds mainly in the ODS process. The 
electron density is a representation of the probability of finding an electron in a specific location around 
an atom or molecule. In general, an electron is likely to be found in regions with high electron density 
than region low electron density, in so doing, influencing the reactivity of sulfur in the compounds (Song 
et al. 2003). Hence, the higher electron density results in decreased HDS activity.

The production of ultra-low sulfur fuels (10-50 ppm) using HDS process therefore requires the ap-
plication of extreme operating conditions, i.e. high temperatures and high hydrogen pressures, and the 
use of highly active catalysts at slow velocity pace (Schulz et al. 1999; Ma et al. 2001; Song et al. 1999). 

Scheme 3. (a) General HDS reaction scheme and (b) mechanistic routes for the hydro-desulfurization 
of thiophene
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Table 1. Some organosulfur compounds and their sulfur electron densities

Compound Names Structures Sulfur Electron Densities

Thiophene 5.696

Thiophenes with methyl at the 2 or 
5 position

5.706-5.716

Benzothiophenes (BTs) 5.739

Benzothiophenes with methyl at the 
2 or 7 position

5.746

Dibenzothiophenes (DBTs) 5.758

Dibenzothiophenes with methyl at 
4 position

5.759

continued on following page
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Under these conditions, the aromatics and polynuclear aromatics content would fall outside the requi-
site specification as they tend to be hydrogenated. The other fuel requirements such as oxygen content, 
vapor pressure and olefin content for petrol, and cetane number, density and T95 point for diesel would 
also be compromised. In addition, the high cost involved because of the use of excess hydrogen gas and 
energy therefore makes the end-product expensive. Alternative processes which can complement the 
HDS process under mild conditions to achieve ultra-low sulfur fuels are therefore essential and oxidative-
desulfurization shows potential.

Oxidative-Desulfurization

Oxidative-desulfurization (ODS) has been considered as a new technology for desulfurization of fuel 
oils. The ODS process includes two stages:

1.  Oxidation of the sulfur atoms in the first step, and
2.  Liquid extraction of the polar products at the final step.

Compound Names Structures Sulfur Electron Densities

Dibenzothiophenes with methyl at 
the 4 and 6 position

5.760

Phenanthro[4,5-bcd]thiophene 5.770

5,7-Dimethylphenanthro[4,5-bcd]
thiophene

5.774

Table 1. Continued



292

Molecularly Imprinted Polymer Nanofibers for Adsorptive Desulfurization
 

The advantage of the ODS process is that the refractory sulfur-containing compounds can be oxi-
dized and it operates at a low reaction temperature and pressure, and in the absence of hydrogen which 
is expensive. With HDS being able to desulfurize thiophene and acidic sulfur compounds at relatively 
moderate conditions and the ODS process being capable of desulfurizing refractory sulfur compounds, 
then the ODS process has great potential to be a complementary process to HDS for producing deeply 
desulfurized crude oil.

General Description of the ODS Process

In the ODS process, sulfur-containing compounds in fuel oils are oxidized using selective oxidants such 
as nitric acid and/or nitrogen oxides (Tam et al. 1984, 1990; Baxendale et al. 1946; Venturiello et al. 
1983), organic hydroperoxides (Chica et al. 2006; Karas et al. 2004, 2008; Kocal et al. 2002; Mokhtar 
et al. 2014; Abdullah et al. 2015), peroxyacids (Zannikos et al. 1995; Aida et al. 1994), and hydrogen 
peroxide (Otsuki et al. 1999, 2000; Collins et al. 1997; Yazu et al. 2003; Paybarah et al. 1982). The 
use of hydrogen peroxide, a cheap aqueous oxidant, has been promoted for use in the oxidation of fuel 
oil by introducing surfactants which help to disperse oxidant in the form of small spherical droplets in 
the crude oil. The process is described as an emulsion catalysis system (Jiang et al. 2011). The ODS 
process generally takes place in the presence of a catalyst to produce sulfone compounds that can be 
preferentially extracted due to their increased relative polarity. For oxidation to take place, the oxidant 
needs to be in contact with fuel oils under optimum conditions, and the oxidant donates oxygen atoms to 
the sulfur in benzothiophenes, dibenzothiophenes and its derivatives to form sulfoxides and/or sulfones 
(Scheme 4). Some of the by-products generated by the oxidant influence the quality of the fuels; for 
example tert-butyl alcohol, which is a potential octane booster for fuels, is generated as by-products of 
tert-butylhydroperoxide (Karas et al. 2008).

Scheme 4. The ideal reaction in ODS process for dibenzothiophene and methyl substituted derivatives
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The oxidation of organosulfur compounds, which is the first step of the oxidative desulfurization 
process in hydro-treated fuel, takes place in the presence of metal catalyst(s) (Wang et al. 2003; Ishilara 
et al. 2005; Chica et al. 2006; Zhou et al. 2007; Kuznetsova et al. 2008; Prasad et al. 2008). A typical 
catalysed oxidation of hydro-treated fuel using vanadium as catalyst was conducted under batch and 
continuous flow processes at 40°C by using tert-butylhydroperoxide (t-BuOOH) as oxidant (Ogunlaja 
et al. 2013). The oxidation process showed high selectivity for organosulfones.

A practical industrial flow system for oxidative desulfurization of hydro-treated fuel (Figure 4), where 
catalyst in the hydro-treated is extracted and washed, un-used oxidant are also separated in the separator 
section before further oil processing can take place. Liquid-liquid extraction of the oxidized compounds 
(sulfones and sulfoxides) has been carried out by contacting the oxidized oil with a non-miscible solvent 
which is selective for the polar oxidized sulfur compounds (Hulea et al. 2001; Anisimov et al. 2003; 
Palomeque et al. 2002; Yazu et al. 2001; Djangkung et al. 2003; Shiraishi et al. 2003; Darian et al. 
1988). The desulfurized oil is water washed to recover any traces of dissolved extraction solvent and 
then polished either by absorption using silica gel and alumina to produce high quality clean sulfur free 
oil (South African National standard, 2006).

Oxidative-desulfurization demonstrates that it is possible to remove sulfur compounds from fuels 
to meet strict regulatory limits (Tam et al. 1984, 1990; Baxendale et al. 1946; Venturiello et al. 1983; 
Chica et al. 2006; Karas et al. 2004, 2008; Kocal et al. 2002; Mokhtar et al. 2014; Abdullah et al. 2015), 

Figure 4. Schematics of the oxidative-desulfurization (ODS) process
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but a high oxidant-to-sulfur (O/S) ratio is required to oxidize sulfur compounds to their corresponding 
sulfoxides and sulfones. This drawback (i.e. the high oxidant constraint), however, can be avoided by 
use of suitable catalysts.

Adsorptive Desulfurization

Liquid Extraction

The choice of solvent for the extraction of sulfur and sulfone compounds in fuel oils is critical. For a 
solvent to be employed in the extraction process, it must be thermodynamically compatible with the 
compound to be extracted. Polar solvents such as N,N-dimethylformamide, dimethylsulfoxides, methanol, 
ethanol and acetonitrile are usually employed for the desulfurization of crude oils, mostly for the extrac-
tion of sulfur/sulfone compounds in the desulfurization process (Campos-Martin et al. 2010; Mokhtar et 
al. 2014, Abdullahi et al. 2015). Dimethylsulfoxides (DMSO) and N,N-dimethylformamide (DMF) are 
high boiling point solvents having high extractability for sulfones. These solvents holds similar boiling 
point with extracted sulfones compounds, and thus may not be easily separated from the extracted com-
pounds hence discouraging solvent recovery by distillation. On the other hand, alcohols and acetonitrile 
are relatively low boiling point solvents, and are preferred for sulfone compound extraction, however, the 
high cost of these solvents and the high extraction of a large quantity of aromatics along with sulfones 
hamper its use in desulfurization.

Liquid extraction of sulfur and organosulfone compounds has limitations since other aromatic com-
pounds that influence fuel properties are extracted (Campos-Martin et al. 2010). This development has 
encouraged the use of solid adsorbent materials and a synthesis of stimuli-responsive materials that allow 
the formation of complexes with sulfur or sulfur compounds or from other types of bonding interactions 
with sulfone compounds in the presence of other aromatic compounds present in fuels.

Solid Sorbent Adsorption

Several reports on the removal of sulfur has been reported using of new adsorbent materials such as acti-
vated alumina, activated carbon, metal exchanged zeolites and metal oxides (Jeon et al. 2009; Bhandari et 
al. 2006; Hernandez et al. 2004; Kim et al. 2006; Liu et al. 2007; Blanco et al. 2011; Wang et al. 2007). 
Adsorption of sulfur on adsorbate molecules via the formation of complexes have been reported as a 
vital step for the removal of sulfur compounds. Metals such as nickel and copper impregnated on various 
adsorbents have been employed for deep adsorptive desulfurization of hydro-treated fuels (Hernandez 
et al. 2004, 2005; Yang et al. 2003, 2006; Zhang et al. 2008; King et al. 2006; Shan et al. 2008; Ania et 
al. 2006; Dasgupta et al. 2013; Velu et al. 2003).

In 2001, Phillips petroleum licensed a process called “S-Zorb” for the selective removal of sulfur. 
The adsorbent is based on zinc oxide, silica, alumina and nickel (Sughrue et al. 2001). The S-Zorb pro-
cess is carried out in the presence of hydrogen and modified zinc oxide. Sulfur compounds are carried 
over to hydrogen sulfide, and the sulfur is bound by zinc oxide as zinc sulfide by the process known as 
chemisorption (Scheme 5). Metal organic framework (MOF) C300 has also been used for the adsorption 
of some organosulfur compounds in hydro-treated fuel (Blanco et al. 2013). However, these MOFs are 
expensive adsorbents, hence discouraging its application on an industrial scale (Blanco et al. 2013). The 
reported mode of binding between the adsorbent and sulfur compounds is known as π-complexation.
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Molecularly imprinted polymer materials have been employed for selective adsorption of oxidized 
refractory sulfur compounds in hydro-treated fuels (Ryu et al. 2002; Castro et al. 2001; Jorge et al. 2004; 
Ogunlaja et al. 2014). Template imprinting on polymers improves its absorptive properties and also pro-
vides selectivity due to polymer flexibility which makes accessing of the recognition site and removal 
of absorbed template easier. Polymer imprinting takes place through the formation of bonds/interactions 
such as hydrogen bonding, π-π interactions, van der Waals forces and electrostatic interactions (discussed 
in section 4.3) between the templates (organosulfones) and functional groups of the polymer network.

Most of the studies reported in the literature employed molecularly imprinted polymers in its pow-
dery/monolithic form for the adsorption of refractory sulfur compounds in fuels. A low surface area and 
porosity of adsorbents are usually observed, and the accessibility of active sites on imprinted polymer 
sorbents are sometimes compromised. Due to these issues, the polymer adsorption properties can be 
improved by making them into nanofibers (Ogunlaja et al. 2014). The polymer nanofibers can readily 
be fabricated through a process known as electrospinning. Electrospinning process provides polymer 
nanofibers with controlled pore size as well as high surface-to-volume ratio, and this material decreases 
adsorption time and mass transfer constraints. Ogunlaja and co-workers employed a continuous flow 
adsorption process for the elimination of sulfone compounds in oxidized hydro-treated fuel by using a 
sulfone-imprinted polybenzimidazole nanofibers packed to the tip of a Teflon rubber tubing (Figure 5). 
The imprinted nanofibers show high selectivity in the adsorption of sulfone compounds from oxidized fuel.

Scheme 5. Basic principle of the S-Zorb sulfur removal technology, process developed by Phillips petro-
leum for sulfur removal from liquid fuel at elevated temperatures under low H2 pressure

Figure 5. Adsorption of dibenzothiophenes on imprinted polymer nanofibers
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Adsorbent regeneration for re-use of spent adsorbent constitutes an important part of the overall feasi-
bility and cost-effectiveness of the proposed oxidative desulfurization process. The following adsorbent 
regeneration strategies are possible:

1.  Use of organic solvent to wash off the adsorbate under ambient pressure and at elevated temperature, 
and

2.  Thermal regeneration at ambient pressure under vacuum.

A home-made pressurized hot water system was employed for the regeneration/desorption of sulfones 
from imprinted nanofibers (Figure 6) to demonstrate the effect of pressure and temeperature (Ogunlaja et 
al. 2014). Water was employed as a green solvent for extraction/desorption of sulfone compounds under 
pressurized subcritical conditions. Water was pressurized to 30 bars at 150°C, and in this subcritical state 
the dielectric constant of water is greatly decreased thus imitating the properties of organic solvents.

A combination of the HDS and ODS process is, however, proposed as a possible way for the reduc-
tion of sulfur in fuels to ultra-low levels as depicted in the schematic of the integrated HDS-ODS pro-
cess (Figure 7). In this set-up, high sulfur fuel is taken through a hydro-treatment unit where less bulky 
sulfur compounds such as thiols, thioethers, alkylated disulfides and thiophenes are converted to H2S 
as shown in Scheme 3a. In the Claus unit, H2S reacts mostly with SO2 to produce elemental sulfur and 
water. The resulting fuel (mildly hydro-treated fuel) will be transferred to the oxidative desulfurization 
chamber where refractory sulfur compounds are oxidized to organosulfone compounds. The removal 
of the organosulfones from fuel can be carried out by adsorption to produce an ultra-low sulfur fuel. 
Molecularly imprinted nanofibers show great promise (Ogunlaja et al. 2014), and they can be produced 
by a process called electrospinning.

Figure 6. A set-up of the home-made pressurized hot water for desorption of organosulfones from nanofibers
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ELECTROSPINNING OF POLYMER SOLUTIONS

Electrospinning is a process whereby high voltage is applied to a polymer solution resulting in electrified 
jet that travels through the electric field until it lands on a collector (counter electrode) as nanofibers 
(Reneker et al. 2008). Potential applications of electrospun fibers include filtration membranes, adsorp-
tion sorbents, fiber-based sensors, tissue engineering scaffolds and catalytic nanofibers (Walmsley et al. 
2012; Huang et al. 2003). The polymer can be dissolved in a suitable solvent (Reneker et al. 2008). A 
basic laboratory electrospinning set-up consists of a syringe pump, a high voltage and a collector (Figure 
8), and it is a relatively simple and inexpensive set-up. During the electrospinning process, a polymer 
solution in a syringe is pumped to a needle tip attached to the syringe via tubing. The solution is held 
at the needle tip by surface tension, and the application of an electric field using a high-voltage source 
causes a positive charge to be induced within the polymer resulting in charge repulsion within the solu-
tion. This results in an electrostatic force, which opposes and eventually overcomes the surface tension of 
the polymer solution causing the initiation of a polymer jet. As the jet travels down to the collector that 
is negatively charged, the polymer solvent evaporates leaving the polymer nanofibers on the collector.

A stable electrospinning jet is known to be comprised of four regions (Reneker et al. 1996), and these 
are: the base, the jet, the splay, and the collection. In the base region, the jet emerges from the needle 
to form a cone known as the Taylor cone. The shape of the base depends upon the surface tension of 
the liquid and the force of the electric field. Jets can be ejected from surfaces that are essentially flat if 
the electric field is strong enough, and the solution spreads out evenly and it is collected on a grounded 
surface. Nanofiber properties such as mechanical properties, degradation rates and functional groups 
exposure on the surface can be improved by using innovative collectors and spinning techniques (Pham 
et al. 2006). Several electrospinning collectors have been made to improve and control nanofiber orienta-

Figure 7. Integrated hydrodesulfurization-oxidative desulfurization (HDS-ODS) processes
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tion. Some of the commercially available collectors employed for electrospinning are presented in Figure 
9. Controlled polymer electrospinning conditions can produce nanofibers with uniform morphology and 
diameters in the nanometer range. The latter property is sought after in order to improve the fiber func-
tions by offering a fiber with high surface-to-volume ratio. Crosslinking of nanofibers enhances their 
mechanical stability and also prevents the material from dissolving in solvents of similar polarity. It is 
understood that crosslinking of imprinted polymers improves their adsorption properties by preserving 
cavities created by imprinted molecules. However, most crosslinking agents compete with reactive donor 
atoms on polymer nanofibers with respect to interacting molecules. This occurrence may result in the 
reduction of polymer active sites available for interaction. Polymer nanofibers sometimes become brittle 
and surface area compromised upon crosslinking (Ogunlaja et al. 2014). Hence, strategies are being 
sought to mediate against this problem.

A well-known limitation of the electrospinning process is the level of fiber production. A straightfor-
ward method of increasing the productivity of electrospinning in an ordinary laboratory is by increasing 
the number of spinnerets used in the process. Large-scale fiber production capabilities are important 
for achieving industrial requirements. Several technological advances have been explored to increase 
nanofiber production volume. Some of the modifications reported by Persano et al. 2013 are as follows:

Figure 8. The electrospinning set-up used for the fabrication of polymer nanofibers in an ordinary 
laboratory
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1.  The introduction of multi-spinneret components that allows parallel multiprocessing, and
2.  The development of free surface electrospinning methods.

Electrospinning using multi-spinneret increases fiber mat thickness and quantity (Kidoaki et al. 2005; 
Ding et al. 2004; Varesano et al. 2009; Theron et al. 2005; Teo et al. 2005). Figure 10 shows some 
electrospinning spinnerets which mostly consist of needle(s). An innovative technology developed by 
Elmarco (Elmarco’s Nanospider) and Stellenbosch Nanofiber Company employs a rotating drum/ball 
partly submerged in a thin film of polymer solution to produce nanofibers.

Figure 9. Some electrospinning collectors
(http://www.grafen.com.tr/product.php?id=293). Date accessed: 11/05/2015.

Figure 10. Images of some possible electrospinning spinnerets
(http://www.electro-spinning.com/multispinnerets.html and http://www.sncfibers.com). Date accessed: 11/05/2015.

http://www.grafen.com.tr/product.php?id=293
http://www.electro-spinning.com/multispinnerets.html
http://www.sncfibers.com
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The design and construction of process equipment for controllable, reproducible, continuous and 
mass electrospinning production has been advanced. The growing interest in electrospinning has already 
produced increased supply and competition among electrospinning equipment suppliers. Currently, a 
wide selection of industrial and laboratory-scale electrospinning equipment is available in the market. 
A list of representative companies that supply electrospinning equipment includes:

• Elmarco (www.elmarco.com),
• NaBond (www.electro-spinning.com),
• Holmarc Opto-Mechatronics (www.holmarc.com),
• E-Spin Nanotech (www.espinnanotech.com),
• Linari Engineering (www.linaribiomedical.com),
• Kato Tech (www.keskato.co.jp),
• Mecc Co. (www.mecc.co.jp),
• Toptec (www.toptec.co.kr),
• Electrospinz (www.electrospinz.co.nz),
• Electrospunra (www.electrospunra.com),
• IME Technologies (www.imetechnologies.nl),
• Yflow (www.yflow.com), and
• Inovenso (www.inovenso.com) (Persano et al. 2013), and
• Stellenbosch Nanofiber Company (www.sncfibers.com).

Some images of industrial and laboratory-scale mass electrospinning apparatus are presented in 
Figure 11.

Nanofibers show potential application in a wide range of fields comprising energy, environment, 
electronics, biotechnology, and pharmaceutics. Many companies in the field of nanofibers applications 
are small enterprises belonging to academic spin-offs, or pharmaceutical companies (Persano et al. 
2013). A widely reported application of electrospun nanofibers is the area of biomedical sciences for 
wound dressing as well as hosts for drugs (Chong et al. 2007; Zhou et al. 2008; Heunis et al. 2011-2012; 
Zahedi et al. 2011). Some representative companies supplying electrospun products for different fields 
of application as reported by Persano et al. 2013 include:

• Stellenbosch Nanofiber Company (www.sncfibers.com),
• Donaldson (www.donaldson.com),
• DuPont (www.dupont.com),
• Ahlstrom Corporation (www.ahlstrom.com),
• Espin Technologies (www.espintechnologies.com),
• Esfil Tehno AS (www.esfiltehno.ee),
• Finetex Technology (www.finetextech.com),
• Hemcon Medical Technologies, Inc (www.hemcon.com),
• Hollingsworth and Vose Company (www.hollingsworth vose.com),
• Japan Vilene Company (www.vilene.co.jp),
• Johns Manville (www.jm.com),
• Kertak Nanotechnology (www.kertaknanotechnology.com),

http://www.elmarco.com
http://www.electro-spinning.com
http://www.holmarc.com
http://www.espinnanotech.com
http://www.linaribiomedical.com
http://www.keskato.co.jp
http://www.mecc.co.jp
http://www.toptec.co.kr
http://www.electrospinz.co.nz
http://www.electrospunra.com
http://www.imetechnologies.nl
http://www.yflow.com
http://www.inovenso.com
http://www.sncfibers.com
http://www.sncfibers.com
http://www.donaldson.com
http://www.dupont.com
http://www.ahlstrom.com
http://www.espintechnologies.com
http://www.esfiltehno.ee
http://www.finetextech.com
http://www.hemcon.com
http://www.vilene.co.jp
http://www.jm.com
http://www.kertaknanotechnology.com
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• Nanofiber Solutions (www.nanofibersolutions.com),
• Nano109 (www.nano109.com),
• NanoSpun (www.nanospuntech.com),
• Yflow (www.yflow.com),
• Polynanotec (www.polynanotec.com),
• SoftMaterials and Technologies s.r.l (www.smtnano.com), and
• SNS NanoFiber Technology (www.snsnano.com).

Parameters for Electrospinning

Several parameters are known to influence the formation of stable fibers in electrospinning. Doshi et al. 
1995 classified these parameters as

1.  Solution properties (viscosity, conductivity, surface tension, polymer molecular weight, dipole 
moment, and dielectric constant),

2.  Controlled variables (distance between the needle tip and collector, voltage and flow-rate) and
3.  Ambient parameters (temperature and humidity) (Dzenis 2004; Kumar 2010).

Figure 11. (A) Elmarco laboratory-scale electrospinning apparatus; (B) industrial-scale electrospinning 
system, Nanospider produced by Elmarco (http://www.elmarco.com/nanofiber-equipment/electrospin-
ning-machines-ns1ws500u/); (C) industrial-scale electrospinning system, Nanospinner416 produced by 
Inovenso Ltd. (http://www.inovenso.com/portfolio-view/nanospinner416/)

http://www.nanofibersolutions.com
http://www.nano109.com
http://www.nanospuntech.com
http://www.yflow.com
http://www.polynanotec.com
http://www.smtnano.com
http://www.snsnano.com
http://www.elmarco.com/nanofiber-equipment/electrospinning-machines-ns1ws500u/
http://www.elmarco.com/nanofiber-equipment/electrospinning-machines-ns1ws500u/
http://www.inovenso.com/portfolio-view/nanospinner416/


302

Molecularly Imprinted Polymer Nanofibers for Adsorptive Desulfurization
 

Viscosity

Low polymer solution concentrations result in low viscosity of solutions and tend to form beaded 
nanofibers when electrospun. Increasing the polymer solution concentration reduces the formation of 
beaded fibers. Fiber diameters increase with increasing concentration/viscosity (Ki et al. 2005; Jiang 
et al. 2004; Huang et al. 2001; Son et al. 2004; Fong et al. 1999; Koski et al. 2004; Zhang et al. 2005; 
Lee et al. 2004; Ding et al. 2002; Teo et al. 2006; Demir et al. 2002; Mit-Uppatham et al. 2004, Chen 
et al. 2004). Varying the concentration of polymer solution affects polymer fiber morphology, however, 
at a very high polymer solution concentration, charged solutions dries out at the tip of the needle hence 
preventing electrospining (Mit-Uppatham et al. 2004). SEM images of beaded and non-beaded polyvinyl 
chloride nanofibers are shown in Figure 12. Polymer weight also determines the morphology of fibers, 
most polymers with low molecular weight result in beaded fibers (Fong et al. 1999; Koski et al. 2004).

Solution Conductivity

Increasing polymer solution conductivity can produce more uniform nanofibers with fewer beads. A 
simple approach to increasing polymer solution conductivity is through the use of alcohols as dissolution 
solvents and also through the addition of a salt (Reneker et al. 1995; Mit-Uppatham et al. 2004, Chen et 
al. 2004; Geng et al. 2005; Kim et al. 2005; Lin et al. 2004; Liu et al. 2005; Zuo et al. 2005). The use 
of alcohols as solvents in the electrospinning of poly(hydroxybutyrate-co-valerate) (PHBV) produced 

Figure 12. SEM images of beaded (A) and non-beaded (B) polyvinyl chloride (PVC) nanofibers; elec-
trospinning conditions: (A) 20 wt% PVC, voltage = 18 kV, flow rate = 0.02 mL/h, distance = 18 cm, and 
(B) 50 wt% PVC, voltage = 20 kV, flow rate = 0.05 mL/h, distance = 18 cm
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bead-free nanofibers (Zuo et al. 2005). In the electrospining of polybenzimidazole (PBI), lithium bromide 
salt was added in order to achieve polymer nanofibers (Figure 13). The salt allowed for the formation of 
uniform nanofibers rather than particles (Ogunlaja et al. 2014; Kim et al. 2005).

Flow Rate

Varying polymer electrospinning flow rate also affects the fiber size and morphology. Low flow-rates 
yielded nanofibers with smaller diameters, and this may be due to the longer time it takes for the trav-
elling charged polymer to reach the collector. The long jet travelling time allows polymer solvent to 
evaporate, thus producing dry fibers. High flow-rates produced beaded nanofibers which do not dry 
upon reaching the collector due to short polymer jet travelling time (Zhang et al. 2005; Zuo et al. 2005; 
Gupta et al. 2005; Duan et al. 2004; Jarusuwannapoom et al. 2005; Wannatong et al. 2004; Zong et al. 
2002; Yuan et al. 2004).

Distance between Needle Tip and Collector

Varying the distance between the needle tip and grounded collector has resulted in nanofibers having 
different diameters and morphology. The minimum distance required in obtaining smooth fibers is said 
to be a function of the fiber drying time and the volatility of the solvent. The shape and design of a 
collector do affect fiber morphology as porous fiber structures are obtained when a porous collector is 
employed. Also aligned fibers and yarns were obtained using a conductive frame, rotating drum, or a 
wheel-like bobbin collector (Walmsley et al. 2012; Huang et al. 2003; Fong et al. 1999; Teo et al. 2006).

Figure 13. SEM images of electrospun polybenzimidazole (PBI): (A) in the absence of lithium bromide 
(LiBr) and (B) in the presence of lithium bromide (LiBr)
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Field Strength/Voltage

Voltage variation has been the most controlled parameter during electrospinning. A proper voltage or 
field strength produces a Taylor cone which gives rise to bead-free fibers. A Taylor cone refers to the cone 
observed in electrospinning processes from which a jet of charged particles originates above a threshold 
voltage. When a Taylor cone is formed, the force of the electric field has overcome the surface tension 
of the solution (Lee et al. 2004; Ding et al. 2002; Teo et al. 2006; Demir et al. 2002; Mit-Uppatham et 
al. 2004, Chen et al. 2004; Kim et al. 2005).

Ambient Parameters

Ambient conditions such as change in temperature and humidity during the polymer electrospinning 
process do affect nanofibers morphology and diameter (Mit-Uppatham et al. 2004). Reneker et al. 1996 
electrospun polymer solutions under vacuum, and the fibers produced under this condition gave rise to 
large diameters.

Molecular Imprinting of Nanofibers

Molecular imprinting is a technique employed for the introduction of recognition sites into matrices (such 
as polymer) via the formation of an assembly between the imprinting template (molecule: organosulfones) 
and functional groups within the network (adsorbent). Template removal from the adsorbent creates 
molecular recognition sites on the spaces vacated within the adsorbent (Holmes et al. 1994, Sellergren 
2001; Haupt 2003, Mosbach 1994, Wulff 1993, Ryu et al. 2002; Castro et al. 2001; Jorge et al. 2004; 
Ogunlaja et al. 2014). The molecular imprinting process for polymers is shown in Figure 14. However, 
for molecular imprinting of nanofibers we use pre-formed polymers and exploit the functionality on the 
backbone for recognition sites as the polymer strands fold around the template (Ogunlaja at al. 2014). 
This approach is relatively new and unexplored. Figure 14, therefore reflects the typical approach for 
molecular imprinting but if the polymer is formed first followed by the in situ molecular imprinting/
electrospinning then that follows the new approach.

There are three known principal methodologies for assembling recognition site on polymers. These 
techniques are

1.  Covalent binding approach,
2.  Non-covalent approach and
3.  Semi-covalent approach.

The Covalent Approach

Covalent bonding between molecules includes of interactions such as σ-bonding, π-bonding or metal 
ion bonding. In the covalent approach, templates (molecules) which can covalently bind to one or more 
groups in the polymer matrices are utilized. Compounds such as alcohols, aldehydes, ketones, amines, 
carboxylic acids and carboxylic ester linkage can be imprinted with this approach (Wulff 1993).
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Non-Covalent Approach

Functional polymer and templates under a non-covalent interaction and this involves interactions such 
as hydrogen bonding, ion pairing and dipole-dipole interactions. Non-covalent imprinting approach is 
important because

1.  The methodology is far easier than covalent methods, and
2.  It produces higher affinity binding sites.

This method of imprinting most widely employed due to its simplicity (Mosbach 1994; Ogunlaja et 
al. 2014).

Figure 14. A schematic representation of the molecular imprinting process through the formation of 
reversible interactions between the template and polymerizable functionalities with the following pos-
sible interactions (A) reversible covalent bond(s), (B) covalently attached polymerizable binding groups 
that are activated for non-covalent interaction by template cleavage, (C) electrostatic interactions, (D) 
hydrophobic or van der Waals interactions
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Semi-Covalent Approach

Semi-covalent imprinting produces a more uniform distribution of binding sites on the polymer by com-
bining the technique of covalent and the non-covalent approach. In this approach, templates are covalently 
bound initially to a polymer group with known functionalities which is recovered after cleavage of the 
template. Re-binding of the template on the polymer takes place via non-covalent interactions without 
restrictions (Sellergren 2001).

Fabrication of Organosulfones Imprinted Nanofibers

Organosulfur compounds can be imprinted on polymers using the non-covalent molecular imprinting 
approach before polymers are electrospun into nanofibers. Interactions such as hydrogen bonding and 
dipole-dipole interactions occur between the functional polymer and organosulfones (templates) in the 
non-covalent imprinting approach. The method produces higher affinity binding sites. Several studies 
describing the fabrication of organosulfur and organosulfones imprinted nanofibers have been reported 
(Ryu et al. 2002; Castro et al. 2001; Jorge et al. 2004). In this chapter, we report on the experimental 
process for the fabrication of organosulfones imprinted polybenzimidazole nanofibers as described by 
Ogunlaja et al. 2014.

Polybenzimidazole (PBI) solution was prepared by dissolving 2.0 g of pristine PBI polymer in 10 
mL N,N-dimethylacetamide containing 0.4 g (4% wt) LiBr. The dissolution was carried-out under re-
flux condition in a nitrogen atmosphere for 4 h. The resulting viscous solution was cooled, and filtered 
to remove any particulates. 1 mL (0.01 M) solution of organosulfone compound containing 40 µL of 
Triton X-114 (surfactant agent) was added to the dissolved PBI polymer, after which the mixture was 
further stirred at 50°C for 5 h to form a homogeneous mixture. The polymer solution was transferred 
into a 25 mL syringe and electrospun using the following optimised electrospinning conditions: a volt-
age of 25 kV at a flow-rate of 0.4 mL/h, with a distance between the needle tip and collector plate of 20 
cm. The resulting nanofibers were then subjected to extensive washing using a mixture of acetonitrile 
and methanol (1:1) via Soxhlet extraction to remove residual N,N-dimethylacetamide and entrapped 
organosulfone compounds. The washed nanofibers were later dried overnight at an oven temperature 
of 60°C. This process leaves PBI nanofibers with cavities that recognise organosulfone compounds 
(Ogunlaja et al. 2014).

Materials Characterization

The following instrumental analysis techniques can be used to characterize polymer nanofibers or ad-
sorbents:

Scanning Electron Microscopy (SEM)

Scanning electron microscope (SEM) is currently being employed for the imaging of polymeric materials 
in the micro- (10-6) to almost nano- (10-9) scale region. SEM provides information on the surface mor-
phologies and shapes of polymer microspheres. Fiber diameters can also be obtained from SEM images.
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X-Ray Photoelectron Spectroscopy (XPS)

X-ray Photoelectron Spectroscopy (XPS), also known as Electron Spectroscopy for Chemical Analysis 
(ESCA), is a widely used technique to investigate the chemical composition of surfaces. XPS provides 
information on the following (Walmsley et al. 2012):

1.  Identification of elements near the surface and surface composition,
2.  Local chemical environments since this can cause small shifts in XPS peak positions
3.  Oxidation states of elements

Thermo-Gravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC)

Thermo-gravimetric analysis (TGA) and differential scanning calorimetry (DSC) are the most widely 
used techniques in the study of the degradation of polymer materials. TGA measures the stability and 
the decomposition pattern of the material. DSC on the other hand, measures the transition temperature 
and heat flow within an adsorbent, and the crystalline content of a polymer can be measured by using 
the DSC (Davis, 2004).

Composition Information

FT-IR is a light transmission technique which provides information about the functional groups present 
on an adsorbent. This technique can also be used to confirm the level of functionalization on adsorbent 
and can also detect the presence of impurities (Ogunlaja et al. 2014). Solid state NMR can also be used 
to confirm the presence of the functional groups on the polymer backbone.

Surface Area and Porosity Determination

The two common techniques for surface area measurements are (A) Mercury intrusion method and (B) 
Gas adsorption method (Davis, 2004; Ritter et al. 1945; Klobes et al. 2006; Washburn, 1921; Meyer et 
al. 1997).

Mercury Intrusion Method

Mercury porosimetry is a widely accepted method for determining total volume and pore size distribu-
tion in the meso- and macropore ranges. The total volume and pore size distribution can be measured 
by measuring the penetration of mercury into the pores (Ritter et al. 1945; Klobes et al. 2006).

Gas Adsorption Method

Gas adsorption measurements are widely used for the characterization of a variety of porous solids. Of 
particular importance is the application of physical adsorption for the determination of the surface area 
and pore size distribution. N2, Ar, Kr and CO2 gases are widely employed for measuring the adsorption/
desorption isotherm (Davis, 2004). Brunauer-Emmett-Teller (BET) equation (Equation 1) is used to 
derive the surface area from physisorption isotherm data.
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where na is the amount adsorbed at the relative pressure P/Po, nm is the monolayer capacity, and C is a 
constant that is dependent on the isotherm shape.

APPLICATION OF ORGANOSULFONES IMPRINTED 
NANOFIBERS FOR ADSORPTIVE DESULFURIZATION

In recent publications several solid absorbents have been employed as adsorbent for the desulfurization 
of fuel. The nanofibers show potential for the extraction of organosulfone compounds in the oxidative 
desulfurization process, a complimentary step to the hydrodesulfurization process. Herein, the focus is 
on the potential use of organosulfone-responsive nanofibers for the desulfurization of oxidized fuel using 
polymers such as chitosan and polybenzimidazole. These polymer adsorbents were employed under a 
continuous flow process to produce fuels with low sulfur content. The adsorption performance of these 
adsorbents depends on both the surface chemical properties such as active sites and physical proper-
ties including surface area, and pore size and distribution. The chemical interactions such as hydrogen 
bonding, π-π interactions, van der Waals forces and electrostatic interactions between organosulfone 
compounds and molecularly imprinted polymers have been discussed using DFT calculations. The 
potential use of poly alcohols such as polyvinyl alcohol (PVA), polyvinyl phenol (PVP) and polyvinyl 
benzyl alcohol (PVBA) for organosulfone adsorption has also been investigated by employing density 
functional theory calculations. The choice of a suitable polymer for adsorption has stimulated much 
debate, and with molecular modelling some issues such as polymer structure and polymer reactivity can 
be addressed. The subtle chemical interactions of the functional groups of the polymer with the reactive 
sites of the template molecules (in this case organosulfones) have been modelled computationally by 
our group of workers (Ogunlaja et al. 2014). We have observed some correlations between theory and 
experiments in the few polymer systems that we have tested up to date. This area of research requires 
further expansion but it must be guided by the computational approach.

Polybenzimidazole (PBI)

Polybenzimidazole (PBI) is a heterocyclic polymer which comprises of repeating units of benzimidazole 
(Figure 15). The -NH groups of the benzimidazole allows for hydrogen bonding interactions with polar 
compounds such as sulfones produced by the oxidation of organosulfur compounds in fuels (Ogunlaja et 

Figure 15. Chemical structure of polybenzimidazole (PBI)
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al. 2014). PBI provides excellent chemical and thermal stability properties (Walmsley et al. 2012). Poly-
benzimidazole (PBI) nanofibers were obtained by dissolving solid PBI powder in N,N-dimethylacetamide 
under reflux as explained in section 3.2, a representative SEM image of organosulfone-imprinted PBI 
nanofibers is shown in Figure 13.

Organosulfones-imprinted polybenzimidazole nanofibers were employed for the adsorption of or-
ganosulfone compounds in oxidized hydro-treated diesel, containing 394 ± 4.2 ppm S. A continuous 
flow process was employed in the adsorption process shown in Figure 5. Prior to adsorption, a 150 
mg quantity of the respective organosulfone-imprinted PBI nanofibers was conditioned with a suitable 
solvent. The oxidized fuel was pumped through the nanofibers at a flow-rate of 1 mL.h-1. The sulfur left 
within the hydro-treated fuel after the adsorption process was found to be below the limit of detection of 
the GC-AED (Figure 16). The saturated organosulfone adsorption capacity of the molecularly imprinted 
adsorbents from diesel fuel was 5.3 ± 0.4 mg/g. Polybenzimidazole showed excellent adsorption capaci-
ties, and this was attributed to the imprinting effect as well as other factors, mostly molecular interac-
tions which were confirmed from the molecular modelling interactions between known organosulfone 
compounds and polybenzimidazole.

Chitosan (CHI)

Chitosan, an amino polysaccharide usually obtained by the deacetylation of chitin (Figure 17), has free 
amine and hydroxyl groups which allow for chemical modifications through the formation of hydrogen 
bonding interactions and has been investigated for the development of sorption systems (Ryu et al. 2002; 
Ruiz et al. 2000; Ngah et al. 1999; Xiaoliang et al. 2002. Chitosan also has the ability to swell when in 
contact with a thermodynamically compatible solvent which is another favourable property (Fariba et 
al. 2010; Monteiro et al. 1999.

Electrospinning of chitosan was achieved by dissolving 0.5 g of chitosan in a 10 mL of trifloroacetic 
acid/dichlomethane (7:3). A voltage of 30 kV was applied to the polymer solution which was pumped at 
a flow-rate of 1.2 mL/h, and the distance between the needle tip and collector plate was 17 cm (Ogunlaja 
et al. 2014). A representative SEM image of organosulfone-imprinted chitosan nanofibers is shown in 
Figure 18.

A similar adsorption process as reported for polybenzimidazole was also carried out by employing 
300 mg of conditioned organosulfones-imprinted chitosan nanofibers. The adsorption process was also 
allowed to proceed at a flow-rate of 1 mL/h under room temperature. Sulfur analysis after the adsorption 
process indicated that a total of 62 ± 3.2 ppm S was left in the diesel (Figure 19). The saturated sulfur 
adsorption capacity of the molecularly imprinted adsorbents was 2.2 ± 0.2 mg/g. Molecular modelling 
was also employed in discussing the possible mode of binding between the organosulfone compounds 
and chitosan.

Poly Alcohols: Polyvinyl Alcohol (PVA), Polyvinyl Phenol 
(PVP) and Polyvinyl Benzyl Alcohol (PVBA)

Polyvinyl alcohol (PVA) is a water-soluble synthetic polymer (Hallensbelen et al. 2000). It is resistant to 
oil and various solvents, and is therefore also an ideal polymer for use as adsorbent in fuel applications. 
Polyvinyl alcohol has high tensile strength with high melting point of between 180-230°C. The hydroxyl 
(-OH) functionalities on polyvinyl alcohol can be modified, and for example they can be cross-linked once 
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Figure 16. GC–AED chromatograms of carbon (A) at 179 nm, and sulfur (B) at 181 nm in hydrotreated 
diesel after oxidation, and chromatograms of carbon (C) at 179 nm and sulfur (D) at 181 nm in oxidized 
hydrotreated diesel after using organosulfones-imprinted polybenzimidazole nanofibers as adsorbent



311

Molecularly Imprinted Polymer Nanofibers for Adsorptive Desulfurization
 

fibers are formed to strengthen the material (Miyazaki et al. 2010). Polyvinyl benzyl alcohol (PVBA) 
and polyvinyl phenol (PVP) can be synthesised from the polymerization of 4-vinylbenzyl alcohol and 
4-vinyl phenol, respectively (Dekker et al. 1973). The benzene ring and hydroxyl (-OH) groups available 
on polyvinyl benzyl alcohol (PVBA) and polyvinyl phenol (PVP) can be explored for their π-π stacking 
and hydrogen bonding interactions properties with organosulfones respectively.

Molecular Modelling

The thermodynamic properties between template-polymer in the formation of an adduct have been re-
ported as one of the major factors governing the binding performance of molecularly imprinted polymers 
(Nicholls et al. 2001). Therefore, to gain mechanistic insight into the binding performance and interac-
tions which leads to adduct formation between imprinted nanofibers and organosulfone compounds, 

Figure 17. Chemical structure of chitosan

Figure 18. SEM images of (A) dibenzothiophene sulfone-imprinted polybenzimidazole and (B) dibenzo-
thiophene sulfone-imprinted chitosan
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Figure 19. GC–AED chromatograms of carbon (A) at 179 nm, and sulfur (B) at 181 nm in hydrotreated 
diesel after oxidation, and chromatograms of carbon (C) at 179 nm and sulfur (D) at 181 nm in oxidized 
hydrotreated diesel after using organosulfones-imprinted chitosan nanofibers as adsorbent



313

Molecularly Imprinted Polymer Nanofibers for Adsorptive Desulfurization
 

molecular simulation using density functional theory was performed. The emphasis of this chapter is on 
use of computational chemistry to design or choose relevant polymers for recognition of organosulfones. 
This approach should be transferable to other chemical systems that rely on subtle chemical interactions 
as drivers for molecular recognition.

Geometry optimizations and vibrational analyses of organosulfone-polymer adducts were performed 
using the Gaussian09 software. B3LYP functional was employed with a 6-31G(d) basis set. The enthal-
pies of formation (ΔΔHadduct), Gibb’s free energies (ΔΔGadduct) and entropies of formation (ΔΔSadduct) for 
each adduct formed were calculated by using Equations 2 and 3.

∆∆ ∆ ∆ ∆H H m H t H
adduct adduct polymer organosulfone

= − +( )  (2)

where m and t are the stoichiometric amounts of polymer and organosulfone involved in adduct formation.

∆∆ ∆∆ ∆∆G H T S
adduct adduct adduct

= −  (3)

ΔΔG, T and ΔΔS are the Gibbs free energy for the adduct formation, temperature (298 K) and entropy 
for adduct formation at standard conditions (i.e. 1 molar concentration for solvents and 1 atm pressure) 
respectively. The Gibbs free energy (ΔG°) gives information about the feasibility of interaction (adduct 
formation); entropy (ΔS°) describes the spontaneous nature of interaction (adduct formation) whereas 
the sign of ΔH° reflects the endo- or exothermic nature of the process.

Electrostatic and Dipole Interactions

The strength of a dipole interaction depends on the size of each dipole, dipole energies and on their rela-
tive orientation. A molecule (polymer) with a permanent dipole moment will induce a dipole moment 
in a second molecule (organosulfone) that is located nearby in space, and this phenomenon is known as 
polarization (Kim et al. 2006). Polar molecules (a functional polymer and organosulfone compounds), do 
interact through dipole-dipole intermolecular forces and hydrogen bonds. The extent of charge separation 
within the imprinted polymers is characterized by its dipole moment which also explains their nature 
of polarity. Polarity prompted by dipole moment brings about a number of physical properties some of 
which are solubility (wettability), surface tension and boiling points (Kim et al. 2006). The dipole of the 
modelled polymer unit increases in the order of polyvinyl phenol (1.5630 Debye) < polyvinyl alcohol 
(1.5634 Debye) < polyvinylbenzyl alcohol (1.5638 Debye) < polybenzimidazole (4.0766 Debye) < chito-
san (9.0372 Debye). Chitosan presented the highest dipole moment amongst the polymers modelled, and 
this confirms that the polymer shows better wettability properties from a neighbouring polar molecule.

Attractive and repulsive forces between interacting atoms and molecules, due to their electropositive 
and electronegative properties, were explained through electrostatic potential energies. The electrostatic 
potential for imprinted polymers, organosulfur and organosulfone compounds were color-mapped based 
on the electron density distribution of the various compounds (Figure 20). The color map shows the 
electrostatic potential energy (in hartrees) for the various colors. The red end of the spectrum (Figure 
20) shows regions of highest stability for a positive test charge (more favorable to interactions), ma-
genta/blue show the regions of least stability for a positive test charge (less favorable to interactions). 



314

Molecularly Imprinted Polymer Nanofibers for Adsorptive Desulfurization
 

The negative characteristic electrostatic potential, represented in red color, are reactive as they are rich 
in electrons. With the imprinted polymers, negative electrostatic potential are distributed around the 
surface of the polymers, with PBI and chitosan being highly negative (mostly around the –OH and –NH 
functionalities). Organosulfur compounds show evidence that the negative electrostatic potentials are 
dominantly located on the two sides of the molecular plane. The methyl groups on the organosulfur and 
organosulfone compounds enhance the negative electrostatic potential on the aromatic molecular planes 
because of its positive inductive effect. Organosulfone compounds have the highest value of the negative 
electrostatic potential when compared to organosulfur compounds, and such negative domain is mainly 
located on the oxygen atoms of the compounds.

Orbital Energies

Interaction between atoms or molecules happens most likely between the HOMO of one molecule and the 
LUMO of the other molecule. The amount of energy required to add or remove electrons in a molecule 
can be obtained from the HOMO and LUMO energy values. HOMO characterizes the nucleophilicity 
of a species, i.e. its tendency to donate an electron, while LUMO characterizes the electrophilicity of a 
species, i.e. its tendency to receive an electron (Hizaddin et al. 2013).

Optimized geometries of polybenzimidazole, chitosan, polyvinyl alcohol, polyvinylbenzyl alcohol 
and polyvinyl phenol showing HOMO and LUMO positions are presented in Figures 21, 22, 23, 24 and 

Figure 20. Electrostatic potential on electron density for the examined adsorbents (A) PVA, (B) Chito-
san, (C) PBI, (D) dibenzothiophene, (E) dibenzothiophene sulfone, (F) 4,6-dimethyldibenzothiophene,
(G) 4,6-dimethyldibenzothiophene sulfone, (H) polyvinylbenzyl alcohol (PVBA) and (I) polyvinyl phenol 
(PVP). Red colour indicate regions which have the highest negative domain
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25 respectively. Polymers with low HOMO energy values indicate a molecule with better electron donor 
and high ionization potential, while polymers with higher LUMO energy shows a molecule with high 
electron affinity, i.e. better electron acceptor (Table 2).

Orbital Energy Gap

From the HOMO and LUMO energy values, the HOMO-LUMO energy gap can be determined. Large 
HOMO-LUMO gap indicates high stability and resistance to charge transfer and changes in electron num-
ber and distribution. Therefore, hard molecules have a large HOMO-LUMO gap. Meanwhile, the small 

Figure 21. HOMO and LUMO locations of polybenzimidazole (PBI): (A) HOMO and (B) LUMO; blue 
and grey colours represent nitrogen and carbon atoms respectively.

Figure 22. HOMO and LUMO locations of chitosan (unit): (A) HOMO and (B) LUMO; red, blue and 
grey colours represent oxygen, nitrogen and carbon atoms respectively.
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HOMO-LUMO gap indicates high polarizability since they only require a small amount of energy to get 
them to the excited states. The small HOMO-LUMO gap is indicative of soft molecules (Pearson, 1986).

The HOMO-LUMO gaps of polybenzimidazole (PBI), chitosan, PVA, PVP and PVBA were 0.25606 
eV, 6.77509 eV, 9.20017 eV, 5.83385 eV and 6.30461 eV. Polybenzimidazole (PBI) displayed the 
smallest HOMO-LUMO energy gap which is indicative of a soft molecule with better polarizability 
and reactivity while chitosan and PVA both presented high HOMO-LUMO energy gaps indicating hard 
molecules with low reactivity (Table 2). The optimization energies of polybenzimidazole (PBI), chitosan, 
PVA, PVP and PVBA were -66.7 × 104, -83.8 × 104, -9.7 × 104, -26.7× 104 and -24.2 × 104 kcal/mol 
respectively. Polymers with high energy have higher compactness/firmness, hence, making it difficult for 
incoming molecules (organosulfones) to reorganise around the polymer. Polymers with smaller energies 
have lower compactness, thus allowing facile association with incoming molecules (organosulfones). 
Polyvinyl alcohol (PVA) shows a much higher energy as compared to polyvinylbenzyl alcohol (PVBA), 
PVP, PBI and chitosan, confirming its less reactive environment (Isarankura et al. 2008; Nantasenamat 
et al. 2005, 2006, and 2007).

Figure 23. HOMO and LUMO locations of polyvinyl alcohol (PVA) unit: (A) HOMO and (B) LUMO; 
red and grey colours represent oxygen and carbon atoms respectively.

Figure 24. HOMO and LUMO locations of polyvinylbenzyl alcohol (PVBA) unit: (A) HOMO and (B) 
LUMO; red and grey colours represent oxygen and carbon atoms respectively.
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Figure 25. HOMO and LUMO locations of polyvinyl phenol (PVP) unit: (A) HOMO and (B) LUMO; 
red and grey colours represent oxygen and carbon atoms respectively.

Table 2. Quantum chemical parameters; HOMO (EH), LUMO (EL) and band gap energies

Compounds EH (a.u.) EL (a.u.) Orbital Energy Gap. 
(EG) (a.u.)

aOrbital Energy 
Gap. (EG) (eV)

PVA -0.26154 0.07656 0.33810 9.20017

PBI -0.15201 -0.14260 0.00941 0.25606

Chitosan -0.22572 0.02326 0.24898 6.77509

PVBA -0.23055 0.00114 0.23169 6.30461

PVP -0.21398 -0.00041 0.21439 5.83385

DBTO2 -0.24492 -0.06666 0.17826 4.85070

4,6-DMDBTO2 -0.23826 -0.06235 0.17591 4.78676

PVA-DBTO2 -0.24559 -0.06902 0.17657 4.80472

PVA-4,6DMDBTO2 -0.23439 -0.05871 0.17568 4.78050

PBI-DBTO2 -0.15304 -0.14387 0.00917 0.24953

PBI-4,6DMDBTO2 -0.14548 -0.13604 0.00944 0.25688

Chitosan-DBTO2 -0.14509 -0.06737 0.07773 2.11487

Chitosan-4,6DMDBTO2 -0.13759 -0.06349 0.07410 2.01636

PVBA-DBTO2 -0.22463 -0.07011 0.15452 4.20471

PVBA-4,6DMDBTO2 -0.22345 -0.06944 0.15401 4.19083

PVP-DBTO2 -0.20452 -0.07309 0.13143 3.57639

PVP-4,6DMDBTO2 -0.20314 -0.06852 0.13462 3.66320
aThe energies of HOMO, LUMO gaps energies were converted from a.u. to eV using the conversion factor of 27.2114.
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Interaction Energies

Density functional theory (DFT) for molecular modelling was employed to understand the mode of 
interactions between polymers and organosulfones (Parr et al. 1989; Dreizler et al. 1990). The compara-
tive strength for the formation of a given organosulfone-polymer adduct can be inferred from calculated 
interaction energy.

Molecular interactions between the dibenzothiophene sulfones and the various polymers caused a 
decrease in the HOMO-LUMO energy gap of PVA-DBTO2 (4.80472 eV), PBI-DBTO2 (0.24953 eV), 
Chitosan-DBTO2 (2.01636 eV), PVP-DBTO2 (3.57639 eV) and PVBA-DBTO2 (4.20471 eV) as com-
pared to the free dibenzothiophene (4.85070 eV) (Table 2). The HOMO-LUMO gap can be used as 
a relative index for the degree of interaction strength between organosulfones and polymers in which 
lower values indicate higher strengths of interaction. The observed HOMO-LUMO gaps suggest that the 
molecular interaction of PBI-DBTO2 adduct is higher than that of PVA-DBTO2 and Chitosan-DBTO2, 
with Chitosan-DBTO2 adduct formation more viable than PVBA-DBTO2 and PVA-DBTO2.

PBI-DBTO2 adduct indicated that the HOMO and LUMO center around PBI, and this resulted in the 
formation of π-π interaction (π-π stacking) between polybenzimidazole (PBI) and dibenzothiophene sul-
fone (DBTO2), hydrogen bonding interaction between -S=O of DBTO2 and –NH of PBI was also visible 
(Figure 26). Chitosan-DBTO2 adducts on the other hand, showed that the HOMO originates from chitosan 
while the LUMO comes from DBTO2, this indicated that interactions took place via electron donation 
between HOMO and LUMO centers. Hydrogen bond interaction is also viable due to the presence of 
free –NH2 and –OH groups on chitosan (Figure 27). The PVA-DBTO2 adducts show that the HOMO is 
shared between PVA and DBTO2 while the LUMO is centered on DBTO2, and interactions can be said 
not to have taken place via electron donation between HOMO and LUMO centers but possibly through 
CH-π bond formation (Figure 28). Adducts (PVBA-DBTO2) formed between polyvinylbenzyl alcohol 
(PVBA) and DBTO2 indicate that HOMO is polyvinylbenzyl alcohol (PVBA) based while LUMO 
originated from DBTO2, interaction also took place through hydrogen bonding between –OH group on 
polyvinylbenzyl alcohol and -S=O of DBTO2 (Figure 29). PVP-DBTO2 adduct (Figure 30) indicate that 
the HOMO and LUMO locations originate from polyvinyl phenol (PVP) and dibenzothiophene (DBTO2) 
respectively, with possibility of hydrogen bonding interactions between –OH group of polyvinyl phenol 
and -S=O of DBTO2.

Molecular interaction between 4,6-dimethyldibenzothiophene sulfone and the various polymers 
also caused a decrease in the HOMO-LUMO energy gap of PVA-4,6-DMDBTO2 (4.78050 eV), PVP-
4,6DMDBTO2 (3.66320 eV), PBI-4,6-DMDBTO2 (0.25688 eV), Chitosan-4,6-DMDBTO2 (2.01636 
eV) and PVBA-4,6-DMDBTO2 (4.19083 eV) as compared to the free 4,6-dimethyldibenzothiophene 
(4.78676 eV) (Table 2). Unlike PVA-4,6-DMDBTO2, PVBA-4,6-DMDBTO2, PVP-4,6DMDBTO2 and 
Chitosan-4,6-DMDBTO2, the HOMO–LUMO gap in PBI-4,6-DMDBTO2 adduct displayed excellent 
molecular interactions.

PBI-4,6-DMDBTO2 adduct indicated that the HOMO and LUMO centre on PBI, and this resulted 
in the formation of π-π stacking between polybenzimidazole (PBI) and 4,6-dimethyldibenzothiophene 
sulfone (4,6-DMDBTO2), in a similar manner to the interaction observed with DBTO2. Hydrogen 
bonding formation between -S=O of 4,6-DMDBTO2 and –NH of PBI was however not observed, and 
this might be due to the steric hindrance caused by the methyl groups in 4,6-DMDBTO2 (Figure 31). 
Chitosan-4,6-DMDBTO2 adducts also showed that the HOMO originates from chitosan while the LUMO 
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comes from 4,6-DMDBTO2, and this is similar to the results obtained with Chitosan-DBTO2 adduct 
confirming that interaction took place via electron donation between chitosan and 4,6-DMDBTO2 (Figure 
32). PVA-4,6-DMDBTO2 adducts showed that both the HOMO and LUMO of the adduct originates 
from 4,6-DMDBTO2, in which little or no interactions take place (Figure 33). PVBA-4,6-DMDBTO2 
adduct indicate that HOMO initiates from polyvinylbenzyl alcohol (PVBA) while LUMO comes from 
4,6-DMDBTO2, hydrogen bonding interactions between –OH group on polyvinylbenzyl alcohol and 

Figure 26. HOMO and LUMO locations of PBI-dibenzothiophene (PBI-DBTO2) adduct: (A) HOMO 
and (B) LUMO; red, yellow and grey colours represent oxygen, sulfur and carbon atoms respectively.

Figure 27. HOMO and LUMO locations of chitosan-dibenzothiophene (chitosan-DBTO2) adduct: (A) 
HOMO and (B) LUMO; red, yellow and grey colours represent oxygen, sulfur and carbon atoms re-
spectively.
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-S=O of 4,6-DMDBTO2 was also possible (Figure 34). The HOMO and LUMO locations of PVP-4,6-
DMDBTO2 adduct (Figure 35) are in similar positions as reported for the PVBA-4,6-DMDBTO2 adduct.

Thermodynamic parameters such as enthalpy (ΔΔH), entropy (ΔΔS) and free energies (ΔΔG) are 
presented in Table 3. Gibbs free energy is known as the most useful thermochemical parameter for un-
derstanding chemical reactions at constant temperature and pressure, a ΔG < 0 is indicative of a spon-
taneous reaction while ΔG > 0 shows that a reaction is possibly non-spontaneous. Polybenzimidazole 
(PBI) displayed –Gibbs free energies for adduct formation with DBTO2 and 4,6-DMDBTO2. Negative 
enthalpies and positive entropies indicate that interactions are possibly favourable at low temperatures 
hence leading to adduct formation between organosulfones and imprinted polymers (Table 3). Polybenz-
imidazole (PBI), Chitosan and polyvinylbenzyl alcohol (PVBA) all show possibility for interaction with 
organosulfone compounds at low temperature (298 K), going by the molecular modelling condition. PVA 
and PVP both displayed positive ∆∆H and ∆∆G, hence external energy would be required for adduct 
formation. PBI displayed the most favourable energetics for adduct formation, and this was in agreement 
with what was observed from experiments (Ogunlaja et al. 2014).

Figure 28. HOMO and LUMO locations of PVA-dibenzothiophene sulfone (PVA-DBTO2) adduct: (A) 
HOMO and (B) LUMO; red, yellow and grey colours represent oxygen, sulfur and carbon atoms re-
spectively.

Figure 29. HOMO and LUMO locations of PVBA-dibenzothiophene (PVBA-DBTO2) adduct: (A) HOMO 
and (B) LUMO; red, yellow and grey colours represent oxygen, sulfur and carbon atoms respectively.
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NOTES AND PERSPECTIVES

The heightened concerns for cleaner fuel and the increasingly strict regulations on sulfur contents in fuels 
have made the desulfurization process progressively more important. The sulfur problem is becoming 
more serious as most of the oil reserves are sourer, i.e. they possess a high sulfur content. Researchers 
are continually exploring possible ways of removing organosulfur compounds in fuels without compro-
mising the fuel properties. Sulfur compounds in fuel are mostly hydro-treated but this is not sufficient 
to achieve the ultra-low levels without compromising the fuel properties. In recent studies, refractory 
organosulfur compounds in fuels are oxidized by employing a heterogeneous catalyst followed by sepa-
ration of the oxidized sulfur compounds using imprinted polymers, metal organic frameworks (MOFs) 
or solvents to remove the organosulfones. This process is termed oxidative desulfurization, and it shows 
great promise for the future of the fuel industry. Progress has also been made in the use of bacteria to 

Figure 30. HOMO and LUMO locations of PVP-dibenzothiophene (PVP-DBTO2) adduct: (A) HOMO 
and (B) LUMO; red, sulfur and grey colours represent oxygen, yellow and carbon atoms respectively.

Figure 31. HOMO and LUMO locations of PBI-4,6-dimethyldibenzothiophene (PBI-4,6-DMDBTO2) 
adduct: (A) HOMO and (B) LUMO; red, blue, yellow and grey colours represent oxygen, nitrogen, sulfur 
and carbon atoms respectively.
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remove sulfur from fossil fuels via a process known as biodesulfurization. New approaches, for example 
those applying nanomaterials such as molecularly imprinted nanofibers for selective adsorptive removal 
of organosulfur compounds in fuels, are necessary for production of affordable ultraclean transportation 
fuels. However, research in this area is at its infancy stages and requires more extensive investigations. 
A systematic approach in selecting a suitable polymer for the adsorptive removal of oxidized refractory 
organosulfur compounds from fuel can be addressed via DFT calculations in order to understand the 
underlying chemical interactions. This chapter has demonstrated the positive aspects of this approach.

Figure 32. HOMO and LUMO locations of chitosan-4,6-dimethyldibenzothiophene (chitosan-4,6-
DMDBTO2) adduct: (A) HOMO and (B) LUMO; red, blue, yellow and grey colours represent oxygen, 
nitrogen, sulfur and carbon atoms respectively.

Figure 33. HOMO and LUMO locations of PVA-4,6-dimethyldibenzothiophene (PVA-4,6-DMDBTO2) 
adduct: (A) HOMO and (B) LUMO; red, yellow and grey colours represent oxygen, sulfur and carbon 
atoms respectively.
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However, from a technology transfer point of view, the development and implementation of the ODS 
process as an alternative for production of ultra-low sulfur fuel is still a challenge for both academia and 
industry. The cost of the additional units for ODS (for the oxidation and adsorption steps) to comple-
ment HDS presents a major challenge for the fuel industry. This will also have a negative effect on fuel 
prices for the ordinary consumer. It remains a challenge for academia to convince the conservative fuel 
industry of the possibilities of the technologies discussed in this chapter. The nanofiber production houses 
have provided a space for developments in the area of large scale fabrication of functional nanofibers, 

Figure 34. HOMO and LUMO locations of PVBA-4,6-dimethyldibenzothiophene (PVBA-4,6-DBTO2) 
adduct: (A) HOMO and (B) LUMO; red, sulfur and grey colours represent oxygen, yellow and carbon 
atoms respectively.

Figure 35. HOMO and LUMO locations of PVP-4,6-dimethyldibenzothiophene (PVP-4,6-DBTO2) ad-
duct: (A) HOMO and (B) LUMO; red, sulfur and grey colours represent oxygen, yellow and carbon 
atoms respectively.
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and the medical applications have dominated this space. It is desirable that the fuel industry can find 
possibilities for this technology, and it will be the role of academia to present attractive solutions in this 
regard. This chapter, therefore, attempts to introduce the chemical and materials development aspect of 
the molecularly imprinted nanofiber technology and to present it as a prospective alternative for extrac-
tion of polar organosulfones from oxidized hydrotreated fuel.
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ABSTRACT

Most of the total quantity of sulfur oxides (SOx) emitted to the atmosphere come from the combustion of 
fossil fuels, whose preponderance in the energy mix is expected to prevail in the years to come. In order 
to avoid the damaging consequences that this supposes, the improvement of the removal methods has 
been the topic of many researches. In this sense, the majority of abatement processes have always been 
based on wet Flue Gas Desulfurization (wFGD) technologies. In this chapter, the origin, development, 
deployment and enhancement of the wFGD processes is thoroughly revised. From the early studies on 
sulfur absorption for commercial purposes to the maturing of the technology fostered by environmental 
regulations, the chapter covers the aspects that have accompanied FGD research, including the reac-
tion mechanism studies, the main types and configurations, and extending the analysis on the variables, 
parameters and technical aspects conditioning the process.

INTRODUCTION

The 80% of the total quantity of sulfur oxides (SOx) are regarded to be emitted from anthropogenic 
sources through the combustion of fossil fuels during energy production processes (Pandey & Malhotra, 
1999). In this sense, the predictions from the Energy Information Administration (EIA), the World En-
ergy Council (WEC) and the International Energy Agency (IEA) agree that fossil fuels will play a key 
role in the energy consumption mix in the future (EIA, 2013; WEC, 2013; IEA, 2014). Particularly for 
oil, the EIA reference case shows that the total primary energy consumption is going to grow a 0.4% 
per year until 2040. As for coal, its consumption is expected to increase at 0.3% per year, remaining 
the second-largest energy source worldwide (EIA, 2013). Therefore, the continued great dependency 
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on fossil fuels entails damaging consequences to the environment and the global climate (IEA, 2014). 
In order to overcome these prejudicial effects, Air Pollution Control Policies have aid fostering the re-
search on SO2 removal at a worldwide level since the 1970s (Chang, Song, & Wang, 2011). Today, the 
techniques to reduce SO2 emissions can be divided in three categories (Crnkovic, Milioli, & Pagliuso, 
2006; Lee & Huffman, 2007):

1.  Pre-combustion technologies (including fuel desulfurization and coal gasification or liquefaction);
2.  Simultaneous combustion of coal and limestone mixtures (removal is carried out during combus-

tion); and
3.  Post-combustion technologies or flue gas desulfurization (FGD).

For more than 50 years, the majority of removal methods have been based on FGD technologies, which 
are scrubbing processes where the flue gas at the outlet of the combustion process is put into contact 
with an alkaline component (Siagi & Mbarawa, 2009; Taylor, Rubin, & Hounshell, 2005; Y. Wu, Li, & 
Li, 2007). Furthermore, FGD methods can be classified as once-through or regenerable (Mathieu et al., 
2013). In the former type, the SO2 is predominantly bound to the sorbent, which must be managed as a 
waste or by-product. As for the latter, no waste is generated as the substances produced can be reused 
as absorbents after a proper treatment. Once-through and regenerable FGD methods can be of the wet 
or dry type depending on the quantity of water used in the process as well as on the moisture content of 
the residue obtained (Taerakul et al., 2007). Wet FGD technologies have been predominantly selected 
over the dry type because of their high desulfurization efficiency, low investment, compact flow sheet 
and less land occupied, rare fouling, high utilization rate of reagents and a stable operating environment 
(Chang et al., 2011; Frandsen et al., 2001; Tomas Hlincik & Buryan, 2013; Kiil, Michelsen, & Dam-
johansen, 1998; Shen et al., 2013; Taerakul et al., 2007). Limestone is used as the alkaline component 
in more than 90% of the installed desulfurization capacity in the world because of its natural abundance 
and low cost (Hrastel, Gerbec, & Stergaršek, 2007; Kallinikos, Farsari, Spartinos, & Papayannakos, 
2010; Kiil et al., 1998; Ryu, Grace, & Lim, 2006). During the last years, the research over more efficient 
removal technologies has been fostered by the tightening of emission control policies and the expected 
increase in fossil fuels. The aim of this chapter is to summarize the main aspects and characteristics 
of FGD processes: from the description of the particular nature of SO2 that has historically promoted 
environmental legislation to the revision of the basic concepts concerning the abatement techniques and 
the management of the effluents obtained. By this manner, the reader would be able to obtain an overall 
description of the FGD process before go in depth with the subsequent chapters.

THE PROBLEM OF SO2

SO2 Effects

The negative effects of SO2 are both to human health and the environment. Once in the atmosphere, a 
series of photochemical or catalytic reactions promote its oxidation to SO3 before being hydrated and 
again oxidized by air humidity into sulfuric acid (H2SO4) (Electric Power Research Institute [EPRI], 
2006b; Phillips, Canagaratna, Goodfriend, & Leopold, 1995):
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SO OH HSO
2 3
+ →−  (1)

HSO O HO SO
3 2 2 3
+ → +  (2)

SO H O SO H O
3 2 3 2
+ → −  (3)

SO H O H SO
3 2 2 4
− →  (4)

This process is commonly known as acid rain and its consequences are varied. From the adverse 
effects on the wildlife of aquatic ecosystems, forests and soils to the acidification of soils, easing the 
release of toxic metals into lakes and streams while provoking root damage, and plant and nutrient 
leaching (IEA, 2013; Biswas, Devotta, Chakrabarti, & Pandey, 2005; Brasseur, Guy P., Orlando, John 
J., Tyndall, Geoffrey, 1999; EEA, 2013; Frandsen et al., 2001; Gómez, Fueyo, & Tomás, 2007; Tomas 
Hlincik & Buryan, 2013; Johnson, 1987; Siagi & Mbarawa, 2009). Likewise, it also serves as a precur-
sor for certain reactions that favor ozone depletion in the stratosphere (Brogren & Karlsson, 1997; Li, 
Zhu, & Ma, 2013). The main consequences for human health are related to the irritation of eye, nose 
and throat that in extreme cases might be linked to the formation of fine particles that might lead to 
broncho-constriction (Lippmann, 2009; Taylor, Rubin & Hounshell, 2005). Damages to materials are 
caused by SO2 deposition over the surface either through gas dissolution in the moisture film or by dry 
deposition, fostering corrosion of the calcareous stone and marble surfaces of buildings and historic 
monuments (Lipfert, 1984; Malaga-Starzec, Panas, & Lindqvist, 2004; Mathieu et al., 2013; Pandey & 
Malhotra, 1999).

Development of the Environmental Legislations through History

When the adverse effects over the environment and the human health began to be realized, several 
legislations started to be introduced, firstly in the United Kingdom (UK) and then in the United States 
(USA) and Japan, which served as models for the many countries that followed, as it can be summa-
rized in Figure 1 (“A history of flue gas desulfurization systems since 1850. Research, development and 
demonstration,” 1977; Soud, 2000).

The initial environmental directives and control policies were aimed at reducing the emissions from 
power and thermal plants, as these industries were regarded as the primary source. The first measures 
included switching from high to low sulphur fuels (Álvarez-Ayuso, Querol, & Tomás, 2006). But the need 
of imposing SO2 controls began in 1929 when the House of Lords (UK) upheld the claim of a landowner 
against the Barton Electricity Works of the Manchester Corporation for damages to his land by the SO2 
emissions from the power plant (“A history of flue gas desulfurization systems since 1850. Research, 
development and demonstration,” 1977). Later on, the sharp increase in the weekly mortality in central 
London and the surroundings during December of 1952 warned about the SO2 emissions from the inef-
ficient burning of coal in domestic open grates (Lipfert, 1984). Nevertheless, it was not until June 28th 
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of 1984 that the first emission control on an EU level was imposed for combating the air pollution from 
industrial plants through the Air Framework Directive 84/360/EEC. It managed to achieve a dramatic 
reduction in SO2 discharges and therefore supposed a preliminary step to the further implemented Direc-
tive of Large Combustion Plants (LCP) of 1988 (88/609/CEE), where Emission Limit Values (ELVs) 
were set for the first time. The measures announced were addressed to those plants built after July 1987, 
although some restrictions for the already existing plants were also included. A little bit earlier, the first 
Sulfur Protocol was signed in 1985 under the United Nation’s Economic Commission for Europe Con-
vention on Long Transboundary Air Pollution (Brasseur, Guy P., Orlando, John J., Tyndall, Geoffrey, 
1999). Almost 20 years after, in 2001, the LCP directive (2001/80/CEE) and the associated ELVs were 
updated and considered to be necessary but not sufficient for complying with the requirements of the 
Directive (96/61/EC) of Integrated Pollution Prevention and Control (IPPC). This directive accounted 
for the first time the Best Available Techniques (BAT) reference documents. Furthermore, new standards 
for were again updated in 2010 by the EU to ELVs as stringent as 35 mg/Nm3 to new large combustion 

Figure 1. Timeline of the environmental legislations in the EU and the United States
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plants above 300 MWth using gaseous fuels and 150 mg/Nm3 for liquid and solid fuels (Mathieu et al., 
2013). Apart from this, the new BAT reference document of 2013 is exhorting all type of burning-fuels 
industries to reutilize the by-products and residues from the emission production process itself, in ac-
cordance with the EU energy policy of sustainability and competitiveness (CEC, 2006).

Similarly to what happened in Europe, nine major federal legislative/regulatory events fostered the 
development of FGD systems in the United States (Taylor, Rubin, & Hounshell, 2005). The first action 
occurred on 1955 when the Air Pollution Control Act was the first federal approach for controlling emis-
sions of the industry. However, it was not until 1967 that the Air Quality Control Act allowed attracting 
national attention on the FGD technology market. In 1970, the Clean Air Act Amendment (CAA) of the 
Environmental Protection Agency (EPA) required every state to develop adequate control technologies for 
SO2 control, resulting in a 20% annual reduction (Brasseur, Guy P., Orlando, John J., Tyndall, Geoffrey, 
1999). Analogous to the European BAT reference document that would appear later, the New Source 
Performance Standards (NSPS) document of 1971 listed the necessary removal methods available to 
the industry. In 1977 and 1979 the CAA and the NSPS were respectively updated in order to promote 
the implementation of scrubbing methods at new plants, inherently preventing their building. In 1980, 
the US Congress authorized the National Acid Precipitation Assessment Program (NAPAP), a 10-year 
study that pretended to assess the causes and effects of acidic deposition. The effects were reflected in 
The American Chemical Society’s Symposium “Materials Degradation Caused by Acid Rain” and the 
Electrochemical Society’s Symposium “Corrosion Effects of Acid Deposition” of 1985. These events 
are considered to be great contributors in the spreading the effects of SO2 on materials damage (Baboian, 
1986; Brasseur, Guy P., Orlando, John J., Tyndall, Geoffrey, 1999; Mackenzie, L. Davis, 1998; Mansfeld, 
F., Haagenrud, S., Kucera, V., Haynie, F., Sinclair, 1986). The NAPAP was reauthorized in 1990 in the 
form of the 1990 CAA, where an emission-allowance trading program was added for attaining a reduc-
tion of 8.12 million tonnes of SO2 per year until 2010 (Brasseur et al., 1999). Title IV of the 1990 CAA 
covered two phases of the Acid Rain SO2 Reduction Program. The first phase (1995-1999) applied an 
aggregate emission limit of 4.5 kg·Gcal-1 of SO2 per MBtu heat input of coal and Phase II (2000-2010) 
set an emission limit of 2.2 kg·Gcal-1 (Nelli & Rochelle, 1998; R. K. Srivastava & Jozewicz, 2001; Taylor 
et al., 2005). Additionally, the EPA issued the Clean Air Interstate Rule (CAIR) that incorporated a cap-
and-trade program for annual emissions of SO2 in order to solve the problem of power plant drifting from 
one state to another (EIA, 2014). Like the EU IPPC/BAT, the CAIR is scheduled to be tightened in 2015.

Worldwide, the World Health Organization (WHO) has also developed Air Quality Guidelines for 
SO2 to assist member states in establishing their own standards (Lippmann, 2009). In this sense, China 
announced in 2011 stringent emission standards for thermal power plants, similar to the EU IPPC/BAT 
(Wu et al., 2014). Therefore, companies at both sides of the ocean will have to assess the technological 
and economic implications that the more and more stringent environmental legislations will suppose. 
The existing pollution control devices are not fully satisfactory and/or cost effective to meet the above-
mentioned pollution control regulations (Meikap, Kundu, & Biswas, 2002).This explains the interest of 
many power and fossil-fuel combustion industries in getting better yields for their existing FGD plants 
(Gutiérrez Ortiz et al., 2006). The next sections deal with the origin and development of FGD processes, 
the main types of available technologies and the most important aspects and parameters.
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FGD PROCESSES

Origin and Development

The highlights of the origin and development of FGD technologies through history are summarized in 
Figure 2.

Although the deployment of FGD processes took place from the 1960s until 2009, the early studies 
carried out between 1850-1950 allowed establishing the theoretical basis for the main principles and 
concepts, which were especially important for the further design of modern scrubbers (Markusson, 
2012). The studies on the absorption of SO2 by water began in the 1860s with the aim of finding a suit-
able method for the recovery of sulfur and its use as a commodity reagent for sulfuric acid production 
(“A history of flue gas desulfurization systems since 1850. Research, development and demonstration,” 
1977). The first studies focused on the maximum amount of absorption as a function of pressure and 
temperature (Freese, 1920; Johnstone & Leppla, 1934; T.K. Sherwood, 1925; Sims, 1861; Watts, 1864) 
before exploring the possibility of using several catalysts for increasing the rate of absorption (Johnstone, 
1931). On the early 1900s, several reactions of reduction were proposed for also recovering elemental 
sulfur (Lamoreaux, 1916; Lepsoe, 1938, 1940; Wells, 1917; Young, 1931). In 1909, Eschellmann devised 
a method for purifying burner gases using a suspension of lime and later in 1914 Paulson patented a 

Figure 2. Timeline of the FGD technology
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method (H.F. Johnstone, 1931). These processes were carried out by the pulp industry and were proposed 
for the production of sulfite acid cooking (“A history of flue gas desulfurization systems since 1850. 
Research, development and demonstration,” 1977). In the framework of this issue, in 1922, Thompson 
Smith and Parkhurst focused on the chemistry of the lime scrubbing process, reporting the importance 
of the role of the hydroxide ion in the absorption process (Thompson Smith & Parkhurst, 1922). Rioux 
and Berard (1928) complemented these findings and pointed out that the rate of absorption increases in 
lime concentration until precipitation and by decreasing the temperature of the process (Rioux & Berard, 
1928). Therefore, Johnstone and Singh (1940) proposed adding lime for easing the precipitation of calcium 
sulfite before recirculating the sulfite-bisulfite solution (Johnstone & Singh, 1940). Besides the chemical 
and physical aspects at laboratory scale, the required theoretical basis for the up-scaling to the industry 
began by the early studies of the diffusion of two gases (Hanks & McAdams, 1929; Lewis & Chang, 
1928). The two-film concept proposed by Whitman is considered a cornerstone on which the further 
scrubbing technology was later based on (Whitman, 1923). According to this model, the gas must diffuse 
through both films before being absorbed into the liquid and the type of liquid plays an important role in 
the absorption rate. The next modifications to the model included unsteady conditions and transport of 
the absorbed gas to the bulk of the liquid (Higbie, 1935; Sherwood, 1952). The flourishing of the FGD 
technology was later driven by regulation, technology suppliers, organized knowledge sharing events 
and the emergence of the coal mining industry (Markusson, 2012). Thus, the first experimental FGD at 
full-scale commenced operation in London in 1933 (Bettelheim, Kyte, & Littler, 1981). It consisted in 
scrubbing the flue gases with water from the Thames river and adding chalk or alkaline waste sludge. 
Other large-scale FGD installations in the UK such as the Battersea Station, Swansea Station and Fulham 
Station served as precursors of subsequent larger installations (“A history of flue gas desulfurization 
systems since 1850. Research, development and demonstration,” 1977). In Japan, the earliest FGD units 
on power plants also served as benchmarks for early US investments, from a few systems in the late 
1960s to around 70 systems in the 1970s (Lefohn, Husar, & Husar, 1999; Markusson, 2012; Taylor et al., 
2005). Despite the deployment of the German market in the 1980s, by the late of that decade the build 
of FGD units dramatically dropped because the reduced rate of building coal-fired power plants caused 
in part by the higher environmental compliance costs (Bellas, 1998). During this period, the research on 
FGD was aim at reducing scaling while improving removal efficiency and the integration of oxidation 
and absorption was proposed was a partial solution (Markusson, 2012). Thus far, wet FGD has been the 
most widespread method for removing SO2 and is nowadays considered a mature technology (Biswas et 
al., 2005; Du et al, 2011). The research and development over the last years has focused on improving 
the removal efficiency while minimizing the water consumption and the effluents produced (Chen, Ge, 
Dou, Pan, & Zhou, 2009). The next sections address the mechanism of reaction involved in the absorp-
tion process and the different configurations that arise from it.

MECHANISM OF ABSORPTION AND MAIN FGD CONFIGURATIONS

The Absorption of SO2: A Mass-Transfer Process

The absorption of SO2 into alkaline solutions has been the topic of many studies and researches for 
decades and nowadays is widely known that the reactions are considered instantaneous and the mass 
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transfer process of the species involved is the limiting and most important physical step (Brogren & 
Karlsson, 1997; Dragan & Ozunu, 2012).

Ramachandran and Sharma (1969) were the first to theoretically discuss the problem of gas absorption 
with chemical reaction and proposed a two-film model, depending on whether the solid dissolution in 
the liquid film was important or not (Ramachandran & Sharma, 1969). Based on this two-film model, 
Hikita et al. (1972) later proposed a penetration theory while Rochelle and King (1977) focused on the 
absorption in limestone slurries considering the effect of additives. These and other subsequent studies 
contributed to the understanding of the three main stages of the desulfurization process (Figure 3): dif-
fusion of the solute gas in the film, chemical reaction, and dissolution of the solids (Liu & Xiao, 2006).

Taking into account that the chemical reactions between the dissolved reactants are considered 
instantaneous and irreversible, the mass-transfer becomes particularly important and hence the main 
controlling step among the three main stages (Dou, Byun, & Hwang, 2008). This mass transfer opera-
tion is influenced by both a gas and a liquid film resistance taking place in three steps (Hansen, Fogh, 
Knudsen, & Kiil, 2011; Sada, Kumazawa, & Butt, 1979b):

1.  Diffusion from the bulk area of the gas phase to the gas-liquid interface;
2.  Transfer across the gas-liquid interface;
3.  Diffusion into the bulk area of the liquid.

This diffusion-transfer-diffusion progression mainly depends on the coefficient rates in both phases 
although the dissolution of solids may also influence (Sada, Kumazawa, & Butt, 1979). Therefore the 
research over desulfurization enhancement has been directed towards improving the contact between 
the gas and liquid phases and the dissolution of the alkaline solids. The contact of both phases, depicted 

Figure 3. The three stages of the desulfurization process
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by the ratio of gas to liquid film resistance, is considered to be determined by the concentration of SO2 
in the flue gas and its solubility in the liquid, the liquid to gas (L/G) ratio, the contacting pattern, the 
reactant used, and the potential use of additives in the slurry (Dou, Pan, Jin, Wang, & Li, 2009; Hansen 
et al., 2011; Hansen, Kiil, Johnsson, & Sonder, 2008; Krammer, Brunner, Khinast, & Staudinger, 1997). 
In practical terms, the enhancement of SO2 absorption in FGD processes require the improvement of 
three technical aspects directly related to mass transfer: interfacial area, mixing and residence time (Lee 
& Huffman, 2007). The interfacial area has been usually improved by using fine particles of suspended 
solids as their size affects the absorption rate despite their alkaline nature (Kakaraniya, Kari, Verma, 
& Mehra, 2007; V. Dagaonkar, A.C.M. Beenackers, & G. Pangarkar, 2001). As for the mixing and the 
residence time, these are related to how well the contact between phases take place and hence to the 
mass transfer process. Other important aspects that have also attracted research interest are those related 
to operation, such as plugging and scaling, reagent utilization and corrosion among others (Karlsson & 
Rosenberg, 1980). Based on the abovementioned reaction mechanism, the next section deals with the 
most important FGD configurations aimed at improving the mass transfer process.

Main FGD Configurations

FGD systems are comprised of absorption units and are attached to the end of the combustion process 
(Bellas, 1998; T Hlincik & Buryan, 2013). The wet type dominates an estimated 84% of the market share 
and therefore deserve a special analysis (Frandsen, Kiil, & Johnsson, 2001; Kaminski, 2003). This tech-
nology can be divided according to the method of contact between both phases and further into several 
subcategories depending on specific chemical reactions and flow conditions (B B Hansen, Kiil, Johnsson, 
& Sonder, 2008; Nygaard et al., 2004; Zhao, Jin, & Zhong, 2007). The process of absorption takes places 
in scrubbing towers where both phases are brought into contact by means of different contact methods 
such as spraying or forcing through a pool (Kallinikos, Farsari, Spartinos, & Papayannakos, 2010; Lee 
& Huffman, 2007). The contact method is aimed at favoring the mass-transfer process by increasing or 
renovating the active interfacial area. On this aspect, Brauer (1984) classified the absorbers by the form 
of generating the active interfacial area in (Brauer, 1984):

1.  Packed columns;
2.  Jet absorbers;
3.  Bubble and drop absorbers like tray columns;
4.  Bubble columns and various types of spray columns.

Other types of absorbers can be considered a further modification of the existing configurations, like 
moving-bed tray and spray towers (Mackenzie & Cornwell, 1998). Therefore, the mass transfer medium 
is usually a combination of liquid droplets from spray headers, sieve trays or other flue gas straightening 
devises (Smith, Booth, & Crevecoeur, n.d.). Increasing the number of spray headers, perforated trays, 
liquid distribution rings, baffles and dual direction nozzles or any other contact enhancement device is 
meant to increase the desulfurization performance (Smith, Booth, & Crevecoeur, n.d.).

The spray towers without packing, with grid-type packing, or with rods are regarded as the best alter-
natives because of their simple design and small risk of scaling and other technical problems (Karlsson 
& Rosenberg, 1980).
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Although wet FGD technologies are more effective in terms of SO2 removal rate than the dry processes, 
they are more expensive because of the larger amounts of wastewater that need to be treated and hence 
the larger facilities and investments costs required (T Hlincik & Buryan, 2013; Warych & Szymanowski, 
2001; J. Wu, Iizuka, Kumagai, Yamasaki, & Yanagisawa, 2008; Zhang, You, Zhao, Chen, & Qi, 2008).

There are nine commercial non-regenerative systems that are considered the most important wet FGD 
systems: Lime-limestone (CaO/CaCO3) methods, caustic soda (NaOH), soda ash (Na2CO3), or ammonia 
(NH3) (Lee, Huffman, & Chang, 2007; Mackenzie & Cornwell, 1998). As for the regenerable type, the 
most important processes are those based in using magnesium oxide, citrate salts and the Wellman-Lord 
process. The main characteristics of the most used wet FGD configurations are presented below.

Spray Towers

They consist on an empty tower with a set of nozzles for spraying the absorbing liquid placed at the top. 
They can be classified as countercurrent or co-current depending on the relative direction between the 
liquid flow and the gas stream (Figure 4).

In a countercurrent absorber, the stream gas moving upwards from the bottom contacts the absorbing 
slurry that is sprayed by the spray heads from the top. A large number of spray nozzles for covering the 
whole cross section of the tower can be added. The scrubbing slurry loaded with the reaction products 
is collected at the bottom of the scrubber and pumped to the top of the absorber for recirculation (Eden 
& Luckas, 1998). The reaction products are constantly stirred in order to maintain suspension and the 
precipitated solids are extracted from the bottom and further dewatered for treatment or commercial 
purposes. Several parameters such as the initial velocity of the droplets, their size and the liquid-to-gas 
(L/G) ratio are regarded to be a function of the scrubber aerodynamics (Lee & Huffman, 2007; Michal-
ski, 1997, 1999). Taking this into account, the modeling of spray towers has been the topic of many 
studies (Table 1).

Table 1. Several modelling for spray towers

Model Objective and Parameters Considered Remarks References

Dynamic absorption rate SO2 into a droplet limestone slurry The mass-transfer process before the outlet of the 
absorber is to a large extent liquid-side controlled

Brogren & 
Karlsson (1997)

The pressure drop, the slurry or the liquid residence time, the 
droplet concentration along the scrubber and the parameters 
describing droplets and gas flow

Increasing the gas flow rate decreases the pressure 
drop in the concurrent type while increasing it in the 
countercurrent configuration.

Michalski 
(1997)

Semi-empirically or empirically correlations describing the 
scrubber hydraulics, efficiency, and by-product crystallization 
based on the model of the single spray bank FGD scrubber.

The model is able to predict the scrubber efficiency 
for very fast and very slow reaction rates in the 
slurry.

Michalski 
(1999)

A model based on the Whitman film theory that considered 
the internal circulation of suspended solids inside the drop, 
which accounted for solid dissolution, chemical reaction and 
molecular diffusion.

• For large droplets, internal circulation enhanced 
the mass-transfer with respect to a stagnant droplet. 
• The liquid circulation that exists near the gas–
liquid interface, enhances the absorption rate

Muginstein, 
Fichman, & 
Gutfinger (2001)

A model for counter-current limestone spray scrubber using 
the dual-film theory and considering the pressure drop 
and removal efficiency as a function of the number of the 
operating spray levels.

The best positioning of the spraying nozzles, the 
distance between the spray levels, the size of the 
wall rings, the number of operating spray levels 
and other critical parameters can be evaluated 
numerically.

Marocco (2010)
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Some innovative approaches have been recently reported with the aim of improving the desulfurization 
efficiency of spray towers by enhancing the contact between phases. Rajmohan et al (2008) developed 
a new spray scrubber with a twin fluid and an air blast atomizer and reported that increasing removal 
efficiencies can be obtained by increasing the spray liquid flow rate and the concentration of SO2 in the 
gas. Dou et al. (2007) based their studies on the research reported by Wang et al. (1993) and Carleson 
and Berg (1983) with respect the effect of applying voltages on limestone water spray. The charged 
droplets of Ca(OH)2 become smaller with an applied voltage and therefore the contact area with SO2 
can be increased by means of electrostatic spraying (Dou, Byun, & Hwang, 2008).

Packed Towers

Developed by Mitsubishi Heavy Industries, in this configuration (Figure 5) the liquid is sprayed over a 
packing material that is collected between support trays (top and bottom), thus providing a large contact 
area, sufficient resident time as well easing a turbulent mixing of the phases (Muramatsu, Shimizu, 
Shinoda, & Tatani, 1984).

The packing material, made of numerous geometric shapes and sizes and commonly made of high-
density thermoplastics, is considered the largest material cost. This fact can be reduced by placing the 
packing material randomly, at the cost of assuming a higher pressure drop and worse liquid distribution 

Figure 4. Main features on a spray scrubber and the two types of flow configurations. G: gas phase; S: 
absorbing slurry
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(Lee & Huffman, 2007). Choosing between co-current and countercurrent flow depends on the solids 
dissolution although the latter is the most preferred choice as the most diluted gas in contact with the 
purest absorbing slurry supposed the maximum concentration difference (Karlsson & Rosenberg, 1980). 
The most important controlling parameters are reported to be the pressure drop, column flooding point, 
and liquid holdup in the column (Chen, Yates, Neathery, & Liu, 2012; Muramatsu et al., 1984).

Fluidized Bed Scrubber

The main difference of this type of absorber is the packing section, which is comprised of mobile pack-
ing spheres (polypropylene or polyethyle) placed that rotate and moved by the effect of the gas, which 
enhances the mixing of phases while acting as a self-cleaning mechanism (Lee & Huffman, 2007).

Jet Bubbling Reactor (JBR)

This configuration allows improving the efficiency of conventional scrubbers by vigorously bubbling the 
flue gas through the absorbing liquid in a single reaction tank (denominated the “jet bubbling zone”). 
This zone increases the gas/liquid interfacial area for SOx absorption (Hansen et al., 2008; Yuanjing 
Zheng, Kiil, & Johnsson, 2003). The JBR process avoids the use of large recycle pumps and spray heads 
but it usually presents high pressure drops. The enhancement of the absorption is based on the froth 
zone created by the fine bubble bed, where the bubbles are continuously collapsing and renovating the 
interfacial area for mass-transfer (Zheng et al., 2003).

Figure 5. Main features of a packed tower
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Bubble Column

Bubble columns are designed to disperse the flue gases by bubbling them in a deep pool of liquid. 
The most important parameter of the removal efficiency is the bursting of bubbles (Meikap, Kundu, & 
Biswas, 2002a, 2002b). These devices are commonly used as particulate scrubbers in the industry because 
they are simple to build, easy to operate, high liquid phase content for reaction, excellent heat transfer 
properties, and low initial costs (Meikap et al., 2002; Mohan, Biswas, & Meikap, 2008). The columns 
must be operated in series or in multiple stages in order to obtain high removal efficiencies (Meikap et 
al., 2002). In this aspect, Meikap et al. (2002) reported experimental results with 100% SO2 removal 
efficiency using water as absorbing agent. A combination with a spray tower has also been reported, 
with removal efficiencies in the 62.54-97.58% range from a lean air-SO2 mixture of 400-1200 ppm of 
SO2 (Raj Mohan & Meikap, 2010).

FGD SYSTEMS

Lime and Limestone Based Processes

The use of lime and limestone in FGD systems has prevailed since the 1970s because they are regarded 
as the most cost effective and reliable method, nowadays representing over 90% of the installed desul-
furization capacity worldwide (Brogren & Karlsson, 1997; Hrastel et al., 2007; Kiil et al., 1998; Nolan, 
2000; Taylor et al., 2005). The main advantages can be summarized as follows (Dragan & Ozunu, 2012; 
Bravo, Camacho, Moya, & Garcı́a, 2002):

1.  Both minerals are abundant and present a low cost.
2.  Their use allows obtaining gypsum as reaction product, which can be reuse or sell as a product.
3.  The absorption rate can be enhanced by altering the characteristics (shape, diameter and composi-

tion) of the limestone/lime particles.

However, the literature has also highlighted three major issues related to limestone wet FGD processes 
(Yan et al., 2014):

1.  The large quantity of limestone that is required.
2.  The large quantity of gypsum that is generated might not be absorbed by the market.
3.  The problems related to fouling, wear and corrosion.

The most common configuration is the counter current spray scrubber because of its reliability 
(Brogren & Karlsson, 1997). The system is formed by three units (Figure 6a): pre-scrubber for cooling 
and dust-removal, absorber and the oxidation unit (Kikkawa, Nakamoto, Morishita, & Yamada, 2002). 
The slurry leaving the second tower can be also collected in a reaction tank at the bottom of the scrub-
ber, allowing eliminating the third unit (Figure 6b) (Brogren & Karlsson, 1997; Kikkawa et al., 2002).

The complex chemistry of the process has been the topic of my researches (Frandsen et al., 2001; 
Lancia, Musmarra, & Pepe, 1997; Nygaard et al., 2004; Olausson, Wallin, & Bjerle, 1993). The reac-
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tions taking place in the absorber are a function of choosing between lime and limestone, the type of 
limestone, and the calcining and slaking methods (Mackenzie and Cornwell, 1998). Even though the use 
of lime allows to achieve a better pH stability in the absorber, limestone is preferred because its 5 to 10 
times cheaper, although it requires a prior treatment process (calcination, transportation, and slaking) 
(Chen et al., 2009; EPRI, 2006; Karlsson, Klingspor, Linne, & Bjerle, 1983; Karlsson & Rosenberg, 
1980; Lancia et al., 1997).

Figure 6a. Units involved in the lime and limestone FGD process: a three units system

Figure 6b. Units involved in the lime and limestone FGD process: integration of the oxidation and 
absorption units
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The overall process can be divided into four stages:

1.  SO2 absorption
2.  Oxidation of HSO3

-,
3.  Dissolution of limestone, and
4.  Crystallization of the reaction products (gypsum) (Kiil et al., 1998).

Absorption of SO2 and Oxidation of HSO3
-

Once the SO2 diffuses through the gas film towards the gas-liquid interface and dissolves in the liquid 
phase, the first and second dissociations take place (Sada et al., 1979; Uchida, Moriguchi, Maejima, 
Koide, & Kageyama, 1978; Warych & Szymanowski, 2001):

SO OH SO H O
2 3

2
2

2+ −→ +−  (5)

SO SO H O HSO
2 3

2
2 3

2+ + →− −  (6)

Enabling the subsequent reaction of HSO3
- with OH- to form SO3

2-.

HSO OH SO H O
3 3

2
2

− − −+ → +  (7)

The SO3
2- generated further react with the cations from the dissolution of CaCO3/CaO.

Dissolution

Uchida et al (1978) early pointed out that the dissolution process plays a very important role in the ab-
sorption of SO2 (Uchida et al., 1978). Nowadays it is widely known that dissolution taking place both 
at the scrubber and the feed tank is very important for the desulfurization process (Carletti et al., 2013; 
Gutiérrez Ortiz et al., 2006; Siagi & Mbarawa, 2009; Bravo, Camacho, Moya, & Garcı́a, 2002; Warych 
& Szymanowski, 2001).Unlike lime, limestone hardly dissolves in the scrubber system but its reactivity 
can be increased by decreasing the particle size and by decreasing the pH of the media, at the cost of 
inhibiting the dissociation of SO2 (Carletti et al., 2013; Shengyu, Wende, Pei, & Zhixiang, 2008; Wallin 
& Bjerle, 1989). In this aspect, particle size is regarded as the most important reactivity characteristic 
of ground limestone of reasonable purity (Brogren & Karlsson, 1997). After being ground, the slurry 
is formed in the slurry tank by suspending the lime-based solids in water to a 25-30 wt % proportion 
(EPRI, 2006).

Gypsum Crystallization

The main product from the reaction between sulfur dioxide and calcium carbonate is hydrated calcium 
sulfite (CaSO3) (Brogren & Karlsson, 1997; EPRI, 2006; Hansen & Kiil, 2012):
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SO CaCO H O CaSO H O CO
2 3 2 3 2 2

1
2

1
2

+ + → ⋅ +  (8)

However, if the pH is below 3, Ca(HSO3)2 rather than CaCO H O
3 2

1
2

+  is reported to be precipi-

tated (Brogren & Karlsson, 1997; Olausson et al., 1993). Once precipitated, the hydrated calcium sulfite 
can be oxidized to gypsum by blowing air into the system (forced oxidation), before being extracted and 
dewatered for commercial purposes (Álvarez-Ayuso et al., 2006). An uncontrolled crystallization of 
gypsum can lead to scaling and therefore when saleable gypsum is not required, emulsified sulfur or 
sodium thiosulfate can be added as inhibitors of oxidation or scaling control agents (Nolan, 2000).

Magnesium Oxide Process

Karlsson and Rosenberg (1980) were the first to be interested in the enhancing effect of magnesium 
on the SO2 absorption rate (Karlsson & Rosenberg, 1980). Nowadays the magnesium-based wet FGD 
process has been reported to be more suitable for low SO2 concentration FGD systems because of the 
low investment required, compact flow sheet and less land occupied, its high efficiency, reliable opera-
tion and rare fouling. However, the lack of magnesium resources and the high cost of MgO are the main 
drawbacks (Yan et al., 2014). The small additions of MgO (to a 3-8%) for enhancing the conventional 
limestone/lime process has been preferred (Biswas et al., 2005). The absorption process proceeds as 
follows (Chen et al., 2009):

MgO H O Mg OH+ → ( )2 2
 (9)

SO Mg OH H O MgSO H O
2 2 2 3 2

5 6+ + → ⋅( )  (10)

SO MgSO H O Mg HSO H O
2 3 2 3 2 2

6 5+ ⋅ → +( )  (11)

Mg HSO MgO H O MgSO H O
3 2 2 3 2

5 2 6( ) + + → ⋅  (12)

The suspended Mg(OH)2 paticles yield a high scrubbing capacity because the reaction product mag-
nesium sulfite posses a high solubility, allowing to maintain alkalinity much longer than the calcium 
based process and resulting in a larger SO2 absorption (Kakaraniya, Kari, Verma, & Mehra, 2007; Sada, 
Kumazawa, & Butt, 1977; Sada et al., 1979; V. Dagaonkar et al., 2001). In this aspect, inhibitors of 
oxidation, such as sodium thiosulfate can be also added for improving the process (Shen et al., 2013). 
The final product can be regenerated by means of thermal decomposition (Chen et al., 2009).
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The Seawater Process

Bromley (1972) was the first to suggest the use of seawater as desulfurization agent because of its alkaline 
nature, large neutralizing capacity, great availability in coastal zones and the fact that no solid residues 
are produced (Bromley, 1972). However, the large space needed for treating and neutralizing the large 
amounts of seawater before discharged are the main drawbacks (Tokumura et al., 2006; Vidal B., Ollero, 
Gutiérrez Ortiz, & Villanueva, 2007). The removal rate can be further enhanced by adjusting the water 
temperature and the salt concentration, which exert a great influence over SO2 solubility (Al-Enezi, Et-
touney, El-Dessouky, & Fawzi, 2001; Douabul & Riley, 1979).

The most cost effective configuration is the packed tower with recirculation of the flow of seawater 
(Caiazzo, Di Nardo, Langella, & Scala, 2012; Vidal B et al., 2007). Nowadays the systems installed 
account for 0.6% of the total systems used (Nyman, 1991; Srivastava, 2000). Alternatively, the use of 
seawater for preparing the lime slurry has also been reported to be effective, as the presence of sodium 
chloride and other salts enhances absorption (Ollero, Salvador, & Cañadas, 1997).

Other Alternative and New Processes

Inorganic and Organic Absorbents

Sun et al (2010) reported the use of sodium humate (HA-Na) solutions with a 99% removal efficiency. 
These solutions are polydisperse heterogeneous molecules that can be extracted from low-rank coals and 
other natural materials for desulfurization purposes (Zhiguo Sun, Zhao, Gao, & Hu, 2010).

The addition of citric acid-sodium citrate solutions was firstly proposed by Erga (1975) for improv-
ing SO2 absorption (Erga, 1980). The process possesses several advantages such as the simplicity, the 
regenerative and non-toxic nature of the absorbent and reciclability of the citrate buffer (Bekassy-Molnar, 
Marki, & Majeed, 2005; Mondal, Chelluboyana, & Rao, 2013). The increase in water solubility from the 
buffering effect of the citrate enhances the reaction with SO2 (Bekassy-Molnar et al., 2005):

3 3 2 3 2
2 2 3 2 3 3

SO H O Na Ci Na SO H Ci+ + → +  (13)

Removal efficiencies are reported to reach to up to 85-90% (Bekassy-Molnar et al., 2005).
The use of NaOH as absorbing agent was studied by Pourmohammadbaher et al (2011) when assessing 

the simultaneous absorption of SO2 and NO (Pourmohammadbagher, Jamshidi, Ale-Ebrahim, Dabir, & 
Mehrabani-Zeinabad, 2011) and the use of mixtures have also been considered: NaOH + sodium citrate 
solutions (Mondal et al., 2013) and NaOH+ KMnO4 (Chu, Chien, & Li, 2001). Potassium and sodium 
carbonate solvents have been also proposed in a wide range of configurations with significant efficien-
cies (Bandyopadhyay & Biswas, 2006; Ebrahimi, Picioreanu, Kleerebezem, Heijnen, & van Loosdrecht, 
2003; Wappel et al., 2009). Additionally, sulphuric and acetic acid solutions along with ClO2 have been 
also suggested (Adewuyi, He, Shaw, & Lolertpihop, 1999; Colle, Thomas, & Vanderschuren, 2005; 
Colle, Vanderschuren, & Thomas, 2004, 2008, 2005; Jin, Deshwal, Park, & Lee, 2006; Thomas, Colle, 
& Vanderschuren, 2003a, 2003b; Xia, Rumpf, & Maurer, 1999; Yang & Shaw, 1998).
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The use of organic compounds has also attracted interest. The studies carried out by Hwang et al 
(2009) and Choi et al (2009) focused in the simultaneous absorption of CO2 and SO2 into aqueous 
1,8-Diamino-p-menthane and mixtures of NH3/amines respectively (Choi, Seo, Cho, Park, & Oh, 2009; 
Hwang et al., 2009).

The main disadvantages of these non-conventional absorbents are the costs associated and the limited 
experience on a large scale.

Reutilization of Residues as Desulfurization Agents

Many industrial alkaline wastes contain significant amounts of CaO and other alkaline oxides that could 
be reused as SO2 absorbents in a sustainable FGD process (Del Valle-Zermeño et al., 2014; B. Zheng & 
Lu, 2009). In this aspect, the residual Ca(OH)2 and CaCO3 in the spray dry absorption product (SDAP) 
has been reported to be feasible for desulphurization at both laboratory and pilot plant scale (Hjuler & 
Dam-Johansen, 1994; Y Zheng, Kiil, Johnsson, & Zhong, 2002). Del Valle-Zermeño et al (2014) also 
reported the reutilization of several MgO by-products from the calcination of natural magnesite in a 
closed-loop desulfurization process with a 100% removal efficiency.

CONTROL VARIABLES AND PARAMETERS

Identifying the optimum operating parameters is aim for achieving a high degree of SO2 removal with 
minimum operation costs (Dou, Pan, Jin, Wang, & Li, 2009). The variables affecting the desulfurization 
performance of a given technology can be categorized as a function of the stage of the process and are 
described below.

The Scrubbing Performance

Desulfurization Efficiency (η)

It can be expressed by the difference in SO2 concentration at the inlet ([SO2]inlet) and outlet ([SO2]
outlet) of the process (Gao et al., 2011; Kikkawa et al., 2002; Matsushima et al., 2004; Meikap, Kundu, 
& Biswas, 2002a, 2002b; Shen et al., 2013; Zhiguo Sun et al., 2010; Wu, Li, & Li, 2007; Zhao, Jin, & 
Zhong, 2007):

η = − ×










1 1002

2

SO

SO
outlet

inlet

 (1)

It depends on the rest of parameters as well as on the FGD configuration (Gutiérrez Ortiz et al., 2006; 
Warych & Szymanowski, 2001). Although the enhancement of the desulfurization efficiency was the 
primary goal at the early researches, nowadays the aim is to improve it while enhancing other parameters 
in a trade-off between environmental legislation and process economy. The efficiency can be assessed 
experimentally at lab-scale by using breakthrough points such as those reported by Hlincik and Buryan 
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(2013) and del Valle-Zermeño et al (2014). Table 2 presents the desulfurization efficiency ranges of 
several technologies using different absorbents and methods.

Ca/S Ratio

This ratio applied to calcium-based processes as it is defined as the moles calcium (either in the form 
of lime or limestone) supplied per mole of SO2 in the flue gas. Its value can give an idea of the con-

Table 2. Desulfurization efficiency ranges for several technologies and absorbents

Technology Absorbing Agent η (%) Reference

Mobile bed CaO/Ca(OH)2 70 (Joseph & Beachler, 1998)

Sieve tray 90

Countercurrent spray 80-91

Venturi 86-95

Mobile bed 85.7-90

Sieve tray CaCO3 80

Countercurrent spray 52-90

Weir crosscurrent spray 82

Venturi/sieve tray 90

Packed tower 85-97

Mobile bed 75.5-87

Sieve plates Double-alkali 94.2

Venturi 85-90.5

Mobile bed 90

Sieve plate Sodium based 90-91.2

Trays 90-96

Plates 90-98

Venturi 85-95

Packed tower 94

Packed-bed reactor Ca(OH)2/CaSiO3 50-90 (Nelli & Rochelle, 1998)

Countercurrent absorber CaCO3 + adipic acid 48-97 (Eden & Luckas, 1998)

Coaxial cylinders with impinging streams Ca(OH)2 94-96 (Berman, Tanklevsky, Oren, & 
Tamir, 2000a

Ca(OH)2 + NaOH 99 (Berman, Tanklevsky, Oren, & 
Tamir, 2000b)

Absorbing towers Mg enhanced Ca(OH)2 98 (Nolan, 2000)

Packed tower CaCO3 + adipic acids 80-90 (Frandsen et al., 2001)

Chalk + adipic acids 87-95

Circulating fluidized-bed absorber CaO/Ca(OH)2 95-97 (Ollero, Gutiérrez Ortiz, 
Cabanillas, & Otero, 2001)

Cocurrent packed tower Spray dry absorption product 75-78 (Y Zheng et al., 2002)

continued on following page
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sumption of the alkaline component for a given efficiency and therefore it is considered an important 
indicator of the process economy (Berman et al., 2000a). The removal rate increases with an increasing 
Ca/S ratio although it can be kept constant after a certain critical value, dependent on several factors 
such as the coal suflur content and the type of method employed (Matsushima et al., 2004; Nolan, 2000; 
Ollero et al., 2001; Wu et al., 2007). At large scale it is controlled by adjusting the feed of fresh slurry 

Technology Absorbing Agent η (%) Reference

Multistage bubble column H2O 70-71 (one 
stage)

(Meikap et al., 2002a)

82-89 (three 
stages)

Countercurrent absorber Seawater 91-97 (Oikawa, Yongsiri, Takeda, & 
Harimoto, 2003)

Jet Bubbling reactor CaCO3 69.4-99 (Yuanjing Zheng, Kiil, & 
Johnsson, 2003)

Wet scrubber with forced oxidation CaCO3 90 (Kaminski, 2003)

Wet scrubber (gypsum wallboard)

Wet scrubber with inhibited oxidation

Wet scrubber using dibasic acid

Wet scrubber Mg enhanced Ca(OH)2

Bubbling reactor ClO2 ~100 (Jin et al., 2006)

Countercurrent packed tower CaCO3 58.6-99.3 (Gutiérrez Ortiz et al., 2006)

Impinging stream FGD system Ca(OH)2 88.5-96.00 (Wu et al., 2007)

Packed tower Catalytic seawater 55.2-99.7 (Vidal B. et al., 2007)

Spray scrubber CaCO3 64.3-94.7 (Zhao et al., 2007)

Bubbling reactor CaCO3 + acetic acid 95 (Shengyu et al., 2008)

Twin fluid air-assisted atomizer H2O ~99.99 (Rajmohan, Reddy, & Meikap, 
2008)

Bubbling reactor Magnesia 92-97 (L. Wang, Ma, Yuan, & Hao, 2009)

Spraying reactor CaCO3 85-95 (Dou et al., 2009)

Bubbling reactor Sodium humate solution 98-99 (Z Sun, Zhao, Gao, & Hu, 2010)

Spray tower + bubble column H2O 62.54-97.58 (Raj Mohan & Meikap, 2010)

Cocurrent grid absorber CaCO3 91-99 (Hansen et al., 2011)

PCF device CaCO3 82.1-84.8 (Gao et al., 2011)

Dense phase tower CaO/Ca(OH)2 95.2-97 (Chang et al., 2011)

Swirl wet scrubber system NaOH solution (2% w/v) 100 (Pourmohammadbagher et al., 
2011)

Tray tower CaCO3/CaMg(CO3)2 98 (Carletti et al., 2013)

Spray scrubber Magnesia + Na2S2O3 85.4-91.9 (Shen et al., 2013)

Bubble column reactor NH4CO3 100 (Qin, Hansen, & Kiil, 2014)

CaCO3 + foaming agents 73-90 (Qin, Hansen, & Kiil, 2014)

NaOH + foaming agents 93

Table 2. Continued
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although it has also been reported that a difference between the internal ratio with respect the outside 
should be taken into account: when part of the solid product with unconverted lime is recirculated, the 
internal Ca/S ratio is greater (Ollero et al., 1997). The recirculated slurry may not be as effective as the 
fresh one because of the layer of reaction products formed over the surface that induces diffusion. Table 
3 summarizes several range Ca/S values of different technologies. For the sake of comparison, other 
technologies apart from the wet type were included.

Range of pH

The pH value in the absorber depends on the SO2 absorption and the availability and rate of dissolution 
of the alkaline reagent (Qin, Hansen, & Kiil, 2014). It is a very important operation parameter because 
it affects the dissolution of the solids, the relative concentration of HSO3

- and SO3
2-, and the dissolution 

equilibrium of SO2 (Zheng, Kiil, & Johnsson, 2003). Its range is limited by two extreme values (Figure 7).

1.  Low pH values accelerate the dissolution of limestone and magnesium compounds, as it is mass-
transfer controlled, at the expense of giving higher concentrations of HSO3 that inhibite the dis-
sociation of SO2 (Carletti et al., 2013; Guo, Pan, Zhang, Xu, & Ren, 2011; Shengyu et al., 2008; 
Wallin & Bjerle, 1989). Moreover, absorption at low pH favores the elimination of sulfite ions, the 
dissolution of CaSO3 and the crystallization of CaSO4 in the bottom tank, all of which reduce the 
risk of scaling and plugging and therefore suppose lower operating and maintenance costs (Dou, 
Pan, Jin, Wang & Li, 2009; Shengyu et al., 2008).

Table 3. Ranges of Ca/S ratio for several technologies including others than the wet type

FGD Technology Ca/S (mol/mol) Ref.

Pilot packed absorber using limestone 1.0-1.5 (Gutiérrez Ortiz et al., 2006)

Gas-continuous impinging stream gas-liquid reactor using lime 1.0-1.6 (Wu, Li, & Li, 2007)

Double coaxial cylinders with impinging streams using lime 1.8 (Berman et al., 2000)

Spray tower using limestone 1.03 (Carletti et al., 2013)

Semi-dray FGD with multifluid lime spray generator 1.5 (Y. Zhou, Zhang, Wang, & Wang, 2005)

Oxy-fuel CFB combustor using limestone and different kinds of 
coals

2.5-4.0 (Duan, Sun, Zhao, Zhou, & Chen, 2014)

Semi-dry DPT using lime mesh 1.0-1.8 (Chang et al., 2011)

Electrostatic Spray using limewater 0.8-1.3 (Z. Wang & Luo, 2009)

DSI using lime 0.8-2.52 (Gutiérrez Ortiz & Ollero, 2001)

DSI using activated lime 0.7-2.3 (Gutiérrez Ortiz & Ollero, 2003)

COOLSIDE process: Injection of lime in a humidified flue gas 2 (Stouffer, Yoon, & Burke, 1989; Yoon, 
Stouffer, Rosenhoover, Withum, & Burke, 
1988)

LIMB 2 (Goots, T.R., DePero, M.J.M Nolan, 1992; 
Nola, P.S., Becker, 1992; Nolan, 2000)

COOLSIDE process: In-duct injection technology applied during the combustion of coals developed by CONSOL Inc. and the U.S. 
Department of Energy (DOE) (Stouffer, Rosenhoover, & Withum, 1993); LIMB process: “The Limestone Injection Multistage Burner 
Demonstration” (Nolan, 2000).

CFB: Circulating Fluidized Bed; DPT: Dense Phase Tower; DSI: Duct Sorbent Injection;
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2.  High pH values reduce the solids solubility while benefitting the absorption of SO2. When it is 
maintained above 4, the liquid-side resistance can be neglected and the gas film mass transport 
resistance dominates the absorption process (Frandsen et al., 2001; Lancia et al., 1997).

In the actual industrial running, the slurry pH value should be maintained in the 6.0-6.5 range in 
order to ensure the desulfurization efficiency, improve the utilization of the absorbent and hence reduce 
costs and improve the oxidation rate of the reaction products (Shen et al., 2012, 2013).

In the case of magnesium enhanced processes, the dissolution of magnesium compounds (both the 
magnesium hydroxide as reagent and magnesium sulfite as the product) are also controlled by pH (Shen 
et al., 2012; Wang, Keener, Li, & Khang, 1998).

Therefore, pH control at the absorber is essential for a reliable scrubber operation and its value is 
controlled by the addition of feed mixture (Carletti et al., 2013; Frandsen et al., 2001).

The Contact between Phases: The Liquid-to-Gas (L/G) Ratio

The liquid-to-gas (L/G) ratio is defined as the quotient between the flow rate of the recycle slurry (liters 
per time units) and the flow rate (m3 per time units) of the flue gas and is determinant of the recycle’s 
pump power in a scrubber (Gutiérrez Ortiz et al., 2006). Its importance lies in the fact that the absorption 

Figure 7. The pH regime of a limestone wet absorber. Main features at both alkaline and acidic conditions.
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of SO2 is a mass transfer process that is favored by a large interface area and the effectivity of the contact 
between phases. As more slurry droplets contact with the flue gas,the mass transfer process improves, 
although leading to more energy consumption and thus operation costs (Gao et al., 2011; Shen et al., 
2013). Although increasing the L/G ratio improves the removal efficiency, increasing beyond a limit 
strengths the cohesion of droplets and ends up decreasing the effective gas-liquid interface, resulting in 
smaller mass-transfer rate (Gao et al., 2011; Wu, Li, & Li, 2007). Therefore, there’s a trade-off between 
the desulfurization efficiency, the operation costs and the L/G ratio. Table 4 presents different values of 
L/G reported in the literature corresponding to different technologies.

Different authors have addressed the influence of different parameters and variables when optimiz-
ing this ratio (Gutiérrez Ortiz et al., 2006; Kikkawa et al., 2002; Warych & Szymanowski, 2001; Zhao, 
Jin, & Zhong, 2007):

• A good design can minimize the L/G ratio and hence optimize the operation.
• At a constant flow rate, the decrease in the L/G ratio will lead to lower power consumption due to 

the induced-draft fan.
• Along with pH, the L/G ratio influences the sorbent consumption
• The height of the absorption tower and the diameter of the slurry drop exert a great influence over 

L/G.

The goal of economical optimization is the combination of pH and L/G ratio for a required desulfur-
ization efficiency at minimum operation costs.

Reactivity: Particle Size Distribution and Dissolution of the Solids

The effects of particle size distribution (PSD) near the gas-liquid interface are highly significant (Mehra, 
1996). The enhancement of the SO2 removal rate by limestone slurries has been commonly addressed by 

Table 4. Ranges of the L/G ratio corresponding different FGD technologies

FGD Technology L/G (L/m3) Ref.

Magnesium-based spray scrubber 8-10 (Shen et al., 2013)

Lime-based impingin stream gas-liquid reactor 0.85-1.0 (Wu et al., 2007)

Limestone spraying absorber 9-13 (Dou et al., 2009)

Spray tower 15 (Carletti et al., 2013)

Spray tower 8-15 (Warych & Szymanowski, 2001)

Limestone packed tower 15.5 (Kiil et al., 1998)

Limestone PCF device 10 (Gao et al., 2011)

Spray tower ~17 (Kallinikos, Farsari, Spartinos, & 
Papayannakos, 2010)

Co-current packed tower using limestone and several 
additives

13.1-13.5 (Hansen, Kiil, Johnsson, & Sonder, 2008)

Co-current packed tower using limestone/chalk 14.24-14.28 (Frandsen et al., 2001)

Countercurrent pilot-scale packed tower 7.5-15 (Gutiérrez Ortiz et al., 2006)

Spray sieve tray scrubber using NaClO2/NaOH solution 5-10 (Chien & Chu, 2000)
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reducing the size of the solids for accelerating dissolution and hence reduce the volume of the holding 
tank (Frandsen et al., 2001; Kiil et al., 1998; V. Bravo, F. Camacho, M. Moya, & A. I. Garcı́a, 2002). 
In this aspect, the process of dissolution takes place both at the absorption tower and the feed tank of 
the FGD system. Besides PSD, other factors such as the source of origin of the solids, the pH of the 
liquid phase and the sulfite ion concentration have also been reported to be influential to the dissolution 
(Dragan & Ozunu, 2012; Eden & Luckas, 1998; Kallinikos et al., 2010). Dissolution is a mass transfer 
process controlled by diffusion through the liquid film surrounding the particles (A Lancia, Musmarra, 
Pepe, & Volpicelli, 1994; Amedeo Lancia et al., 1997; Shih, Lin, & Shiau, 2000). However, at pH > 5 
the surface kinetics becomes more important (Brogren & Karlsson, 1997; A Lancia et al., 1994). Related 
to this, higher sulfite ion concentrations in the suspension inhibit the dissolution process because of the 
crystallization taking place over the calcium carbonate surface (Dragan & Ozunu, 2012).

Besides playing an important role in the absorption, limestone dissolution is also determinant for 
the quality of the gypsum that can be obtained as a byproduct of the process (A Lancia et al., 1994).

The dissolution of other alkaline solids has been also subject of study. For instance, the dissolution 
rate of magnesium hydrate increases with increasing stirring speed due to the enhancement of the mass 
transfer process (Guo et al., 2011). On the contrary, the slow dissolution of dolomite is controlled by 
chemical reaction, which makes it suitable for the neutralization of acid soils in agriculture (Ahlbeck, 
Engman, Fältén, & Vihma, 1995).

TECHNICAL CONSIDERATIONS

Corrosion, Scaling, and Foaming

The phenomenon of corrosion occurs at low pH and is highly exacerbated in the presence of chloride ions 
from coal, water and lime/limestone (Karlsson & Rosenberg, 1980). This problem is scarcely reported in 
the literature as it is commonly dealt by selecting adequate materials for the FGD system. On the other 
hand, scaling is a complex phenomenon that depends on design parameters as well as on the chemistry 
and variables of the process. There are three types of scaling:

1.  Carbonate scaling,
2.  Sulfite scaling,
3.  Sulfate scaling.

Carbonate and sulfite scaling can be controlled by keeping the pH below 9 (Karlsson & Rosenberg, 
1980). Controlling sulfate scaling requieres the regulation of the oxidation rate of sulfite to sulfate, by 
bubbling compressed air (air forced oxidation) and enabling the precipitation at the bottom of the scrub-
ber (Two-units FGD system) or at a separate reaction tank (Three-units FGD system). An alternative 
is to avoid precipitation in the pipeline by adding inhibition agents such as emulsified sulfur or sodium 
thiosulfate (Nolan, 2000; Ryu, Grace, & Lim, 2006). The recirculation of large amounts of gypsum also 
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eases the deposition of newly formed CaSO4 particles over the already formed crystals, reducing the risk 
of scaling (Karlsson & Rosenberg, 1980).

Foaming is caused by adipic acids, small particles/electrolytes, and microbiology. It can cause in-
terference with the online measurements of the slurry level and its density, it can favor gypsum scaling 
in the demister and ease cavitation in recycle pumps as well as overflow in the slurry tank (Hansen et 
al., 2008). However, it has also been described as beneficial, as it implies an increase in the liquid/gas 
interfacial area (Frandsen et al., 2001).

Management of the Effluents

After depleting the alkaline potential of the slurry, the reaction products are taken to dewatering. Two 
kinds of dewatering systems are reported: hydrocyclones for the first step of dewatering and centrifugal 
separator or thickener and belt filter for the second (EPRI, 2006; Warych & Szymanowski, 2001). Either 
way, two streams are finally produced: the dewatered or residual solids and the wastewater effluents.

The potential reutilization or disposal of the residual solids is a dependent on their composition, 
which in turn is influenced by the type of coal used during the combustion process, the type of alkaline 
absorbent used in FGD system, and the presence of any other air emission control device (EPRI, 2007). 
Alternatively to landfill, they can be reused in different fields according to their quality and charac-
teristics. The main fields of reutilization are in building (95% - wallboard and cement production) and 
agricultue (5%) (EPRI, 2001).

The reutilization as construction material must take into consideration the change of color promoted by 
several compounds that might affect the commercialization as wallboard gypsum characteristics (EPRI, 
2001; Tokalic, Marinkovic, & Trifunovic, 2012). The presence of soluble salts can as well reduce the 
required calcination temperature during gypsum preparation and promote corrosion and efflorescence 
once is put in service (EPRI, 2001).

The unreacted alkalinity, the presence of required plant nutrients, suitable solubility and high levels 
of available Ca allows to consider FGD residual solids a great promise for the agricultural field (EPRI, 
2007). Their benefits can be summarized as follows (Clark, Ritchey, & Baligar, 2001):

1.  They posses an amendment capacity to mitigate low soil pH problema.
2.  Can provide a source of nutrients to plants and animals (e.g. Mg, Ca and S).
3.  They can improve sodic soil problems.
4.  They can reduce the phosphorus availability/transport.

However, the constraints are the excessive presence of soluble salts and other compounds such as Al, 
B, F, Se and other trace elements (Clark et al., 2001; EPRI, 2006).

The disposal in either a landfill or pit/quarry also require the assessment of the long-term environmen-
tal impact of the leachate generated (Zhou & Dayal, 1990). The parameters of concern in the leachates 
and the FGD wastewater are the total solids (TSS) and the concentration of several anions such as Fl-, 
Cl- and SO4

2-, trace metals (Se, Hg, Al, Sb, Be and Ta) and NH3 (EPRI, 2006).
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CONCLUSION

During the last years, the research over more efficient removal technologies of SO2 has been fostered 
by the tightening of emission control policies and the expected increase in coal and fossil fuels in the 
years to come. In this chapter, the aspects related to the origin, development and deployment of Flue 
Gas Desulfurization (FGD) technologies have been summarized in order to provide an overall descrip-
tion of the process and allow the reader to go in depth with other aspects in the next chapters. A general 
depiction on the early studies over SO2 removal and the absorption mechanisms was presented in the 
first sections as a prelude for understanding the current status of FGD processes. The understanding 
of the chemistry involved enabled to develop the different configurations that nowadays are available. 
Because of their importance, a detailed analysis was performed on the benefits and constraints of the 
lime and limestone FGD systems, which nowadays represent over 90% of the installed desulfurization 
capacity worldwide. The magnesium-based wet FGD process was also described, together with other 
alternative processes that are gaining popularity, such as the use of seawater and other inorganic/organic 
absorbents. The analysis of the variables and parameters affecting the desulfurization performance showed 
that their optimizing is aimed at achieving a high degree of SO2 removal with minimum operation costs. 
The most important parameters such as the PSD have been described as a preamble for understanding 
how the nanotechnology could play an important role. Moreover, an assessment of the main technical 
considerations and the aspects influencing the management of effluents is necessary for successfully 
carried out a FGD process.
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KEY TERMS AND DEFINITIONS

Best Available Techniques (BAT): A reference document that provides a set of sustainable directives 
and that is attached to several environmental legislations.

Ca/S Ratio: Ratio of the moles of calcium contained in the alkaline slurry with respect the moles of 
sulfur that are neutralized. It is usually used as a parameter for assessing the consumption and effective-
ness during desulfurization.

Desulfurization Efficiency: The most common parameter for expressing the effectiveness of a SO2 
removal process. It is defined as the ratio of the difference in the concentration of SO2 in the flue gases 
at the inlet and outlet of the FGD process with respect the concentration at the inlet.

Flue Gas Desulfurization (FGD): An abatement technique of SO2 emissions that is applied after 
the fuel is burned and hence is catalogued as a post-combustion technology.

L/G Ratio: In a scrubber, the ratio of liters of recirculation slurry per cubic meters of inlet gas. Along 
with the desulfurization efficiency, it is one of the most important parameters for expressing the perfor-
mance of a given desulfurization methods. It expresses the effectiveness of the mass transfer process.

Wet FGD: A type of FGD method in which a suspension or slurry is used as absorbing agent in the 
form of droplets or spray.
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ABSTRACT

The use of nanostructured materials in combination with desulfurizing microorganisms is a promising 
technique that would improve the desulfurization processes of gaseous fuels, oil, and some wastewater. 
Nanoparticles are highly versatile and tunable depending on the necessities of each particular contami-
nated media. The chapter shows the current technological options for the biodesulfurization of natural gas, 
oil and wastewater produced from the petroleum refining, where the application of nano-sized materials 
combined with desulfurizing microorganisms would improve the desulfurization capacities. In addition, 
advantages, disadvantages and opportunities of this hybrid technology are presented.

INTRODUCTION

Sulfur in Gaseous Fuels

The world’s energy requirements have strongly increased due to the growing industrialization, especially 
in emerging economies. Fossil fuels still represent the main energy source around the world. Among these 
various energy sources, gaseous fuels have been increasingly used because of their easier exploitation 
and their somewhat more environmentally friendly impact (i.e. natural gas). However, these gaseous fuels 
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commonly contain significant concentrations of hydrogen sulfide (H2S), and other sulfur species such 
as carbon disulfide (CS2), carbonyl sulfide (COS) and organic sulfides (see Table 1). On the other hand, 
non-fossil fuels used such as coal, oil, peat, wood, and other organic materials contain sulfur, which is 
released as SO2 after combustion. In combination with the humidity of the atmosphere, SO2 produce the 
recurrent problem of acid rain that can cause severe damage to ecosystems. Sulfur poisoning of chemical 
catalyzer is another frequent problem during cracking and refining of crude petroleum.

Spent Caustic Streams

The spent caustic streams are wastewater originated from petroleum refining process. In petroleum 
refining, H2S is removed from fuel gases by scrubbing into a sodium hydroxide solution, producing 
sulfides (HS- and S2-). The resulting sulfidic caustic aqueous solution can contain sulfide concentra-
tions exceeding 2 - 3 w/w (0.6 – 0.9 mol L-1), at pH greater than 12 and even other organic sulfur and 
aromatic compounds (Sipma, et al. 2004). Maintaining these streams under alkaline conditions would 
limit the emission of foul sulfide odorants. Olmos, et al. (2004) reported a characterization (Table 2) of 
spent caustic and sour waters produced in a Mexican petroleum refinery.

The aim of this chapter is to show the current technological options for the biodesulfurization of 
fossil fuels such as natural gas, oil and wastewater produced from the petroleum refining, where the 
application of nano-sized materials combined with desulfurizing microorganisms would improve the 
desulfurization capacities. In addition, advantages, disadvantages and opportunities of this hybrid tech-
nology are presented.

BACKGROUND

Conventional Desulfurization Methods

Several inorganic materials have been used for effective sorption of sulfur related compounds from fossil 
fuels in the recent years. Metal oxides of Fe, Zn, Mn, Mo, V, Ca, Sr, Ba, Co, Cu, Si and W have been 
particularly used for sulfur scavenging (Meng, et al. 2009). The general equation for desulfurization 
reactions is:

Table 1. Typical compositions of various gaseous fuels

Composition (% v/v)

Gaseous Fuels Other S* H2S H2 CO2 CH4 N2 CO HC**

Natural gas ≈0.25 3.8–8.6 ≈0.3 2–18 36–71 54–58 — ≈3.0

Distillery Biogas ≈0.003 1.2–2.5 ≈0.04 22–28 58–64 1.5–5 — —

Refinery fuel gas ≈0.03 4.5–7.5 ≈20 11–15 ≈ 1.5 50–59 ≈18 ≈ 2

Coke oven gases ≈0.03 0.3–4.8 ≈15.0 24–28 ≈ 50 ≈0.15 ≈10 ≈0.02

Coal gasification ≈0.017 0.6–2.0 ≈21 15–26 5–26 ≈27 9-22 ≈0.6

(González-Sánchez & Revah, 2006).
*CS2, Mercaptans, and thiophene, **HC Hydrocarbons.
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MO H S MS H O+ → +
2 2

 (1)

where M corresponds to a divalent metal (Dolan, Ilyushechkin, & Mclennan, 2012).
Sulfides in aqueous streams are usually removed by chemical methods that requires high-energy inputs 

and produce secondary contaminants (Pandey, et al. 1999). However, recently biological processes have 
been proposed to overcome these issues (Gonzalez-Sanchez & Revah, 2006).

Biodesulfurization

Biodesulfurization is a not highly energy demanding process that consists on the biological transforma-
tion of sulfur containing compounds under mild conditions (temperature, pressure and pH around 20°C, 
1 atm and 7 respectively). Specialized bacteria (Gonzalez-Sanchez & Revah, 2006) are the key factor 
as they perform these conversions as part of their metabolism. H2S and organic sulfur compounds (i.e. 

Table 2. Characterization of spent caustic and sour waters

Parameter 
(g/L)

Spent Caustic Sour Waters

Average Std. Dev. Average Std. Dev.

9 Sample 10 Samples

pH 13 0.2 10 0.8

Total chemical oxygen demand 364.1 53 1.56 0.26

Total organic carbon 53.9 27 0.31 0.04

Phenol 30.6 27.4 0.12 0.04

O-cresol 6 3.2 0.02 0.005

P-cresol 17.9 6 0.06 0.01

3,4-dimethylphenol 1.4 0.6 <0.0001

2,5-dimethylphenol 2.9 0.3 <0.0001

2-ethylphenol 0 <0.0001

Total Kjeldahl nitrogen 1.1 0.4 5.49 3.95

NH4
+ 0.003 0.002 0.71 0.59

Sulfides 48.5 18.4 0.32 0.09

Sulfates 20.3 3 0.3 0.16

Chloride 37.9 18 0.4 0.22

Nitrate <0.0001 0.001

Nitrite <0.0001 0.063 0.03

Phosphate 4.6 3.7 0.53 0.15

Carbonate 15.5 11.4 1.04 0.08

Sodium 27.2 5.5 0.002 8.5x10-4

Potassium 0.08 0.01 0.0003 2.1x10-5

Calcium 0.03 0.005 9x10-5 7x10-6

Iron(II) 0.05 0.001 2.1x10-4 5.7x10-6

From the Tula Refinery. Olmos, et al. (2004).
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dibenzothiophene DBT) are inconvenient components of oil petroleum and natural gas (see above). 
The biodesulfurization process begins with the removal of the sulfur compounds from the natural gas 
or oil petroleum by through their interfacial mass transfer to the aqueous bulk phase (i.e. by absorption) 
where the microorganisms grow, then the sulfur compounds become bioavailable for their consequent 
biotransformation.

For the case of H2S, the kinetics and stoichiometry (pathway) of the biological oxidation depend 
mainly on the extracellular conditions such as nutrients supply, where the dissolved oxygen concentra-
tion usually defines the selectivity, the yield and rates of the bioreactions showed in equations 2 and 3.

2 2 2 129 50
2 2 2

1H S O S H O G kJ mol+ → ° ↓ + ° = − −∆ .  (2)

2 4 2 2 772 43
2 2 4

2 1H S O SO H G kJ mol+ → + ° = −− + −∆ .  (3)

Biological based technologies are more environmental friendly and cheaper than traditional methods. 
Nevertheless, they are restricted to ambient and acidic or neutral conditions (Alcántara, et al. 2004; 
Gonzalez-Sanchez & Revah, 2006). Biological H2S removal processes from fuel gases require an initial 
absorption or adsorption in to an aqueous phase or solid superficies where specialized microorganisms 
catalyze its oxidation either under limiting or excess oxygen conditions (Janssen, et al. 1995).

Alcántara, et al. (2004) investigated the formation and the recovery of elemental sulfur in a bioreactor-
settler system some details, it had a dynamic flow zone and a static zone, which allowed sulfur sedimen-
tation because the liquid phase aeration and the sulfide oxidation were spatially separated. Steady state 
sulfide oxidizing cultures were established at different O2/S

2- molar ratios. At O2/S
2->1.0, sulfate was the 

main product while with an O2/S
2- of 0.5, elemental sulfur formed attaining 85% of the theoretical value 

shown in Equation 2. With this system, most of the sulfate formed was in the aeration vessel, and a dual 
oxygen-sulfide limitation was observed in the settler (Velasco et al. 2004; Gonzalez-Sanchez et al. 2005).

Krishnakumar et al. (2005) reported on an aerobic bioreactor called reverse fluidized loop reactor 
(RFLR), which recovered elemental sulfur from aqueous sulfide. The RFLR contained buoyant carrier 
particles (in the scale of millimeters) on which sulfide-oxidizing bacteria formed a biofilm. The process 
allowed the elemental sulfur to be efficiently separated from the aqueous phase.

A bioscrubbing system employed by Thiopaq® (Janssen et al. 2000) consists of a gas absorber and 
a bioreactor. (Figure 1). In the gas absorber, gaseous H2S is scrubbed using an alkaline solution (pH 8.0 
to 8.5). The dissolved sulfide is then oxidized by microorganisms in the bioreactor to elemental sulfur 
and sulfate according to Equations 2 and 3. The Thiopaq® desulfurization process has been applied 
to the removal of H2S from high-pressure natural gas. In a demonstration plant, natural gas with a H2S 
content of up to 8% vol. was desulfurized at high gas pressures (between 5 and 53 bar) without any 
negative effect on the bacteria. A drawback of the system is that sodium bicarbonate can precipitate at 
high CO2 partial pressures. To avoid this, low CO2 partial pressures should be present. Alternately, lower 
pH can be used in the absorber but higher liquid flows or larger scrubbers would likely be required to 
get similar absorption capacity.
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In the petroleum refining processes, after the hydrodesulfurization of oil petroleum, high amounts of 
DBT remain, which is one of the most recalcitrant sulfur compounds to remove from fossil fuels even 
after hydrodesulfurization. Olson, & Stanley (1993) reports the ability of the bacterial strain Rhodococ-
cus rhodochrous IGTS8 to transform DBT to sulfite (SO3

2-) or sulfate (SO4
2-) by the 4S desulfurization 

pathway (see Figure 2), that had been also reported to occur in other bacteria strains (Zhang, et al., 2010, 
Derikvand, et al. 2014). The sulfur ions produced after the degradation of the DBT molecule can be 
separated using an aqueous solution (i.e. water).

One of the bottlenecks of the biological desulfurization is the transference of the DBT to the micro-
organisms due to the immiscibility of organic and aqueous phases, this disadvantage could be overtaken 
by the deployment of functionalized nanoparticles as explained in Figure 2.

NANOMATERIALS AND DESULFURIZATION

Nanomaterials have been applied extensively in desulfurization processes as adsorbents due their high 
adsorption capacity and surface area. Nanomaterials have been recently incorporated in the traditional 
methods for desulfurization, particularly in adsorptive desulfurization and in a less extent in hydrode-
sulfurization processes.

Among the common materials used in adsorption desulfurization are silica gel, activated alumina 
and carbon and metal organic framework sorbents. The chemical functionalities in the surface of this 
materials allow to incorporate nanomaterial that enhance the desulfurization process, particularly when 
d-block metals (Ag, Cu, Ni and Zn) are used (Chandra Srivastava, 2012).

Figure 1. Diagram of the bioscrubber system for the treatment of H2S containing gas streams (Thiopaq® 
process)
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FeO nanoparticles possess one of the higher adsorptivities and specificity towards sulfur compounds 
among other nanomaterials. The removal of sulfur by adsorptive methods requires the presence of 
substrates with a high adsorption capacity as activated carbon, silica or alumina (zeolites) (Liu, et al. 
2010). Major concerns about the desirable properties of these materials are a high porosity and tunable 
surface chemical properties. Pores with sizes similar to the sulfur compounds in fossil fuels increase 
the capacity of retention.

Reactive adsorption is a technique that combines catalytic hydrodesulfurization and adsorption, 
sulfur-containing molecules which react in the presence of a H2 stream (Chandra Srivastava, 2012). The 
Ni/ZnO is the most common catalyst used in reactive desulfurization. Metallic Ni acts as the catalytic 
site in which hydrodesulfurization takes place while ZnO adsorbs the produced H2S generating ZnS 
(Zhao, et al. 2010) and (Ito & van Veen, 2006). By different methods, the sorbent can be regenerated 
and reused or simply discarded.

A more friendly and sustainable version of nanodesulfurization is nanobiodesulfurization, a method 
that combines nanostructured adsorbents and microorganisms (i.e. bacteria, microalgae).

Figure 2. The main 4S biodesulfurization pathway for the degradation of DBT
Modified from Nuhu, (2013).
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NANOBIODESULFURIZATION

Microorganisms capable of metabolizing recalcitrant organosulfur molecules have been used as free cell 
cultures or immobilized in different substrates. Immobilization may facilitate the separation of the cell 
from the product and may enhance the biocatalytic activity. The term nanobiodesulfurization refers to 
desulfurization methods in which nanomaterials and bacteria that metabolizes organosulfur molecules 
and by-products are used.

One of the first applications of nanomaterials in desulfurization processes was the use of magnetic 
nanoparticles attached to the surface membrane of Pseudomonas delafieldii R-8 (Shan, et al. 2005). In 
this work, Liu et al. (2010) show that cells coated with Fe3O4 nanoparticles have the same desulfuriza-
tion activity as the uncoated cells. The coating process only requires the mixing of both nanoparticles 
and cells in aqueous saline solution and then the cells can be recovered by applying a magnetic field 
(Figure 3). In addition, coated cells can be reused at least five times, in contrast with free cells that do 
not show activity if they are used again. Even though the nanoparticles do not directly contribute to the 
desulfurization process, their use facilitates the recuperation of the biocatalytic biomass.

Biodesulfurization usually occurs in organic phases; therefore, the transference of organosulfur 
molecules to the cell membrane is limited. The cell membrane needs to be not only resistant but also 
permeable enough to capture the sulfur-containing molecules. This issue may be overcame with the use of 
genetically modified bacteria that are stable in oil phases or by using sorbents of organosulfur molecules. 
For example, when P. delafieldii R-8 are assembled with the nanosorbent γ-Al2O3 the desulfurization 
rate of the cells increased at least two times than that of the cells alone (Guobin, et al. 2005). The nano 
γ-Al2O3 in the cell membrane adsorbs dibenzothiophene (DBT), which increases the transference rate of 
the sulfur compound from the media to the cell membrane (Figure 4). In a two phase procedure, DBT 
is first adsorbed in a Cu modified zeolite and then degraded by P. delafieldii R-8 to 2-hydroxybiphenyl 
(HBP), the nanosorbent is then bioregenerated and may be reused (Li, et al. 2006).

Figure 3. Magnetic immobilization and separation of biodesulfurizing bacteria; bacteria are decorated 
with magnetic Fe3O4 nanoparticles (NP’s), and they can be separated from the media by using a mag-
netic field.
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Magnetic nanoparticles not only allow recovery of bacterial cells but also may have an important role 
in cell membrane permeabilization. Ansari et al. (2009) clearly demonstrate that Fe3O4 nanoparticles 
actually facilitate transport of DBT from the media to the cytoplasm of Rhodococcus erythropolis IGST8. 
This facilitation has been argued to be due to self-assembly of the nanoparticles inside the membrane, 
which may forms pore-like structures that increases the surface conductance. Moreover, the size and 
stability of the nanoparticles in a suspension are important issues that need deep investigation since 
they could influence the process performance. According with Bardania, et al. (2013), attachment of 
nanoparticles on the cell membrane of R. erythropolis IGTS8 is more uniform when smaller nanoparticles 
of Fe3O4 (<5 nm) are deployed.. Additionally, the use of glycine decreases the aggregation tendency of 
the nanoparticles, which may lead to a higher adsorption of DBT by each cell.

Zhang, et al., (2010) combined two strategies for the degradation of a mixture of DBT, n-octane and 
water using R. erythropolis LSSE8-1-vgb: coating the cells with both Fe3O4 and γ-Al2O3 nanoparticles 
(Figure 5). The biodesulfurization activity was higher with the coated cells, it was knowledge by using 
a high porosity nano-γ-Al2O3 that adsorption and desulfurization increases.

Polymeric matrices with immobilized cells can be optimized by adding nanoparticles. Derikvand, et 
al. (2014) achieved DBT degradation by using R. erythropolis R1 decorated with γ-Al2O3 and immo-
bilized in alginate beds. The addition of nicotinamide and riboflavin to the media (Figure 5) improved 
the desulfurization rate, because these biomolecules are precursors in the 4S pathway (Derikvand et al., 
2014). The use of polymeric matrices as alginate can be useful in combination with nanobiodesulfur-
ization, as the recovery and reuse of the immobilized biomass is easier. Polyvinyl alcohol has also been 
used as immobilizing support for the desulfurizing bacteria Sphingomonas subarctica T7b.

Even though inorganic materials have been used as bacterial supports, and they enhance the desul-
furization rates, it is very likely that the nanostructured version of these materials could improve even 
more the metabolism of organosulfur compounds. Nanostructured materials can bind to the bacterial 
membrane more easily than the non-nanostructured counterpart. For example, in the case of γ-Al2O3 it 

Figure 4. Biodesulfurization can be enhanced by using sulfur adsorbent nanoparticles as γ-Al2O3. Or-
ganosulfur compounds are more easily biodegraded by desulfurizing bacteria when they are attached 
to NP’s in the bacteria cell membrane. Once in the NP’s, DBT is internalized in the bacteria cytoplasm, 
where the desulfurization pathway takes place. 2-hydroxybiphenyl (HBP) is the final product of the 4S 
metabolic pathway, is secreted to the media and can be used to monitor DBT degradation.
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was observed that its nano-sized version works much better than γ-Al2O3 of regular sizes (Zhang et al., 
2008). The capture of DBT from the oil phase by the bacteria is easier when nanoparticles are attached 
in the cell membrane, this increases the biodesulfurization rate.

Nanobiodesulfurization is a still growing field of investigation. Many other materials that includes 
noble metal, Cu, Ti, Ce and Ni/Zn nanoparticles, silica nanospheres, carbon nanotubes, and even gra-
phene are prone to be used in combination with desulfurizing bacteria. In addition, the optimization 
of different polymeric matrices for immobilization and bioreactor configuration are necessary for the 
improvement of desulfurizing methods.

Nanomaterials are used in many environmental processes as waste water treatment, energy produc-
tion, filtration, and removal of different compounds as metal ions, pharmaceuticals, biocides and other 
organic pollutants. For an excellent review of environmental applications of nanostructured materials 
and microorganisms we recommend the work of Alvarez & Cervantes, (2011).

Additionally, there are many microorganisms and microbial communities that can be applied in 
biodesulfurization. In contrast with other methods as hydrodesulfurization, which is carried on at tem-
peratures around 300 °C, biodesulfurization can proceed at temperatures as low as 30-50 °C. Alkylated 
dibenzothiophenes and other recalcitrant organosulfur molecules are difficult to remove by hydrode-
sulfurization (HDS) but not by nanobiodesulfurization in which organosulfur compounds are adsorbed 
on nanomaterials.

PERSPECTIVES AND CONCLUSION

The use of nanostructured materials in combination with microorganisms for the desulfurization of petro-
leum related streams are denominated a nano-biodesulfurization process, it represents a new opportunity 
for improving the desulfurization capacities of gaseous and oil fossil fuels besides of their wastewater 
produced. Nanoparticles are highly versatile and tunable depending on the necessities of each particular 
biodesulfurization case. Some issues like low transference rate of sulfured compounds from the gas and 

Figure 5. Bacteria decorated with magnetic and sulfur-adsorbent nanoparticles increase the rate of 
biodesulfurization of fossil fuels. Nanobiodesulfurization occurs when DBT is bound to the γ-Al2O3 
nanoparticles, DBT is degraded in the bacteria cytoplasm and HBP is released. By applying a magnetic 
field, the desulfurized fuel and the bacteria can be recover separately.
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organic phases to the interior of the cell membrane may be overcome by using desulfurizing bacteria 
coated with nanoparticles. Full-scale desulfurization would deploy the concept of nano-biodesulfurization 
but at the moment further developments must be conducted, mainly about the optimal growing of the 
desulfurizing bacteria and the nanoparticles coating on their surface, where in the upstream process is 
desirable that the nanoparticles would be recovered for their posterior recycling.
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ABSTRACT

Biodesulfurization (BDS) process consists on the use of microorganisms for the removal of sulfur from 
fossil fuels. Through BDS it is possible to treat most of the organosulfur compounds recalcitrant to the 
conventional hydrodesulfurization (HDS), the petroleum industry’s solution, at mild operating conditions, 
without the need for molecular hydrogen or metal catalysts. This technique results in lower emissions, 
smaller residue production and less energy consumption, which makes BDS an eco-friendly process that 
can complement HDS making it more efficient. BDS has been extensively studied and much is already 
known about the process. Clearly, BDS presents advantages as a complementary technique to HDS; 
however its commercial use has been delayed by several limitations both upstream and downstream the 
process. This study will comprehensively review and discuss key issues, like reduction of the BDS costs, 
advances and/or challenges for a competitive BDS towards its potential industrial application aiming 
ultra low sulfur fuels.
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INTRODUCTION

The combustion of fossil fuel generates emissions of sulfur as sulfur dioxide (SO2), which is corrosive 
and toxic, and as fine particulate matter of metal sulfates. These emissions are responsible for damage 
in many different areas. Gaseous chemical compounds of sulfur constitute a major health hazard when 
present in the air: the large-ring thiophenes, such as dibenzothiophene, abundant in crude oil, are toxic 
to mammals (Murphy, Amin, Coletta, & Hoffman, 1992); SO2 gas at high levels can cause bronchial 
irritation and trigger asthma attacks in susceptible individuals and long-term exposure to combustion-
related one particulate air pollution is an important risk factor for cardio-pulmonary and lung cancer 
mortality (Pope et al., 2002; Mohebali & Ball, 2008). In addition, incomplete burning of liquid fossil 
fuels causes emissions of aromatic sulfur compounds to the air (Ho & Li, 2002), and the oxidation of 
sulfur compounds in the atmosphere eventually leads to aerosol of sulphuric acid. This aerosol causes 
acid rains, which are responsible for the corrosion of many infrastructures and monuments, and even 
affect several living organisms including agricultural crops, thus causing direct damage to the economy 
(Bender & Weigel, 2011). The aerosol is also harmful to the stratospheric ozone contributing to the hole 
on the Earth’s protective ozone layer (Denis, 2010). Lastly, sulfur compounds even prevent functioning 
of all major pollution control technologies such as automobile catalytic converters (Maricq, Chase, Xu, 
& Laing, 2002), making it more difficult to fight against pollution.

Since gasoline, diesel and non-transportation fuels account for 75 to 80% of the total refinery products 
(Babich & Moulijn, 2003), it is only natural that countries find the reductions of sulfur concentration in 
fuels as the most effective way to decrease the amount of SO2 emitted in to the air and limit its prejudicial 
effects (Mohebali, Ball, Kaytash, & Rasekh, 2008).

Therefore, in response to the increasing concerns with environmental and health and effects of the 
SOx molecules, several countries have started to impose strict limits on the levels of sulfur present in 
the fossil fuels. This forced the petroleum industry to develop techniques which remove the sulfur from 
the fuels, such as hydrodesulfurization (HDS), a process that combines high temperatures and pressures 
with molecular hydrogen in the presence of complex metal catalysts. However, this process is not very 
effective at removing heterocyclic sulfur compounds, which can account to up to 70% of the sulfur in 
petroleum (Borgne & Quintero, 2003), requiring harsher conditions to meet the strict EU sulfur regu-
lations (10 ppm). This deeper desulfurization, with even higher temperatures and pressures, results in 
an increase of pollution (with > CO2 release), a rise of production costs (resulting from higher energy 
consumption) and, sometimes, a loss of octane value (Khedkar & Shanker, 2014; Mohebali & Ball, 
2008; Srivastava, 2012).

For this reason, oil desulfurization has become an increasingly studied area, and there have been 
many different approaches to solve these problems, such as the development of new combinations of 
metal catalysts for HDS, the study of techniques such as catalytic oxidation, desulfurization by adsorp-
tion, chemical desulfurization, physical desulfurization, photochemical desulfurization, photocatalytic 
desulfurization, and biodesulfurization (Srivastava, 2012).

The biodesulfurization (BDS) process consists on the use of microorganisms for the removal of 
sulfur from fossil fuels. Through BDS it is possible to treat most of the compounds recalcitrant to HDS 
at mild operating conditions, without the need for molecular hydrogen, or metal catalysts (Mohebali & 
Ball, 2008). If successfully implemented, it will result in lower environmental costs, with a reduction 
of 70–80% of CO2 emissions, smaller residue production, and reduced energy consumption, which in 
turn translates in reduced capital (two thirds of HDS) and operational costs (10-15% lower) (Kaufman 
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et al., 1997; McFarland et al., 1998; Tuli & Kumar, 2008; Vazquez-Duhalt, Torres, Brenda, & Le Bor-
gne, 2002). This makes BDS an eco-friendly process that can complement the traditional methods of 
desulfurization making them more efficient (Kaufman, Harkins, & Borole, 1998; Linguist & Pacheco, 
1999; Pacheco et al., 1999).

BDS has been extensively studied in the last decades, and much is already known about the process. 
Its efficiency is traditionally determined by following the degradation of model compounds, either on 
aqueous medium, or on model oils composed of organic solvents. When using complex substrates such 
as real oil derivatives, BDS efficiency can also be determined by measuring the reduction in total sulfur 
concentration.

The most commonly used molecule for BDS studies is dibenzothiophene (DBT). This model com-
pound consists of two benzene rings fused with a central thiophene ring, and has a great variety of alkyl 
derivatives which are very abundant in crude oil (Figure 1). Among all the organosulfur compounds 
present in petroleum and its refined products, DBT and its derivatives present the greatest challenge to 
the desulfurization process (Rivera, Navarro-Santos, Guerra-Gonzalez, & Lima, 2014), because their 
structure makes it very hard to remove the sulfur atom contained in the thiophene ring without damaging 
the benzene structure, making them ideal to study.

Many microorganisms are able to use DBT as a sulfur source, and there are several pathways de-
scribed for DBT desulfurization. However, most of the known BDS metabolic pathways involve the 
mineralization of the sulfur atom and complete or partial destruction of the benzene ring which makes 
them unappealing for the biodesulfurization process (Aggarwal, Karimi, Kilbane, & Lee, 2012; Gupta, 
Roychoudhury, & Deb, 2005; Lee, Senius, & Grossman, 1995).

The most studied and widely used pathway in BDS is the “4S pathway” (Kilbane, 2006). Through 
it, microorganisms are able to remove the sulfur atom under aerobic conditions while maintaining both 
benzene rings intact (Figure 2). This results in little loss of calorific potential making it an industrially 
interesting process (Mcfarland, 1999; Mohebali & Ball, 2008).

The “4S pathway” is composed of four enzymes (Ohshiro & Izumi, 1999). Two are monooxygenases: 
a DBT-monooxygenase (DBT-MO or DszC, encoded by the dszC gene) and a DBT-sulfone monooxy-
genase (DBTO2-MO or DszA, encoded by the dszA gene), which are flavin-dependent and require a 
third enzyme, the flavin reductase (DszD, encoded by the dszD gene) for activity. The last enzyme, 
hydroxyphenyl benzene sulfonate-desulfinase (DszB, encoded by the dszB gene), completes the reac-
tion sequence, which results in the production of 2-hydroxybiphenyl (2-HBP), released into the culture 
medium, and SO3

2- that is metabolized by the cell (Boniek, Figueiredo, dos Santos, & Stoianoff, 2014; 
Gray, Mrachko, & Squires, 2003).

Figure 1. Dibenzothiophene and two of its alkyl derivatives, 4-methyl dibenzothiophene and 4,6-dimethyl 
dibenzothiophene 
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This metabolic pathway is widespread throughout several genera of microorganisms, such as Arthro-
bacter, Agrobacterium, Brevibacterium, Klebsiella, Mycobacterium, Nocardia, Paenibacillus, Pseudo-
monas, Xanthomonas, Gordonia and Rhodococcus, with these two last ones being the most promising.

Using biocatalysts, researchers have successfully been able to remove sulfur from such different 
substrates as gasoline, kerosene, diesel, HDS diesel, and light and heavy crude oil. The desulfurization 
values described range from ~30 to ~100%, using different microorganisms and on different distillates, 
being achieved ultra-low sulfur fuels (Bhatia & Sharma, 2012; Guchhait, Biswas, Bhattacharya & Chow-
dhury, 2005a; Kilbane, 2006; Nuhu, 2013). As can be observed from Table 1, which summarizes the 
best desulfurizing strains studied with the respective BDS activity achieved, the highest desulfurization 
was obtained with a genetically modified strain of R. erythropolis KA 2-5-1. This strain has achieved the 

Figure 2. Scheme of the 4S pathway for DBT microbial desulfurization. The sulfur atom is removed from 
DBT keeping C-C structure.
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maximal biodesulfurization activity observed until nowadays (280 µmol g-1 h-1 on DBT). However, this 
value is still much lower than the estimated for a successful commercial process, which would require 
a biocatalyst with desulfurization activity on petroleum of 1.2 mmol g-1 h-1 to 3 mmol g-1 h-1 (Kilbane, 
2006; Kirimura et al., 2004; Monticello, 2000; Okada et al., 2003).

Within a biological desulfurization process, the microorganism must first be cultivated in order to 
produce large amounts of highly active biomass. This biomass is then used in a bioreactor to desulfurize 
an organic phase. At the end of the process, biomass, water and organic phase must be separated. So, even 
if the levels of biodesulfurization activity are brought up to industrial levels there are other bottlenecks 
to the implementation of a cost appealing BDS process.

BDS COST REDUCTION

To make the BDS process economically competitive with the deep hydrodesulfurization process that 
is currently used by petroleum industry, it is necessary to improve several factors, including the cost of 
producing the biocatalyst, and its biocatalytic activity (Mohebali & Ball, 2008).

At the present, there is no economically suitable method for large-scale production of biocatalysts 
(Ma et al., 2006), and a crucial limitation, common within many other biotechnological processes, is 
the cost of the culture medium, which represents 30 to 40% of the total production costs (Silva, Silva, 
Kamida, Goes-Neto, & Koblitz, 2014). So, an important line of work to turn BDS scale-up less costly is 
the optimization of the culture medium aiming to reduce expenses with maximal biocatalyst production.

Cost-Effective Culture Media

In the last years, culture media for the BDS process have been greatly optimized, targeting a reduction 
in overall components for minimum costs, and the elimination of all possible inhibitors. Aiming for a 
cost-effective culture medium for biocatalyst production within the BDS process, three main aspects 
must be considered: sulfur source, BDS promoters and carbon source.

Table 1. Cultures with the highest desulfurization activities

Microbial Strain Specific Activity 
(µmol g-1 (DCW) h-1)

References

Rhodococcus erythropolis KA 2-5-1, wild type 74 Kobayashi et al., 2000

Rhodococcus erythropolis KA 2-5-1, cloned dsz genes 280 Hirasawa, Ishii, Kobayashi, Koizumi, & 
Maruhashi, 2001

Rhodococcus erythropolis KA 2-5-1, cloned dsz genes 250 M. Konishi et al., 2005

Rhodococcus erythropolis IGTS8 72 Kilbane & LeBorgne, 2004

Mycobacterium sp. G3, wild type 178 Takada et al., 2005

Mycobacterium sp. G3, hsp60 promoter 211

(Adapted from Kilbane, 2006).
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Sulfur Source

It is a well-known fact that the nature and concentration of the sulfur source used for the growth of the 
biocatalyst greatly influences the biodesulfurization activity (M. Z. Li, Squires, Monticello, & Childs, 
1996; Oldfield, Pogrebinsky, Simmonds, Olson, & Kulpa, 1997). The promoter and regulatory regions of 
the dsz operon are strongly repressed in the presence of readily bioavailable sulfur, i.e., sulfate, sulfide, 
methionine and cysteine, (M. Z. Li et al., 1996), because desulfurization enzymes are sulfate-starvation-
induced proteins (Tanaka, Yoshikawa, Maruhashi, & Kurane, 2002). Also, in the presence of sulfate 
other enzymes such as sulfite oxiredutase have their activities leading to a preferential consumption of 
sulfate instead of DBT as the source of sulfur to support cell growth (Aggarwal et al., 2012).

In fact, even small concentrations of sulfate or other easy access sulfur sources produce an inhibi-
tory effect on BDS. Mohebali & Ball (2008) describe that for G. alkanivorans strain RIPI90A 14.4 mg 
l-1 sulfate repressed the Dsz phenotype. Silva, Paixão, Teixeira, Roseiro, & Alves (2013) reported 50% 
inhibition at 13.6 ± 0.6 mg l−1sulfate and complete repression at 60 mg l−1 on growing cells. Moreover, 
the bacteria have very low sulfur requirements. In Rhodococcus sp., the cells were found to require 0.1 
mM of sulfur for normal growth (Reichmuth, Hittle, Blanch, & Keasling, 2000). Only 1% of bacterial 
dry weight is sulfur (Stoner et al., 1990), which implies a very low need of this element. Therefore, it 
is important to take into account the nature of the sulfur source used when preparing the medium for 
the biocatalyst.

In order to avoid BDS inhibition, most studies are performed using DBT as the sulfur source for 
biocatalysts production (Mohebali & Ball, 2008). This however becomes an impractical method for 
large-scale production of biocatalysts because of DBT high price, low water solubility, and the growth 
inhibition caused by the 2-HBP, the end product of DBT desulfurization (Guobin et al., 2006; Honda, 
Sugiyama, Saito, & Kobayashi, 1998; Kilbane & Le Borgne, 2004; Ohshiro, Suzuki, & Izumi, 1996; 
Yoshikawa et al., 2002). So, to achieve a commercially efficient method of avoiding repression it becomes 
important to explore alternatives.

Mixed Sources

One alternative that could slightly decrease the cost of the sulfur source is the use of small concentra-
tions of sulfate mixed with DBT. If the concentration of sulfate is limiting, the biocatalyst will consume 
sulfate until it is spent and it will then turn towards the DBT. Silva et al. (2013) demonstrated that G. 
alkanivorans strain 1B cells cultivated with 0.063 mM of sulfate and 0.4 mM of DBT were able to express 
desulfurization activity, despite a reduction of 22.4% when compared with the DBT control. Also, Ma et 
al. (2006) were able to obtain increased desulfurization activity of Rhodococcus sp. cells cultured with 
mixed sulfur sources. A maximum activity of 39 μmol g-1 h-1 was achieved when the concentrations of 
DBT and sulfate were 0.16 mM and 0.04 mM, respectively, which is very similar to what was observed 
with 0.20 mM DBT. This method allows a small reduction on DBT concentration while maintaining 
some BDS activity.

Induction

Another alternative is to use sulfate, which is cheap, as the sulfur source to produce large amounts of 
high-density bacterial culture with no desulfurization abilities, then wash the biocatalyst to remove the 
sulfate, and finally proceed with the induction of the expression of the dsz operon, by exposing the cells 
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to DBT. This translates in a reduction of the amount of DBT necessary to produce an active catalyst, 
leading to a less costly biocatalyst production. Ma et al. (2006) were able to obtain Rhodococcus sp. 
biomass with a maximum value of the desulfurization activity of about 15.6 µmol g-1 h-1 after about 8 h 
of induction. Longer induction lowered the desulfurization activity, probably due to the accumulation of 
toxic metabolites in the medium (Chang et al., 2001; Honda et al., 1998; Monticello & Finnerty, 1985).

Alternative Sulfur Sources

The best option towards a cheaper biocatalyst production would probably be to use alternative sulfur 
sources, which do not inhibit the Dsz phenotype expression, unlike sulfate, and are not as expensive as 
DBT. In this context, several sulfur sources have been tested. In 2002, Yoshikawa et al. tested differ-
ent water-soluble sulfur compounds such as dimethyl-sulfoxide (DMSO), 2-aminoethanesulfonic acid, 
methanesulfonic acid, cysteic acid, p-aminobenzene sulfonic acid, or sodium sulfate as the sole sulfur 
source for the cultivation of R. erythropolis KA 2-5-1. It was found that 2-aminoethanesulfonic acid was 
the most effective to produce a high density of cells, even when compared with DBT. Its use resulted 
in a BDS activity of 111 µmol (2-HBP) g-1 h-1, with a high growth rate (µmax = 0.37 h-1) and a final cell 
concentration of 20 g dry cells weight (DCW) after 89 h.

Many researchers have reported that DMSO can be used as an alternative sulfur substrate that does 
not repress desulfurization activity. (Abbad-Andaloussi, Lagnel, Warzywoda, & Monot, 2003; M. Z. Li 
et al., 1996; Luo et al., 2003; Ma et al., 2006; Mohebali, Ball, Kaytash, & Rasekh, 2007, 2008; Oldfield 
et al., 1997; Olmo, Santos, Alcon, & Garcia-Ochoa, 2005; Tang & Hong, 2014). This happens because 
DMSO is not a substrate for the DBT desulfurizing enzymes (M. Z. Li et al., 1996). So, in the presence 
of DMSO there is a de-repression of the dsz operon in the absence of more readily bioavailable sulfur 
sources (M. Z. Li et al., 1996; Oldfield et al., 1997). Ma et al. (2006) used 1 mM of DMSO as the single 
sulfur source to grow Rhodococcus sp. cells and obtained a cell density of 4.0 g l-1 and desulfurization 
activity of 51.6 µmol g-1 h-1. Based on the cell density and desulfurization activity and comparing with 
results using DBT and Na2SO4, DMSO proved to be the cheapest sulfur source for preparing the bio-
catalyst for oil desulfurization.

Mohebali et al. (2008) showed that the Dsz phenotype was expressed through the 4S pathway in the 
presence of DMSO as the sulfur source for the growth of G. alkanivorans strain RIPI90A. When us-
ing DMSO the growth rate was higher than with DBT, however concentrations higher than 200 µg ml-1 
induced inhibition. This study also concluded that DMSO should be used as the sulfur source for mass 
production of G. alkanivorans RIPI90A, and there should be an induction step with DBT to increase 
resting cell activity. Prior to induction, the specific activity detected was 1.4 µmol (2-HBP) g-1 h-1, and 
following incubation (5 h) the highest specific activity observed was 5.11 µmol (2-HBP) g-1 h-1.

Another option is the use of hydrodesulfurized oil or waste engine oil as the sulfur source. This method 
employed by Mukhopadhyaya, Chowdhury, & Bhattacharya (2005), consists on the supplementation 
of the culture medium with an oil or derivative rich in sulfur, as a way of stimulating desulfurization 
activity of the biocatalyst, while promoting pre-adaptation of the culture to the BDS conditions. These 
sulfur sources are cheap, and/or easily available in a refinery making them very interesting for the BDS 
process. However these oils are very complex and could have inhibitors that limit high density microbial 
growth. Moreover, the emulsification resulting from the interaction of water, bacteria and oil should 
difficult the separation of the biomass making it impractical for some processes.
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Biodesulfurization Promoters

Nitrogen Source

Glutamic acid can be both a carbon and nitrogen source, so Martin, Alcon, Santos, & Garcia-ochoa (2004) 
tested the importance of the presence of an inorganic nitrogen source for the growth and desulfurization 
by Pseudomonas putida CECT5279. They determined that the presence or absence of NH4Cl in the 
culture medium with glutamic acid did not influence the growth of the microorganism. But, when both 
nitrogen sources were present the desulfurization rate was 10 to 20% higher. So, the optimal conditions 
for desulfurization were determined to be an initial concentration of 20 g l-1 glutamic acid supplemented 
with 670 ppm of NH4Cl.

NADH Promoting Substances

The 4S pathway is NADH dependent, since this molecule is necessary to regenerate the DszA and DszC 
enzymes. Moreover, the regeneration of NADH also implies the use of other key cofactors, such as ATP, 
the basic source of energy for most metabolic reactions. ATP may be even more important since it seems 
to be implicated in the uptake of DBT (Z. Wang et al., 2011), and in the formation and consumption of 
sulfite and sulfate for biomass production during DBT metabolism (Aggarwal et al., 2012).

The industrial BDS process will depend on the reuse of the biocatalyst, for economic efficiency. 
However, in long-term use of the biocatalyst there is a loss of BDS activity that is associated with a loss 
in redox potential and energy. So, in order to allow the greater reuse of the bacterial cells, it became 
important to study ways to regenerate molecules such as NADH, FMNH and ATP. In this context, 
Martinez, Santos, Alcon, & Garcia-Ochoa (2014) studied some of the compounds related to the Krebs 
cycle dehydrogenases able of producing NADH from NAD+ as possible co-substrates to enhance the 
BDS process. Citric and succinic acids were used in order to study both extremes of the Krebs cycle, 
and acetic acid was selected due to the metabolic importance of its active derivative, acetyl-CoA. The 
results obtained from this work showed that the addition of these cofactors resulted in an increase of 
the yield and rate of biodesulfurization by P. putida CECT5279 cells. Amongst the three co-substrates 
tested, acetic acid proved to be the most influential, at a concentration of 1.5% the yield of the process 
increased up to 140% when using single-aged cells in a batch process and to 122% using an optimized 
mixture of cells in a fed-batch process.

Besides NADH, FMNH is also a fundamental cofactor for the regeneration of the 4S pathway. So, 
some works on how to maintain the levels of intercellular cofactors of the biocatalyst during the BDS 
process have been carried out. Nicotinamide and riboflavin are precursors of NADH2 and FMNH2, re-
spectively. As a consequence, to reduce the loss of BDS efficiency due to immobilization and excessive 
reuse of the biocatalyst, Derikvand, Etemadifar, & Biria (2014) applied the two co-factor precursors 
and recorded a reduced loss in cell viability and desulfurization activity after each step, enhancing the 
BDS efficiency by more than 30% after four reuse steps. Therefore, by providing essential co-factors in 
4S pathway, it is possible to increase the efficiency of the biocatalyst, allowing for more cycles of BDS 
for each batch of cells produced, thus effectively lowering the cost of the process.
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Carbon Sources

Alongside the sulfur source, carbon is probably the most important component of a culture medium. 
Depending on the chosen carbon source the biocatalyst may present great changes on BDS efficiency 
and growth rate. Traditionally, most microbial biotechnological studies were performed with glucose as 
the single carbon source to demonstrate the biocatalysts activity. Since most microorganisms are gluco-
philic, it is common sense that this will result in a better expression of the strains metabolic properties 
(Alves & Paixão, 2014b; Alves et al., 2005; Mohebali et al., 2008; Nuhu, 2013).

However, in recent years, there have been some BDS studies which have revealed that other carbon 
sources might be better suited for this process. In this context, some theoretical studies were performed 
based on the sequenced genomes of R. erithropolis and G. alkanivorans. These studies analyzed the 
effects on growth rate and desulfurization efficiency of several carbon sources, such as acetate, citrate, 
ethanol, formate, fructose, fumarate, gluconate, glucose, glutamate, glycerol, lactate, malate, oxaloac-
etate, oxoglutarate, pyruvate, and succinate.

According to results presented by Aggarwal, Karimi, & Ivan (2013) and Aggarwal, Karimi, & Lee 
(2011), ethanol appears to be the best for both growth and desulfurization on both genera. For G. al-
kanivorans the carbon sources as compared to ethanol have the 100% basis rank as follows: fumarate 
(80%) > oxoglutarate (78.79%) > pyruvate (78.43%) > glutamate (78.24%) > succinate (78%) > acetate 
> fructose=glucose=lactate (76.86%) > glycerol (75%) > citrate (71.88%) > oxaloacetate (69.70%) > 
malate (69.11%) > formate (50%). Aggarwal et al. (2013) proceeded to explain that NADH production 
and usage could justify why ethanol is the best carbon source. Since the desulfurization activity requires 
high levels of NADH (4 moles for each 1 of DBT), and the cell still requires NADH to grow, priority 
should be given to a carbon source that provides more NADH during its metabolism. And this was the 
case for ethanol, since it led to the production of two additional moles of NADH for each one of its own 
mol. This was the highest among all tested substrates, and thus it seems to be the best substrate for both 
growth and desulfurization.

However, Alves & Paixão (2014b) reported a novel behavior of a strain isolated in 2005. G. alkaniv-
orans strain 1B has now been described as fructophilic bacterium. This means that, contrary to what was 
predicted, this strain prefers fructose to glucose for both growth and desulfurization. In fact the lowest 
values for the growth rate (0.025 h−1), 2-HBP production rate (1.80 μM h-1) and specific production rate 
(q2-HBP = 1.22 μmol g-1 h-1) were obtained in glucose grown cultures. When cultivated with an equal mix 
of glucose and fructose as carbon source, the value of q2-HBP increased to 1.90 μmol g-1 h-1. The highest 
values for cell growth (μ = 0.091 h−1), 2-HPB production (9.29 μM h-1) and specific production (q2-HBP 
= 2.12 μmol g-1 h-1) were obtained when strain 1B was desulfurizing DBT, in the presence of fructose 
as the only carbon source. These results translate into an increase of over 5-fold in the overall 2-HBP 
production rate and of about 74% in q2-HBP, which clearly demonstrate the strain fructophilic properties.

The metabolic characteristics observed in G. alkanivorans strain 1B highlight that there are still to 
many unknown factors associated to each strain behavior, and thus theoretical models, even if well per-
formed, can only be applied to each strain individually and not extrapolated to an entire species.

Alternative Carbon Sources

The high cost of the carbon source necessary to cultivate the biocatalyst is one of the biggest barriers 
for the applicability of BDS at the industrial level. Thus, in order to reduce the costs associated with this 
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process, it is important to search for cheaper alternative carbon sources that can contribute to produce 
high quantities of microbial biomass with the reducing equivalents required for BDS reactions. In the 
last decade several examples of alternative feedstocks have been explored, many of which based on 
the use of agroindustrial residues because of their low cost, and high availability. However the use of 
these complex carbon sources brought upon several additional problems, such as the need to perform 
prior hydrolysis, and/or the need to remove excess sulfate (Silva et al., 2013; Werther, Saenger, Hartge, 
Ogada, & Siagi, 2000).

• Glycerol: Glycerol is a byproduct of the biodiesel production, so with the increasing production 
of biodiesel as an alternative fuel, there will be an increase on the availability of this low-cost 
carbon source. Abo-state, El-Gendy, El-Temtamy, Mahdy, & Nassar (2014) and Tang & Hong, 
(2014) studied the use of glycerol to produce biocatalysts with desulfurization ability. However, 
only Tang & Hong (2014) reported that glycerol is the most suitable carbon source for the growth 
and desulfurization activity of their biocatalyst (strain HT1). They determined that with 5 g l-1 
glycerol, 102 mg l-1 DBT and 2 g l-1 NH4NO3, at pH 7 and 30°C for four days cultivation time, the 
maximum desulfurization was obtained by strain HT1.

• Recycled Paper Sludge: The first report on the utilization of alternative raw materials as carbon 
sources in biodesulfurization studies was performed by Alves, Marques, Matos, Tenreiro, & Gírio 
(2008). They proposed the use of recycled paper sludge (RPS) as carbon source, since RPS is a 
very abundant type of waste resulting from the pulp and paper industry. The sludge generated by 
the water treatment facilities is still a major disposal problem which needs to be dealt with (Oral 
et al., 2005). However, after neutralization, RPS is very rich in cellulose (35%), xylan (10%) and 
lignin (20%), % dry weight, which can be hydrolyzed into glucose, xylose and cellobiose making 
RPS an interesting feedstock.

In their work, Alves, Marques, et al. (2008) produced several different hydrolyzates by enzymatic 
saccharification of RPS and tested them as nutrient source for low-cost DBT desulfurization by G. 
alkanivorans strain 1B at a concentration of 10 g l-1 of glucose. Under these conditions strain 1B was 
able to grow, but it wasn’t able to desulfurize. This fact was due to the concentration of sulfate present 
in the RPS hydrolyzate. So, further work was carried accounting the prior sulfate removal. The sulfate 
was removed by simple dialysis, and after that strain 1B was able to consume 250 µM DBT in 96 h dis-
playing a maximum q2-HBP of 1.1 µmol g-1 h-1. The maximum specific growth rates, µmax, for growth with 
non-dialyzed and dialyzed hydrolyzate were 0.051 h-1 and 0.035 h-1, respectively. Both these values are 
above to what is described for glucose µmax = 0.025 h-1 (Alves & Paixão, 2014b). Further investigation 
on the formulation led to the development of an ideal medium of RPS hydrolyzate supplemented with 
phosphates, ammonia, magnesium and zinc. Zinc was found to have a great influence on both growth 
and BDS activity by G. alkanivorans strain 1B (Alves, Matos, Tenreiro, & Gírio, 2008).

Therefore the results obtained by Alves, Marques, et al. (2008) clearly indicate that RPS hydrolyzates 
can be used as a cheaper alternative carbon source for DBT desulfurization by G. alkanivorans strain 
1B. Since RPS wastes are harmful to the environment and must be disposed of, their potential as carbon 
source makes them very interesting for biotechnological processes.

• Carob Pulp: The use of byproducts from the carob processing industry as an alternative carbon 
source is already common for several bioprocesses (Carvalheiro, Moniz, Duarte, Esteves, & Gírio, 
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2011; Mendes et al., 2007; Sánchez-Segado et al., 2012). Carob industrial wastes are small carob 
kibbles with a high content of soluble sugars, mainly sucrose, glucose and fructose, which are 
easily extractable by water producing sugar-rich liquors (Manso, Nunes, Raposo, & Lima-Costa, 
2010). However, these liquors are also rich in sulfates and easy access sulfur sources, and so they 
cannot be directly used for BDS.

In this context, Silva et al. (2013) described an optimized formulation of a culture medium, using 
carob pulp liquor as an alternative carbon source, for the production of G. alkanivorans strain 1B in a 
BDS process, aiming for a cost reduction associated to the process. In this work, they treated the carob 
pulp liquor with barium chloride (BaCl2) for prior sulfate removal and demonstrated the potential of this 
agroindustrial byproduct as a renewable and cheaper alternative carbon source for BDS. Prior to the treat-
ment with BaCl2, no 2-HBP production by strain 1B was observed within 125 hours of the growth on carob 
pulp liquor, but in the optimized treated liquor strain 1B was able to produce 237 µM of 2-HBP, which 
is a similar result to what was obtained in the RPS dialyzed hydrolyzate (Alves, Marques, et al., 2008).

• Sugar Beet Molasses: Sugar beet molasses (SBM) is a very abundant industrial byproduct very 
rich in sucrose (∼50%, w/v). Because of its composition, SBM can be easily hydrolyzed to glucose 
and fructose by acidic or enzymatic hydrolysis, with the advantage of having a lower price of com-
mercialization ($100–$150 per ton, which is 5 to 6 times less than sucrose).-

Similarly to carob pulp liquor, SBM contains a large concentration of readily available sulfur sources, 
which can completely inhibit the BDS process. So, before testing the SBM as a potential alternative car-
bon source it is necessary to perform a prior sulfate removal as described by Silva et al. (2013). Thus, to 
express the dsz operon of the strain 1B, Alves & Paixão (2014a) treated the sugar beet molasses (SBMt) 
with 0.25% BaCl2 (w/v) to reduce sulfates to residual levels prior to use it as carbon source for DBT 
desulfurization. With the SBMt, the strain 1B achieved a μmax of 0.04 h-1 and maximum 2-HBP produc-
tion rate of 2.56 μM h−1, which resulted in a q2-HBP of 2.20 μmol g−1 h−1. The desulfurization results were 
better than those obtained with commercial sucrose (1.91 μM (2-HBP) h-1; q2-HBP = 0.718 μmol g-1 h-1 
from Alves & Paixão, 2014b), probably due to other nutrients present in a complex feedstock such as 
SBM that can act as inducers.

Moreover, the DBT desulfurization process by G. alkanivorans strain 1B using SBMt was further 
enhanced using a simultaneous saccharification and fermentation (SSF) approach with (1% v/v) Z. bailii 
strain Talf1 crude extract with invertase activity. The results obtained showed that this approach allowed a 
faster growth of strain 1B with a μmax of 0.08 h−1, 2-fold higher than in the absence of enzyme extract, and 
a 2-HBP production rate of 7.78 μM h−1 corresponding to a q2-HBP of 3.12 μmol g−1 h−1 (Alves & Paixão, 
2014a). Comparing this q2-HBP value to others prior obtained with the same strain grown in pure com-
mercial substrates, such as glucose (1.03 μmol g−1 h−1 from Alves et al. (2005)) and fructose (2.12 μmol 
g−1 h−1 from Alves & Paixão, 2014b), an enhancement of about 203 and 47% was achieved, respectively.

Arez, Alves, & Paixão (2014), also using the SSF approach with commercial sucrose and Z. bailii 
Talf1 enzymatic extract within a DBT desulfurization process by strain 1B, observed a μmax of 0.07 h−1 
and a 2-HBP productivity of 5.80 μM h−1, corresponding to a q2-HBP of 2.60 μmol g−1 h−1. These desulfur-
ization values, in addition to those obtained by Alves & Paixão (2014a) in the SSF with SBMt, translate 
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the advantage of the SSF approach towards enhanced BDS when sucrose or sucrose-rich feedstocks are 
used as carbon source. The higher desulfurization obtained with the SBMt highlights the potential of this 
renewable feedstock as a low-cost alternative carbon source to enhance BDS by G. alkanivorans strain 1B.

• Jerusalem Artichoke: Jerusalem artichoke (JA) is a species of sunflower that has recently gained 
much attention as a renewable feedstock, especially towards biofuels (bioethanol, biodiesel), be-
cause its tubers present high levels of inulin reaching 50–80% of dry matter (Cheng et al., 2009; 
L. Guo, Zhang, Hu, Dy Ryu, & Bao, 2013; L. Li, Li, Wang, Du, & Qin, 2013; Liang et al., 2012). 
Inulin is a carbohydrate composed of linear chains of β-2,1-linked D-fructofuranose molecules 
terminated by a glucose residue through a sucrose-type linkage at the reducing end, which can 
be easily hydrolyzed into a fructose-rich hydrolyzate either using inulinases or acidic hydrolysis.

The potential of JA juice as an alternative carbon source, rich in fructose, towards BDS by the 
fructophilic bacterium G. alkanivorans strain 1B was exploited by two different approaches, since this 
bacterium is not able to metabolize pure inulin as carbon source. One approach used was the SSF with 
Z. bailii crude inulinases (Paixão, Teixeira, Silva, Teixeira, & Alves, 2013), in which a maximum 2-HBP 
production rate of 4.80 μM h−1 was attained from JA juice (∼10 g l-1 of total reducing sugars). In this 
study, no sulfate removal procedure was used, which interfered with the final desulfurization productiv-
ity. In fact, JA, as a complex natural material, contains very high concentrations of sulfates (> 450 mg 
l-1) that will inhibit the desulfurization and consequently decrease the 2-HBP production. So, the second 
approach was the application of acidic hydrolysis of the JA juice, combined with BaCl2 precipitation for 
sulfate removal (Silva, Paixão, Roseiro, & Alves, 2014). In their study, Silva et al. (2014) first optimized 
the sulfate removal process for JA juice (0.5% (w/v) BaCl2 at pH 8.73 and 30ºC for 36 h with agitation) 
and then performed the DBT desulfurization process by G. alkanivorans strain 1B using the best treated 
JA juice (∼25 g l-1 of total reducing sugars). In this process, strain 1B presented a μmax of 0.06 h-1 with a 
total conversion of 400 µM DBT into 2-HBP in less than 90 h, attaining a 2-HBP maximum production 
rate of 28.2 μM h-1 and a q2-HBP of 5.06 μmol-1 g-1 h-1, which are 3.6-fold and 1.6-fold higher, respectively, 
than that observed for SBMt by Alves & Paixão (2014a). Moreover, this q2-HBP is similar to that reported 
by Mohebali et al. (2008) using optimized resting cells of another G. alkanivorans, the strain RIPI90A. 
In both studies the specific production rate was 2-fold higher than the q2-HBP of 2.54 μmol-1 g-1 h-1 recently 
predicted by Aggarwal et al. (2013) using in silico modelling for a G. alkanivorans, assuming an uptake 
of 20 mg per g (DCW) per h of glucose or fructose.

The results, using JA juice, highlight the efficiency of the treatment applied to JA juice in making 
this agromaterial a promising low-cost renewable feedstock for improved BDS by the fructophilic strain 
1B. Once again, the results obtained using a cheaper alternative carbon source demonstrate the advan-
tages of exploring renewable feedstocks as promoters of the metabolic activity towards a less-expensive 
biocatalyst production, which is a fundamental step for the application of BDS at the industrial level.

BDS OPERATIONAL CONDITIONS

After the selection of a microorganism with characteristics suitable for the desulfurization process and 
the determination of the optimal cultivation conditions, the operational settings are of critical impor-
tance for BDS scale-up. The industrial application and cost effectiveness of biodesulfurization process 
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is highly dependent on optimization in four main areas: 1) biocatalyst application, 2) bioreactor design 
and parameters, 3) biomass recovery and water separation on the process downstream, and 4) integra-
tion on the refinery operation.

Biocatalyst Application

Process Setup

Biodesulfurization may use as biocatalyst whole cells, free cell extract or pure enzymes, each with its 
own advantages and disadvantages.

Some consider the use of pure enzymes as good option, since they require much less water than 
whole cells to play their catalytic role with only a small film being needed, which would be an interest-
ing alternative for the scale-up process (Vazquez-Duhalt et al., 2002). However, enzymes purification 
is an expensive process. To surpass this problem, other researchers suggest the use of free cell extracts, 
which do not require the purification and maintain most enzymatic activity. But both to pure enzymes 
and cell free extracts, there is still a need of supplying NADH and FMNH2 for the biochemical reactions 
making these alternatives more expensive and less practical. Moreover, the desulfurization activity has 
been reported to be lower when free cell extract is used (0.01 g (DBT removed) g-1 (protein) h-1) than 
when whole cells are used (0.4 g (DBT removed) g-1 (dw biomass) h-1) (Setti, Lanzarini, & Pifferi, 1997).

These setbacks make whole cells biodesulfurization the most consensual approach for the treatment 
of DBT (Soleimani, Bassi, & Margaritis, 2007). Biodesulfurization based on whole cells can take place 
either by growing or resting cells.

Growing cells are easily applied in bioreactor, with microbial growth and desulfurization occur-
ring simultaneously. However, these systems present a number of constrains. In general, the process is 
rather slow, achieving reduced desulfurization yields (Shennan, 1996) and requires the need for complex 
growth media, which can interfere with the product analysis due to the presence of a complex mixture of 
metabolites and medium components (J. Konishi, Ishii, Onaka, Okumura, & Suzuki, 1997). Moreover, 
the desulfurization activity is repressed in the presence of easy access sulfur sources or 2-HBP, the end-
product of the 4S pathway that also inhibits cell growth (M. Z. Li et al., 1996; Nekodzuka, Nakajima-
Kambe, Nomura, Lu, & Nakahara, 1997; Ohshiro et al., 1996).

Resting cells, non-growing cells that retain most of their enzymatic activity, have shown advantages 
over growing cells, such as greater resistance to 2-HBP inhibition. Kobayashi et al. (2001) observed 
that 80% of desulfurization activity of resting cells of R. erythropolis KA 2-5-1 remained even in the 
presence of 2-HBP at 10 mM in a model oil system, reinforcing the benefit of using these cells for a 
scale-up of biodesulfurization process.

These cells can also be used in much higher concentration than growing cells (Borgne & Quintero, 
2003). Many authors have focused in the production of high cell density cultures that can be used for 
biodesulfurization as resting cells resulting in a reduction of reaction volume (Honda, Sugiyama, Saito, 
& Kobayashi, 1998; M. Konishi et al., 2005; Wang & Krawiec, 1996). Honda et al. (1998) used a fed-
batch reactor assembly to grow R. erythropolis IGTS8 in the presence of sulfate and achieved a cell 
concentration of 33 g l-1 in the best conditions, compared to only 1.1 g l-1 observed when DBT was used 
as sulfur source, which could be attributed to the growth inhibition by 2-HBP. Chang et al. (2001), us-
ing a different biocatalyst, Gordonia nitida CYKS1, achieved a cell concentration of 92.6 g l-1. In both 
cases desulfurization induction time was around 4 h.
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However, high density resting cells production also has some disadvantages since this process may 
give rise to cross contaminations with C-C attacking microorganisms with higher growth rates. More-
over, economically relevant sized facilities are required to prepare the biocatalyst, with issues related to 
the maintenance of desulfurization activity and transport to desulfurization site needing to be addressed 
(Onodera-Yamada, Morimoto, & Tani, 2001).

This problem might be minimized using lyophilized cells. Patel, Killbane, & Webster (1997) tested 
biodesulfurization in an aqueous-hydrocarbon phase with freeze-dried cells of R. erythropolis IGTS8, 
revived in a minimal amount of water, and despite a loss of 20% of desulfurization activity in the freeze 
drying process, there was only a 2.8% of activity reduction after 10 weeks at -80oC. This opens the pos-
sibility of producing the biocatalyst in a different location of the BDS refinery, since a much smaller 
biomass volume allows for easier transportation. Furthermore, desulfurization conditions of lyophilized 
cells are more flexible. Luo et al. (2003) reported that the desulfurization ability of lyophilized cells of 
Pseudomonas delafieldii R-8 was not affected by pH’s ranging in 4.6-8.5, unlike growing cells in which 
the growth was inhibited at pH below 5.

Nano-Upgrading of Biocatalyst

Biocatalyst upgrading is another trend followed for increased efficiency of the process. Functionaliza-
tion of the microorganism cell surface is a promising trend in bio-nanotechnology (Ansari, Grigoriev, 
Libor, Tothill, & Ramsden, 2009).

One of the limiting factors for biodesulfurization is the transfer of poly-aromatic sulfur heterocycles 
such as DBT, from oil to water and from water to cells (Guobin, Huaiying, Weiquan, Jianmin, & Hui-
zhou, 2005). This constrain can be minimized by the use of nanosorbents such as γ-Al2O3 or Fe3O4 that 
selectively absorb those compounds from the organic phase at a higher rate than desulfurization, thus 
removing this limitation on the process. Guobin, Huaiying, Weiquan et al. (2005) reported that assem-
bling γ-Al2O3 to microbial cells led to a two fold increase in desulfurization rate of P. delafieldii R-8 
compared to original cells, making DBT and 2-HBP transfer no longer a limiting factor.

The adsorption of Fe3O4 nanoparticles on the surface of R. erythropolis IGST8 led to a 56% increase 
in desulfurization, probably related to an increase in membrane permeability to DBT, and also allowed 
an easy separation of the microbial biomass given the super magnetic characteristics of these nanopar-
ticles (Ansari et al., 2009).

Nano-shellization of desulfurizing bacteria with bio-hybrids based in amino acids was reported by 
Jiang, Ying, Liu, Shen, & Hu (2014). These self-encapsulated cells not only gained the ability to be reused, 
but these shells also served as a platform in which other inorganic compounds could be incorporated to 
upgrade desulfurization without affecting the cell metabolic activity. The authors reported a 62% increase 
of the desulfurization rate, when cells were functionalized with TiO2 nanoparticles, known for increased 
desulfurization efficiency under UV light. These authors further reported the post-functionalization of 
cells with magnetic nanoparticles, allowing for an easier mechanism of biomass recovery.

Biocatalyst Immobilization

Another constrain for a large scale BDS is related to the utilization of free cells, which end up being 
suspended on the oil/water mixture, requiring costly downstream processing for their removal and also 
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a great control to avoid cell contaminations (X.-L. Guo, Deng, Xu, & Wang, 2006). Furthermore free 
cells are prone to shear stress when applied in a bioreactor, due to the requirements of mixing the oil 
and water phases.

Given the high demand of water for biological processes, application of free cells to biodesulfurization 
scale-up would require massive amounts of water and reactors of an unimaginable scale, thus hindering 
the possibility to make industrial application a reality. So, biocatalyst immobilization emerges as an 
interesting solution presenting marked advantages such as: ease of recovery and re-use of cells, better 
stability to different reaction conditions and components, and lower biocatalyst contamination of final 
product (Zhang, Prabhu, & Lee, 2010). 

Many immobilization methods have been successfully used for biocatalysis and biodegradation 
(Bardania et al., 2013; Dinamarca et al., 2014; Gunam, Sujaya, Aryanta, Tomita, & Asano, 2013; He et 
al., 2012; F. Li et al., 2005; Y.-G. Li, Gao, Li, Xing, & Liu, 2009; Wu, Lin, & Chan, 1994) and also for 
biodesulfurization (Nuhu, 2013). Immobilization studies are mainly focused on adsorption or entrap-
ment/ encapsulation. Adsorption uses inorganic supports, such as Al, Si, Ti, Celite or Sepiolite, or inert 
organic supports such as lignin, with specific area and porosity in which microbial biomass adheres 
(Chang, Chang, Ryu, & Chang, 2000; Dinamarca et al., 2010; Huaiying, Guobin, Huizhou, & Jianmin, 
2007; Mukhopadhyaya, Chowdhury, & Bhattacharya, 2007). Biocatalytic immobilization by adsorption 
is advantageous in relation to entrapment when considering the better mass transfer and fewer steric 
problems with large sulfur containing molecules (Guobin, Jianmin, Chen, Huizhou, & Jiayong, 2005). 
Despite these advantages, adsorption is not a strongly followed strategy as it is a simple physical process 
and thus cell attachment strength is not enough to avoid a quick detachment from the adsorbent (Dai, 
Shao, Qi, & Ding, 2014).

Although entrapment and encapsulation refer to different methodologies, with the first referring to 
the trapping within polymeric structures and the second to the formation of a continuous membrane 
around encapsulants that wholly coats it, entrapment may be used as a more general term (Willaert & 
Baron, 1996). Entrapment has obvious advantages for cell immobilization, in relation to adsorption, as a 
mean to prevent cell lost. Ideally, a carrier for entrapped cells should have a highly porous structure that 
allows for non-hindered diffusion of solutes and dissolved gas without the loss of cells. Several polymers 
have been tested in desulfurization, all with advantages and drawbacks. Agar and alginates have found 
deep application in industrial processes for their biocompatibility, simplicity and low cost (Blandino, 
Macías, & Cantero, 1999). However, their reduced mechanical strength leads to elevated cell leakage, 
thus compromising their durability. Naito et al. (2001) tested photo-crosslinked pre-polymers (ENT-4000 
and ENTP-4000) and polyurethane (PU-3 and PU-6) in the entrapment of R. erythropolis KA 2-5-1 cells, 
as well as agar and alginates. Polyurethane showed high toxicity to the microorganism, but ENT-4000 
showed promising results. Besides being able to retain the biomass, it increased the biocatalyst longevity 
to 900 h, in contrast with the 192 h of maximum longevity previously reported by Pacheco et al. (1999). 
Despite the lower desulfurization activity in relation to free cells (attributed to diffusion limitations) 
and the high cost of this pre-polymer, Naito et al.(2001) reported to have achieved these results with no 
water addition to the n-tetradecane model oil, which presents as a major breakthrough on the feasibility 
of biodesulfurization in an industrial scale greatly simplifying separation steps.

Polyvinyl alcohol (PVA) is a nontoxic, biologically compatible, low-cost polymer also being used for 
cell entrapment. It can be prepared with chemical reagents such as boric acid (Hashimoto & Furukawa, 
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1987) or with no chemical reagents by the freezing-thawing technique (Lozinsky & Plieva, 1998). Guo-
bin, Jianmin, Chen et al. (2005) used this technique for the preparation of P. delafieldii R-8 magnetic 
beads. These authors report to have been able to reuse PVA-R8 beads for 12 cycles, without significant 
decrease in desulfurization activity and with a much higher resistance to temperature.

The desulfurization activity of Sphingomonas subarctica T7b was studied either in free resting cells 
or immobilized in different PVA and sodium alginate mixtures by Gunam et al. (2013). They reported 
a higher stability to pH and temperature variations in immobilized cells when compared to free cells. 
Furthermore, they also achieved slightly higher desulfurization rates than those obtained for free cells, 
surpassing one of the limitations of cell entrapment, and the biodesulfurization activity remained stable 
for 8 cycles with reactivation between cycles. These results indicate PVA as a good candidate for ap-
plication in large scale biodesulfurization, given its low cost, stability and biocompatibility.

In overall, the integration of the immobilization techniques into BDS allows improved results and 
increase of process efficiency, besides enhancing separation and biocatalyst reutilization, with great 
impact in biocatalyst application costs.

Bioreactor System

Mass Transfer

The setup of a fossil fuels BDS process usually occurs in a byphasic system: an aqueous and an oil phase, 
which in fact can be considered a four phase system, if we consider a gas phase- the oxygen needed for 
the biocatalytic process; and a solid phase- the microbial biomass (Foght, 2004) One of the biggest chal-
lenges for the industrial application of BDS is related to the immiscibility of water (needed for microbial 
activity) with hydrocarbon feedstocks, which results in a low mass transfer between phases.

In this context, the desulfurizing microorganisms can be distinguished in relation to the character of 
their membranes, being either hydrophobic of hydrophilic. The hydrophobic membrane microorgan-
isms, such as Rhodococci and Gordoniae, have better resistance when used in water-oil environments 
and easier access to sulfur containing substrates dissolved in the organic phase, adhering to the oil-water 
interface (Abbad-Andaloussi et al., 2003). In contrast, the hydrophilic membrane microorganisms, 
such as Pseudomonas, need the substrates to be dissolved in the aqueous phase (Caro, Boltes, Letón, & 
García-Calvo, 2007), making the hydrophobic membrane microorganisms a better candidate for large 
scale biphasic systems (Monticello, 2000).

Oil/water (o/w) volume ratio is amongst the factors that most influence the cost and productivity 
of large scale BDS (Luo et al., 2003). In one hand, microorganisms require water for their biocatalytic 
activity and high oil ratios are reported to be toxic to the biocatalyst, with strong impact in BDS (Caro, 
Boltes, et al., 2007) also hindering oxigen difusion when aqueous phase is below 70% (Guchhait, Biswas, 
Bhattacharya, & Chowdhury, 2005b). But in the other hand, very low ratios would imply huge costs on a 
scale-up process, both in reactor scale and separation costs. Furthermore, high water contents decreases 
the solubility and bioavailability of hydrophobic substrates (Vazquez-Duhalt et al., 2002) and hinders 
the dissolution of BDS products in the organic phase, thus limiting process productivity (Kobayashi et 
al., 2001).

Strategies such as encapsulation, as above stated, can drastically increase oil/water ratios, since the 
water needed for the catalytic activity is immobilized together with the biocatalyst, thus allowing to 
foresee a future BDS process without the need of biphasic systems.
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Bioreactor Design

Knowing the importance of an efficient mass transfer, a good contact surface between phases is needed 
aiming at getting the BDS system scale-up and has been the focus of several bioreactor design and tech-
niques, which have been optimized to overcome the mass transport limitations.

Most initial bioreactor studies were performed in stirred tank reactors (STR) (Pacheco et al., 1999; 
Chowdhury & Duttagupta, 2005), and its application has been reported in batch, fed-batch and continu-
ous approach, with the last showing promising results for BDS scale-up (Schilling, Alvarez, Wang, & 
Cooney, 2002). The optimization of mass transport in this type of reactor is highly dependent on impel-
ler design and speed (Abín-Fuentes, 2013) since a high input of energy and impeller speed is needed 
in order to remove mass transfer constrains. Monticello (2000) introduced a conceptual design for the 
continuous desulfurization of fuels. This author emphasized the need of three reactors working in tandem 
in order to achieve very low sulfur concentration oil. Yang et al., (2007) presented an interesting design 
of a continuous stirred tank reactor where aqueous and organic phases were kept partitioned, allowing 
for an actual separation between these phases with the obvious downstream advantages.

The elevated operational costs in power input for mixing and aeration, the high shear stress and poor 
air-liquid contact of STR’s make the utilization of internal loop airlift reactors an interesting alterna-
tive (Talvy, Cockx, & Line, 2005) and, despite few oil application studies, a simulation performed by 
Nandi (2010) reports the applicability towards ultra-low sulfur diesel. Despite the advantages of these 
reactors, achieving a fine emulsion still requires high power input to surpass mass transfer constrains, 
and so electrically driven phase contactors could be used to disperse fine droplets between immiscible 
phases (T. C. Scott & Wham, 1989). This would allow lower power consumption and a reduction of the 
water demand, as low as only 5% (Kaufman et al., 1997).

All these types of free cells reactors, however, lead to difficulties in separation of the biocatalyst. 
To avoid this problem many researchers have focused on immobilized cell reactors, which allow for a 
simpler downstream process and continuous operation. A fluidized bed reactor (FBR) configuration was 
reported by the Argonne National Laboratory (ANL), where biocatalyst was immobilized in beads and 
was fluidized by oxygenated gasoline, aerated in a separated unit (McFarland et al., 1998). An alterna-
tive reactor design with immobilized cells was also reported by Amin (2011). This author assembled a 
Vertical Rotating Immobilized Cell Reactor (VRICR) where cells were grown attached to Immobilized 
Biomass Units (IBUs) in a first stage, and carried out desulfurization in a second one. This design 
achieved 100% sulfur removal of a model oil continuously for more than 120 h. A very different design 
was developed by Mukhopadhyaya, Chowdhury, & Bhattacharya (2006): a bio-trickling reactor. In this 
system, the bacterial cells were immobilized in spheres and then submitted to a stream of oil in a small 
reactor, with controlled pressure and aeration, successfully achieving a reduction of 99% sulfur content 
in the tested oil, without the need to separate neither water nor biocatalyst from the final product.

Emulsifiers

Another strategy to improve mass transfer between water and hydrocarbon phases of a BDS system is 
the addition of surfactants (W. Li & Jiang, 2013). Surfactants are surface-active amphipathic agents with 
both hydrophobic and hydrophilic components, which act in the interphase of fluids with different po-
larities such as water-hydrocarbon, reducing surface tension and aiding in the emulsion or solubilization 
between phases (Rouse, Sabatini, Suflita, & Harwell, 1994). Surfactants have been reported to increase 
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BDS yield, increase DBT diffusion rate in aqueous phase and avoid end-product accumulation that is 
related to BDS inhibition (Caro, Letón, García-Calvo, & Setti, 2007). Many of these compounds have 
been applied to desulfurization. Patel et al. (1997) applied several surfactants to R. erythropolis IGTS8 
desulfurization of DBT, using hexadecane as hydrocarbon phase and obtained interesting results with 
oleic diethanolamine and Triton N101, achieving 2-fold higher 2-HBP production.

Improvements were also obtained with Tween-80 on DBT desulfurization in hexadecane by Cory-
nebacterium sp. ZD-1, resulting in a 50% increase on 2-HBP production (M. Wang, Li, Shi, Wang, & 
Feng, 2006). The same agent improved sulfur removal of a previously hydrotreated diesel from 76.8% 
to 91.2% by the microorganism R. erythropolis 1awq (Feng et al., 2006).

Surfactants can also be used to decrease viscosity of heavy oils that are scarcely used due to their high 
sulfur content, thus increasing BDS efficiency in this type of oils. Biodesulfurization of MFO380 heavy 
oil with a mixed culture had a sulfur removal increase from 2.88% to 51.7%, when using the surfactant 
Triton X-100 (W. Li & Jiang, 2013). Kaufman, Borole, Shong, Sides, & Juengst (1999) also reported 
that surfactants can minimize the stabilization of asphaltene groups in crude oils, when mixed with 
buffer salts, needed for BDS, which would lead to increased viscosity. Synthetic surfactants, however, 
have some issues, namely their non-biodegradability and potential toxicity both to the environment and 
to the desulfurizing microorganism (Banat, Makkar, & Cameotra, 2000; Patel et al., 1997). Different 
strains of Pseudomonas aeruginosa, Rhodococcus erythropolis, Arthrobacter sp., and Bacillus subtilis 
have been described as natural producers of biological equivalents of chemical surfactants (Batista, 
Mounteer, Amorim, & Totola, 2006; Cameotra & Singh, 2009; Dehghan-Noudeh, Housaindokht, & 
Bazzaz, 2005). These biosurfactants are characterized by better physicochemical characteristics and 
environmental compatibility (Desai & Banat, 1997).

Biodesulfurizing microorganisms have to survive in hydrophobic environments and many can 
naturally produce biosurfactants such as phospholipids, rhamnolipids and glycolipids (Bandyopadhyay, 
Chowdhury, Bhattacharjee, & Pan, 2013). Furthermore, 2-HBP can also act as a biosurfactant and its 
production is related to increased emulsification on water-oil mixtures (Bandyopadhyay et al., 2013). 
Since biosurfactants are produced during microbial growth, they tend to take time to have a significant 
effect, and so an external addition of a biosurfactant could be provided to improve BDS efficiency in an 
industrial scale. Amin, Bazaid, & Abd El-Halim (2013) designed a two-stage bioreactor where BDS of 
a model oil by R. erythropolis ATCC 53968 was coupled with a second bioreactor in which B. subtilis 
strain BDCC-TUSA-3, an efficient producer of surfactin, was generating the biosurfactant that was fed 
to the BDS bioreactor. Surfactin improved R. erythropolis cell growth 33% and the BDS rate 66%, which 
was better than the results with synthetic surfactants, and the BDS of the model oil decreased sulfur 
content from 398 to <5 ppm.

Bioemulsifiers, such as exopolysaccharides, are extra-cellular products that are not surface-active as 
biosurfactants. These are associated with microorganisms that are able to degrade oil substrates, but do 
not produce biosurfactants (Ta-Chen, Chang, & Young, 2008). These agents, when compared to chemical 
surfactants, present a higher emulsification of crude oils (Martínez-Checa, Toledo, Vilchez, Quesada, & 
Calvo, 2002), making them an interesting alternative to solve emulsification problems in BDS.

Separation

The best conditions for good mass transfer in the upstream of BDS, lead to the biggest constrains for the 
downstream part of the process. The tight emulsion needed for oil-cell-water contact must be broken 
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in order to recover the three components (Monticello, 2000). While desulfurized oil must be clean of 
microbial contaminants and water to proceed in the refinery, recycling of the microbial biomass is vital 
for the industrial process, and byproducts separation must also be quick and cost effective.

Bioreactor design, biocatalyst choice and immobilization, and the increase of o/w ratios can greatly 
improve separation. The two-layer bioreactor design with minimal mixing between water and oil phases 
(Yang et al., 2007) can significantly reduce the mixture of phases. Designs where biocatalysts are im-
mobilized are also promising for this step of the process, both due to easier recovery of the biocatalyst 
and increase of o/w ratios (Amin, 2011). The choice of hydrophobic biocatalysts such as Rhodococci 
and the use of emulsifiers, despite the advantages in mass transfer, can create very fine and stable emul-
sions between the cells and the oil, with cells adherent to oil phases, adding the need of effective and 
cost-friendly methods for phase separation (Borgne & Quintero, 2003).

Nowadays in industrial processes, centrifugation is one of the most used recovery methods, but its 
application in three-phase emulsions achieves no relevant separation, which combined with the high 
energy input needed for this method, turns this into a non-viable separation method, at least as a single 
step (Choi, Cho, Ryu, & Chang, 2003). An alternative to centrifugation can be the use of hydrocyclones, 
conical tubes specially designed for phase separation. Fluid is fed to the widest part and the spinning 
of these hydrocyclones can separate denser (water) from lighter (oil) fractions, as the denser fraction is 
directed to the outside of the tube and the lighter to the middle. Microbial biomass is associated with 
the oil-water interface thus, in a water-in-oil emulsion, these cells are associated with the water droplets. 
This allows a separation of a clean oil fraction in a first phase of de-oiling. Inverting phase emulsion 
of the overflow, through the addition of fresh oil, can make cells adhere to the oil droplets and thus the 
running through a second hydrocyclone will lead to a dehydration of the mix with a remaining small 
fraction of concentrated cells mixed with oil and a clean water phase, which can be recycled back to 
the bioreactor (Folsom, Meyer, & Yu, 1998). This method appears as an inexpensive and quick alterna-
tive to high energy methods such as centrifugation, with great impact on capital and operational costs 
(Monticello, 2000).

Methods based in filtration can also be an interesting alternative for phase separation (Koltuniewicz, 
Field, & Arnot, 1995; K. Scott, Jachuck, & Hall, 2001). Chen at al. (1996) patented a method based on a 
dual filtration system. This system involved the use of wetting agents for the sequenced filters that were: 
1) miscible with liquid fossil fuel but not aqueous phase, and 2) miscible with aqueous phase but not with 
liquid fossil fuel. This filtration sequence allows obtaining a clean fossil fuel filtrate on the first step, 
followed by the filtration of the retentate to ensure a clean water filtrate, which could then be recycled 
back to the BDS tank. The final retentate would be mainly comprised of the biocatalyst that could be 
subjected to purification procedure and reactivation in order to be also recycled back to BDS tank (Chen 
and Monticello, 1996). A different apparatus proposed by M. Konishi, Kishimoto, Tamesui, et al. (2005), 
based on the use of a polytetrafluroethylene (PTFE) tubular membrane, was able to separate model oil 
from a mixture of water in oil (50%, v/v) containing the biocatalyst in a continuous operation. Filtration 
methods, although potentially useful, present some constrains for continuous industrial use, namely the 
need for backwashing in order to avoid flux rate decrease and the high dependence on emulsion viscosity.

Another technique used in industry for phase separations is settling, in which separation is based on 
density difference between phases. Settling tanks are present in oil refineries, but emulsified mixtures 
are much harder to separate by settling. Laboratory scale settling of BDS effluent has been applied for 
a continuous desulfurizing process (Schilling et al., 2002), but large scale application of this technique 
is unlikely to be effective for emulsified oil-water-biocatalyst effluents.
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Destabilization of oil-water emulsions is a crucial step in BDS effluent separation, and different 
techniques are widely applied, namely in bioremediation and oil spills (Nordvik, Simmons, & Bitting, 
1996). Coagulant agents such as aluminum and ferric sulfates have been reported to destabilize this 
kind of emulsions, allowing for recovery by flocculation (Al-Shamrani, James, & Xiao, 2002). Applied 
to BDS, however, these pose an obstacle as their toxicity to the biocatalyst can disable its recycling. 
Demulsifiers such as ethanol, however, present an interesting alternative due to its biocompatibility 
with the biocatalyst. Despite having little effect in surface tension, its application can reduce the viscos-
ity of the emulsion and thus improve phase separation methods, without affecting BDS ability of the 
biocatalyst when recycled (Choi et al., 2003). The biodemulsification, i.e. the use of microorganisms 
to brake emulsions, can present itself as a more eco-friendly alternative in the future (Singh, Singh, & 
Ward, 2012), but no application to BDS has been yet studied, hence the difficulty in evaluating its ap-
plicability and cost-effectiveness.

The need to recover the biocatalyst from the BDS effluent for reapplication limits the techniques 
and chemicals that can be used for phase separation. If the biocatalyst can be successfully removed in 
advance, oil-water emulsions can be subjected to more effective, harsher separation methods. Immobi-
lization techniques, despite very effective for biocatalyst removal, are usually related with a decrease of 
desulfurization rates (Naito et al., 2001). The upgrade with magnetic nanoparticles (such as magnetite) 
of the biocatalyst could emerge as a cost-effective, simple and fast process for biomass recovery (Guo-
bin, Jianmin, Huaiying, & Huizhou, 2005; Haukanes & Kvam, 1993), as it would only require the ap-
plication of an external magnetic field for the recovery of the biocatalyst. Several authors have applied 
different techniques and nanoparticles to coat desulfurizing microbial cells with success (Ansari et al., 
2009; Guobin, Jianmin, Huaiying, et al., 2005; Y.-G. Li et al., 2009), and in all studies the desulfurizing 
ability was either unaffected or even improved (Ansari et al., 2009).

The wide array of techniques developed for the BDS downstream or that can be applied to it opens 
good perspectives for this part of the process towards the industrial application of BDS. These techniques 
should not be seen as mutually exclusive, but the best setup of integrated techniques should be found as 
the most effective and better up-scalable, always having in account its cost-effectiveness.

BDS Added-Value

Industrial application of biodesulfurization, amongst other factors, is dependent on its economic vi-
ability. The production of added-value products in parallel with BDS can ease the process cost and give 
economic sense to the changes needed in the refinery process (Bandyopadhyay et al., 2013). One type 
of byproducts produced in BDS are the biosurfactants, needed for the microorganism to thrive in highly 
hydrophobic environments (Bandyopadhyay, Chowdhury, & Bhattacharjee, 2014). When compared to 
chemical surfactants, biosurfactants have important advantages such as biodegradability and effective-
ness at extreme temperatures and pH, and moreover a lower toxicity. Besides oil refining enhancement, 
their application ranges from bioremediation, to healthcare, food processing and cosmetics (Mulligan, 
2005; Perfumo, Smyth, Marchant, & Banat, 2010; L. Rodrigues, Banat, Teixeira, & Oliveira, 2006; 
L. R. Rodrigues & Teixeira, 2010; Urum & Pekdemir, 2004). Biosurfactants cannot yet compete with 
chemical surfactants due to their high production cost (Cameotra & Makkar, 1998), and here may lie the 
interest in the BDS technology, as biosurfactants can be produced as a byproduct of fuels desulfurization.

The final product of the 4S pathway (2-HBP) is a hydrotrope that can act as a surfactant (Mohebali 
et al., 2007). Other hydroxyl and carboxyl compounds, phospholipids, rhamnolipids, and glycolipids, 
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amongst others, also with surfactant and emulsifier characteristics, have been described as extracellular 
byproducts of BDS process and could be recovered from BDS effluents (Bandyopadhyay et al., 2014).

Energy BioSystems Corporation design for a BDS industrial application included the production of 
surfactants from low-value oil. This technology implied a modification of the 4S pathway: the removal of 
dszB gene from the desulfurizing microorganism stopped the 4S pathway in the production of hydroxy-
phenyl benzene sulfonate (HPBS) byproducts, which could then be converted into derivative molecules 
with application as surfactants (Monticello, 2000). In fact, at an industrial level, the production of high 
added-value biosurfactants coupled to BDS can greatly improve the overall process economics since their 
production costs will be included within the sulfur removal bioprocess, performed at mild operational 
conditions, from a low-value feedstock.

Integration into a Refinery Process

The incorporation of BDS into a refining process arises several issues, even if the constrains focused 
above are all dealt with. First and foremost, BDS has to operate at same speed and reliability as other 
refining processes if it is to be integrated, which emerges as a challenge when using microorganisms in 
a large scale operation, not initially prepared for that purpose (Kilbane & Le Borgne, 2004).

The decision of where to insert and what type of oils BDS should treat in the refinery process is 
another issue to be dealt with. Ultra low sulfur diesel (ULSD) production is one of the potential goals 
of BDS, knowing the very strict levels that international regulations have been establishing and the dif-
ficulty of HDS in removing the recalcitrant organosulfur compounds.

Some authors refer the application of BDS before HDS as the best option for an integrated process 
into a refinery towards ultra low sulfur fuels. This upstream approach permits to remove a great portion 
of the recalcitrant organosulfur compounds prior to HDS, making it more efficient and less energetically 
costly since will need lower hydrogen input (Stanislaus, Marafi, & Rana, 2010). In an upstream design, 
there are authors defending that the best application of BDS would be in crude oil, since it has higher 
water content than diesel or gasoline (Zhou & Zhang, 2004). An integrated process enclosing BDS to 
upgrade crude oils might reduce their recalcitrance, before being sent to the refinery, improving the ef-
fectiveness of the current refinery processes and enabling the utilization of certain low-quality oils that 
cannot be treated with conventional technology (Kilbane, 2006).

In contrast, other authors defend that BDS has the potential of being developed as a viable technol-
ogy downstream of classical HDS (Monticello, 2000; Gupta et al., 2005; Mukhopadhyaya et al., 2007; 
Yang, et al., 2007; Bandyopadhyay et al., 2013, 2014). In this approach, BDS will deal only with the 
recalcitrant molecules that the HDS is unable to remove.

There are very few reports on BDS process designs and cost analysis (Gupta et al., 2005). Recently, 
Alves, Paixão, Pacheco, Ferreira, & Silva (2015) reported a study where two BDS process designs 
were analyzed in terms of energy consumption, greenhouse gas emissions (GHG) and costs. This study 
pointed out for the application of the BDS downstream HDS as the best cost-effective conceptual design 
to apply into an oil refinery. Once it is able of desulfurize HDS recalcitrant compounds selectively, BDS 
integration may led to the accomplishment of the stringent European limit of <10 ppm for S-content 
on fuels, which otherwise may imply the necessity of more severe conditions within HDS units. Deep 
desulfurization is a very costly option and is not environmental friendly because implies higher GHG 
emissions and substantially increase the carbon footprint.
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CONCLUSION

Although the new environmental regulations that limit the sulfur levels of diesel and other transportation 
fuels to very low levels are beneficial from environmental point of view, meeting the required stringent 
specifications represent a major operational and economic challenge for the petroleum refining indus-
try. The tightening of sulfur specifications of diesel/gasoline fuel to very low levels requires ultra deep 
desulfurization of diesel/gasoline feed stream. The shift from normal to ultra deep desulfurization is a 
very complicated technical problem thus demanding to find cost-effective ways for ultra low sulfur fuel 
production.

BDS has drawn wide attention because of its green processing of fossil fuel. Bioprocesses can po-
tentially provide a solution to the need for improved and expanded fuel upgrading worldwide, because 
bioprocesses for fuel upgrading do not require hydrogen and produce far less greenhouse gas (GHG) 
emission than thermochemical processes. In the last decade, many reviews have been written on the 
topic of biotechnology for fossil fuels and biodesulfurization, but most have centered on the isolation 
of new microorganisms, the description of the metabolic pathways and the increase of BDS activity 
through genetic enhancing.

This work aimed to focus the current problems and efforts being made towards the BDS reduction 
of costs and increase of its efficiency, both required for an industrially feasible process. In this context, 
different formulations of culture media have been described and optimized for each biocatalyst studied, 
reducing concentration of inhibitors, increasing desulfurization activity and biocatalyst longevity, and 
exploring cheaper alternatives for the current commercial reagents. Moreover, the utilization of desul-
furizing microorganisms that can grow in low nutrient culture media without vitamins and other growth 
promoters, like yeast extract, peptone, triptone, etc, is an advantage for BDS upgrade since it may reduce 
the biocatalyst production costs significantly.

Process-wise, mass transfer, and consequently oil/water ratios, have been identified has two of the 
greatest problems of the biodesulfurization technology. To surpass them, many approaches have been 
explored, either by using different types of bioreactors, adding substances such as emulsifiers or biosur-
factants to the reaction media, or by looking for better ways to apply the biocatalyst such as encapsulation.

In overall, for BDS to become a reality it is fundamental to achieve a good integration into the oil 
refinery process. In this field, the biggest setback commonly identified is the separation of the three 
components characteristic of this process, i.e. oil, water and biocatalyst. Different mechanical solutions 
have been explored, such as filtration, centrifugation and the use of hydrocyclones. However, recently, 
other approaches have been more in focus including the modification of the biocatalyst through magnetic 
nanoparticles, or the use of immobilized microorganisms. These techniques may result in a cheaper 
process to separate and reutilize the biocatalyst.

The use of biotechnology to industrially desulfurize oil is still far from being economically appealing. 
Even after optimize every drawback, probably, there will be a need to take advantage of the high added-
value products resulting from the growth of the biocatalyst. In fact many authors have speculated that the 
production of biosurfactants, characteristic of most desulfurizing microorganisms, could be the decisive 
factor to balance the economical scale-up of this process, and even make it more profitable than HDS.

Much work is still required to do. With the increasing pressure being made by the legislators towards 
the reductions of sulfur levels in fossil fuels, as well as the ever increasing demand for energy, BDS 
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should continue to be explored. It becomes fundamental for the industry to discover new and cheaper 
ways to process heavier and more contaminated oils. Biodesulfurization coupled with other biological 
treatments, such as biodenitrification, biological removal of metals and reduction of viscosity, will 
definitely play a crucial role in the future of sustainable energy from fossil fuels.
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