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INTRODUCTION
Electromagnetic induction logging is the main method of evaluating water

and hydrocarbon saturation in shaly sand and other formations, and has been

successfully applied for more than 70 years by oil service companies around

the world.

During the last two decades, this technology has undergone significant

progress with respect to development of wireline array induction tools:

the Schlumberger AIT1 and the Baker Hughes HDIL™2 systems, for exam-

ple, permit increased depth of investigation of up to several feet while

maintaining high vertical resolution down to 1 ft. These systems, comprised

of coils, whose axes are aligned parallel to the borehole axis, became the

standard tools for detecting and evaluating low-resistivity pay zones. If

the formation dip is small, the induced currents flow mainly parallel to

the bedding planes, thus enabling measurements that are sensitive to the hor-

izontal resistivity of the formation. However, many geologic formations

exhibit resistivity anisotropy (i.e., the resistivity varies with direction).

For example, in thinly laminated sand/shale sequences, where the sand is

hydrocarbon-bearing, the resistivity in the direction perpendicular to the

bedding is larger than the horizontal resistivity. The conductive shales dom-

inate the horizontal resistivity whereas the vertical resistivity is affected more

by the low-conductivity sand layers. Induction tools with vertically oriented

coils cannot accurately detect and delineate this type of reservoir because the

measured resistivity will be biased toward the low-resistive shales. To resolve

formation parameters in an electrically anisotropic formation and find the

relative dip, all major service companies employ tools with transversal coils,

e.g., the Baker Hughes 3DeX™ and the Schlumberger Rt Scanner.

Also in recent decades, exciting developments occurred in logging-

while-drilling (LWD), in which resistivity logging (e.g., the Baker Hughes

VisiTrak™, the Schlumberger PeriScope, the Halliburton ADR™,3 and the

Weatherford GuideWave®4) became part of the bottom hole assembly.

LWD is now successfully used for geo-steering and formation evaluation
1AIT, Rt Scanner, and PeriScope are marks of Schlumberger Limited.

2HDIL, 3DeX, and VisiTrak are trademarks of Baker Hughes Incorporated.

3ADR is a trademark of Halliburton.

4GuideWave is a registered trademark of Weatherford.
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xii Introduction
(especially for real-time and high-angle wells). Advances in resistivity log-

ging were accompanied by numerous publications describing modeling

and interpretation. Although these publications focus on application of

sophisticated numerical techniques, including integral equations, finite dif-

ference, and finite elements, we believe that the potential of classical

approaches has not been exhausted yet. To a large degree, this book is ded-

icated to a semianalytical and asymptotic treatment of the corresponding

boundary value problems of induction logging, leading to the ultra-fast

and sufficiently accurate simulation of electromagnetic responses.

To some extent, our monograph can be considered as the second edition

of the book by A. Kaufman and G. Keller, Induction Logging, published

25 years ago by Elsevier. The current edition includes numerous updates

to the first edition, and new results describing the theory of induction

logging.

The theory is governed byMaxwell equations, which include terms rep-

resenting the conductivity of the medium. These terms lead to decay of the

wave amplitude as the wave propagates through the medium. The rate of

decay is characterized by skin depth, which depends on the conductivity

of the medium. Understanding relationships between measured fields and

properties of the medium plays a key role in research and development of

induction logging. For this reason, the purpose of the first four chapters is

to acquaint the reader with basic equations of field theory. The behavior

of the field of magnetic dipole in a uniform conducting medium is discussed

in Chapter 5. In spite of the simplicity of the medium, the study of the field

leads to an understanding of such important concepts as quadrature and

in-phase components and their fundamentally different dependence on

conductivity.

Chapter 6 consists of two parts. The first describes Doll’s theory of induc-

tion logging, including basic concepts of geometrical factor, radial and vertical

responses of the probes, and the apparent resistivity concept. In the second

part, we discuss the so-called focusing probes, their parameters, and radial

and vertical responses. In particular, we give special attention to three-coil

probes, which allow us to compensate for the primary electromotive force

and reduce an influence of the borehole and an invasion zone.

Chapter 7 describes an approximate technique, or so-called hybrid

method, for solving forward problems. We show that although the hybrid

method might be quite useful for quick calculations, it is not as powerful as

the Born approximation. In fact, we show that Doll’s theory of induction

logging and the hybrid method follow from the Born approximation.
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The frequency responses of the vertical magnetic dipole in a medium

with cylindrical boundaries are the subject of Chapter 8. The components,

as well as their depth of investigation, are described in detail. We give special

attention to the behavior of the amplitude and phase at the far zone by deriv-

ing asymptotic formulas and showing that the ratio of amplitudes and phase

difference enables us in many cases to greatly reduce the influence of the

borehole and invasion. Also in this chapter, we investigate the effect of

the displacement of the two- and three-coil probes in the borehole, and

show that the position of the probe has a different influence on the quadra-

ture and in-phase components, as well as the ratio of amplitudes and phase

difference.

In Chapter 9, we study the vertical responses of the induction probes in a

medium with horizontal boundaries. We use a derived expression for the

vertical component of the magnetic field, excited by the vertical magnetic

dipole, to study the vertical responses of probes, located symmetrically with

respect to boundaries. We give special attention to asymptotic behavior of

the field at different frequency ranges.

The subject of Chapter 10 is the possibility of application of the transient

field in borehole geophysics. First, we obtain expressions for the late stage in

a medium with cylindrical boundaries and demonstrate how the depth of

investigation increases with time in the case of wireline measurements—

at the late stage, sensitivity of this field to the formation resistivity can be

even higher than that of the quadrature component in the frequency

domain. In the second part of the chapter, we discuss the potential of the

transient measurements in while-drilling applications. Inasmuch as such

measurements have to be performed in the presence of highly conductive

pipe, we pay special attention to means of reducing the effect from the pipe.

We first analyze behavior of the field in the case of an ideally conductive

pipe, and then by making use of Leontovich conditions, proceed to the case

of the pipe with the finite conductivity. We show how spacing, observation

time, and different shields may help in addressing undesirable effects of

the pipe.

In the last part of the chapter, some aspects of inversion of LWD tran-

sient data are discussed. Emphasis is placed on means of improving stability

of the inversion.

Chapters 11 and 12 describe basic aspects of induction logging with

transversal coils. Analysis of the field in the range of a small parameter leads

to the important observation that the magnetic field is represented as a sum

of two terms, each depending either on the conductivity of the borehole or
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the formation. This feature is favorable for application of the focusing pro-

bes, which permit a significant decrease of the influence of the borehole and

invasion zone. Numerical examples are presented to confirm the expecta-

tions. In Chapter 12, we demonstrate sensitivity of the measurements to

an anisotropy coefficient under a different scenario: an anisotropic layer sur-

rounded by more conductive and less conductive shoulders. Presented data

help identify the range in which the anisotropy coefficient can be reliably

resolved.
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Before describing time-varying electromagnetic fields we focus our

attention first on stationary electric magnetic fields that do not vary in time.

Coulomb’s and Biot-Savart laws governing these fields, also play fundamen-

tal roles in the understanding of the quasistationary fields used in most

electromagnetic methods of borehole geophysics. We begin with studying

the main features of the stationary electric field.
Principles of Induction Logging © 2017 Elsevier Inc.
//dx.doi.org/10.1016/B978-0-12-802583-3.00001-0 All rights reserved.
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2 Basic Principles of Induction Logging
1.1 EQUATIONS OF THE STATIONARY ELECTRIC FIELD IN
A CONDUCTING AND POLARIZABLE MEDIUM
As shown in Ref. [2], Maxwell’s equations have three forms for the

stationary electric field at regular points:

curlE¼ 0, divE¼ δ=ε0 (1.1)

or

curlE¼ 0, divD¼ δ0 (1.2)

or

curlE¼ 0, div j¼ 0 (1.3)

Here E is the electric field,D is the vector of electric induction,D¼ εE,
and ε is the dielectric constant of a medium. In accordance with Ohm’s law,

j¼ γE (1.4)

where j is the vector of current density characterizing an ordered movement

of free charges in space and γ is a conductivity. The vector E is

E¼Ec +Eext

where Ec and Eext are Coulomb and external (nonCoulomb) electric fields,

respectively. The total charge density δ is a sum of the densities of free δ0 and
bound δb charges:

δ¼ δ0 + δb (1.5)

Eqs. (1.1)–(1.3) are written at regular points where the field’s derivatives
exist. By definition of divergence for any vector M we have

divM¼ lim

þ
M � dS
ΔV

, as ΔV ! 0 (1.6)

which is the divergence of the field that characterizes the flux of the field

through a closed surface, surrounding an elementary volume. This equation

is valid everywhere, although it is not convenient for calculations because it

requires computation of a surface integral. Taking into account that the sur-

face S and distance between opposite sides are small, it is possible to replace

integration by differentiation, which is much simpler to perform. Because
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this form of divergence contains derivatives, it is valid only at regular points.

Also the curl of a field M can be defined as

curlM¼

þ
L

M � dl

dS
n, as ΔS! 0 (1.7)

Here ΔS is the elementary area, and L is a closed path surrounding the

area. If n is the unit vector perpendicular toΔS and dl is the linear element of

L, vectors dl and n obey the right-hand thumb rule. It is essential that an area

ΔS in Eq. (1.7) is oriented in such a way that the numerator has a maximal

value. Again, similar to Eq. (1.6), as the contour L becomes small, it is pos-

sible to replace integration by differentiation. The replacement can be per-

formed only at regular points where derivatives exist. At interfaces between

media with different electric parameters in place of Eqs. (1.1)–(1.3), we have
the surface analog of the equations:

E2t�E1t ¼ 0, E2n�E1n¼ σ=ε0

or

E2t�E1t ¼ 0, D2n�D1n¼ σ0 (1.8)

or

E2t�E1t ¼ 0, γ2E2n� γ1E1n ¼ 0

where E1t,E1n and E2t,E2n are tangential and normal components of the elec-

tric field at the back and front sides of an interface, respectively, and the normal

n is directed toward the front side into the medium with index “2.” The

conductivity of a medium can be expressed as

γ¼ δ+
0 u

+ + δ�0
�� ��u� (1.9)

Here u+ and u� are the mobility of the positive and negative charges,

respectively, which are extremely small numbers in a medium. Thus, the

velocity of free charges engaged in an orderly motion in a conductor is usu-

ally very small and does not exceed 10�6m=s. Nevertheless, these barely

moving charges may create a strong magnetic field. Free charge in a medium

is a charge that can move through distances exceeding the molecule size;

bound charges move only within a fixed molecule.

As follows from Eq. (1.3), the stationary electric field in a conducting and

polarizable medium is independent of the dielectric constant, and
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distribution of bound charges does not influence the electric field. Such a

remarkable feature of the field is also observed in quasistationary fields:

the density of the total charge coincides with that of free charges δ0 in a non-
polarizable medium where ε¼ ε0:

The volume and surface densities of charge are related to the field and

conductivity by [2]

δ pð Þ¼�ε0
E � grad γ

γ
, σ pð Þ¼ 2ε0K12E

av
n (1.10)

Here

K12¼ ρ2�ρ1
ρ2 + ρ1

and En
av is the mean value of the normal component of electric field at point p

located at the boundary betweenmedia with resistivity ρ1 and ρ2; the normal

n is directed from medium 1 to medium 2. Besides, it is assumed that an

external force is absent in the vicinity of point p. The physical meaning

of En
av(p) is simple: it is the normal component of the field caused by all char-

ges in the medium except those at the point p. These charges, placed at the

boundary between ρ1 and ρ2, do not participate in the current flow. The

second equation of the system for the electric field at regular points is

divE¼ δ=ε0 or divD¼ δ0

and, along with its surface analog, remains valid for the time-varying fields.

Either one represents the third of Maxwell’s equation.

Note that this equation can be derived from Coulomb’s law by taking

into account polarization and bound charges.

1.2 INTERACTION OF CURRENTS, BIOT-SAVART LAW,
AND MAGNETIC FIELD
1.2.1 Ampere’s Law and Interaction of Currents

Numerous experiments performed two centuries ago demonstrated that

currents in two circuits interact with each other; that is, mechanical forces

act at every element of a current circuit. This force depends on the magni-

tude of the current, the direction of charge movement, the shape and

dimension of the current circuit, as well as the distance and mutual orien-

tation of the circuits with respect to each other. This list of factors indicates

that the mathematical formulation of this phenomenon should be a much
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more complicated task than that for the stationary electric field. Neverthe-

less, Ampere was able to find an expression for the force of interaction

between two elementary currents in a relatively simple form:

dF pð Þ¼ μ0
4π

I1I2
dl1 pð Þ� dl2 qð Þ�Lqp

� �
L3
qp

(1.11)

where I1 and I2 are magnitudes of currents in the linear elements dl1 and dl2,

respectively, and their direction coincides with that of the current density;

Lqp is the distance between these elements; and Lqp is directed from point q to

point p, which are located at the center of the current elements. Finally, μ0 is
a constant equal to

μ0 ¼ 4π�10�7H=m

which is called the magnetic permeability of free space, despite the fact that

the term “free space” implies medium without physical properties. The

distance between current elements Lqp is much greater than their lengths:

Lqp ≫ dl1, Lqp ≫ dl2

Examples, illustrating an interaction of elementary currents, are given in

Fig. 1.1.

Making use of the superposition principle, the force of interaction

between two arbitrary closed current circuits is defined as

F¼ μ0
4π

I1I2

þ
L1

þ
L2

dl1� dl2�Lqp

� �
L3
qp

(1.12)

where integration is performed along current lines L1 and L2, p 6¼ q: The
resultant force F is a sum of forces acting on different elements of the contour

and is measured in the SI newtons (N) if the lengths are in meters (m) and the

currents are in units of amperes (A).
1.2.2 Magnetic Field and Biot-Savart Law
The interaction between currents suggests that current in a contour creates a

field, and the existence of this field causes other currents to experience the

action of the force F. This field is called the magnetic field, and it is

introduced from Ampere’s law as

dF pð Þ¼ I pð Þdl pð Þ� dB pð Þ (1.13)
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Fig. 1.1 (A) Interaction of currents having the same direction; (B) interaction of currents
having opposite directions; (C) interaction of current elements perpendicular to each
other; and (D) interaction of two current loops.
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where

dB pð Þ¼ μ0
4π

I qð Þdl qð Þ�Lqp

L3
qp

(1.14)
and I (q) is the current of the element dl(q). Eq. (1.14), called the Biot-Savart

law, describes the relationship between the elementary linear current and the

magnetic field dB. By definition the magnitude of the magnetic field caused

by the elementary current is

dB pð Þ¼ μ0
4π

I qð Þ dl
L2
qp

sin Lqp,dl
� �

(1.15)
Here (Lqp,dl) is the angle between the vectors Lqp and the element dl; the

vector dB is perpendicular to these vectors, as shown in Fig. 1.2A, and

these three vectors obey the right-hand thumb rule. The unit vector b0,

characterizing the direction of the field, is defined as
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Fig. 1.2 (A) Magnetic field of a current element. (B) Magnetic field of the surface current.
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b0¼ dl�Lqp

dl�Lqp

�� ��
In SI units, the magnetic field is measured in tesla (T) and is related to

other common units, such as the gauss and the gamma as

1tesla¼ 104gauss¼ 109gamma
A nanotesla (nT) is equivalent to one gamma. Now we generalize

Eq. (1.14), assuming that, along with linear currents, there are also the

volume and surface currents. First let us represent the product Idl as

Idl¼ jdSdl¼ jdSdl¼ jdV (1.16)
where dS is the cross section of the elementary current tube, dl is oriented

along this tube, and j is the volume current density. If the current is concen-

trated in a relatively thin layer with thickness dh, which is small enough with

respect to the distance to an observation point, it is convenient to replace

this layer by a surface current. As seen in Fig. 1.2B, the product Idl can

be modified as follows:

Idl¼ jdV ¼ jdhdS¼ idS (1.17)
Here dS is the surface element, and

i¼ jdh
is the density of the surface current. The resultant force F is a sum of forces

caused by different elementary currents. Applying the principle of superpo-

sition for all three types of currents (volume, surface, and linear) and making

use of Eqs. (1.14), (1.16), (1.17), we obtain the generalized form of the

Biot-Savart law:

B pð Þ¼ μ0
4π

ð
V

j�Lqp

L3
qp

dV +

ð
S

i�Lqp

L3
qp

dS+
X
n

In

þ
dl�Lqp

L3
qp

2
4

3
5 (1.18)



8 Basic Principles of Induction Logging
Eq. (1.18) allows us to calculate the magnetic field everywhere inside and

outside of volume currents. In general, the currents arise from the motion of

free charges and magnetization of a magnetic medium, which can be related

to magnetization currents. Correspondingly, the current density is a sum

j¼ jc + jm

where jc and jm are the volume density of the conduction and magnetization

currents, respectively. The corresponding magnetic fields of these currents

obey the Biot-Savart law. In most applications of borehole electrical

methods, it is assumed that magnetization is absent. According to

Eq. (1.18), the magnetic field caused by a given distribution of currents

depends on location of observation point p only and is independent of

the presence of other currents. The right-hand side of Eq. (1.18) does not

contain any terms characterizing physical properties of a medium. There-

fore, the field B at point p, generated by a specific distribution of currents,

remains the same if free space is replaced by a nonuniform conducting and

polarizable medium. For instance, if the current circuit is placed in a mag-

netic medium, the field B caused by this current is the same as if it were in

free space. Of course, the presence of such magnetic medium results in a

change of the magnetic field B, indicating the presence inside a medium

of some other currents (magnetization currents) and producing a magnetic

field. This observation directly follows from Eq. (1.18), which states that any

change of the field B is caused by a change in distribution of current. Unlike

the volume density currents, their linear and surface analogies are mathemat-

ical idealizations of the real current distributions. Normally, they are intro-

duced to simplify calculations of the field and study its behavior. For this

reason, the equation

B pð Þ¼ μ0
4π

ð
V

j qð Þ�Lqp

L3
qp

dV (1.19)

is applicable for calculation of a magnetic field for all possible distributions of

the current.

As will be shown later, the Biot-Savart law (Eq. 1.18) is also valid for a

time-varying magnetic field when it is possible to neglect by so-called

displacement currents.

The experiments, which allowed Ampere to derive Eq. (1.11), were

carried out with closed circuits. At the same time Eq. (1.11), as well as

Eq. (1.14), is written for the element dl, where a current cannot exist if this
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element does not constitute a part of the closed circuit. In other words,

Eqs. (1.11), (1.14) cannot be proved experimentally, but the interaction

between closed current circuits takes place in suchmanner, as if the magnetic

field B, caused by the current element Idl, were described by Eq. (1.14). In

accordance with the Biot-Savart law, current is the sole source of a stationary

magnetic field, and the distribution of this source is characterized by the

magnitude and direction of the current density vector j whose vector lines

are always closed. Magnetic field B is also, unlike the Coulomb’s electric

field, of the vortex type.
1.2.3 Lorentz Force and Electromotive Force Acting
on the Moving Circuit

As follows from Eqs. (1.13), (1.16) the current in the elementary volume,

placed in the magnetic field B, is subjected to the action of a force:

F¼ j�Bð ÞdV (1.20)

The latter allows us to find force acting on a single electron or ion mov-

ing with velocity v. By definition, the current density j can be represented as

j¼ nev

where n is the number of particles in the unit volume, and e is the charge of

electron or ion. Therefore, the force of the magnetic field B acting on all

particles is

FB¼ ne v�Bð ÞdV
and, correspondingly, every moving particle, for example, the electron, is

subjected to a force equal to

FB¼ e v�Bð Þ (1.21)

Thus, this elementary charge is subjected to the total force equal to

F¼Fe +Fm ¼ eE+ e v�Bð Þ (1.22)

which is called the Lorentz force. Here

Fe¼ eEc and Fm ¼ e v�Bð Þ
are forces caused by the electric andmagnetic fields, respectively. By analogy

with Coulomb’s law, let us introduce this nonCoulomb electric field as

Em¼ ν�B (1.23)
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which, in the presence of the magnetic field, acts on moving charge. By def-

inition, this field is perpendicular to the velocity and the magnetic field, and

it reaches a maximum when the angle between these two vectors is equal to

π/2. As in the case of Coulomb’s electric field, the voltage of this electric

field along an elementary and arbitrary path is

ΔV ¼Em � dl¼ v�Bð Þdl and V ¼
ð

v�Bð Þdl: (1.24)

In particular, the electromotive force caused by field Em is

Ξ¼
ð

v�Bð Þdl

Unlike the voltage of the Coulomb’s electric field, the second equation

in the set (1.24) is path dependent; in general, the electromotive force due to

this field does not vanish.

The existence of this non-Coulomb electric field directly follows from

Ampere’s law, originally derived for the direct current. Let us consider

several examples.
Example One
Suppose that the current circuit does not move and is placed in a magnetic

field B (Fig. 1.3A). The moving electrons along the circuit are subjected to

the action of the field Em, which is usually very small, because the electron
(A) (B)

(C) (D)

e

F

B

v

B
a b

d c

v v

B
a b

d c

v

v

v

B
a b

d c

v

Fig. 1.3 (A) Magnetic force acting on a charge, moving with velocity v; (B) rectangular
circuit moving with velocity v in the magnetic field; (C) movement of one side of the
circuit with velocity v; and (D) movement and deformation of a contour in the
magnetic field.
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velocity is of the order of 10�6m=s. By definition, this field is perpendicular
to the Coulomb’s field and may cause only an insignificant shift of charges

toward the surface of the circuit, where the positive and negative charges

would tend to appear. But their electric field prevents further movement

of charges; eventually, there is no current flow caused by Em field.
Example Two
Consider the rectangular and conducting circuit abcd (Fig. 1.3B), which

moves at the constant velocity v along the x axis. The uniformmagnetic field

B is perpendicular to the circuit. Taking into account that direction of

currents along paths ad and cb are opposite to each other, the voltages

ΔVad, ΔVcb

differ only by sign. The voltages along lines ab and cd are equal to zero.

Indeed, accordingto vector algebra for the voltage along an arbitrary element

dl of the line, we have

v�Bð Þ � dl¼ dl�vð Þ �B (1.25)

Because in case of lines ab and cd vectors dl and ν have the same or oppo-

site direction, we conclude that the voltage along these elements is zero;

therefore, the electromotive force is also zero. As is seen in Fig. 1.3B, the

flux of the magnetic field Φ through the area, surrounded by the path,

remains constant. Thus, we have

Ξ¼ 0 and
dΦ
dt

¼ 0

Example Three
Now suppose that only the side ad slides at velocity v, while the other part of

the circuit is at rest (Fig. 1.3C). Then, the electromotive force coincides

with the voltage ΔVad:

Ξ¼�υxBzad (1.26)

where the sign depends on the orientation of the current in this line.

The product υxad represents the rate of a change of the area, enclosed by

the circuit; therefore Eq. (1.26) can be rewritten as

Ξ¼�dΦ
dt
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that is, the electromotive force arising in the circuit is defined by the rate of a

change of the flux of the magnetic field through the area surrounded by the

circuit. By definition, the flux is equal to

Φ¼
ð
S

B � dS

If the direction along the circuit and the vector dS obey the right-hand

thumb rule, we have

Ξ¼�dΦ
dt

(1.27)

Example Four
In this case, the magnetic field is aligned in the plane of a circuit that moves

with velocity v. Then, the voltage along an arbitrary element of the circuit is

equal to

v�Bð Þ � dl¼ 0

therefore, the electromotive force is absent despite a motion of the circuit

and the presence of the magnetic field. Inasmuch as the field B is tangential

to the circuit, its flux is also equal to zero, and the electromotive force is

Ξ¼�dΦ
dt

¼ 0

Thus, only the normal component of the magnetic field has an influence

on the moving charge.
Example Five
Suppose that an arbitrary conducting circuit is located in some plane, and

each element moves with velocity v, which may vary from point to point

(Fig. 1.3D). In this case, the circuit experiences a motion and deformation.

The component of the magnetic field normal to this plane also may vary

from point to point. Consider again the elementary voltage along the

element dl:

ΔV ¼ v�Bð Þ � dl¼ dl�vð Þ �B
The magnitude of the vector product dl�v is equal to the area covered

by the element dl during the unit of time; correspondingly, ΔV is equal to
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the rate of a change of the elementary flux of the field B. Integrating

along the circuit and using the right-hand thumb rule, we obtain the

electromotive force:

Ξ¼�dΦ
dt

(1.28)

Later we will describe Faraday’s law, which has exactly the same form.

However, it has one fundamental difference: it shows that an electromotive

force may arise not only because of a movement and deformation of the cir-

cuit but also due to a rate of change of the magnetic field with time when the

circuit does not move.Moreover, Faraday’s law is applied to any closed path,

which can be, for example, an insulator.
1.3 VECTOR POTENTIAL OF THE MAGNETIC FIELD

1.3.1 Relation Between Magnetic Field

and Vector Potential
Although calculation of the magnetic field using the Biot-Savart law is not a

complicated procedure, it is still useful to find a more convenient way of

determining the field. To proceed, by analogy with the scalar potential of

the electric field, we introduce a new function. In addition, this function

allows one to derive a system of equations for the magnetic field. Let us start

from the Biot-Savart law:

B pð Þ¼ μ0
4π

ð
V

j qð Þ�Lqp

L3
qp

dV (1.29)

Taking into account that

Lqp

L3
qp

¼r
q 1

Lqp

¼�r
p 1

Lqp

(1.30)

and substituting Eq. (1.30) into Eq. (1.29), we obtain

B pð Þ¼ μ0
4π

ð
V

j qð Þ�r
q 1

Lqp

dV ¼ μ0
4π

ð
V

r
p 1

Lqp

� j qð ÞdV (1.31)

Here q and p indicate that derivatives are taken with respect to coordi-

nates of the point q and p. For instance, in the Cartesian system of coordi-

nates, we have:
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r
q 1

Lqp

¼ grad
q 1

Lqp

¼ @

@xq

1

Lqp

ix +
@

@yq

1

Lqp

iy +
@

@zq

1

Lqp

iz

where ix, iy, and iz are orthogonal unit vectors. Now we make use of the

equality

r
p

� j

Lqp

¼r
p 1

Lqp

� j+
r
p

�j

Lqp

which follows from the vector identity:

r� ϕað Þ¼rϕ�a+ϕr�a (1.32)

From Eqs. (1.31), (1.32), we have

B pð Þ¼ μ0
4π

ð
V

r
p

� j

Lqp

dV � μ0
4π

ð
V

r
p

�j

Lqp

dV (1.33)

The current density is a function of the coordinates of q and does not

depend on the location of the observation point p. Therefore, the integrand

of the second integral is zero and

B pð Þ¼ μ0
4π

ð
V

curl
p j qð Þ

Lqp

dV (1.34)

Inasmuch as the integration and differentiation in Eq. (1.34) are carried

out with respect to different points q and p, we can interchange the order of

operations that gives

B pð Þ¼ curl
p μ0
4π

ð
V

j qð Þ
Lqp

dV

or

B pð Þ¼ curlA (1.35)

where

A pð Þ¼ μ0
4π

ð
V

j qð Þ
Lqp

dV (1.36)

Thus, the magnetic field B caused by direct currents can be expressed

through the vector potential A defined by Eq. (1.36). Comparing
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Eqs. (1.29) and (1.36), we see that functionA is related to the distribution of

currents in a much simpler way than the magnetic field. One reason for

introducing this function is thus already demonstrated. According to

Eq. (1.36),A, unlike the potential of an electric field, is a vector, and its mag-

nitude and direction depend essentially on the current distribution. Now let

us derive expressions for the vector potentialA, caused by surface and linear

currents. Making use of Eq. (1.17):

jdV ¼ idS

and we have

A¼ μ0
4π

ð
S

idS

Lqp

and A¼ μ0I

4π

þ
L

dl

Lqp

(1.37)

In the general case when we have the volume, surface, and linear

currents, we obtain

A¼ μ0
4π

ð
V

jdV

Lqp

+

ð
S

idS

Lqp

+
X
i¼1

Ii

þ
L

dl

Lqp

2
4

3
5 (1.38)

The components of the vector potential can be derived directly from this

equation. For instance, in the Cartesian coordinates, we obtain

Ax ¼ μ0
4π

ð
V

jxdV

Lqp

+

ð
S

ixdS

Lqp

+
X
i¼1

Ii

þ
dlx

Lqp

2
4

3
5

Ay ¼ μ0
4π

ð
V

jydV

Lqp

+

ð
S

iydS

Lqp

+
X
i¼1

Ii

þ
dly

Lqp

2
4

3
5

Az ¼ μ0
4π

ð
V

jzdV

Lqp

+

ð
S

izdS

Lqp

+
X
i¼1

Ii

þ
dlz

Lqp

2
4

3
5

(1.39)

Similar expressions can be written for the vector potential components in

other systems of coordinates. Eq. (1.38) implies that, if a current flows along

a single straight line, the vector potential has only one component parallel to

this line. Similarly, if currents are situated in a single plane, then the vector

potential A at every point is parallel to this plane. Later we consider several

examples illustrating the behavior of the vector potential and magnetic field.



16 Basic Principles of Induction Logging
Let us derive two useful relations for the function A, which simplify to a

great extent the derivation of magnetic field equations.
1.3.2 Divergence and Laplacian of Vector Potential
First, we determine the divergence of the vector potential A. As follows

from Eq. (1.36), we have

div
p

A¼ div
p μ0
4π

ð
V

j qð Þ
Lqp

dV

Inasmuch as differentiation and integration in this expression are

performed with respect to different points, we can change the order of

operations, which gives

div
p

A¼ μ0
4π

ð
V

div
p j qð Þ
Lqp

dV (1.40)

The volume of integration includes all currents; therefore, outside a

surface S currents are absent. Correspondingly, the normal component of

the current density at this surface equals zero:

jn¼ 0 (1.41)

The integrand in Eq. (1.40) can be represented as

r
p j

Lqp

¼r
p

j

Lqp

+ j � r
p 1

Lqp

¼ j � r
p 1

Lqp

because the current density does not depend on the observation point and

div
p

j qð Þ¼ 0

Then, we have

j � r
p 1

Lqp

¼�j � r
q 1

Lqp

¼�r
q j

Lqp

+
r
q

j

Lqp

As follows from the principle of charge conservation for direct currents

div
q

j¼ 0

therefore,
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j � r
p 1

Lqp

¼�div
q j

Lqp

Correspondingly, Eq. (1.40) can be written as

divA¼� μ0
4π

ð
V

div
q j

Lqp

dV

Unlike Eq. (1.40) on the right-hand side of this equation, both integra-

tion and differentiation are performed with respect to the same point q. By

applying Gauss’s theorem, we haveð
V

divMdV ¼
þ
S

M � dS

Thus,

divA¼� μ0
4π

ð
V

div
q j

Lqp

dV ¼� μ0
4π

þ
S

j � dS
Lqp

¼� μ0
4π

þ
S

jndS

Lqp

:

Taking into account that the normal component of the current den-

sity jn vanishes at the surface S, surrounding all currents (Eq. 1.41), we

obtain

divA¼ 0 (1.42)

This is the first relation that is useful for deriving the system of field equa-

tions. Let us note that, in accordance with Eq. (1.42), the vector lines of the

fieldA are always closed. Next we obtain one more equation describing this

function. As is well known [1], the potential of the electric field U satisfies

Poisson’s equation

r2U ¼� δ

ε0

and its solution is

U ¼ 1

4πε0

ð
V

δdV

Lqp

As follows from Eq. (1.36), every component of the vector potential has

the same form as the potential U; therefore, by analogy it also satisfies

Poisson’s equation:
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r2Ax¼�μ0jx, r2Ay¼�μ0jy, r2Az¼�μ0jz

Multiplying each of these equations by the corresponding unit vector

ix, iy, iz and performing the summation, we arrive at the Poisson’s equation

for the vector potential:

r2A¼�μ0j (1.43)

1.4 SYSTEM OF EQUATIONS OF THE STATIONARY
MAGNETIC FIELD
Now we are ready to derive the system of equations of the stationary

magnetic field. First, making use of Eq. (1.35), we discover that divergence

of the field B vanishes. In fact, we have

divB¼ div curlAð Þ (1.44)

From vector analysis, the right-hand term of Eq. (1.44) is identically

zero. Therefore,

divB¼ 0 (1.45)

This means that the magnetic field does not have sources, like charges,

and, correspondingly, the vector lines of the magnetic field B are always

closed. Applying Gauss’s theorem, we obtain the integral form of this

equation: þ
S

B � dS¼ 0 (1.46)

that is, the total flux of the field B through any closed surface is always equal

to zero. Next we derive the surface analogy of Eq. (1.45) and, with this pur-

pose in mind, consider the flux through an elementary cylindrical surface

(Fig. 1.4A). It is equal to

B 2ð Þ � dS2 +B 1ð Þ � dS1 +B � dS*¼ 0 (1.47)

Here dS2 ¼ dSn, dS1¼�dSn, and dS* is the lateral surface of the cylin-
der. Then, reducing the height of the cylinder to zero in place of Eq. (1.47),

we obtain

B 2ð Þ
n dS�B 1ð Þ

n dS¼ 0 or B 2ð Þ
n ¼B 1ð Þ

n (1.48)



n
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B(1)
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B(2)
dS2

dS1

(A) (B) (C)

n

i

L
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j

j

j

dl

B

S

Fig. 1.4 (A) Surface analogy of Eq. (1.45); (B) illustration of Eq. (1.52); and (C) surface anal-
ogy of Eq. (1.50).
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Thus, the normal component of the magnetic field B is always a contin-

uous function of the spatial variables. We have three forms of the equation

that describe the magnetic field caused by direct currents:þ
S

B � dS¼ 0, divB¼ 0, B 2ð Þ
n �B 1ð Þ

n ¼ 0 (1.49)

Each of them expresses the same fact, namely, the absence of magnetic

charges. Eq. (1.49) have been derived assuming that the field B is caused by

conduction currents. However, they remain valid in the presence of the

magnetic medium when the field also is generated by magnetization cur-

rents. The equations were obtained from the Biot-Savart law for direct

currents, but actually they are still valid for the time-varying magnetic fields

and, in effect, represent Maxwell’s fourth equation.

Next we derive the second equation for the magnetic field. Making use

of Eq. (1.35) and the identity

curl curlM¼ grad divM�r2M

we have:

curlB¼ grad divA�r2A

Considering

divA¼ 0

and taking into account Eq. (1.43), we obtain

curlB¼�r2A¼ μ0j

Thus, the second equation for the magnetic field at regular points is

curlB¼ μ0j (1.50)
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Consequently, outside of currents we have

curlB¼ 0 (1.51)
Eq. (1.50) states that currents are vortex-type sources, capable of gener-

ating a magnetic field. Applying Stokes theorem,þ
L

M � dl¼
ð
S

curlM � dS

where S is the surface bounded by the contour L, we obtain the integral

form of the second equation:þ
L

B � dl¼
ð
S

curlB � dS¼ μ0

ð
S

j � dS
or þ
L

B � dl¼ μ0I (1.52)

Here I is the current flowing through the surface S bounded by the path L

(Fig. 1.4B). It is proper to notice that the mutual orientation of vectors dl and

dS is not arbitrary but obeys the right-hand thumb rule. Thus, the circulation

of the magnetic field is defined by the value of current I piercing the surface

surrounded by the contour L, and it does not depend on currents located out-

side the perimeter of this area. Of course, this path L can go through media

with different physical properties. To derive the surface analogy of Eq. (1.52),

consider a closed contour surrounding an element of surface current with

density i(p) (Fig. 1.4C). Applying Eq. (1.52) to such a path and neglecting

contribution from elements perpendicular to the surface current, we obtain

B
2ð Þ
t �B

1ð Þ
t ¼ μ0il or n� B 2ð Þ �B 1ð Þ

� �
¼ μ0i (1.53)
where t and l represent two mutually perpendicular directions tangential to

the surface. Thus, the tangential component of the magnetic field is a discon-

tinuous function at points where the density of surface current differs from

zero. We have derived three forms of the second equation of the field B:þ
L

B � dl¼ μ0I , curlB¼ μ0j, n� B 2ð Þ �B 1ð Þ
� �

¼ μ0i (1.54)
Here i is the vector of density of surface currents. It is interesting to note

that the last of these equations is valid for any time-varying magnetic field,
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and it is usually regarded as the surface analogy of Maxwell’s second equa-

tion. In addition, as pointed out earlier, the first two equations of the set

(1.54) remain valid for quasistationary fields, which are widely used in the

most electromagnetic methods of the borehole geophysics. Now let us sum-

marize these results and present the system of equations of the magnetic field

caused by conduction currents in differential form:

1. The system, shown below, has been derived from the Biot-Savart law in

the same way that the system of equations for the electric field was

derived from Coulomb’s law.

2. The Biot-Savart law and Eq. (1.55) contain the same information about

the magnetic field. This field is a classical example of the vortex field,

which is caused by current density vector j.

Biot-Savart law

I   curl B = m0 j II   div B = 0

n × (B(2) − B(1)) = m0 i n . (B(2) − B(1)) = 0

ð1:55Þ

3. At surfaces where the current density i equals zero, both the normal and

tangential components of the magnetic field are continuous functions.

4. The system (1.55) describes the field in free space as well as in any non-

magnetic conducting medium. Moreover, it turns out that Eq. (1.55) are

still valid in the presence of a medium that has an influence on the field

(magnetic material), provided that the right-hand side of the first equation

curlB¼ μ0j

includes also the magnetization currents.

5. As will be shown later, this system correctly defines the time-varying

magnetic field, assuming that propagation effect is disregarded.

1.5 EXAMPLES OF MAGNETIC FIELD OF CURRENT-
CARRYING OBJECTS
Now we consider several examples illustrating the behavior of both

magnetic field and vector potential.
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1.5.1 Example One: Magnetic Field of the Current Filament
Consider the case of current flowing along a straight current filament. Taking

into account the axial symmetry of the problem (Fig. 1.5A), let us choose a

cylindrical system of coordinates (r,ϕ,z) with its origin situated on the

current-carrying line. Starting from the Biot-Savart law, one can see that the

magnetic field has only the component Bϕ, which is independent of the coor-

dinateϕ. From the principle of superposition, it follows that the total field is the

sum of fields contributed by the current elements Idz. Then we have

Bϕ¼ μ0I

4π

ðz2
z1

dz�Lqp

L3
qp

(1.56)
where Lqp¼ r2 + z2ð Þ1=2, and z is the coordinate of the element dz. The

coordinates of the observation point are r and z¼0, while z1, z2 are terminal

points of the current line. It is clear that the absolute value of the cross

product is

dz�Lqp

�� ��¼ dzLqp sin dz,Lqp

� �¼ dzLqp sin β¼ dzLqp cos α
I
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Fig. 1.5 (A) Magnetic field of a current line; (B) magnetic field at the axis of a current
loop; (C) magnetic field of the current loop at an arbitrary point; and (D) magnetic field
of magnetic dipole in spherical and cylindrical coordinate systems.
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Thus

Bϕ¼ μ0I

4π

ðz2
z1

dz

L2
qp

cos α: (1.57)
Inasmuch as z¼ r tan α, we have

dz¼ r sec2αdα and L2
qp ¼ r2 1 + tan2α

� �¼ r2 sec2α
Substituting these expressions into Eq. (1.57), we obtain

Bϕ ¼ μ0I

4πr

ðα2
α1

cos αdα
Thus, the expression for the magnetic field caused by the current flowing

along a straight line is

Bϕ pð Þ¼ μ0I

4πr
sin α2� sin α1ð Þ (1.58)
Here α2 and α1 are the angles, as shown in Fig. 1.5A. First, suppose that

the current-carrying line is infinitely long so that the two angles α2 and α1 are
π/2 and �π=2, respectively. Then

Bϕ pð Þ¼ μ0I

2πr
(1.59)
In the case of a semiinfinite line, α1¼ 0 and α2¼ π=2, we have

Bϕ pð Þ¼ μ0I

4πr
(1.60)
Now we assume that α2¼ α and α1¼�α: Then, in accordance with

Eq. (1.58), we obtain

Bϕ pð Þ¼ μ0I

2πr
sin α¼ μ0I

2πr

l

l2 + r2ð Þ1=2
(1.61)
where 2l is the length of the current-carrying line. If l is much greater than

the distance r, the right-hand side of Eq. (1.61) can be expanded in a series in

terms of parameter (r/l)2. This gives

Bϕ¼ μ0I

2πr
1+ r2=l2
� ��1=2� μ0I

2πr
1�1

2

r2

l2
+
3

8

r4

l4
�⋯

	 


If length of the current line 2l is a few times greater than the separation r,

the field is practically the same as in the case of an infinitely long current line.
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1.5.2 Example Two: The Vector Potential A and the Magnetic
Field B of a Current in a Circular Loop

Consider next a circular loop of current. First, assume that the observation

point is situated on the axis of a loop with radius a, as is shown in Fig. 1.5B.

Then, in accordance with Eq. (1.37), we have

A¼ μ0I

4π

þ
L

dl

Lqp

Because the distance Lqp is the same for all points of the loop, we have

A¼ μ0I

4πLqp

þ
L

dl

By definition, the sum of the elementary vectors dl along any closed

path is zero. Therefore, the vector potential A at the z-axis of a circular

current loop vanishes. Now we calculate the magnetic field on the z-axis.

Because we do not know derivatives of the vector potential on the axis, we

cannot use Eq. (1.35) and have to proceed from the Biot-Savart law. As can

be seen from Eq. (1.14), in a cylindrical system of coordinates, each current

element Idl creates two field components dBz and dBr. However, it is

always possible to find two current elements Idl that contribute at any point

of the z-axis the same horizontal components of opposite signs. Therefore,

the magnetic field along the z-axis has only a vertical component, which is

(Fig. 1.5B)

dBz ¼ dBj j a

Lqp

¼ μ0I

4π

dl

L2
qp

a

Lqp

¼ μ0Ia

4π

dl

L3
qp

because dl�Lqp

�� ��¼Lqpdl: After integration along the loop, we obtain

Bz¼ μ0Ia2πa

4π a2 + z2ð Þ3=2
¼ μ0Ia

2

2 a2 + z2ð Þ3=2
¼ μ0M

2π a2 + z2ð Þ3=2
(1.62)

where

M ¼ Iπa2¼ IS

and S being the area of the loop. When the distance z is much greater than

the radius of the loop a, we arrive at the following expression for the mag-

netic field:
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Bz ¼ μ0M

2π zj j3 if z ≫ a (1.63)

The last expression plays an important role in electromagnetic fields

applied in the induction logging. The intensity of the field is defined by

the product M ¼ IS, which is called the magnetic moment of the loop.

Thus, a small current loop with radius a creates the same magnetic field

as a magnetic dipole having the magnitude of the moment equal to

M ¼ πa2I . When the distance z in Eq. (1.62) is at least four times greater

than the radius a, the treatment of the loop as the magnetic dipole sit-

uated at the center of the loop results in an error of no more than 10%.

Thus far the vector potential and the magnetic field were considered

only along the z-axis. Now we study a general case and first calculate

the vector potential at the arbitrary point p. Due to symmetry, the vector

potential does not depend on coordinate ϕ. For simplicity let us choose

the point p in the x-z plane, where ϕ¼ 0: Every pair of current elements

(Fig. 1.5C), equally distant from the point p and having coordinates ϕ
and �ϕ, creates a vector potential dA perpendicular to the x-z plane

because each element Idl causes potential of the same orientation as

dl. Inasmuch as the whole loop can be represented as the sum of such

pairs, we conclude that the vector potential A caused by the current-

carrying loop has only the component Aϕ. Therefore, from Eq. (1.36)

it follows that

Aϕ¼ μ0I

4π

þ
dlϕ

R
¼ μ0I

2π

ðπ
0

a cosϕdϕ

a2 + r2�2ar cosϕ+ z2ð Þ1=2
(1.64)

where dlϕ is the component of dl along coordinate line ϕ:

dlϕ¼ dl cosϕ and Lqp ¼ a2 + r2�2ar cosϕ+ z2
� �1=2

Letting ϕ¼ π +2α, we have

dϕ¼ 2dα, cosϕ¼ 2 sin2α�1

and, therefore,

Aϕ¼ aIμ0
π

ðπ=2
0

2 sin2α�1ð Þdα
a+ rð Þ2 + z2�4ar sin2α

� �1=2
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Introducing new variable

k2¼ 4ar

a+ rð Þ2 + z2

and carrying out some algebraic operations, we obtain

Aϕ

¼ kIμ0
2π

a

r

� �1=2 2

k2
�1

	 
 ðπ=2
0

dα

1�k2 sin2αð Þ1=2
� 2

k2

ðπ=2
0

1�k2 sin2α
� �1=2

dα

2
64

3
75

¼ kIμ0
2π

a

r

� �1=2
1�k2

2

	 

K�E

� �
(1.65)

where K and E are complete elliptical integrals of the first and second kind:

K kð Þ¼
ðπ=2
0

dα

1�k2 sin2αð Þ1=2
, E kð Þ¼

ðπ=2
0

1�k2 sin2α
� �1=2

dα (1.66)

The functions K(k) and E(k) can be estimated using widely available

computer subroutines.

Using the relationship (1.35) between the vector potential and magnetic

field, we have, in cylindrical coordinates,

Br ¼�@Aϕ

@z
, Bϕ¼ 0, Bz ¼ 1

r

@

@r
rAϕ

� �
(1.67)

For elliptical integrals, we have

dK

dk
¼ E

k 1�k2ð Þ�
K

k
,

dE

dk
¼E

k
�K

k

and

@k

@z
¼�zk3

4ar
,

@k

@r
¼ k

2r
�k3

4r
� k3

4a

Therefore, for the magnetic field, we derive
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Br ¼ μ0I

2π

z

r a+ rð Þ2 + z2
� �1=2 �K +

a2 + r2 + z2

a� rð Þ2 + z2
E

" #

Bz ¼ μ0I

2π

1

a+ rð Þ2 + z2
� �1=2 K +

a2� r2�z2

a� rð Þ2 + z2
E

" # (1.68)

Thus, the magnetic field caused by a circular current loop is expressed in

terms of elliptical integrals.

1.5.3 Example Three: Magnetic Fields of the Magnetic Dipole
Suppose that the distance from the center of the current-carrying loop to the

observation point R is considerably greater than the loop radius, that is

R¼ r2 + z2
� �1=2 ≫ a

Then Eq. (1.64) can be simplified to

Aϕ� μ0Ia

2π

ðπ
0

cosϕdϕ

R2�2ar cosϕð Þ1=2
¼ μ0Ia

2πR

ðπ
0

cosϕdϕ

1� 2ar=R2ð Þcosϕ½ �1=2

� μ0Ia

2πR

ðπ
0

1 +
ar

R2
cosϕ

� �
cosϕdϕ¼ μ0Ia

2πR

ðπ
0

cosϕdϕ+
μ0Ia

2r

2πR3

ðπ
0

cos2ϕdϕ

(1.69)

where approximation

1+ xð Þ�n� 1�nx

has been used assuming nx ≪ 1:The first integral in Eq. (1.69) vanishes, and
we obtain

Aϕ ¼ μ0Ia
2r

4R3
or Aϕ ¼Aϕiϕ ¼ μ0ISr

4πR3
iϕ (1.70)

where S is the area of the loop. Now we make use of the spherical system of

coordinates, (R,θ,ϕ) with the origin at the center of the loop (Fig. 1.5D).

Then, Eq. (1.70) can be written as

A¼ iϕ
μ0IS

4πR2
sin θ (1.71)
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Next we introduce the moment of the small loop as a vector directed

along the z-axis, whose magnitude is equal to the product of the current

and area of the loop:

M¼ ISiz ¼M iz (1.72)

whereM¼ IS. The momentM and direction of the current form the right-

hand side system. Thus, instead of Eq. (1.71) we have:

A¼ μ0M�R

4πR3
(1.73)

since

M�R¼ iϕMR sin θ

Now proceeding from Eqs. (1.35), (1.73), and taking into account that

AR ¼Aθ ¼ 0

we obtain the following expressions for the magnetic field in a spherical sys-

tem of coordinates:

BR ¼ 1

R sin θ

@ sin θAϕ

� �
@θ

, Bθ ¼� 1

R

@ RAϕ

� �
@R

, Bϕ¼ 0

Whence

BR ¼ 2μ0M

4πR3
cos θ, Bθ ¼ μ0M

4πR3
sin θ, Bϕ¼ 0 (1.74)

These equations describe the magnetic field of a small current loop,

assuming that its radius is much smaller than the distance between the center

of the loop and the observation point. This is the most important condition

for use of Eq. (1.74), while the values of the loop radius and the distance

R are not essential. Eq. (1.74) describes the magnetic field of magnetic

dipole with the moment M.
Some Comments
1. In the case of the electric field, a “dipole” means a combination of equal

charges having opposite signs when the separation of the charges is much

smaller than the distance to the point at which the field is determined.

The notion “magnetic dipole” is the limit of a closed loop of electric

current, as the radius of the loop is reduced to zero while keeping the

magnetic moment constant.
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2. The magnetic field of any current system, regardless of the shape and

dimensions, is equivalent to that of the magnetic dipole at distances

much greater than the size of this system. For instance, a distribution

of conduction currents within the upper part of the earth’s core is com-

plicated and changes with time. However, at the earth’s surface, rela-

tively far away from the core, the magnetic field of these currents is

close to that of the magnetic dipole.

3. Inmost cases of induction logging, current-carrying coils within the logging

tool can be treated as magnetic dipoles. Expressions (1.74), derived for the

direct current, are also valid for the case of quasistationary fields, which is

themain reasonwhyweconsidered this example in detail.Themain features

of the field of the magnetic dipole follow directly from Eq. (1.74):
(a) At the z-axis the field of the magnetic dipole has only one compo-

nent Bz directed along this z-axis, and it drops with z as
Bz ¼ μ0M

2πz3
(1.75)
(b) At the equatorial plane θ¼ π=2, the radial component BR vanishes,

and the field has the direction opposite to that of the magnetic

moment M:
Bz ¼�μ0M

4πr3
(1.76)

here r is the distance from the dipole to an observation point.
(c) Along any radius(θ¼constant) both components, BR and Bθ,

decrease inversely proportional to R3. At the same time, their ratio,

as well as an orientation of the total vectorBwith respect toR, does

not change. In fact, in accordance with Eq. (1.74), we have
Bθ

BR

¼ 1

2
tan θ (1.77)
It is also useful to consider the components of the field in the

cylindrical system. As follows from Fig. 1.5D, for components Br

and Bz, we have
Br r, zð Þ¼BR sin θ+Bθ cos θ and Bz r, zð Þ¼BR cos θ�Bθ sin θ

where

R¼ r2 + z2
� �1=2
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Taking into account (1.74), we obtain
Br r, zð Þ¼ 3μ0M

4πR3
sin θ cos θ, Bz r, zð Þ¼ μ0M

4πR3
2 cos2θ� sin2θ
� �

or

Br r, zð Þ¼ 3μ0Mrz

4π r2 + z2ð Þ5=2
, Bz¼ μ0M

4π r2 + z2ð Þ5=2
2z2� r2
� �

(1.78)

Behavior of Br and Bz components along vertical line parallel to the z-axis at

fixed r is presented in (Fig. 1.6). It is clear that the radial component Br is an

odd function of z changing sign in the equatorial plane of the dipole. At the

same time, the vertical component is an even function of z changing sign at

points

z¼� rffiffiffi
2

p :

1.5.4 Example Four: Magnetic Field Due to a Current in a
Cylindrical Conductor

Consider an infinitely long and homogeneous cylindrical conductor

(Fig. 1.7A) with the radius a and current I. In this case, the current density

j is uniformly distributed over the cross section S and has only z component:

j¼ jz ¼ constant (1.79)

In the cylindrical system of coordinates r,ϕ,zwhere the z-axis is directed
along the conductor, the magnetic field can be characterized by three com-

ponents: Br,Bϕ,Bz. However, two of these components are equal to zero.
z

0
0Br Bz

z

omponents Br and Bz as functions of z.
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z
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q2

if

z
B

Fig. 1.7 (A) Cylindrical conductor with current; (B) summation of radial components
of the magnetic field of cylindrical conductor; (C) behavior of the magnetic field; and
(D) infinitely long solenoid.
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As follows from the Biot-Savart law, the magnetic field caused by the current

element is perpendicular to the current density j; therefore Bz ¼ 0: Next

consider two current elements located symmetrically with respect to the

half-plane ϕ¼constant (Fig. 1.7B).

Obviously, the sum of radial components of the field is equal to zero.

Because the entire conductor can be presented as a combination of such pairs

of current elements, the total magnetic field does not have the radial com-

ponent, Br either. Thus, we demonstrated that B¼ 0, Bϕ, 0
� �

. Taking into

account the symmetry in distribution of the currents, the vector lines of the

magnetic field are circles located in horizontal planes with centers on the

z-axis. In order to determine the component Bϕ, we apply the first equation

of the system (1.54):

þ
L

B � dl¼
þ
L

Bϕdl¼Bϕ

þ
L

dl¼ 2πrBϕ ¼ μ0IS

Here IS is the current passing through any area bounded by the magnetic

line. In the derivation, we take advantage of the axial symmetry of the field

and parallel character of vectors B and dl. Thus, the field outside and inside

the current is
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Be
ϕ ¼

μ0I

2πr
if r � a (1.80)

and

Bi
ϕ ¼

μ0j

2
r, if r 	 a (1.81)

because IS ¼ πr2j: In accordance with Eqs. (1.80), (1.81), the magnetic field

is equal to zero at the z-axis and increases linearly inside. At the surface of the

conductor, it reaches maximum, equal to

Bϕ að Þ¼ μ0j

2
a (1.82)

and then the field decreases inversely proportional to the distance r

(Fig. 1.7C). Considering the magnetic field of the linear current

(Eq. 1.58), we have shown that the field tends to infinity when an observa-

tion point approaches the surface of the current line (r! 0). Obviously, this

is a result of replacement of real distribution of currents by its fictitious

model. At the surface of the conductor, the field has a finite value defined

by Eq. (1.82).
1.5.5 Example Five: Magnetic Field of Infinitely Long Solenoid
Suppose that, at each point of the cylindrical surface S, the current density

has only one component iϕ (Fig. 1.7D). In this case, we have Bϕ¼ 0: The

radial component also vanishes. Indeed, consider two elementary current

circuits located symmetrically with respect to the plane which includes an

observation point (Fig. 1.8A). It is seen that the sum of radial components
p

B(1)B(2)1

(A) (B)

2

z

r

i

0

B
R0

r

Fig. 1.8 (A) Summation of radial components; (B) magnetic field of a toroid.
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is equal to zero. Taking into account the fact that the solenoid is infinitely

long, one can always find such a pair of current loops that provide the resul-

tant radial component equal to zero. Thus, the total field has only a z

component:

B¼ 0, 0, Bzð Þ (1.83)

In general, the field can be evaluated by the Biot-Savart law and integra-

tion of the fields caused by elementary currents with the same radius a. But

we can simplify calculations by using Poisson’s equation for the vector

potential

ΔA¼�μ0j (1.84)

Taking into account the symmetry of the problem and the fact that the

vector potential has the same component as the current density, we have

A¼Aϕiϕ (1.85)

Outside the currents, the vector potential satisfies Laplace’s equation:

ΔA¼Δ Aϕiϕ
� �¼ 0

According to vector calculus, we have

iϕ¼�ix sinϕ+ iy cosϕ

Here ix and iy are independent of the coordinate unit vectors of the

Cartesian system. Thus

ΔA¼�ixΔ Aϕ cosϕ
� �

+ iyΔ Aϕ sinϕ
� �

For two arbitrary scalar functions u and ν, we have

Δ uvð Þ¼ vΔu+ uΔv+2 gradu � gradvð Þ
In our case, Aϕ depends only on r, while the second function is either

cosϕ or sinϕ.
The term 2 gradu � gradvð Þ vanishes because gradients are orthogonal to

each other, and we obtain

ΔA¼�ix cosϕ �ΔAϕ +AϕΔ cosϕ
� �

+ iy sinϕ �ΔAϕ +AϕΔ sinϕ
� �

By definition in the cylindrical system of coordinates

Δcosϕ¼� 1

r2
cosϕ and Δ sinϕ¼� 1

r2
sinϕ
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Whence

ΔA¼�ix cosϕ ΔAϕ� 1

r2
Aϕ

� �
+ iy sinϕ ΔAϕ� 1

r2
Aϕ

� �
¼ 0

which holds when

ΔAϕ� 1

r2
Aϕ¼ 0 (1.86)

The operator Δ is

ΔAϕ¼ 1

r

@

@r
r
@Aϕ

@r

	 

(1.87)

Substitution of the latter into Eq. (1.86) gives Laplace’s equation for a

scalar component Aϕ:

d

dr
r
dAϕ rð Þ
dr

� �
�Aϕ rð Þ

r
¼ 0 (1.88)

The solution to this ordinary differential equation of the second order is

Aϕ rð Þ¼Cr +Dr�1 (1.89)

Because magnetic field has a finite value everywhere and tends to zero

at infinity, we represent the vector potential inside and outside of the

solenoid as

A
ið Þ
ϕ ¼Cr, A

eð Þ
ϕ ¼Dr�1 (1.90)

where C and D are unknown coefficients. By definition

B¼ curlA¼ 1

r

1r r1ϕ 1z
@

@r

@

@ϕ

@

@z
0 rAϕ 0

�������
������� (1.91)

Whence

Br ¼ 0, Bϕ ¼ 0, Bz ¼ 1

r

@

@r
rAϕ

� �
(1.92)

Substitution of Aϕ
(e) into Eq. (1.92) yields

B eð Þ
z ¼ 0, if r > a
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proving that the surface currents of the solenoid do not create a magnetic

field outside the solenoid. In the same manner for the field inside of the

solenoid, we obtain

B ið Þ
z ¼ 2C, if r 	 a (1.93)

In order to determine C, we recall that the difference of tangential

components at both sides of the solenoid is

2C¼ μ0iϕ or B ið Þ
z ¼ μ0iϕ

Thus, for the field B, we have

B ið Þ
z ¼ μ0iϕ, if r 	 a and B eð Þ

z ¼ 0, if r> a (1.94)

Such behavior of the field is not obvious. First, because the field caused

by a single current loop varies greatly along the radius it is difficult to predict

that the field inside, Bz
(i ), is uniform over the cross section. Also, it is not

obvious that the field outside a solenoid is zero; that is, the elementary fields

caused by all current loops compensate each other. However, imagine a

plane z¼ const where an observation point outside a solenoid is situated.

Current circuits located relatively close to this plane generate a negative

component along the z-axis, while current loops situated far away provide

at the same observation point a positive contribution, r>a. Correspond-

ingly, the field outside solenoid is an algebraic sum of elementary fields,

and it turns out that, in the case of infinitely long solenoid, this sum is equal

to zero. Note that inside the solenoid all elementary fields are positive. Of

course, if a solenoid has a finite length along the z-axis, the field outside is

not zero and has two components Br,Bz.
1.5.6 Example Six: Magnetic Field of a Current Toroid
Let us introduce a cylindrical system of coordinates with the z-axis perpen-

dicular to the toroid, having radius R0 (Fig. 1.8B). The current density in

toroid is i. Due to axial symmetry, the magnetic field and vector potential

are independent of the coordinate ϕ.
Also imagine two current loops of the toroid located symmetrically with

respect to the vertical plane, where a point of observation is located. As can

be seen, the sum of vector potentials due to these elementary currents does

not have the ϕ-component. Thus, for the vector potential, we have

A¼ Ar , 0,Azð Þ



36 Basic Principles of Induction Logging
Taking into account that

B¼ 1

r

ir riϕ iz
@

@r

@

@ϕ

@

@z
Ar 0 Az

�������
�������

we obtain

Br ¼ 0, Bϕ¼ @Ar

@z
�@Az

@r
, Bz¼ 0 (1.95)

Thus, the magnetic field has only one component Bϕ but cannot be cal-

culated from Eq. (1.95) unless the vector potential is known. The problem

can be solved by using the Biot-Savart law in the integral form Eq. (1.52):þ
L

B � dl¼ μ0IS (1.96)

where L is a circular path of radius r located in the horizontal plane with the

center situated at the toroid axis, and IS is the current passing through a sur-

face S surrounded by this path L. Taking into account an axial symmetry and

the same directionality of B and dl, we have

Bϕ2πr ¼ μ0IS (1.97)

First, consider a point p, located outside the toroid. In such a case

the current either does not intersect the surface S, or its net value pass-

ing through the surface is equal to zero (equal current is passing in

opposite directions through the surface). This means that Bϕ ¼ 0; there-

fore, the magnetic field is zero outside the toroid, as in the case of the

solenoid:

B
eð Þ
ϕ ¼ 0 (1.98)

Next consider the magnetic field inside of the toroid. As follows from

Eq. (1.97) the field Bϕ
(i ) is not uniform and equals

B
ið Þ
ϕ ¼ μ0IS

2πr
(1.99)

In this case, the path of integration is inside the toroid. Suppose that it is

located in the plane z¼0; then, a change of its radius does not change the

flux of the current density. Therefore, within the range,
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R0� r0< r <R0 + r0

an increase of r results in a decrease of the field inversely proportional to r. If

we consider circular paths in planes with z 6¼ 0, then the current IS becomes

smaller as z increases. Thus, we observe a nonuniform magnetic field inside

the toroid. It is natural to expect that, with an increase of the ratio of the

radius R0 to the radius of its cross section r0, the field inside becomes more

uniform. Note that if the toroid has an arbitrary but constant cross section

and current density is independent on the coordinate ϕ, we can still apply

Eq. (1.99) and conclude that the field B is equal to zero outside the toroid.

Of course, if the current density is not constant in the last two examples, the

magnetic field appears outside, too, B eð Þ 6¼ 0:

1.6 SYSTEM OF EQUATIONS FOR THE STATIONARY
FIELDS
Let us summarize the results that follow from Coulomb’s law, the

Biot-Savart law, Ohm’s law, and the principle of charge conservation. As

shown above, we have the following equations at regular points:

curlE¼ 0, divD¼ δ0
curlB¼ μ0jc, divB¼ 0

(1.100)

and boundary conditions at interfaces:

n� E2�E1ð Þ¼ 0, n � D2�D1ð Þ¼ σ0
n� B2�B1ð Þ¼ ic, n � B2�B1ð Þ¼ 0

(1.101)

Here

D¼ εE and jc ¼ γE
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40 Basic Principles of Induction Logging
Proceeding from Faraday’s, Coulomb’s, Biot-Savart’s, and Ohm’s laws,

governing static and time-varying electric and magnetic fields, we arrive

at Maxwell’s equations. From a historical perspective, such approach is nat-

ural because most of these laws, as well as Faraday’s field concept, were

known before Maxwell derived his system.

2.1 FARADAY’S LAW

Experiments performed by Faraday demonstrated that time-varying
flux Φ of the magnetic field B through any surface S, bounded by a closed

contour L (Fig. 2.1A), creates an electromotive force Ξ along this contour:

Ξ¼�@Φ
@t

(2.1)

where

Φ¼
ð
S

B � dS
n

E(2)

E(1)

(2)

(1)

L

dl

S

n

B

n

dl

B

B
B = 0

(A) (B)

(C) (D)

E E

E

B

V

L1
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n

n

S

V

j

j

j

Fig. 2.1 (A) Flux of the field _B:. (B) Electric field near an interface. (C) Faraday’s law.
(D) Flux of the current density.
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is the flux of the magnetic field and @Φ=@t is its derivative with respect to

time. The contour L is a closed path that can have any form and can pass in

general through media with different electric properties, including insula-

tors. Of course, such a path L usually does not coincide with the actual

current lines. By definition, the electromotive force is

Ξ¼
þ
L

E � dl (2.2)

where E is the electric field at each point of the contour L. Thus an

electromotive force may exist only if there is an electric field. Consequently,

in place of Eq. (2.1) we have þ
L

E � dl¼�@Φ
@t

(2.3)

A change of the magnetic flux Φ with time gives rise to an electric field.

In other words, a time-varying magnetic field B is a source of an electric field

in the same sense that electric charges are the source of a stationary electric

field. This phenomenon, first observed by Faraday, is called electromagnetic

induction. The relationship between the electric field and the rate of the

change of the magnetic flux, as described by Eq. (2.3), is one of the most

fundamental laws of nature. By convention, the electric field that appears

due to the electromagnetic induction is called the inductive electric fieldEind

to emphasize its origin. Thus we can rewrite Eq. (2.3) in the formþ
L

Eind � dl¼�@Φ
@t

(2.4)

Because electric field Eind appears in the integrand, its determination

from Eq. (2.3) requires additional information, even for known function

@Φ=@t. In general, there are two sources of the electric field, namely,

charges and a change of the magnetic field with time, as shown later.

Vortex:
Change of the field
B with time

Source:
Electric charges

Electric field
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At the same time, we can readily think of particular cases in which only

one of these sources exists, such as:

1. A static field in which the derivative with respect to time is zero, and the

electric field arises only due to the presence of the electric charges.

2. An alternating electromagnetic field in which the electric field has only

tangential component at interfaces between media with different electri-

cal conductivities. In such a case charges are absent, and the electric field

has an inductive origin only:

E¼Ec +Eind (2.5)

c
where E is the electric field generated by charges and at every instant

obeys Coulomb’s law, while Eind is the part of the electric field, which

arises due to a change of the magnetic field with time. Combining

Eqs. (2.4), (2.5), we have
þ
L

E � dl�
þ
L

Ec � dl¼�@Φ
@t
Because the circulation of the Coulomb’s electric field is equal to

zero, we have
 þ
L

Eind � dl¼
þ
L

E � dl¼�@Φ
@t

(2.6)
This result may lead to confusion about the role played by charges in

creating an electromagnetic field. Eq. (2.6) shows that the electromotive

force caused by the Coulomb electric field vanishes. But this conclusion,

as in the case of a stationary field, does not mean that the Coulomb field

plays no role in the distribution of currents and electromagnetic fields. In

fact, the Coulomb field does influence the distribution of currents in a

conducting medium, and these currents in turn can create an alternating

magnetic field. Therefore, in general, both parts of the field, Ec and Eind,

are closely related to each other. Next, we describe different forms of

Faraday’s law. First, using the definition of the magnetic flux we have
þ
L

E � dl¼� @

@t

ð
S

B � dS
As previously mentioned, a change of the flux may happen due to a

change of the magnetic field with time, as well as a change of a position of
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the path L. The influence of the last factor was studied earlier (Lorenz

force), but from now we assume that the path L along which the

electromotive force is calculated does not move. Then, the last equation

can be rewritten as
 þ
L

E � dl¼�
ð
S

_B � dS (2.7)
where
_B¼ @B

@t
Eq. (2.7) is a formulation of Faraday’s law, and, as will be seen later, it

is the first of Maxwell’s equations in integral form. In this equation dl is

elementary displacement along the contour and indicates the direction in

which integration is carried along the contour L, while the vector dS has

the direction of the unit vector n normal to the surface S, bounded by

the contour L (Fig. 2.1A). To retain the physical meaning of Faraday’s

law, the vectors dl and dS are chosen according to the right-hand rule.

This means that an observer facing in the direction of the vector�dS sees

that dl indicates a direction along the path L, which is counterclockwise.

Only in this case Eq. (2.7) correctly describes the phenomenon of elec-

tromagnetic induction. Now, making use of Stokes theorem,
þ
M � dl¼

ð
curlM � dS
we obtain the differential form of Eq. (2.7)
þ
L

E � dl¼
ð
S

curl E � dS¼�
ð
S

@B

@t
� dS
Because this equation is valid for any surface S, it follows that the

integrands on either side are equal:
curl E¼�@B

@t
(2.8)
where E and B are considered in the same point. Both Eqs. (2.7), (2.8)

describe the same physical phenomenon, but the differential form

Eq. (2.8) applies only at regular points in which all components of the

electric field are continuous functions of the spatial variables.
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Considering that in most problems we must examine electromagnetic

fields in media with discontinuous changes in physical properties (inter-

faces), it is useful to derive a surface analog of Eq. (2.8). For example, it is

clear that Eq. (2.8) cannot be used for points of the interface between

media having different values of dielectric permittivity and conductivity

because the normal component of the electric field is a discontinuous

function at such interfaces. For this reason, we proceed with Eq. (2.7)

performing integration along the elementary path, as shown in

Fig. 2.1B. Taking into account that the flux through the area surrounded

by this contour tends to zero, we obtain
E2t�E1t ¼ 0 (2.9)
where t indicates an arbitrary direction tangential to the interface. The

vector form of this equation is
n� E2�E1ð Þ¼ 0
Here E1 and E2 are electric fields at the back and front sides of the

surface, respectively.

In accordance with this equation, the tangential component of the

time-varying field is a continuous function at the interface, as it would

be in the case of the field caused by static electric charges. Thus we have

derived three forms of Faraday’s law:
þ
L

E � dl¼�
ð
S

_B � dS, curl E¼�@B

@t
, n� E2�E1ð Þ¼ 0 (2.10)
and each of them describes the first Maxwell’s equation. Later we con-

sider numerous examples illustrating electromagnetic induction and

application of Eq. (2.10).
Several comments:

1. Suppose that a change of magnetic field with time occurs within some

volume V, but outside of V the field B is absent. As follows from

Eq. (2.3), the electromotive force along the contour L1, surrounding this

volume (Fig. 2.1C), is nonzero, regardless of location of the volume V

inside L1. In other words, the time-varying fieldB in some region results

in an appearance of the electric field Eind everywhere in space. Here we

see the direct analogy with Coulomb’s electric field caused by charges.

But neither Coulomb’s law nor Faraday’s law can explain how the field

reaches an observation point. Later we will discuss this subject in detail.
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2. Consider an arbitrary closed path L2 that does not enclose a volume

where vortices @B=@t are located. In general, an electric field caused

by the sources may exist at each point of this contour and vary in both

magnitude and direction (Fig. 2.1C). However, the electromotive force

in this case is equal to zero.

3. This analysis shows that, at every point of a closed contour, the inductive

electric field can be presented as the sum of two fields. The first is caused

by vortices intersecting the area surrounded by the loop, while the sec-

ond field is generated by vortices that do not cross the area of the loop. In

accordance with Faraday’s law, the electromotive force Ξ is given by

only the first part of the electric field.
This fact allows us to measure the rate of change, @B=@t, at any point
in space with a relatively small loop around this point.
4. It is well known that the voltage of a Coulomb electric field between two

points is path independent. In general, taking into account (2.4), the

voltage of the inductive electric field

ðb
a

Eind � dl
depends on the path of integration. Taking into account Faraday’s law

and modifying the system of equations, derived for the static field, we

obtain
curl E¼�@B

@t
, divD¼ δ0,

curlB¼ μ0jc , divB¼ 0
(2.11)

At first glance, this set of equations fully describes the time-varying

electromagnetic field because it takes into account electromagnetic induc-

tion as well as the Coulomb’s and Biot-Savart’s laws. In fact, as we will see

later, it characterizes fields in the so-called quasi-stationary approximation,

which plays a dominant role in the induction logging. However, the set in

Eq. (2.11) also suggests that the field instantly appears at any point of space

regardless of distance from the source. Suppose that the conduction current

has changed at some instant t. Then, in accordance with the equationþ
L

B � dl¼ μ0I
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the magnetic field synchronously changes at any observation point. The

same is true for the electric field. There is another fact, which implies that

there is a problem with Eq. (2.11). Indeed, from the equation

curlB¼ μ0jc

we have

div jc ¼ 0 (2.12)

because from vector calculus divcurlB¼ 0. Eq. (2.12) describes charge con-

servation law for the static electric field (Chapter 1). But we will see it later

that it contradicts the principle of charge conservation law for time-varying

fields. Understanding this discrepancy leads to the discovery of electromag-

netic field propagation and formulation of complete system of Maxwell’s

equations. For this reason, it is proper to describe in detail the principle

of charge conservation.
2.2 PRINCIPLE OF CHARGE CONSERVATION

In general, the principle of charge conservation is written in the form
þ
S

j � dS¼�@e0
@t

(2.13)

where S is an arbitrary closed surface, e0 is a free charge in the volume V,

surrounded by the surface S, and dS is directed outside the volume

(Fig. 2.1D). Here

j¼ jc

is the conduction current only. In accordance with Eq. (2.13), a flux of the

current density through S defines the rate of a change of charge over time

inside the volume. If, for instance, the flux is positive, the charge e0
decreases; by contrast, when the flux is negative more charges arrive

than leave the volume. At the same time, experiments show that, in the

absence of electrical current, it is impossible to have the appearance or dis-

appearance of charges from any volume. Thus any change of the charge

inside the volume Vmay occur only due to the flux of free charges through

the surface S. Now, applying Gauss’s theorem for regular points of a

medium, we obtain
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þ
S

j � dS¼
ð
V

divjdV ¼� @

@t

ð
V

δ0dV (2.14)

where δ0 is the volume density of free charges. Assuming that the volume

does not change with time, we have

ð
V

divjdV ¼�
ð
V

@δ0
@t

dV or divj¼�@δ0
@t

¼� _δ0 (2.15)

Next, consider the surface analogy of Eq. (2.15). With this purpose in

mind, let us determine the flux of the current density through the surface

of an elementary cylinder. Making use of Eq. (2.14), we have

j2 � dS2 + j1 � dS1 +

ð
S1

j � dS¼� _σ0dS

where j2 and j1 are the current density at the front and back sides of the

surface, respectively, and Sl is the lateral surface of the cylinder,

dS2¼ndS, dS1 ¼�ndS

In the limit when the cylinder height tends to zero, we have

j2n� j1n ¼� _σ0 (2.16)

that is, the difference of normal components of the current density defines

the rate at which a surface density of charges, σ0, changes. Thus we have

derived three forms of equations describing the principle of charge

conservation:

þ
S

j � dS¼�@e0
@t

, divj¼� _δ0, j2n� j1n ¼� _σ0 (2.17)

These equations are always valid for any electromagnetic field, and they

show that a change of a charge in one place is always accompanied by such a

change of charge in other places so that the total charge remains the same.

This is the reason why the phenomenon is called the principle of charge con-

servation. At the same time, one can imagine at least two cases when it is

possible to neglect a change of the charge with time.
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Case One: The Stationary Field
By definition, the right-hand side of Eq. (2.13) vanishes, and the flux of the

current density is equal to zero through any closed surface. This means that

charges may exist, but they do not change with time.
Case Two: Quasi-Stationary Electromagnetic Field
Suppose that a medium is conductive and a time-varying field changes rel-

atively slowly. Then, it turns out that, under certain conditions, the right-

hand side of Eq. (2.17) can be neglected. In these cases, at each instant of

time the amount of charge entering any volume is equal to the amount

leaving the volume. As will be shown later, such an approximation gives

a sufficiently correct result when displacement currents are much smaller

than the conduction ones. As mentioned earlier, this scenario is of great

importance for the induction logging. Thus in these special cases in place

of Eq. (2.17) we haveþ
S

j � dS� 0, div j� 0, j2n � j1n (2.18)

Returning back to the principle of charge conservation for the time-

varying field, it is natural to expect that the set (2.17) should follow from

the system of equations (2.11). However, it turns out that, in general, these

equations do not follow from the set (2.11) because the third equation of this

set does not take into account one more sources of the magnetic field.

2.3 DISTRIBUTION OF ELECTRIC CHARGES

Now proceeding from Eq. (2.17) and the second equation of the set
(2.11): þ
S

εE � dS¼ e0 or divεE¼ δ0 (2.19)

we study a distribution of charges in a conducting and polarizable medium

with conductivity γ and dielectric permittivity ε. In this light it is proper to

note that Eq. (2.19) was derived from Coulomb’s law. This may create

impression that our results are applied only for the static field. However,

as will be shown later, these equations are applied for the time-varying

electromagnetic fields, too.
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2.3.1 Equation for the Volume Charge Density
First consider some points of a medium where equations

div j¼�@δ0
@t

and divεE¼ δ0 (2.20)
are valid. Taking into account Ohm’s law, we have

div j¼ divγE¼ div
γ

ε
εE¼ γ

ε
divεE+ εE � grad γ

ε
¼�@δ0

@t
or

γ

ε
δ0 + εE � grad γ

ε
¼�@δ0

@t
Thus we have arrived at the following differential equation for the

volume density of free charges:

@δ0
@t

+
1

τ0
δ0¼�εE � grad 1

τ0
(2.21)
where

τ0¼ ε

γ
¼ ερ (2.22)
is often called the time constant of the medium.

2.3.2 Uniform Medium
Suppose that, in the vicinity of some point, the parameter τ0 does not change
or the field E and grad(1/τ0) are perpendicular to each other:

E � r 1

τ0
¼ 0 (2.23)
Then, Eq. (2.21) is simplified, and we have

@δ0
@t

+
1

τ0
δ0¼ 0 (2.24)

The solution of this equation is

δ0 tð Þ¼C exp �t=τ0ð Þ (2.25)

whereC is the density of the free charge at the initial instant. In a conducting

and polarizable medium, the parameter τ0 is usually small. For example,

if ρ¼ 100ohmm and ε¼ 10ε0 then
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τ0 ¼ 100 � 10 � 36πð Þ�1
10�9 s< 10�8 s

Thus a free charge placed inside a conducting medium quickly disap-

pears. If we are concerned only with charges that exist at times greater than

τ0 t≫ τ0ð Þ and described by Eq. (2.24), we can assume that they are, in prac-

tice, absent. In addition, the initial volume charge is usually equal to zero

inside the conducting medium, that is C¼0. Therefore, we conclude that

at points where the medium is uniformwith respect to τ0 or condition (2.23)
is met, there are no electric charges and

divεE¼ 0 (2.26)

Earlier (Chapter 1) it was mentioned that free charges are accompanied

by bound ones:

divE¼ δ0 + δb
ε0

and divE¼ δ0
ε

because in our case gradε¼ 0. Whence

δ0 + δb
ε0

¼ δ0
ε

and δb¼ ε0=ε�1ð Þδ0 (2.27)

Therefore, both the bound and free charges, located in the vicinity of

some point where rτ0¼ 0, decay in the same manner and

divE¼ 0 if t≫ τ0 (2.28)

Similarly, with the case of the static field, the total density of the decaying

charge is smaller than the free charge by the factor εr.

δ¼ δ0 tð Þ
εr

(2.29)

where εr ¼ ε=ε0:
2.3.3 Nonuniform Medium
Thus far we have studied the behavior of the charge in the vicinity of points

where either the medium is uniform or the condition (2.23) is met. It was

established that charge decays rapidly, and such behavior is observed regard-

less of the presence of the electromagnetic field caused by the source located

at some place of the medium. A different situation occurs when the medium

is not uniform and either E � rγ 6¼ 0 or E � rε 6¼ 0: In this case the
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right-hand side of Eq. (2.21) does not vanish, and we have an inhomoge-

neous differential equation of the first order:

dy

dt
+

1

τ0
y¼ f tð Þ (2.30)

where y¼ δ0 tð Þ and f tð Þ¼�εE � r 1

τ0
. The general solution of Eq. (2.30)

has the form

y tð Þ¼ y0 exp �t=τ0ð Þ+ exp �t=τ0ð Þ
ðt
0

exp x=τ0ð Þf xð Þdx (2.31)

where y0 is the value of the function y(t) at the instant t¼0. In accordance

with Eq. (2.31),

δ0 tð Þ¼C exp �t=τ0ð Þ� exp �t=τ0ð Þε
ðt
0

exp
x

τ0

� �
E � r 1

τ0
dx (2.32)

If the direction of the electric field does not change with time, the last

equation can be rewritten as

δ0 tð Þ¼C exp �t=τ0ð Þ

� exp �t=τ0ð Þε
ðt
0

exp
x

τ0

� �
E xð Þdx e0 � r 1

τ0

� �
(2.33)

Here

E tð Þ¼E tð Þe0
We can recognize two types of charges whose behavior is quite different

as a function of time:

δ0 tð Þ¼ δ01 tð Þ+ δ02 tð Þ (2.34)

where

δ01 tð Þ¼C exp �t=τ0ð Þ
and
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δ02 tð Þ¼�exp �t=τ0ð Þε
ðt
0

exp x=τ0ð ÞE xð Þdx e0 � r 1=τ0ð Þð Þ: (2.35)
The behavior of the function δ01(t) is the same as in the case of a uniform

medium. According to Eq. (2.35), a free charge δ02(t) arises in the neighbor-
hood of any point where a medium is not uniform, provided that the field

E(t) is not perpendicular to the direction of the gradient of τ0. In general, the
density δ02(t) depends on the resistivity and dielectric permittivity of the

medium as well as on the magnitude and direction of the electric field.
2.3.4 Quasi-Stationary Field
Now we consider a special case, which is of practical interest for induction

logging. Suppose the following inequality holds:

@δ0
@t

≪
δ0
τ0

(2.36)

Then, instead of Eq. (2.21), we obtain an approximate equation

γ
δ0 tð Þ
ε

+ εE tð Þ �r 1

τ0
¼ 0 (2.37)

Correspondingly, the density of free charge is

δ0 tð Þ¼�ε2ρE tð Þ �r 1

τ0
or

δ0 tð Þ¼ εE tð Þ � rρ

ρ
+E tð Þ �rε

(2.38)

since

r 1

τ0
¼r 1

ερ
¼�rε

ε2
1

ρ
�rρ

ρ2
1

ε

Therefore, free charges arise in the vicinity of points where either con-

ductivity or dielectric permittivity changes. Of course, this happens only if

the electric field is not perpendicular to the direction of the maximal rate of

change of these parameters. Note that, in the frequency domain, the

inequality (2.36) is equivalent to the following:

ωε

γ
≪ 1
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As we already know, the free charges are usually accompanied by bound

charges, and their density is

δb¼ δ�δ0¼ div ε0� εð ÞE½ � ¼ div ε0�εð Þjρ½ �
Making use of Eq. (2.38) and equation

divE¼ δ0 + δb
ε0

it can be shown that

δb tð Þ¼�E tð Þ �rε+ ε0�εð ÞE tð Þ � rρ

ρ
(2.39)

From Eqs. (2.38), (2.39) it follows that the total charge is

δ tð Þ¼ ε0E tð Þ � rρ

ρ
(2.40)

This means that, at points where only ε varies, the total charge is equal to
zero. In such places the free and bound charges compensate each other. At

the same time at points where both parameters change, the total charge is the

same as if polarization were absent.

2.3.5 Behavior of Charge Density δ02
Now we return to the general case (Eq. 2.35) and consider two examples

that illustrate the behavior of the charge δ02(t) when variation in time is taken

into account (2.21).

Example One
Let us assume that the electric field varies with time as

E tð Þ¼E0 exp �t=τð Þe0 (2.41)

and τ is the parameter characterizing the rate of the field decay. Correspond-

ingly, Eq. (2.35) becomes

δ02 tð Þ¼�ε exp � t

τ

� �
e0 � r 1

τ0

� �ðt
0

exp
1

τ0
�1

τ

� �
x

� �
dxE0

Carrying out integration, we obtain

δ02 tð Þ¼�ετ0E0 exp 1� t=τ0ð Þ
1� τ0=τ

exp t 1=τ0�1=τð Þ½ ��1f ge0 � r 1

τ0
(2.42)
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As follows from this equation, the charge is absent at the instant t ¼ 0.

Then it increases, reaches a maximum and, afterward, decays exponentially.

Thus, in general, the dependence of this charge density and the electric field

E(t) on time differs from each other. Assuming that the electric field decays

relatively slowly τ≫ τ0ð Þ and measurements are performed at sufficiently

large times t≫ τ0ð Þ, in place of Eq. (2.42) we obtain

δ02 tð Þ¼�ετ0 exp �t=τð ÞE0 e0 � r 1

τ0

� �
(2.43)

Thus the volume density of free charge and the electric field decay in the

same manner. For instance, when the time constant of the field τ is 1 s, the
function δ02(t) also decreases with a time constant 1 s regardless of the

conductivity and dielectric permittivity of the medium.
Example Two
Now suppose that the electric field varies as a sinusoidal function:

E tð Þ¼E0e0 sinωt:

Substituting this expression into Eq. (2.35) and integrating, we have

δ02 tð Þ¼� εE0τ0
1 +ω2τ20

ωτ0 exp �t=τ0ð Þ+ sinωt�ωτ0 cosωtð Þ½ � e0 � r 1

τ0

� �
(2.44)

In particular, assuming that

t≫ τ0 and T ≫ τ0 (2.45)

where T is the period of oscillations, we have

δ02 tð Þ¼�ετ0E0 sinωt e0 � r 1

τ0

� �
(2.46)

Notice that conditions Eqs. (2.36), (2.45) have the same meaning.
2.3.6 Surface Distribution of Charges
So far we have studied the distribution of volume charge density. Now con-

sider time-varying free charges that arise at interfaces between media with

different electric properties. Applying equations
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j2n� j1n¼�@σ0
@t

, D2n�D1n¼ σ0

where

Din ¼ εiEin, i¼ 1,2

we have

γ2
ε2
D2n� γ1

ε1
D1n¼ 1

2

γ2
ε2

+
γ1
ε1

� �
D2n�D1nð Þ+ γ2

ε2
� γ1
ε1

� �
D2n +D1nð Þ

� �
¼�@σ0

@t

or

αavσ0 + α2�α1ð ÞDav
n ¼�@σ0

@t

Whence

@σ0 tð Þ
@t

+
1

τ0s
σ0 tð Þ¼ α1�α2ð ÞDav

n (2.47)

where

τ0s ¼ 1

αav
¼ 2

1=τ01 + 1=τ02

is the relaxation time for surface charges, and

α1�α2 ¼ 1

τ01
� 1

τ02
, Dav

n ¼ ε1E1n + ε2E2n

2
,

τ01 ¼ ε1ρ1, τ02¼ ε2ρ2, α1¼ 1

τ01
, α2¼ 1

τ02

Thus the equation for the surface density of free charges is a differential

equation of the first order similar to that for the volume density. In accor-

dance with Eq. (2.35), the solution of Eq. (2.47) is

σ0 tð Þ¼C exp �t=τ0sð Þ+ exp �t=τ0sð Þ α1�α2ð Þ
ðt
0

Dav
n xð Þexp x=τ0sð Þdx

(2.48)

that is

σ0¼ σ01 + σ02
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where

σ01 tð Þ¼C exp �t=τ0sð Þ, σ02

¼ α1�α2ð Þexp �t=τ0sð Þ
ðt
0

Dav
n xð Þexp x=τ0sð Þdx (2.49)

Respectively, there are two types of surface charges. The first type σ01
corresponds to the case of free charge with density C placed at the interface.

As follows from Eq. (2.49), it decays exponentially with time constant τ0s.
The decay is controlled by the conductivity and dielectric permittivity of the

media on both sides of the interface, and it is independent of the electric field

caused by other sources. Inasmuch as the relaxation time τ0s is usually small

and measurements are performed at times much greater than τ0s, in most

cases one can ignore the presence of this charge. Correspondingly, let us

concentrate on the charges of the second type arising on a boundary. Of

course, as in the case of volume density, the surface charges consist of the

free and bound charges, and they are related to each other. In fact, from

the equations

E2n�E1n ¼ σ

ε0
and ε2E2n� ε1E1n¼ σ0

we have

σ0¼ 1

2
ε2 + ε1ð Þ E2n�E1nð Þ+ ε2� ε1ð Þ E2n +E1nð Þ½ �

or

σ0¼ εav

ε0
σ + ε2� ε1ð ÞEav

n

Here

σ¼ σ0 + σb, εav ¼ ε1 + ε2
2

, Eav
n ¼E2n +E1n

2

Hence

σb¼ ε0�εav

εav
σ0�ε2� ε1

εav
ε0E

av
n (2.50)
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2.3.7 Slowly Varying (Quasi-Stationary) Field
Now let us assume again that the time constant τ0s is small with respect to

time of measurements,

t≫ τ0s

or the period of sinusoidal oscillations of the field T is much greater

that τ0s :T ≫ τ0s. Then it is appropriate to replace the right-hand side

of Eq. (2.49) by a series in the parameter τ0s. Carrying out this expansion

using integration by parts and discarding all terms except the first one, we

obtain

σ02 tð Þ¼ α1�α2ð Þτ0sDav
n tð Þ (2.51)

It is obvious that the same result follows from Eq. (2.47) if we neglect by

the derivative @σ02 tð Þ=@t in comparison with the term σ02/τ0s:

@σ02
@t

≪
σ0s
τ0s

(2.52)

The free charges are accompanied by bound ones; however, it turns

out that the density of the total charge σ does not depend on the dielectric

permittivity. In other words, the total charge σ coincides with that of free

charges, if the medium is not polarizable, provided that the condition

(Eq. 2.52) is met. Correspondingly, letting ε1¼ ε2¼ ε0, Eq. (2.51) can be

written as

γ1 + γ2ð Þ σ

2ε0
+ γ2� γ1ð ÞEav

n ¼ 0 (2.53)

where En
av is the average magnitude of the normal component of the electric

field at point p, located at the interface. Therefore, we arrive at the following

expression for the surface density of the total charge:

σ p, tð Þ¼ 2ε0K12E
av
n p, tð Þ (2.54)

Here

K12 ¼ ρ2�ρ1
ρ2 + ρ1

(2.55)

As we already know from (1.10), the same equation describes the density

of charges when the field is time invariant. Thus Eq. (2.54) shows that, if the

condition (Eq. 2.52) holds, the density of time-varying charges is related to

the electric field and resistivity of the medium as the density of stationary
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charges. Eq. (2.54) plays a fundamental role for understanding the so-called

galvanic part of the field. It is useful to represent the normal component of

the field E on two sides of the interface as follows:

E1n p, tð Þ¼En p, tð Þ�σ p, tð Þ
2ε0

and

E2n p, tð Þ¼En p, tð Þ+ σ p, tð Þ
2ε0

(2.56)

Here En(p, t) is the normal component of the field at the point p contrib-

uted by all sources except the charge at this point. As is shown Ref. [1], this

surface charge creates in its vicinity the field

�σ p, tð Þ
2ε0

and, in accordance with Eq. (2.56), we have to conclude that

Eav
n p, tð Þ¼En p, tð Þ (2.57)

where the normal n is directed from the back side “1” to the front side, “2”

of the interface. Therefore, the function En
av(p, t) describes the normal com-

ponent of the field caused by all sources except the field produced by the

charge in the vicinity of point p. For this reason, the second term of

Eq. (2.53) can be interpreted as the flux of the current density j through a

closed surface of an elementary cylinder with a unit cross-section and an infi-

nitely small height caused by all sources, located outside this surface. In other

words, this flux characterizes the difference between the amount of charge

that arrives and leaves this volume during each time interval, and this motion

of charges is caused by external sources only. The term

γ1 + γ2ð Þ σ0
2ε0

defines the flux of the current density through the same closed surface caused

by the electric field of the charge inside the elementary cylinder. Thus,

under the approximation (Eq. 2.52) the flux of the current density due to

the external sources, such as charges and a change of the magnetic field with

time, is compensated by the flux caused by the charge in the vicinity of the

point p.
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2.4 DISPLACEMENT CURRENTS

2.4.1 Second Source of the Magnetic Field

Next we demonstrate that the system (2.11) is not in agreement with the

principle of charge conservation for time-varying fields. To proceed, let

us demonstrate that the second equation of this system derived from the

Biot-Savart’s law

curlB¼ μ0jc (2.58)

in general, contradicts the principle of charge conservation when an electro-

magnetic field changes with time. In fact, taking the divergence of both sides

of Eq. (2.58), we have

div curlB¼ μ0div jc or div jc ¼ 0

while, as follows from Eq. (2.15), jc should be equal to the rate of decrease

with time of the charge density. To remove this contradiction, we first

assume that, on the right-hand side of Eq. (2.58), there is an additional term

X, which disappears in the case of a stationary field. Then Eq. (2.58)

becomes

curlB¼ μ0 jc +Xð Þ (2.59)

Now we choose the vector X in such a way that the principle of charge

conservation is satisfied. Forming the divergence on both sides of Eq. (2.59),

we obtain

0¼ div jc + divX

or, in accordance with Eq. (2.15),

divX¼ _δ0 (2.60)

It is a partial differential equation with respect to unknown vectorX, and

it is not clear how to solve it. However, the problem is greatly simplified if

we take into account the third equation of the set (Eq. 2.11):

divD¼ δ0

Assuming that this equation is valid for time-varying fields and taking the

derivative with respect to time, we have

div _D¼ _δ0 (2.61)
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Comparison of Eqs. (2.60) and (2.61) gives

div _D¼ divX or div _D�X
� 	¼ 0:

An infinite number of vectors X satisfy this last equation, and they may

differ from each other by curlM, where M is an arbitrary vector because

divcurlM¼ 0

However, Maxwell assumed the simplest solution of this equation

and let

X¼ _D¼ @εE

@t
(2.62)

Numerous experimental studies performed during almost two centuries

have shown the validity of this assumption, and the vector @D=@t is called
the density of displacement current:

jd ¼
@D

@t
(2.63)

or

jd ¼ ε
@E

@t
(2.64)

if we assume that the dielectric permittivity does not change with time.

Consequently, instead of Eq. (2.59), we have

curlB¼ μ0 jc + ε
@E

@t

� �
(2.65)

Thus the time-varying magnetic field is caused by two types of sources in

a nonmagnetic medium, namely, the conduction and displacement currents

as illustrated later.

Vortex:
Conduction 
currents 

jc

Vortex:
Displacement 
currents:

∂ t
∂Ee

Magnetic 
field, B

Applying Stoke’s theorem, we obtain the integral form of Eq. (2.65):
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Fig. 2.2 (A) Flux of conduction and displacement currents. (B) Field B near interface.
(C) Continuity of normal component of the total current near interface.
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þ
L

B � dl¼ μ0

ð
S

jc + ε
@E

@t

� �
� dS (2.66)

which shows that the circulation of the magnetic field along any contour L is

determined by the total current passing through any surface S bound by this

contour (Fig. 2.2A). Now suppose that the path of integration L is an

elementary contour, as shown in Fig. 2.2B. Then, taking into account the fact

that in the limit when the area surrounded by the pathL tends to zero, the flux

of both the conduction and displacement currents vanishes, we obtain

n� B2�B1ð Þ¼ 0 (2.67)

Therefore, the tangential component of the magnetic field, as in the case

of the static field, is a continuous function at the interface, if the surface den-

sity of conduction currents ic is absent. However, sometimes it is convenient

to assume that ic 6¼ 0; then, in place of Eq. (2.67), we have

n� B2�B1ð Þ¼ μ0ic (2.68)

2.4.2 Total Current and the Charge Conservation Principle
Having introduced the displacement currents let us represent the charge

conservation principle in a different form. Because

div jc ¼� _δ0 and divD¼ δ0

we have

div jc + div _D¼ 0 or div j¼ 0 (2.69)

where

j¼ jc + ε
@E

@t
(2.70)
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is the density of the total current. In accordance with Eq. (2.69), the current

lines of the field j are always closed; therefore, j is the vortex field. Applying

Gauss’s theorem, we obtain the integral form of Eq. (2.69):

þ
S

j � dS¼ 0 (2.71)

which is the flux of the vector of the total current density through any closed

surface and is always equal to zero. Considering again an elementary cylinder

(Fig. 2.2C) and calculating the flux of j through this closed surface, we have

j1nc +
@D1n

@t
¼ j2nc +

@D2n

@t
(2.72)

Thus the normal component of the vector j is a continuous function

at an interface. Let us write down equations for the total current density,

describing the principle of charge conservation:

þ
S

j � dS¼ 0, div j¼ 0, j1n ¼ j2n (2.73)

Comments:

1. Eq. (2.65) can be rewritten as

curlB¼ μ0j (2.74)
where j is the vector of the total current density. The similarity of

Eqs. (2.58), (2.74) is obvious. However, it does not mean that, in gen-

eral, a time-varying magnetic field obeys the Biot-Savart’s law. Never-

theless, if the influence of displacement currents is negligible, the

magnetic field B(t) behaves practically in accordance with this law,

and the field is a quasi-stationary one.
2. Displacement currents depend on the dielectric permittivity and

electric field. In particular, in a nonpolarizable medium ε¼ ε0ð Þ dis-

placement current is caused only by the rate of change of the electric field

with time.

3. In an isolative medium there are only displacement currents, while in a

conducting medium conduction currents usually prevail. Of course,

with an increase of the frequency, the field is varying faster and the

relative contribution of displacement currents becomes stronger.
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4. Unlike electromagnetic induction, the introduction of displacement

currents, which was discovered experimentally, was a bold assumption

made by Maxwell and only later confirmed by experiments.

5. The quantity ε
@E

@t
is called the displacement currents density, though it is

not related to a motion of free charges as in the case of conduction cur-

rents. In spite of this fundamental difference between the conduction

and displacement currents, the latter is also called the current in order

to emphasize that both can generate a magnetic field.

6. The charge conservation principle has two forms:

div jc +
@δ0
@t

¼ 0 and div j¼ 0
In the case of the quasi-stationary field, we disregard with
@δ0
@t

term

assuming that an influence of displacement currents is negligible.
7. Among numerous phenomena based on the existence of displacement

currents, we note only two:
a. Propagation of electromagnetic waves with a finite velocity.

b. Presence of the alternating current in a circuit with a capacitor.
In fact, Eq. (2.58) was derived from the Biot-Savart’s law, which implies that

the magnetic field B instantly appears at any point regardless of its distance

from conduction currents. In other words, the velocity of propagation of the

field is infinitely high. However, this conclusion contradicts all experimental

observations that show that the field propagates with a finite velocity. For

instance, in a nonpolarizable and nonmagnetic medium this velocity is equal

to the speed of light:

c¼ 3�108m=s

Later we demonstrate that propagation of the electromagnetic field at a

finite speed is impossible without displacement currents. Now consider the

first example, illustrating the effect of displacement currents.

2.4.3 Currents in the Circuit With a Capacitor
Suppose that the circuit consists of a conducting part (wire) and an insulator

bounded by two conducting plates, parallel to each other (Fig. 2.3), com-

prising a capacitor. At the beginning suppose that there is only a conducting

current Ic in the wire, while displacement currents are absent. In accordance

with such assumption there is a magnetic field around this circuit. Applying

the equation
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Fig. 2.3 Distribution of displacement and conduction currents in a circuit.
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þ
L

B � dl¼ μ0IC

to the closed contourL (Fig. 2.3),we discover a paradox. Indeed, if the surface

Sl bounding the contour L intersects the conducting part of the circuit,

the circulation of the magnetic field remains the same, and it is equal to

μ0Ic. However, if the surface Sl passes through the capacitor, this circulation

becomes equal to zero because there is no conduction current inside the

capacitor. This ambiguity indicates that our assumptionwas incorrect; in real-

ity, there is a displacement current inside the capacitor.Moreover, this current

has to be equal to the conduction current: Id ¼ Ic: Then, applying Eq. (2.66),
we see that the circulation of the magnetic field is independent of the place

where the surface Sl intersects the circuit. Later, we consider several examples

illustrating the roleofdisplacement currents, butnowletus study the current in

the circuit with a capacitor (Fig. 2.3). First, assume that, at some instant, two

charges with equal magnitude and opposite sign are placed on the capacitor

plates. To facilitate this analysis, we make several assumptions:

1. The inductive electric field, caused by a change of the magnetic field

with time, can be disregarded. Therefore, the electric field E(t) is caused

by charges only, and it obeys Coulomb’s law. In particular, the field E(t)

inside the capacitor is mainly caused by surface charges located on the

conducting plates.

2. The distance between capacitor plates is small compared with their

dimensions.

3. At any given instant of time, the current density has the same value at all

points of the circuit.
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Charges, located on plates, create an electric field everywhere including in

the conducting part of the circuit. As a result, charges appear on the lateral

surface of the wire. Due to the electric field of these charges, a conduction

current with density j arises, and, correspondingly, a decrease of the plate

charges is observed. Note that inside the capacitor there can be bound char-

ges. The electric field E(t) in the capacitor is directed from the positive to

negative charges, as shown in Fig. 2.3. Taking into account the fact that

the fieldE(t) decreases, the displacement current has a direction that is oppo-

site that of the electric field. Thus the conduction current in the wire and the

displacement current in the capacitor have the same direction. Displacement

currents appear inside the conducting part of the circuit, but they are rela-

tively small jc ≫ jdð Þ. In addition, displacement currents exist around the

circuit, but we assume that their influence is negligible. In this approxima-

tion Eq. (2.72) can be rewritten as

jc ¼ ε
@E

@t
¼ j (2.75)

and under our approximation charges on the plates are located only at

points where wire is connected to the capacitor. Thus we demonstrated

that the displacement current in the capacitor represents a continuation

of the conduction current in the wire, and, in accordance with the

charge conservation principle, the vector lines of the current density j

are closed. Now we consider both types of currents in some detail. Sup-

pose that at some instant t charges with density σ0(t) and �σ0 tð Þ are

located on the capacitor plates. Then, as follows from Eq. (2.16), the

normal component of density of conduction current is related to the free

charge on the plate as

jc ¼�@σ0
@t

(2.76)

Respectively, the current in the wire is equal to

I ¼�@Q0 tð Þ
@t

(2.77)

where Q0(t) is the amount of free charge at each plate. By definition the

voltage of the electric field caused by charges is

ð�
+

E � dl¼U+�U�¼ IR (2.78)
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Here U+ and U� are potentials of the plates with positive and negative

charges, respectively, and R is the resistance of the wire. The usage of the

potential U(t) is justified because the vortex part of the electric field is

neglected. Next we find an expression for the same potential difference

in terms of capacitor parameters. The electric field between plates is directly

proportional to density σ0 and

E tð Þ¼ σ0 tð Þ
ε

(2.79)
At the same time, the free charges on the plate and difference of poten-

tials are related as

Q0 tð Þ¼C U+ tð Þ�U� tð Þ½ � (2.80)
whereC is called the capacitance and is equal to amount of the charge on the

plate when the difference of potentials equals unity. In particular in the [SI]

units the capacitance is measured in farads:

1F¼ 1Coulomb=1V¼ 109 pF
Assuming that the influence of plate edges is small and the medium

between plates is uniform, it is easy to determine the capacitance C. In fact,

from Eq. (2.79) we have

U+�U� ¼ σ0
ε
d¼Q0d

εS
¼Q0

C

where S is the plate area and d is the distance between plates. Thus the capac-

itance in this case is

C¼ εS

d
(2.81)

Now we derive the differential equation describing the behavior of the

charge Q0 and currents. From Eqs. (2.77), (2.78), (2.80), we have

dQ0 tð Þ
dt

+
Q0

CR
¼ 0 (2.82)

Therefore, the charge decays exponentially with time:

Q0 tð Þ¼Q0
0 exp �t=CRð Þ (2.83)

Correspondingly, for the conduction and displacement currents, we have

IC tð Þ¼ Id tð Þ¼ Q0
0

CR
exp �t=CRð Þ (2.84)
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With an increase of the resistance and capacitance the currents decay

slower. This example illustrates how a displacement current passes through

the capacitor.
2.5 MAXWELL’S EQUATIONS

2.5.1 Introduction
Table
Genera

Source

Vortex
In the previous sections we have introduced two sources of the electromag-

netic field, namely, the rate of a change of the electric and magnetic fields

with time:

ε
@E

@t
and

@B

@t

Together with charges and conduction currents, they form the complete

set of sources of the electromagnetic field, as shown in Table 2.1.

Let us point out several facts concerning the relationship between the

electromagnetic field and its sources:

1. In general, the electric field is caused by both charges δ and vortices

@B=@t.

However, the magnetic field does not have sources; it is generated in

a nonmagnetic medium by two types of vortices: conduction and

displacement currents.
2. As is seen from Table 2.1, generators of the magnetic field are defined by

the electric field, while one of generators of the electric field is caused by

a change of the magnetic field B with time. Usually, electric and mag-

netic fields depend on each other, and it is impossible to determine them

separately.

3. Behavior of the static electric and magnetic fields is governed by

Coulomb’s and Biot-Savart’s laws. These laws require knowledge about

distribution of charges and currents, causing the fields. But in the pres-

ence of conductive media, there are some additional secondary sources

that affect the fields as well. In order to quantify these secondary sources,
2.1 Sources and Vortexes of the Electromagnetic Field
tors Electric Field Magnetic Field

s δ _

es @B

@t
jc , ε

@E

@t
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we will derive system of Maxwell’s equations that, along with the

boundary conditions, uniquely defines these sources and permits quan-

titative description of the fields in space and time.

4. In the case of the time-varying fields, we also have to proceed from the

system of field equations because (a) the medium affects the field; and

(b) existence of interaction between electric and magnetic fields.

In the case of the static field Coulomb’s law:

E pð Þ¼ 1

4πε0

ð
V

δ qð ÞLqp

L3
qp

dV

allows one to determine the field E( p) at any point if the charge distribution

is known. The same is valid for the Biot-Savart’s law, and the magnetic field

can be calculated as soon as the conduction current jc is fully specified. At the

same time Faraday’s law þ
E � dl¼�

ð
_B � dS

establishes only the linkage between the flux of the vector _B: and the circu-

lation of the electric field along some line L, whereE(t) usually changes from

point to point. This implies that, even for the knownmagnetic field, the field

E(t) cannot be determined at a specific location without additional informa-

tion. Of course, this statement is also applied to the relationship between

magnetic field and conduction and displacement currents. Therefore, in

order to determine the electromagnetic field, we have to proceed from a

system of field equations.

As is well known, the system of equations for any vector field M(p) at

regular points consists of two equations:

curlM pð Þ¼W pð Þ, divM pð Þ¼ω pð Þ
where functions W(p) and ω( p) describe the distribution of vortices and

sources, respectively. Thus existence of interconnected electric and

magnetic fields leads to the system of four equations.

2.5.2 Maxwell’s Equations
Before presenting this system, it is appropriate to remind readers that we

restrict ourselves to the study of fields in a piecewise uniform and non-

magnetic medium because, in most cases, this model properly describes a

distribution of conductivity and dielectric permittivity of geologic media.
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This model is widely used in the theory of the induction logging. Taking

into account (2.8), (2.65) and assuming that equations

divεE¼ δ0, divB¼ 0

remain valid for time-varying fields, we obtain the following system of

equations:

I curl E¼�@B

@t
III divεE¼ δ0

II curlB¼ μ0 jc + ε
@E

@t

� �
IV divB¼ 0

(2.85)

and their surface analogs:

I n� E2�E1ð Þ¼ 0 III n � ε2E2� ε1E1ð Þ¼ σ0

II n� B2�B1ð Þ¼ μ0ic IV n � B2�B1ð Þ¼ 0
(2.86)

In Eq. (2.86) E1,B1 and E2,B2 are the electric and magnetic fields at the

back and front sides of the interface, respectively. Eqs. (2.85), (2.86) are

Maxwell’s equations in differential form. The first Maxwell’s equation

describes Faraday’s law, while the second equation is the result of general-

ization of the Biot-Savart’s law, which takes into account the conduction

and displacement current. The third equation was derived from Coulomb’s

law, and it is based on the assumption that it is valid for the time-varying

fields. Finally, the last equation follows from the Biot-Savart’s law, and it

implies the magnetic field does not have sources in a form of magnetic char-

ges. Maxwell derived the system by proceeding from the experimental laws,

and his main assumption was that the magnetic field is also caused by

displacement currents. Each equation of this system describes some specific

features of the field. However, only a combination of all four equations

describes such fundamental phenomenon as the propagation of electromag-

netic waves. It is useful to represent Maxwell’s equations in integral form,

which are valid everywhere in space, including regular points and interfaces.

Applying Stokes and Gauss’s theorems, we have from Eq. (2.85)þ
L

E � dl¼�
þ
S

@B

@t
� dS,

þ
S

εE � dS¼ e0,

þ
L

B � dl¼ μ0

ð
S

ðjc + ε
@E

@t
Þ � dS,

þ
S

B � dS¼ 0

(2.87)
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As follows from Eq. (2.86) tangential components of the electric field are

continuous functions. At the same time, there are cases when it is convenient

to introduce the presence of a double layer. Then, the tangential component

of the electric field E(t) might have a discontinuity at the layer surface. The

tangential component of the magnetic field also has a discontinuity in cases

when the actual distribution of currents near interfaces is replaced by that of a

surface current. Finally, due to the absence of magnetic charges, the normal

component of the field B(t) is always a continuous function, while the dis-

continuity of the normal component of the electric field is defined by the

density of surface charges.
2.5.3 Second Form of Maxwell’s Equations
The equations of the set (Eq. 2.85), which characterize the divergence of the

fields E andB, can be derived from the first two equations of this system and

the charge conservation principle. In fact, taking the divergence of both sides

of the equations:

curl E¼�@B

@t
, curlB¼ μ0 jc + ε

@E

@t

� �
, (2.88)

we obtain

@

@t
divB¼ 0 and

@

@t
�δ0 + εdivEð Þ¼ 0

because

div jc ¼�@δ0
@t

Therefore,

divB¼C1 and divD¼ δ0 +C2

where C1 and C2 are independent of time. It is natural to assume that, at

some time in the past, the fields E and B, as well as charges, were absent;

therefore, constants C1 and C2 should be equal to zero. Thus we again

obtain the second pair of Maxwell’s equations at regular points:

divεE¼ δ0, divB¼ 0 (2.89)

Next, let us show that the surface analog of Eq. (2.89) also follows from

the first two equations of the set (Eq. 2.87). For simplicity assume that the
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Fig. 2.4 (A) Illustration of the proof of the continuity of tangential components of the
electric and magnetic fields across the interface. (B) Illustration of the continuity of the
normal components of the magnetic field and current density across the interface.
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surface density of currents is equal to zero. Then, applying these equations to

any elementary contour (Fig. 2.4A) intersecting an interface, we can see that

tangential components of the electric and magnetic fields are continuous

functions. Next, we apply the following equationþ
L

E � dl¼�
ð
S

_B � dS¼�
ð
S

_BndS

to both sides around elementary closed paths of the interface (Fig. 2.4B).

Because the tangential component of the electric field is continuous across

the interface, the left-hand side of this equation has the same value for both

elementary paths. Therefore, we have

_B1ndS� _B2ndS¼ 0

from which follows continuity of the normal components of the field B.

Finally, applying the equationþ
L

B � dl¼ μ0

ð
S

jc + ε _E
� 	 � dS

to the same closed paths, we find that the normal component of the total

current density consists of continuous functions:

j1nc + ε1 _E1n ¼ j2nc + ε2 _E2n

where

j1nc ¼ γ1E1n, j2nc ¼ γ2E2n
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Integrating both sides of the last equality over time and taking into

account that

j2nc� j1nc ¼� _σ0

we again obtain the third equation of the set (Eq. 2.86). In other words,

equations (2.89) and their integral form are valid for any time-varying

electromagnetic field. This analysis allows us to represent the system of

Maxwell’s equations in a different form:

curl E¼�@B

@t
, curlB¼ μ0 jc + ε

@E

@t

� �

and

n� E2�E1ð Þ¼ 0, n� B2�B1ð Þ¼ 0, if ic ¼ 0 (2.90)

Also we can write down the integral form of these equations:þ
L

E � dl¼�
ð
S

@B

@t
dS,

þ
L

B � dl¼
ð
S

jc + ε
@E

@t

� �
� dS (2.91)

where jc ¼ γE.
Let us emphasize again that, in deriving Maxwell’s equations, we

proceeded from the following physical laws:

1. Coulomb’s law;

2. Biot-Savart’s law;

3. Faraday’s law;

4. Charge conservation principle;

5. Ohm’s law; and

6. Maxwell’s concept of displacement currents.
2.5.4 Maxwell’s Equations in a Piecewise Uniform Medium
The theory of electromagnetic methods in geophysics is mainly based on the

assumption that the Earth is a piecewise uniform medium. Then, as previ-

ously shown, the density of volume charges is equal to zero and in place of

Eq. (2.85), we have at regular points

I curl E¼�@B

@t
III divE¼ 0

II curlB¼ μ0 jc + ε
@E

@t

� �
IV divB¼ 0

(2.92)
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Here, let us make several comments:

1. As follows from the third equation of this set, the volume charges are

absent, but they can be present at interfaces between media with

different electric properties.

2. By definition, Eq. (2.92) represents the system of eight scalar partial

differential equations of the first order with six unknown compo-

nents of the electric and magnetic fields. In general, it is a compli-

cated system, and it is difficult to identify important features of the

field directly using this set. In fact, it is possible to reduce the system

(Eq. 2.92) to a simpler system, which is the subject of the next

section.

2.6 EQUATIONS FOR THE FIELDS E AND B

Now we replace Maxwell’s equations by two equations that contain
either the field E or the field B. Taking the curl of both sides of the first

equation of the set (Eq. 2.92), we have

curl curl E¼�curl _B

or

grad divE�r2E¼� @

@t
curlB

Making use of the second and third equations of the same set:

curlB¼ μ0 jc + ε _E
� 	

and divE¼ 0

we obtain

�r2E¼� @

@t
γμ0E+ εμ0

@E

@t

� �
or

r2E� γμ0
@E

@t
�εμ0

@2E

@t2
¼ 0

By analogy, taking the curl of the second of Maxwell’s equations

and using the first and fourth equations of the system (Eq. 2.92),

we have
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curl curlB¼ curl γμoE+ εμ0
@E

@t

� �
or

grad divB�r2B¼�γμ0
@B

@t
�εμ0

@2B

@t2

and

r2B� γμ0
@B

@t
�εμ0

@2B

@t2
¼ 0

Thus, instead of the system of differential equations of the first order with

respect to two fields, we have derived one differential equation of the second

order for fields E and B. These equations are valid at regular points of the

conducting and polarizable medium:

r2E� γμ0
@E

@t
�εμ0

@2E

@t2
¼ 0

r2B� γμ0
@B

@t
�εμ0

@2B

@t2
¼ 0

(2.93)

Then, the electromagnetic fields can be described at regular points and at

interfaces by groups of equations. For the electric field, we have

r2E� γμ0
@E

@t
� εμ0

@2E

@t2
¼ 0

and

n� E2�E1ð Þ¼ 0, γ1E1n + ε1
@E1n

@t
¼ γ2E2n + ε2

@E2n

@t

(2.94)

while for the magnetic field

r2B� γμ0
@B

@t
�εμ0

@2B

@t2
¼ 0

and

n� B2�B1ð Þ¼ 0, n � B2�B1ð Þ¼ 0

(2.95)

Here, let us observe the following:

1. The electric and magnetic fields, defined from these equations, are

interconnected because they obey the set (Eq. 2.92).

2. The differential equations for the fields E and B have a remarkable

feature that is not obvious from the original set of Maxwell’s equations:

the individual equations for E and B discover two fundamental features
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of all electromagnetic fields. Suppose that the last term in Eq. (2.93) is

much greater than the second one; that is,

εμ0
@2E

@t2
≫ γμ0

@E

@t
or εμ0

@E

@t
≫ γμ0E
and displacement currents greatly exceed the conduction currents:
r2E¼ εμ0
@2E

@t2
and r2B¼ εμ0

@2B

@t2
(2.96)
These equations describe an important class of fields that propagate

through a medium with the finite velocity
c¼ εμ0ð Þ�1=2
Next, consider the opposite case when the conduction currents

prevail; then, in place of Eq. (2.93), we obtain
r2E¼ γμ0
@E

@t
, r2B¼ γμ0

@B

@t
(2.97)
These two equations describe a process called “diffusion.” Thus, in

accordance with Eq. (2.93), the electromagnetic fields always display

two fundamental features: propagation and diffusion. For instance, in

a resistive medium the influence of diffusion may be insignificant, and

mainly propagation is observed. By contrast, in a relatively conductive

medium, the diffusion usually prevails, but propagation is always present.

Later we will discuss this subject in detail.
2.7 ELECTROMAGNETIC POTENTIALS

Another useful approach in solving Maxwell’s equations is based on
the concept of vector potentials. In many cases, it is possible to describe

the fields E and B with only two or even one component of the vector

potential and, thus, greatly simplify the boundary value problem. To intro-

duce potentials, we make use of two of Maxwell’s equations:

divE¼ 0 and divB¼ 0: (2.98)

When the divergence of a vector field is zero at regular points, the field

can be represented as the curl of an auxiliary function. Thus,

E¼ curlAm and B¼ curlAe (2.99)
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whereAm andAe are called the vector potentials of the magnetic and electric

types, respectively. It is clear that an infinite number of vector potentials

describe the same electromagnetic field. For instance, adding functions

gradϕm and gradϕe to the vector potentialsAm andAe, new vector potentials

Am2¼Am1 + grad ϕm and Ae2 ¼A1e + grad ϕe

also describe the same field because

curl grad ϕmð Þ¼ curl grad ϕeð Þ¼ 0

Eq. (2.99) defines the vector potentials up to the gradient of some func-

tions ϕm and ϕe, which are called scalar potentials of the electromagnetic

field. This ambiguity in Am and Ae can be used to our advantage in simpli-

fying the equations. Let us start with the function Am. Substituting

E¼ curlAm

into the second equation of Eq. (2.92), we have

curlB¼ γμ0curlAm + εμ0curl _Am

or

curl B� γμ0Am� εμ0 _Am

� 	¼ 0

Whence

B� γμ0A�εμ0 _Am¼ gradϕm: (2.100)

Here ϕm is the scalar potential of the magnetic type and, as in the case of

the vector potential, an infinite number of these functions describe the same

electromagnetic field. Substituting expressions for the fieldsE andB in terms

of potentials into the first Maxwell’s equation, we obtain

curl curlAm ¼�γμ0 _Am� εμ0 €Am� grad _ϕm

or

grad divAm�r2Am ¼�γμ0 _Am� εμ0 €Am� grad _ϕm,

(2.101)

where

_Am¼ @Am

@t
, €Am¼ @2Am

@t2
, and _ϕm¼

@ϕm

@t
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In Eq. (2.101) we can select the pair Am and ϕm, which simplifies the

system to the greatest extent, namely,

divAm ¼�@ϕm

@t
(2.102)

and we obtain for the vector potential Am exactly the same equation as for

the electromagnetic field:

r2Am� γμ0
@Am

@t
�εμ0

@2Am

@t2
¼ 0 (2.103)

Again, using the gage condition (Eq. 2.102), both fields E and B can

be expressed in terms of the vector potential Am only. In fact, from

Eqs. (2.99)–(2.100) we have

E¼ curlAm

and

_B¼ γμ0 _A + εμ0 €Am + grad divAm

(2.104)

Taking the divergence of both sides of Eq. (2.103) and integrating

over time, we find that the scalar potential ϕm also satisfies the same equation

as Am:

r2ϕm� γμ0
@ϕm

@t
�εμ0

@2ϕm

@t2
¼ 0 (2.105)

Next we derive an equation for the vector potential of the electric type.

Substituting the equation

B¼ curlAe

into the first of Maxwell’s equation, we obtain

curl E¼�curl
@Ae

@t
or E¼�@Ae

@t
+ grad ϕe (2.106)

where ϕe is the scalar potential of the electric type. This equation suggests

that the electric field is caused by a change of the magnetic field with time

and electric charges. In other words, there are two parts of this field: the vor-

tex and galvanic one. Replacing the fields E andB in the second equation of

the set (Eq. 2.92), we have
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curl curlAe ¼ μ0 �γ
@Ae

@t
+ γgrad ϕe� ε

@2Ae

@t2
+ εgrad

@ϕe

@t

� �
or

grad divAe�r2Ae ¼�γμ0
@Ae

@t
� εμ0

@2Ae

@t2
+ grad γμ0ϕe + εμ0

@ϕe

@t

� �
(2.107)

Assuming that a pair of the vector and scalar potentials obeys the

condition

divAe ¼ γμ0ϕe + εμ0
@ϕe

@t
(2.108)

we obtain for the vector potential Ae the same equation as that for the

function Am:

r2Ae� γμ0
@Ae

@t
� εμ0

@2Ae

@t2
¼ 0 (2.109)

In this case, the electromagnetic field cannot be expressed in terms of the

vector potential only; thus, we have

B¼ curlAe, E¼�@Ae

@t
+ grad ϕe: (2.110)

At the same time, in the absence of electric charges the latter is greatly

simplified:

Е¼�@Ae

@t

One should not be confused that equations for Am (Eq. 2.103) and Ae

(Eq. 2.109) are exactly the same. These equations do not describe the same

fields because the corresponding boundary value problems apply different

boundary (and initial) conditions leading to different solutions.

2.8 MAXWELL’S EQUATIONS FOR SINUSOIDAL FIELDS

Until now we have not made any assumptions about the dependence
of the electromagnetic field on time. Let us examine important case of sinu-

soidal with time fields. This leads to significant simplifications. First, consider

the scalar function

M ¼M0 sin ωt +ϕð Þ (2.111)
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where M0 is the amplitude of the oscillation, ϕ is the initial phase, and ω
is the angular frequency (ω¼ 2πf ¼ 2π=TÞ with T being the period of

oscillation. Making use of Euler’s formula,

e�i ωt+ϕð Þ ¼ cos ωt +ϕð Þ� i sin ωt +ϕð Þ
we can present the right-hand side of Eq. (2.111) as the imaginary part of the

exponential function:

M0 sin ωt+ϕð Þ¼�ImM�e�iωt (2.112)

Here M∗ is the complex amplitude given by

M� ¼M0e
�iϕ (2.113)

Therefore, we have

M�e�iωt ¼M0e
�iϕe�iωt ¼M0e

�i ωt+ϕð Þ

and

�ImM�e�iωt ¼�Im M0 cos ωt+ϕð Þ� iM0 sin ωt +ϕð Þ½ � ¼M0 sin ωt+ϕð Þ

Similarly, a cosine function can be presented by the real part of the

complex function:

M0 cos ωt+ϕð Þ¼ReM�e�iωt

where, as before,M� ¼M0e
�iϕ. It is essential that the complex amplitudeM∗

is defined by the amplitude of oscillation M0 and the initial phase ϕ:

M�j j ¼M0 and ArgM� ¼ϕ

In other words, the complex amplitude contains all information

about the corresponding sinusoidal function. Suppose that functions

M0 sin ωt+ϕð Þ and M0 cos ωt+ϕð Þ, describing any component of the

electromagnetic field, are solutions of Maxwell’s equations. Then, taking

into account that these equations are linear, the sum of functions

M�e�iωt ¼M0 cos ωt+ϕð Þ� iM0 sin ωt+ϕð Þ
is also a solution of this system. Therefore, we can represent any component

of the electric and magnetic fields as a complex quantity:

M�e�iωt,
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but, after solving the equations, only the imaginary or the real part of the solu-

tion should be considered. This form of a solution, M� exp �iωtð Þ, has one
remarkable feature: namely, it is a product of two functions. One is the com-

plex amplitudeM∗, which depends on the geometry and the physical param-

eters of the medium, the position of an observation point and frequency. The

second part, the function exp �iωtð Þ, has a simple time dependence; after

differentiation, it still remains an exponential function. This fact permits us

to write equations in a form that does not contain the argument t. Because

sinusoidal functions have infinite duration in time, there is no need to study

the field at the initial moment when the electromagnetic fields arise. Nowwe

generalize this result for the vector function. Suppose that

M¼M01 sin ωt+ϕ1ð Þ1x +M02 sin ωt+ϕ2ð Þ1y +M03 sin ωt+ϕ3ð Þ1z
where 1x, 1y, and 1z are unit vectors along the coordinate axes. The latter

can be rewritten as

M¼�Im M01e
�iϕ11x +M02e

�iϕ21y +M03e
�iϕ31z


 �
e�iωt

or

M¼�ImM�e�iωt

(2.114)

Here

M� ¼M01e
�iϕ11x +M02e

�iϕ21y +M03e
�iϕ31z (2.115)

is the complex amplitude of the sinusoidal vector function M, which is

described by the complex vector. Then, representing the field in the form

E¼�Im E�e�iωt
� 	

, B¼�Im B�e�iωt
� 	

and substituting these expressions into the first twoMaxwell’s equations, we

obtain

curl E� ¼ iωB�, curlB� ¼ μ0 γ� iωεð ÞE� (2.116)

because

@

@t
e�iωt ¼�iωe�iωt

The conditions at the interfaces for the complex amplitudes are the same

as those for the field and

n� E�
2�E�

1

� 	¼ 0, n� B�
2�B�

1

� 	¼ 0 (2.117)
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Correspondingly, instead of Eq. (2.93) we have

r2E� + k2E� ¼ 0, r2B� + k2B� ¼ 0 (2.118)

where

k2¼ iγμ0ω+ω2εμ0 (2.119)

The quantity k is called the wavenumber. It is obvious that complex

amplitudes of potentials of the electromagnetic field also satisfy the same

equations:

r2A�
m + k2A�

m ¼ 0, r2A�
e + k2A�

e ¼ 0 (2.120)

The earlier equations allow us to determine only the complex ampli-

tudes; to find vector potentials, we have to multiply these amplitudes by

exp �iωtð Þ and take either the imaginary or real part of this product.

This consideration shows at least two important merits of sinusoidal

oscillations:

1. The system of Maxwell’s equations for the complex amplitudes of the

field, as well as Eqs. (2.118), (2.120), does not contain functions of time.

2. If parameters of medium are independent of time and the external field

is a sinusoidal one, the electromagnetic field still remains a sinusoidal

function of time of the same frequency.

This is an important feature of the sinusoidal field. In general, the primary

and total fields might have been different on the sinusoidal dependence on

time. Using Fourier’s transform, the primary field (input) with arbitrary

dependence on time can be represented as a combination of sinusoidal oscil-

lations and, then, the field (output) is also described as a combination of sinu-

soids having different amplitudes and phases. Sinusoidal fields are of a great

practical interest because they are used in induction logging.
2.9 ELECTROMAGNETIC ENERGY AND
POYNTING VECTOR
2.9.1 Principle of Energy Conservation and Joule’s Law

Until now we have focused on equations, describing the electric and mag-

netic fields as a function of space coordinates and time. It is also useful to

describe the fields in terms of their energy. Suppose that a distribution of

energy of an electromagnetic field is characterized by an energy density

u(p, t). Then the amount of energy inside some volume V is
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W ¼
ð
V

u p, tð ÞdV (2.121)

The change of this energy is caused by several reasons. First is the presence

of electromagnetic energy sources with density P(p, t). Here, p is a point inside

the volume. Second is a motion of charges (current) through a medium. To

create the current, the electromagnetic field performs work on the charges;

correspondingly, the electromagnetic energy decreases by some amount

Q(p, t), converting into heat.We already emphasized that the electromagnetic

field could display propagation and diffusion phenomena.

The energy also moves through space, and there is the corresponding

electromagnetic flux, causing the energy change. It is defined asþ
S

Y � dS (2.122)

Here, S is the surface surrounding the volume V. The scalar product

Y � dS characterizes the flux of energy passing the surface dS during the unit

of time. By definition,Y shows a direction of movement, and its magnitude

is equal to the amount of energy passing during units of time through a unit

area oriented perpendicular to the flux. From the principle of conservation

of energy, we have

@W

@t
¼
ð
V

P p, tð ÞdV �
ð
V

Q p, tð ÞdV �
þ
S

Y p, tð Þ � dS (2.123)

or, making use of Gauss formula,þ
S

Y � dS¼
ð
V

divYdV

we obtain

@W

@t
¼
ð
V

P p, tð ÞdV �
ð
V

Q p, tð ÞdV �
ð
V

divYdV : (2.124)

The last two terms have a negative sign because transformation into

heat and the positive flux of energy cause a decrease of the energy in the

volume V.

Next, using Ohm’s law and Maxwell’s equations, we express both sides

of Eq. (2.124) in terms of the electromagnetic field. As pointed out earlier,
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the electromagnetic field causes a motion of charges (current), and the force

acting on the moving charge δ in the unit volume is

F¼ δ Et + v�Bð Þ (2.125)
so the work performed by this force per unit of time (the power) in a unit

volume is

A¼ δ Et + v�Bð Þ � v¼ δEt � v (2.126)
because

v�Bð Þ � v¼ 0

Here v is charge velocity, Et is the total electric field, comprised of fields

caused by charges, a change of the magnetic field with time and field caused

by external forces. By definition, δ is the charge density. Inasmuch as the

product δv is equal to the current density j, we have

A¼Et � j
or

A¼ j �E+ j �Eext ¼ j �E+P

(2.127)

Here Eext is the external field caused by sources inside the elementary

volume, and

j �E¼Q (2.128)
is the work performed by the electromagnetic field in a conducting medium

and converted into heat (Joule’s law).

2.9.2 Energy Density and Poynting Vector
Taking into account (2.121) and (2.128), we have from Eq. (2.124)

E � j¼P�@u

@t
�r �Y (2.129)

The latter describes a distribution of energy in the unit volume of a

medium in the presence of external source and allows us to find formulas

for the energy density u and vector Y in terms of the electric and magnetic

fields. To proceed, we express the left-hand side in terms of the fields E and

B only and at the beginning assume that an external source is absent. From

the second Maxwell’s equation, we have

E � j¼ 1

μ0
E � r�Bð Þ� εE � @E

@t
(2.130)
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As follows from vector analysis:

r � E�Bð Þ¼B � r�Eð Þ�E � r�Bð Þ
From Eq. (2.130), we have

E � j¼� 1

μ0
r � E�Bð Þ+ 1

μ0
B � r�Eð Þ� εE � @E

@t

Applying the first Maxwell’s equation, we obtain

E � j¼� 1

μ0
r � E�Bð Þ� 1

μ0
B � @B

@t
� εE � @E

@t

or

E � j¼� 1

μ0
r � E�Bð Þ� @

@t

1

2

1

μ0
B2 + εE2

� � (2.131)

Introducing notations for the energy (u) and flux density Y,

u¼ 1

2
εE2 +

1

μ0
B2

� �
and (2.132)

Y¼ 1

μ0
E�Bð Þ (2.133)

we arrive at the conservation energy principle for the unit volume

@u

@t
¼�Q�divY (2.134)

or in more general case P 6¼ 0ð Þ:
@u

@t
¼P�Q�divY (2.135)

Performing integration over an arbitrary volume and using Gauss’s

formula, we obtain Eq. (2.123), which shows that the flux of energy through

a closed surface is equal to þ
Y � dS (2.136)

where Y is called the Poynting vector, describing the rate at which energy

flows through a unit surface area perpendicular to the direction of wave

propagation. The SI unit of the Poynting vector is the watt per square meter

(W/m2).
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As follows from Eq. (2.123) when the energy does not change with time,

we have ð
V

PdV ¼
ð
V

QdV +

þ
S

Y � dS (2.137)

One part of the energy, created by the generators inside the volume, is

transformed into heat, while the other part forms the flux, intersecting the

surface S surrounding this volume. If the external force is absent, we haveþ
S

Y � dS¼�Q (2.138)

and electromagnetic energy arrives at the volume (the flux is negative), then

it is converted into heat. Inasmuch as conversion of energy cannot take place

without a propagation, even a static field is based on the propagation. To

illustrate a movement of the energy and the usage of the Poynting vector,

we consider two examples.

2.9.3 Current Circuit and Transmission Line
As shown in Fig. 2.5A, inside the internal part of the circuit, the electric field

of the Coulomb’s origin and current has opposite directions, while in the

external part both vectors have the same direction. By definition, the

Poynting vector is directed outside and inside within the internal and exter-

nal parts of the circuit, respectively. Electromagnetic energy travels away

from the internal part into the surrounding medium and then returns back

into the circuit of the external part.

This description is rather approximate because the surface charges arise at

the lateral surface of the contour and create the normal component of the
B

Y
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E

E
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Y

YE

B B

E
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–

Fig. 2.5 (A) Flux energy around a current circuit. (B) Poynting vector in the vicinity of
transmission line.
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electric field. As a result, at these points of the surface the Poynting vector has

both the tangential and normal components.

Suppose we have the system (Fig. 2.5B) consisting of three parts: the

internal part where external forces produce the work that results in electro-

magnetic energy; the long transmission line; and the relatively resistive load.

As previously demonstrated, the electromagnetic energy leaves the inter-

nal part of the circuit and travels through the surrounding medium. Nowwe

consider the field and Poynting vector in the vicinity of the transmission line

and the load. Inasmuch as the line has low resistivity, the tangential compo-

nent of the electric field E is small inside the line. In fact, from Ohm’s law

we have

Et ¼ ρj

Due to continuity of the tangential component, the field E is also small

on the external side of the conductor. At the same time surface charges create

outside the line a normal component of the field En, which is much greater

than the tangential component Et:En≫Et. Then, as shown in Fig. 2.5B, the

Poynting vector is practically tangential to the transmission line, and elec-

tromagnetic energy travels along this line, which plays the role of a guide,

determining direction of movement of the energy toward the load; other-

wise, the energy would travel in all directions from the external source. Due

to the presence of the tangential component of the electric field, a small

amount of the electromagnetic energy moves into the transmission line

and converts into a heat. This is a pure loss, which reduces the amount of

energy arriving to the load. Unlike the transmission line, the load is relatively

resistive; correspondingly, the tangential component of the electric field pre-

vails over the normal component, Et ≫En. Therefore, the Poynting vector

is mainly directed inward.
2.10 UNIQUENESS OF THE FORWARD
PROBLEM SOLUTION
2.10.1 Uniqueness Theorem

The theory of induction logging is based on an analysis of the forward prob-

lems that allow one to establish a relationship between the field and the elec-

tric and geometric parameters of a medium. In general, Maxwell’s equations

have an infinite number of solutions. To determine the field uniquely, it is

necessary to impose additional conditions. Unlike the static field, these
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conditions consist of two groups: the initial and boundary ones. It is conve-

nient to consider separately two cases and begin from the simplest one.
Case One
Suppose that at the instant t¼ t0 the field is considered in some volume V,

where all points are regular, and this volume is surrounded by the surface S.

At each point, the fields obey the equations

r2E� γμ0
@E

@t
� εμ0

@2E

@t2
¼ 0 and r2B� γμ0

@B

@t
�εμ0

@2E

@t2
¼ 0

Also, at the initial instant (t¼ t0) the electric and magnetic fields are

known at every point of the volume:

E p, t0ð Þ¼N pð Þ, B p, t0ð Þ¼M pð Þ (2.139)

In addition, we have to formulate boundary conditions at the surface S.

In the static case, Gauss’s formula serves as the “bridge” between values of

the field inside of the volume and the surface S. In our case, the conservation

energy principle (Eq. 2.123) plays a similar role. In the beginning, it is

assumed that the external sources of the field are absent: P p, tð Þ¼ 0.

Consider two solutions of equations for both fields

E1,B1, E2,B2

which, at the initial moment, have the same values inside the volume.

Taking into account linearity, the differences of these solutions

E3¼E2�E1 and B3¼B2�B1 (2.140)

also obey the same equations, while the initial condition has the form

E3 p, t0ð Þ¼ 0 and B3 p, t0ð Þ¼ 0 (2.141)

To establish the boundary conditions, we apply the principle of energy

conservation in the following form:

@

@t

ð
V

ε

2
E2
3 +

B2
3

2μ0

� �
dV ¼�

ð
V

ρj20dV � 1

μ0

þ
S

E3�B3ð Þ � dS (2.142)

Suppose that either tangential components of E1 and E2 or tangential

components of B1 and B2 coincide with each other at points of the surface

S for t> t0. For instance, in the case of the electric field, this corresponds to

the tangential component of E3 equal to zero:
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n�E3 ¼ 0 (2.143)
where n is the unit vector normal to the surface S. Becauseþ
S

E3�B3ð Þ � dS¼
þ
S

E3�B3ð ÞndS¼
þ
S

n�E3ð Þ �B3dS

the surface integral in Eq. (2.142) vanishes, and we have

@

@t

ð
V

ε

2
E2
3 +

1

2μ0
B2
3

� �
dV ¼�

ð
V

ρj23dV (2.144)

Here j3 is the vector of current density caused by the field E3. The right-

hand side of Eq. (2.144) can be either negative or equal to zero. At the same

time, the left-hand side is either equal to zero or positive. In general, the deriv-

ative of energy with respect to time can be either positive or negative. How-

ever, in our case,when at the initial moment the energy is zero (Eq. 2.141), the

amountof energymust either remain zeroorbecomepositivewhen t	 t0; oth-

erwise, the energy would be negative. Thus the equality (2.144) holds only

when both right and left sides are equal to zero, and for t> t0 we have

E3¼E2�E1 ¼ 0, B3 ¼B2�B1 ¼ 0

Therefore, electromagnetic field within the volume V is uniquely

defined for t> t0 by the initial values of the electric andmagnetic fields inside

the volumeV and by the tangential component of either the electric or mag-

netic field at the surface S, surrounding V.

1. Proof of the uniqueness theorem remains the same if the volume V is

surrounded by several surfaces.

2. If the surface S tends to infinity, we can assume that a medium has a finite

conductivity; due to conversion of energy into heat, the surface integral

in Eq. (2.142) still tends to zero.

3. We have assumed that external forces are absent inside the volume V. At

the same time, if fields E1,B1 and E2,B2 are caused by the same sources,

the initial and boundary conditions remain sufficient to provide unique-

ness of the solution.
Case Two
Consider a more complicated case when inside the volume there is an inter-

face S12 separating media with different electrical properties. Inasmuch as the

differential equations for the field do not apply at the interface, we surround
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S12 by the surface S
∗. Correspondingly, at the right-hand side of Eq. (2.142),

we have an additional integral:

� 1

μ0

þ
S�

E3�B3ð Þ � dS

In approaching S∗ to S12 we integrate at both sides of the interfaces:

1

μ0

þ
S12

E0
3�B0

3

� 	� E00
3 �B00

3

� 	
 �
dS (2.145)

where E3
0,B3

0 and E3
00,B3

00 are the electric and magnetic fields at the back

and front sides of the interface, respectively. In accordance with Maxwell’s

equations, the tangential components of the electric field E and magnetic

field B are continuous functions at the interface. Thus the integrand in

Eq. (2.145) can be represented as

E0
3�E00

3

� 	�B3


 � � dS¼ E0
3n�E00

3n

� 	
n�B3ð Þ �ndS

¼ E0
3n�E

00
� �

n�nð ÞB3dS¼ 0

Therefore, the integral over the interface vanishes if the solutions at the

back and front sides of the interface satisfy Maxwell’s equations.
2.10.2 Formulation of the Boundary Value Problem
Let us summarize conditions that uniquely define the electromagnetic field

in a general boundary value problem:

1. At regular points of the volume V, the field should obey equations

r2E� γμ0
@E

@t
� εμ0

@2E

@t2
¼ 0, r2B� γμ0

@B

@t
�εμ0

@2E

@t2
¼ 0

2. At the initial moment t¼ t0, the field

E p, t0ð Þ and B p, t0ð Þ

should be given at each regular point of the volume.
3. At the surface S, surrounding the volume V, either the tangential com-

ponent of the electric or magnetic field

n�E or n�B
should be given at all instances t	 t0.
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4. At interfaces inside the volume, a solution should obey the surface analog

of Maxwell’s equations.
As we have shown, these conditions uniquely define electromagnetic

fields. Because the field also might be expressed in terms of the vector

potentials, the corresponding boundary value problem can be formu-

lated in terms of these functions as well.
REFERENCE
[1] Kaufman AA, Anderson BI. Principles of electric methods in surface and borehole

geophysics. Amsterdam: Elsevier; 2010.

FURTHER READING
[1] Alpin LM. Field theory. Moscow: Nedra; 1966.
[2] Bursian VR. Theory of electromagnetic fields applied in electrical methods. Moscow:

Nedra; 1972.

http://refhub.elsevier.com/B978-0-12-802583-3.00002-2/rf0010
http://refhub.elsevier.com/B978-0-12-802583-3.00002-2/rf0010
http://refhub.elsevier.com/B978-0-12-802583-3.00002-2/rf0015
http://refhub.elsevier.com/B978-0-12-802583-3.00002-2/rf0020
http://refhub.elsevier.com/B978-0-12-802583-3.00002-2/rf0020


CHAPTER THREE
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Field in a Nonconducting Medium
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Proceeding from Maxwell equations, we study the main features of propa-

gating electromagnetic fields by considering several simple and educational

examples. Special attention is paid to the quasistationary approximation,

describing fields of conductive objects in nonconductive environment.
3.1 PLANE WAVE IN A UNIFORM MEDIUM

Suppose that a nonconducting medium with parameters ε and μ is
0

uniform and that the electric and magnetic fields depend on the z coordinate

only; that is, the field is constant on any plane perpendicular to the z axis.

Also assume that the electric field has a single vector component along the x

axis:

E¼E0xe z, tð Þix (3.1)
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where E0x is a constant, e(z, t) is a function that depends on the coordinate z

and time t, and ix is the unit vector directed along the x axis. Because the field

is independent of the x and y coordinates, the first equation of the set

(Eq. 2.93) in a noncoducting medium is greatly simplified, and we have

@2e

@z2
� εμ0

@2e

@t2
¼ 0 (3.2)
3.1.1 Solution to the Wave Equation
Eq. (3.2) is the well-known partial differential equation of the second order

describing wave propagation. Applying the trial and error method,

D’Alembert found its solution in the following form:

e z, tð Þ¼Af a t� ffiffiffiffiffiffiffi
εμ0

p
z

� �� �
+Bg a t+

ffiffiffiffiffiffiffi
εμ0

p
z

� �� �
(3.3)

HereA andB are some constants, and f and g are functions having the first

and second derivatives. The constant a must have dimensions s�1, because

the argument of any function should be dimensionless. It is a simple matter

to show that function e(z, t) obeys (Eq. 3.2). In fact, introducing the variable

u¼ a t� ffiffiffiffiffiffiffi
εμ0

p
z

� �
we have for derivatives of the function f(z, t):

@f

@z
¼ @f

@u

@u

@z
¼�a

ffiffiffiffiffiffiffi
εμ0

p
f 0u

where fu
0 is the first derivative with respect to the argument u. Therefore,

@2f

@z2
¼ a2εμ0f

00
uu (3.4)

Also,

@f

@t
¼ @f

@u

@u

@t
¼ af 0u and

@2f

@t2
¼ a2f 00uu (3.5)

The last two equations show that the function

f a t� ffiffiffiffiffiffiffi
εμ0

p
z

� �� �
satisfies Eq. (3.2). Of course, this is also true for the function

g a t+
ffiffiffiffiffiffiffi
εμ0

p
z

� �� �
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This clearly indicates that any function can be a solution of Eq. (3.2),

provided the arguments z and t are comprised in the following

combination u:

u¼ a t� ffiffiffiffiffiffiffi
εμ0

p
z

� �
(3.6)

It is useful to recognize that, if the argument of a function has the slightly

different form

b z� t=
ffiffiffiffiffiffiffi
εμ0

p� �
then it is also a solution of Eq. (3.2). D’Alembert found such a relationship

between arguments z and t that a corresponding function obeys Eq. (3.2),

and this is the essence of his solution.

Next let us assume that the electric field is described by only the function

f a t� ffiffiffiffiffiffiffi
εμ0

p� �
z

� �
Thus

E¼E0xf a t� εμð Þ1=2z
h in o

ix (3.7)

and consider its physical meaning.
3.1.2 Velocity of Propagation of Plane Wave
Analyzing the argument u (Eq. 3.6), we may notice that:

1. At any point with coordinate z the fieldE, in general, changes with time,

while at any given instant t, it can have different values at different

coordinates z.

2. The electric field E has the same value at different points and different

time if the argument

u¼ a t� ffiffiffiffiffiffiffi
εμ0

p
z

� �

remains the same. As follows from the definition of this argument, with an

increase of the distance z, the same value of the field is observed at greater

times. Imagine a system of parallel planes, z¼ const, which are perpendic-

ular to thez axis and thinkof theseplanes as the surfaceswhere the fieldEhas

the same value as the time changes (Fig. 3.1A). Each of these planes corre-

sponds to some instant of time, and the relationship between z and t is
t2� t1¼ ffiffiffiffiffiffiffi
εμ0

p
z2�z1ð Þ, t3� t1¼ ffiffiffiffiffiffiffi

εμ0
p

z3�z1ð Þ
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Fig. 3.1 (A) Motion of wave. (B) Wave at different distances. (C) Change of wave
with time.
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and
tn� ti ¼ ffiffiffiffiffiffiffi
εμ0

p
zn�zið Þ
because
ui¼ ti� ffiffiffiffiffiffiffi
εμ0

p
zi¼ constant

We can interpret this infinite series of parallel planes as a movement of only

one plane, characterized by the same argument, with velocity

v¼ 1ffiffiffiffiffiffiffi
εμ0

p ¼ c

ε1=2r

(3.8)

where c is the speed of light

c¼ 3�108 m=s

In particular, in a free space v¼ c, but, for example, in water

v� 0:33�108 m=s

In other words, we observe a motion of the field E along the z axis, and

this phenomenon is called propagation or wave motion or, even simpler, a

wave. For this reason, Eq. (3.2) is called the wave equation. It is proper to

remind that, at all points of each plane z¼ const, the electric field has the

same value independent of coordinates x and y, and it is natural that such

motion of the field is called the plane wave. For illustration, the distribution

of the wave as a function of t and z is given in Fig. 3.1, which represents the

wave distribution along the z axis, Fig. 3.1, and the change of the field with

time, Fig. 3.1C, respectively.
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3.1.3 Propagation of the Plane Wave
Now consider the magnetic field that accompanies the field E. To proceed

we represent Maxwell’s equations (assuming that conduction currents are

absent) in Cartesian coordinates. Then, using the expression for curl, we

obtain

ix iy iz

@

@x

@

@y

@

@z

Ex 0 0

���������

���������
¼�@B

@t
,

ix iy iz

@

@x

@

@y

@

@z

Bx By Bz

���������

���������
¼ εμ0

@E

@t

Equating corresponding components of the fields from both sides of

these equations, we have

@Bx

@t
¼ 0,

@By

@t
¼�@Ex

@z
,

@Bz

@t
¼ 0,

@By

@z
¼�εμ0

@Ex

@t
,

@Bx

@z
¼ 0

(3.9)

In deriving these equations, we used the fact that the electric field has

only the component Ex, and both the electric and magnetic fields are

independent of the x and y coordinates.

The equation for the magnetic field component By derived in Chapter 2

directly follows from Eq. (3.9), which gives

@2By

@z2
� εμ0

@2By

@t2
¼ 0 (3.10)

Substituting Eq. (3.7) into Eq. (3.9) and taking into account Eq. (3.8), we

obtain

@By

@t
¼ 1

ν
Eoxaf

0
u a t�z=νð Þ½ � and

@By

@z
¼�εμ0Eoxaf

0
u a t�z=νð Þ½ �

It is obvious that the function

By z, tð Þ¼B0yf a t�z=vð Þ½ � (3.11)

satisfies both equations of the set (Eq. 3.9), provided that

B0y¼ ffiffiffiffiffiffiffi
εμ0

p
E0x or E0x¼ νB0y (3.12)

Thus, we have demonstrated that the electromagnetic field propagates

along the z axis with the velocity v, and it is described by two vectors:
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Ex z, tð Þ¼E0xe z, tð Þix, By¼B0yb z, tð Þiy (3.13)

where the coefficients E0x and B0y are related to each other by Eq. (3.12) and

e¼ b¼ f a t�z=vð Þ½ � (3.14)

From Eq. (3.13), we may note that the electric and magnetic fields are

perpendicular to each other and the direction of propagation. Such an elec-

tromagnetic field is called the transverse plane wave. By definition, the

Poynting vector, representing the directional energy flux density, is

Y¼ 1

μ0
E�Bð Þ

Taking into account (Eqs. 3.12–3.14), we have

Y z, tð Þ¼ ε

μ0

� 	1=2

E2
0xe

2iz (3.15)

which shows the direction of the wave motion. As follows from Eq. (3.9),

the electric and magnetic fields support each other at every point of space. In

fact, when the magnetic field changes with time it generates an electric field

(Faraday’s law),

@Ex

@z
¼�@By

@t

while a variation of the field E with time (displacement currents) creates a

magnetic field:

@By

@z
¼�εμ0

@Ex

@t

Supporting each other, the magnetic and electric fields form an electro-

magnetic wave that propagates through a nonconducting medium with

velocity v. Note that these two generators of the field,

@B

@t
and ε

@E

@t

are vital in forming electromagnetic waves: if one of them is disregarded

the effect of propagation disappears. For instance, suppose that displace-

ment currents do not have any influence on the field. From the math-

ematical point of view, this corresponds to the case of the dielectric

permittivity ε equal to zero. Therefore, in accordance with Eq. (3.8),
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the velocity of propagation becomes infinitely large, and, respectively,

the fields E and B arrive instantly at all points of a medium. This con-

tradicts the concept of propagation of the field with a finite velocity.

Also, in Chapter 2 we described the behavior of displacement currents

inside a capacitor, assuming that the change of the magnetic fields of

these currents with time is negligible. In other words, the analysis did

not take into account the inductive electric field. Correspondingly,

the inductive effect vanishes and the field E between the capacitor plates

behaves as a Coulomb’s field.

3.1.4 Note on the Plane Wave Model
In many cases, it is convenient to use a model of a plane wave; however,

this model is not quite realistic, because existence of plane wave requires an

infinitely large energy. We may think of such source as two plates of infi-

nite dimension, located at the planeXOY, with charges of equal magnitude

but opposite sign uniformly distributed over the plates. At some instant

t¼0 one of the plates starts to move in the x direction, forming a current

with the surface density ix, which is independent of the x and y coordinates

(Fig. 3.2A):

ix¼ 0 t< 0

I0ψ atð Þ t� 0



(3.16)

Here ψ (at) is an arbitrary function of time. The current Eq. (3.16) causes

a magnetic field, arising in the vicinity of the plane z¼0. Applying the inte-

gral form of the second Maxwell’s equation to the elementary path around

this surface current and located in the plane perpendicular to the x axis, we

obtain

B2y�B1y¼�μ0ix, if z¼ 0

whereB2y andB1y are components of the magnetic field at the front and back

sides of the plate, respectively. Because the magnetic field By is an odd func-

tion with respect to the coordinate z, we have

B2y¼�B1y¼�μ0ix
2

, if z¼ 0 (3.17)

Thus, in accordance with Eq. (3.16), the magnetic field at the front side

of the current plate behaves as
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Fig. 3.2 (A) Moving plate with surface current density ix. (B) Propagation of impulse. (C) Illustration of relation between fields E and B.
(D) Wave propagation in the case of the current source being arbitrary function of time.
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By 0, tð Þ¼
0 t< 0

�μ0I0
2

Ψ atð Þ t� 0

(
(3.18)

At the same time, as follows from Eq. (3.11), the dependence of the field

on the coordinate z and time t has to be defined by the same function for all

points. It is also essential (Eq. 3.18) that this function is equal to zero if the

argument is negative. Therefore, we can represent the magnetic field regard-

less of the distance from the current plate, in the form

By z, tð Þ¼
0 z> νt

�μ0I0
2

Ψ a t�z=νð Þ½ � z� νt

(
(3.19)

Thus, in the vicinity of the plate the magnetic field varies almost syn-

chronously with the current density of the source, but at some distance z

the field is observed with time delay z/v.

In accordance with Eq. (3.12), the electric field is

Ex z, tð Þ¼
0 z> νt

� I0

2

μ0
ε

� �1=2

Ψ a t�z=νð Þ½ � z� νt

(
(3.20)

Let us notice that the coefficient (μ0/ε)
1/2 can be presented asffiffiffiffiffi

μ0
ε

r
¼ 120π

εrð Þ1=2
Ohm (3.21)

It is an appropriate to notice:

1. In deriving Eq. (3.17) we took into account that the flux of displacement

currents through an infinitely small area surrounded by the elementary

path is equal to zero. This fact allowed us to establish a relation between

the magnetic field in the vicinity of the source and its current.

2. In essence, Eq. (3.17) is a boundary condition near the source; later, it

will be derived in a similar manner for more complicated cases.

3. The electric and magnetic fields of a plane wave have the same depen-

dence on distance and time. Such behavior is an idealization, which is

not observed in the case of real sources.

4. Electromagnetic field of the planewave is described by the same function,

regardless of the distance from the current source. This is another ideal-

ization, which does not take place in a realistic electromagnetic field.
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5. The argument a t�z=vð Þ is called the phase of the wave, while the planes
on which the phase has a constant value are called phase surfaces. Thus,

the propagation of the plane wave can be treated as a movement of the

phase surface with the velocity v, and the Poynting vector being perpen-

dicular to this plane. To illustrate the effect of propagation we consider

several examples.

Example One
Suppose that the current in the plate differs from zero only during some time

interval T:

ix¼
I0Ψ atð Þ 0� t�T

0 t< 0, t>T

(

Then at the point of observation, located at the distance z, the field exists

when

z

v
� t� z

v
+T

Hence if the distance z is such that

T <
z

v

the field will be observed at times after the conduction current on the

plate has stopped. This fact vividly demonstrates that the electromagnetic field

propagates due to the interaction of the electric and magnetic fields; in this

sense, the wave does not require the current source to remain active.

Example Two
Now consider propagation of a square waveform shown in Fig. 3.2B. In

accordance with (3.19), we have

By z, tð Þ¼

0 t<
z

ν

�μ0I0
2

z

ν
� t�

0 t� z

ν
+T

8>>>><
>>>>:

z

ν
+T (3.22)

and

Ex¼ vBy
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Taking into account the simplicity of the form (Eq. 3.22), let us study the

relationship between the electric and magnetic fields proceeding directly

from the integral form of Maxwell’s equations. We can imagine a closed

rectangular contour L, situated in any plane that is parallel to the plane

XOZ (Fig. 3.2C) and assume that the wave front is located somewhere

inside the contour, while the back side of the plane wave has not yet reached

its side cd¼Δx. Then, at any moment, t, the flux of the magnetic field Φ,

intersecting the contour is equal to

Φ tð Þ¼ z*ΔxBy

where z*Δx¼ vtΔx characterizes the area of the loop where the field B is

not zero. Inasmuch as the electromagnetic field moves along the z axis, this

area as well as the flux increases. In particular, at the instant t +Δt the flux is

Φ t +Δtð Þ¼Δx z*+ vΔtð ÞBy

Therefore,

dΦ
dt

¼ByvΔx (3.23)

and, in accordance with Faraday’s lawþ
L

E 	 dl¼�dΦ
dt

an electromotive force appears in the contour. Integrals along paths, which

are parallel to the z axis, vanish because the dot product of two perpendicular

vectors

E¼Exix, dl¼ dliz

is zero. At the same time, the integral along the path ab is also zero because

the field has not yet arrived at this side of the contour. Respectively, the

electromotive force is defined by the voltage along the path cd and is equal

to �ExΔx; that is, þ
L

E 	 dl¼�ExΔx (3.24)

Therefore, due to a movement of the magnetic field an inductive electric

field arises and, as follows from Eqs. (3.23), (3.24)
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Ex¼ vBy

Next we apply the second of Maxwell’s equation,þ
B 	 dl¼ εμ0

ð
_E 	 dS

to the rectangular contour L1 located in the plane YOZ. The same approach

as before shows that the rate of change of the flux of displacement currents

through an area enclosed by the contour L1 is

εμ0ExvΔy

At the same time, the circulation of the magnetic field along L1 is

ByΔy

Thus, displacement currents generate a field B, which is equal to

By ¼ εμ0vEx¼ 1

v
Ex

that, of course, coincides with the relationship between the vectors E and B

derived before.
Example Three
Now consider a more general case when the current in the source I0ψ(at) is
an arbitrary function of time. This function can be represented as a system of

rectangular pulses with different magnitudes arising at different times

(Fig. 3.2D). With decrease of the width of each pulse, this approximation

becomes more accurate. Therefore, at the instant t, the observed field is cau-

sed by the current impulse, which appears earlier at the instant

t1¼ t�z=v

For example, if the current in the source I0 remains constant when t>0,

then the time-invariant field is observed at any point with coordinate z, pro-

vided z<vt. This occurs because the current pulses are identical, and they

follow each other continuously. In other words, the front and back of neigh-

bor pulses arise at the same time. Because they are characterized by opposite

directions, we observe the constant field. Thus, the time-invariant electric

and magnetic fields arise due to wave propagation.
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Example Four
Another example of the function ψ (z, t) is a sinusoidal oscillation that also

can be treated as a system of pulses with different magnitudes and signs.

In accordance with Eqs. (3.19), (3.20), if

ix¼ I0 sinωt, if t� 0

Then

By z, tð Þ¼ �μ0I0
2

sinω t�z=νð Þ z< νt

0 z> νt

8<
:

Ex z, tð Þ¼ � I0

2

μ0
ε

� �1=2

sinω t�z=νð Þ z< νt

0 z> νt

8<
:

(3.25)

Taking into account that ω¼ 2π=T , we can rewrite Eq. (3.25):

By¼�μ0I0
2

sin ωt�ϕð Þ and Ex¼ vBy

Here,

ϕ¼ 2πz

λ
and λ¼ vT (3.26)

The parameter λ is called the wavelength, and it characterizes the dis-

tance passed by every elementary pulse during one period. The quantity

ϕ is the phase shift between the electromagnetic field and function describ-

ing the current source ix(0, t), and it is defined by the distance from this

source expressed in units of the wavelength λ. It is not easy to visualize

the propagation of sinusoidal waves, or any periodical function, because

there is no front or back of the wave. At the same time, the wave nature

of the field can be established considering the behavior of the phase at dif-

ferent times and distances from the source. In a nonconducting medium the

field is generated by two types of vortices at regular points:

@B

@t
, ε

@E

@t

However, when the field has a discontinuity, there is also a surface

distribution of vortices. For instance, if the wave is represented by the

rectangular pulse, the vortices are located at the front and back sides of
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the pulse. The simplest example of a plane wave in a uniform and non-

conducting medium can be treated as an introduction to the propagation

of a wave through a conducting medium. Now we describe one impor-

tant approximation for the field that is widely used in the induction

logging.
3.2 QUASISTATIONARY FIELD IN A NONCONDUCTING
MEDIUM
An electromagnetic field arising somewhere in a space cannot reach

any place instantly but rather always requires some time that is defined by

two parameters, namely, the distance between the two points and the veloc-

ity of propagation. This phenomenon occurs in anymedium, regardless of its

conductivity and dielectric permittivity, and both electromagnetic induc-

tion and displacement currents are vital for field propagation. For instance,

letting the parameter ε equal zero, that is, neglecting the displacement

currents,

jd ¼ ε
@E

@t
! 0

we arrive at an infinite velocity of propagation of the electromagnetic field.

Of course, in reality, there is no propagation at an infinite velocity. Quite

opposite, it always has a finite value even though it is very large; that is,

the propagation effect without exception takes place. However, there are

conditions when, with a given accuracy of measurements, it is practically

impossible to observe the wave phenomenon. In such cases, the field is called

the quasistationary one. We first study quasistationary fields in a non-

conducting medium; later, the influence of conductivity will be investigated

in detail. Suppose that the field is caused by conduction currents, and they

are distributed uniformly in the plane as shown in Fig. 3.2A. Then we have

for the magnetic field,

By z, tð Þ¼B0ψ a t�z=vð Þ½ � (3.27)

where ψ(0, t) is defined by conduction currents of the source, and the ratio

z/v characterizes the time needed for the field to travel from the source to an

observation point. Disregarding displacement currents and assuming that

z=v¼ 0
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we come to conclusion that at every point the magnetic field and the current

in the source vary synchronously. From a mathematical point of view, this

corresponds to the propagation with infinite velocity, and this fact can be

interpreted in the following way. Suppose that in some area the field is

observed at an instant t, which is much greater than the delay time z/v:

t≫z=v (3.28)

Thus, we can say that both the current in the source and the

quasistationary field B are practically described by the same argument of

the function ψ(at). From the physical point of view, this is an indication that

the magnetic field is, in fact, a quasistationary one, and it obeys the Biot-

Savart law. It is also useful to represent the inequality (Eq. 3.28) in a form

that corresponds to a sinusoidal electromagnetic field.Multiplying both sides

of this relationship by the frequency ω, we obtain

ωt≫
ωz

v
¼ 2πz

λ
(3.29)

Thus, the field caused by the sinusoidal current source is quasistationary if

the distance between this source and the observation point is much smaller

than the wavelength λ:

z=λ≪ 1 (3.30)

Now we consider several examples that illustrate the behavior of the

quasistationary field in a nonconducting medium.
Example One: Inductive Electric Field of the Solenoid

Suppose that a magnetic field arises due to an alternating current flowing

in an infinitely long cylindrical solenoid, as shown in Fig. 3.3A. In the

quasistationary approximation the magnetic field satisfies Biot-Savart

law and coincides in phase with the current flowing in the solenoid.

Using results of the Chapter 2, we can say that, inside the solenoid,

the field is uniform and directed along its axis, while outside the field

B vanishes. Because the magnetic field changes with time, an inductive

electric field arises. Taking into account that both vectors B and @B=@t
have the vertical component only, the electrical field is tangential to the

horizontal planes (Fig. 3.3A). Moreover, due to axial symmetry the vec-

tor lines of E are circles with centers located on the solenoid axis.
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Fig. 3.3 (A) Vortex field of solenoid. (B) Quasistationary field of magnetic dipole in a
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Therefore, the electric field has only component Eϕ, which is a function

of distance r. Making use of Faraday’s law,
Ξ¼�@Φ
@t
as well as the axial symmetry, for any circle located in a horizontal plane,

we obtain
þ
E 	 dl¼ 2πrEϕ¼�@Φ

@t
or
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Eϕ¼� 1

2πr

@Φ
@t

(3.31)
where @Φ=@t is the rate of change of the magnetic flux within the area

bounded by the circle with radius r. Bearing in mind that the magnetic

field inside the solenoid is uniform:
B¼B0 f tð Þ

we have for the electric field inside the solenoid
Ei
ϕ ¼�πr2

2πr
B0 f

0 tð Þ¼�B0r

2
f 0 tð Þ if r � a (3.32)
where a is the radius of the solenoid. Thus, the electric field inside the

solenoid increases linearly with the distance from solenoid axis. For all

horizontal circles with radii r exceeding the solenoid radius a the flux

Φ, as well as the derivative @Φ=@t, remains the same at any given instant

of time, and it is equal to
Φ¼ πa2B0f tð Þ and _Φ¼B0πa
2f 0 tð Þ
Therefore, the voltage (electromotive force) along any of these cir-

cles does not change with further increase of their radius and, in accor-

dance with Eq. (3.31), we have
Ee
ϕ¼� B0

2πr
πa2f 0 tð Þ¼�B0a

2

2r
f 0 tð Þ, if r � a (3.33)
As follows from this equation, the vortex electric field outside the

solenoid is inversely proportional to the radius r. This example viv-

idly demonstrates a case when a vortex electric field in the

quasistationary approximation is nonzero at points where the mag-

netic field is absent. In reality, due to a change of the electric field

with time, displacement currents arise everywhere, and they also

generate the magnetic field. In our approximation, this effect is neg-

ligible, but it provides a propagation of the field no matter how small

the rate of a change of the current in the solenoid is. Taking into

account that, outside the solenoid,
curl E¼ 0
the inductive electric field can be expressed in terms of the potential.
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Example Two: The Quasistationary Field of a Magnetic Dipole
in a Nonconducting Medium
Consider a magnetic dipole with the moment M(t) directed along the

z axis and situated at the origin of a spherical system of coordinates

(Fig. 3.3B). We again assume that, regardless of the distance, the mag-

netic field at any instant t is defined by the magnitude of the dipole cur-

rent at the same moment (quasistationary approximation). Then, making

use of the expressions for the magnetic dipole with steady current

(chapter one), we obtain
BR tð Þ¼ 2μ0M tð Þ
4πR3

cosθ, Bθ tð Þ¼ μ0M tð Þ
4πR3

sinθ, Bϕ¼ 0 (3.34)
The magnetic field is located in longitudinal planes of the spherical

system of coordinates, and it possesses the axial symmetry. In this case,

as follows from Maxwell’s equations, the inductive electric field arising

due to a change of the field B with time has only a single component

Eϕ(t). Therefore, vector lines of the electric field are circles, and their

centers are located at the z axis. We can write
Eϕ¼� 1

2πr
_Φ:

(3.35)
where Φ is the flux piercing the area bounded by a circle with radius r

(Fig. 3.3B). Taking into account that vector dS is parallel to the z axis,

we have the following expression for the flux Φ:
Φ¼
ð
S

B 	 dS¼ 2π

ðr
0

rBzdr (3.36)
where dS¼ 2πrdr and Bz is the vertical component of the magnetic field.

As is shown in Fig. 3.3B,
Bz tð Þ¼BR cosθ�Bθ sinθ
and, considering Eq. (3.34), we obtain
Bz tð Þ¼ μ0M tð Þ
4πR3

3cos2θ�1
� �

(3.37)
Substituting this expression into Eq. (3.36) and integrating, we have
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_Φ¼ dΦ
dt

¼ μ0
2

_M

R3
r2 (3.38)
where
R¼ r2 + z2
� �1=2

and _M ¼ dM=dt
Therefore, the vortex electric field is
Eϕ¼� _M tð Þ
4πR2

sinθ (3.39)
Thus, in the quasistationary approximation, when the instantaneous

magnitude of the dipole moment defines the magnetic field at the same

instant, the expressions for the electromagnetic fields are
BR tð Þ¼ 2μ0M tð Þ
4πR3

cosθ, Bθ tð Þ¼ μ0M tð Þ
4πR3

sinθ, Eϕ¼�
_M tð Þ

4πR2
sinθ (3.40)
It should be expected that the electric field is zero on the z axis

θ¼ 0,πð Þ, because the flux through a surface bounded by a circle of radius
r tends to zero when the radius decreases. At the same time, as the radius

increases, the magnetic vector lines begin to intersect the surface twice.

In other words, the componentBz could have an opposite sign at different

points of the surface. For this reason, if r is sufficiently large, the fluxΦ grad-

uallydecreases in spiteof theunlimited increaseof the surface.Thus, the flux

Φ as a function of r has a maximum whose position depends on the coor-

dinate z andwith its increase, themaximum is observed at greater distances

from the z axis. As follows fromEq. (3.40), at every point of amedium, the

magnetic field is accompanied by an inductive electric field. If a medium is

conductive, this electric field gives rise to a current. The field described by

Eq. (3.40) is generated by the current of the magnetic dipole only, and is

called theprimaryelectromagnetic field.Nowletus consider this fieldwhen

the dipole moment varies with time in a relatively simple manner.
Case One

Suppose that the current in the dipole changes as a sinusoidal function,

that is,
M ¼M0 sinωt (3.41)
whereM0 is themoment amplitude andω¼ 2πf is the angular frequency
with T¼1/f being the period of oscillations.
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Then, in accordance with Eqs. (3.40), (3.41), for the quasistationary

field, we have
BR tð Þ¼ 2μ0M0

4πR3
cosθ sinωt, Bθ tð Þ¼ μ0M0

4πR3
sinθ sinωt,

Eϕ tð Þ¼ωμ0M0

4πR2
sinθ sin ωt�π=2ð Þ

(3.42)
Thus, one can say that the primary electric field exhibits a phase shift of

90 degrees with respect to the current flowing in the dipole or to the pri-

mary magnetic field. Eq. (3.42) is useful for understanding of induction

logging utilizing a magnetic dipole as the primary source.
Case Two

Next assume that the dipole moment varies with time, as shown in

Fig. 3.3C:
M tð Þ¼
M0

M0� at

0

8<
: ,

if

if

if

t� 0

0� t� tr
t� tr

(3.43)
where a¼M0=tr . As follows from Eq. (3.40), the primary magnetic field

is constant if t< 0, then it decreases linearly within the interval 0< t< tr
and equals zero when t> tr . Respectively, the primary electric field of

vortex origin exists only within the time interval where the magnetic

field changes 0� t� trð Þ, and in view of its linear dependence on time,

the electric field is constant. Thus, we have
BR ¼ 2μ0M0

4πR3
cosθ, Bθ ¼ μ0M0

4πR3
sinθ, Eϕ¼ 0, if t� 0

BR tð Þ¼ 2μ0M tð Þ
4πR3

cosθ, Bθ tð Þ¼ μ0M tð Þ
4πR3

sinθ, Eϕ tð Þ¼ μ0M0

4πR2tr
sinθ, if 0< t� tr

BR ¼Bθ ¼ 0, Eϕ¼ 0, if t> tr

(3.44)
The curves shown in Fig. 3.3D illustrate the behavior of the magnetic

and electric fields as functions of time. Of course, per our considerations

we do not take into account the propagation of the field, and in this

approximation the electric field exists only within the time interval

where the dipole moment changes with time.



111Propagation of Electromagnetic Field
3.3 INDUCTION CURRENT IN A THIN CONDUCTING RING
PLACED IN A TIME-VARYING FIELD
(A)

Fig. 3.
Index
3.3.1 Equation of Induced Current in the Conductive Ring

Consider an example that will be later used for explanation of the skin effect

in a conducting medium. Assume that the quasistationary approximation is

accurate enough and that a thin conducting ring with a radius r is placed into

the primary field B0 (Fig. 3.4A). The appearance of currents in a conducting

ring can be described as follows. The time-varying primary magnetic field is

accompanied by the inductive electric field. For simplicity, we assume that

this electric field has a simple component E0ϕ only, which is tangential to

the ring surface. This field is the primary cause of the conduction current

in the ring. In turn, these currents generate a secondary electromagnetic

field. The induced current in the ring depends on both the primary and sec-

ondary electric fields. According to Ohm’s law, we have

jϕ ¼ γ E0ϕ +Esϕ

� �
(3.45)

where jϕ is the current density, γ is the ring conductivity, andE0ϕ andEsϕ are

the primary and secondary electric fields, respectively. To determine the

current in the ring, we use Faraday’s law

Ξ¼�dΦ
dt

(3.46)
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The flux Φ through the area bounded by the ring is

Φ¼Φ0 +Φs (3.47)

Here Φ0 is the flux of the primary magnetic field caused by a current

source, whileΦs is the flux of the magnetic field generated by the induction

current in the ring. Correspondingly, Eq. (3.46) can be written as

Ξ¼�dΦ0

dt
� dΦs

dt
: (3.48)

In this equation, only the term dΦ0/dt is known, whereas the

electromotive force Ξ and the rate of a change of the secondary flux dΦs/dt

are unknown. Our objective is to determine the current I flowing in the ring

and express both unknowns in terms of this function. Applying Ohm’s law

we have

Ξ¼ IR (3.49)

where R is the ring resistance given by

R¼ ρ
l

S
, if r≫ a0 (3.50)

Here, ρ is the resistivity of the ring, l is its circumference, and the area of

the ring cross-section is S¼ πa20, where a0 is the radius of the ring cross-

section. As follows from the Biot-Savart law, the magnetic flux Φs

caused by the ring’s current is directly proportional to I, and it can be

represented as

Φs ¼LI (3.51)

Here, L is a coefficient of proportionality known as the inductance of

the ring. According to Eq. (3.51), the ring inductance is the ratio of the

secondary magnetic flux through the ring and the current creating the flux:

L¼Φs

I

In other words, numerically the inductance is the flux caused by the unit

current. It is defined only by the geometrical parameters of the ring. In gen-

eral, determination of inductance involves rather complicated calculations

based on the Biot-Savart law. But, in a special case of a thin circular ring,

the self-inductance is defined by the well-known formula:
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L¼ μ0r ln
8r

a0
�1:75

� 	
(3.52)

Inductance is measured in henrys in SI units. If we have a coil (solenoid)

with n rings per unit length, the inductance increases as the square of number

of turns n of the solenoid:

L¼ μ0n
2r ln

8r

a0
�1:75

� 	
(3.53)

Thus, the simple form of the conductor and the assumption about uni-

form distribution of the current density over the cross-section of the ring,

have allowed us to find the coefficient of proportionality between the sec-

ondary flux Φs and the induced current in the ring. Substituting Eqs. (3.49),

(3.51) into Eq. (3.48), we arrive at a differential equation for the current I:

L
dI

dt
+RI ¼�dΦ0

dt
or

dI

dt
+

1

τ0
I ¼ f tð Þ (3.54)

here,

τ0¼ L

R
and f tð Þ¼� 1

L

dΦ0

dt
(3.55)

are given. The solution to this ordinary differential equation of the first

order is

I tð Þ¼ I0 exp �t=τ0ð Þ� exp �t=τ0ð Þ 1
L

ðt
0

exp x=τ0ð ÞdΦ0 xð Þ
dx

dx (3.56)

where I0 is the current at the instant t¼0. Now we study the behavior of

induced currents in two cases.
3.3.2 Transient Responses of Induced Current
First, suppose that the primary magnetic field varies with time in a similar

way, as shown in Fig. 3.3B:

dΦ0

dt
¼

0 if t< 0

�Φ0

tr
if t� 0< tr

0 if t� tr

8>>><
>>>:

(3.57)
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During the time interval (t< 0), there are no induced currents in the

ring; that is,

I tð Þ¼ 0, if t< 0

Within the ramp time, the primary flux Φ0 varies linearly with time;

therefore, an induced current arises. Its magnitude is defined by the rate

of change of the primary magnetic field as well as two parameters of the ring

R and L. When the primary field disappears (t> tr), the behavior of the

induced current is controlled by the time constant τ0 only. In fact, in this

time range Eq. (3.54) is simplified, and we have

dI

dt
+

1

τ0
I ¼ 0, if t� τr (3.58)

and its solution is

I tð Þ¼C exp �t=τ0ð Þ, if t� τr : (3.59)

In order to determine the constant C, we look at the behavior of the

induced currents during the ramp time. In accordance with Eqs. (3.56),

(3.57), we obtain

I tð Þ¼ I0 exp �t=τ0ð Þ+ τ0
tr

Φ0

L
1� exp �t=τ0ð Þ½ �, if 0� t� tr (3.60)

Because the induced current is absent at the instant t¼0, that is I0¼ 0,

we have

I tð Þ¼ τ0
tr

Φ0

L
1� exp �t=τ0ð Þ½ �, if 0� t� tr (3.61)

The constant C is readily found from Eqs. (3.59), (3.61). In fact, letting

t¼ tr in both equations, we obtain

I trð Þ¼C exp �tr=τ0ð Þ¼ τ0
tr

Φ0

L
1� exp �tr=τ0ð Þ½ �

Thus

C¼ τ0
tr

Φ0

L
exp tr=τ0ð Þ�1½ � (3.62)

Correspondingly, the expressions describing the induced current in the

ring are
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I tð Þ¼

0 t< 0

τ0
tr

Φ0

L
1� exp �t=τ0ð Þ½ � t� 0< tr

τ0
tr

Φ0

L
exp tr=τ0ð Þ�1½ �exp �t=τ0ð Þ t� tr

8>>>>><
>>>>>:

(3.63)

As follows from Eq. (3.63), the induced current gradually increases dur-

ing the ramp time, reaches a maximum at the moment t¼ tr , and then

decreases exponentially. Suppose that the ramp time tr is much less than

the time constant τ0 : tr ≪ τ0. Then, expanding the exponential terms in

Eq. (3.63) in power series and discarding all terms but those of the first

and second order, we obtain

I tð Þ¼

0 t< 0

t

tr

Φ0

L
t� 0< tr

Φ0

L
exp �t=τ0ð Þ t� tr

8>>>><
>>>>:

(3.64)

In this case the induced current increases linearly during the ramp time,

and outside this range (t� tr) the current magnitude is independent on the

parameter tr. It is obvious that the magnetic field caused by this current has

the same features. As will be shown later, a similar behavior is observed in a

more general case of induced currents in volume conductors. In the opposite

case of tr ≫ τ0, the current I increases linearly at the beginning (t≪ tr) and

then slowly approaches a maximum equal to

τ0
tr

Φ0

L
≪

Φ0

L
, if t¼ tr

Of course, at late time the current decays exponentially. Curves, illustrat-

ing the behavior of induced current at different parameters tr/τ0, are shown
in Fig. 3.4B.
3.3.3 A Step-Function Varying Primary Magnetic Field
When the primarymagnetic flux changes as a step function the current in the

ring I is described by the last equation of the set (Eq. 3.64) when the ramp

time approaches zero. Thus, we have

I tð Þ¼Φ0

L
exp �t=τ0ð Þ, if t> 0 and tr ! 0 (3.65)



116 Basic Principles of Induction Logging
and the initial value of the induced current does not depend on the ring resis-

tance but rather is determined by the primary fluxΦ0 and the inductance L.

Inasmuch as under real conditions there is always a nonzero ramp time, the

initial value of the current Φ0/L is the value at the instant t¼ tr , provided

that tr is much less than τ0. At the same time, the current at the initial

moment (t¼ 0) is equal to zero. For better understanding of the skin effect,

it is useful to derive the same result directly from Eq. (3.54). Integrating both

parts of this equation within the ramp time interval, we have

R

ðtr
0

I tð Þdt+L

ðtr
0

dI tð Þ
dt

dt¼�
ðtr
0

dΦ0

dt
dt

Whence

R

ðtr
0

I tð Þdt+L I trð Þ� I 0ð Þ½ � ¼Φ0 0ð Þ�Φ0 trð Þ (3.66)

Inasmuch as at the initial moment

Φ0 0ð Þ¼Φ0, I 0ð Þ ¼ 0

and at the instant t¼ tr the primary flux disappears, Eq. (3.66) can bewritten as

R

ðtr
0

I tð Þdt+LI trð Þ¼Φ0 (3.67)

By definition, the integrand I(t)dt indicates the amount of charge passing

through the ring cross-section during the time interval dt. With decrease of

the ramp time, the total amount of charge tends to zero. Therefore, in the

limit when the primary flux varies as a step function, we have

LI 0ð Þ¼Φ0, if tr ¼ 0 (3.68)

that is, the initial current is

I 0ð Þ¼Φ0

L
(3.69)

It is natural that Eqs. (3.65), (3.68) give the same magnitude for the

initial current. As follows from Eqs. (3.63), errors caused by discarding
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the integral in Eq. (3.67) become smaller as the ratio tr/τ0 decreases. In

other words, with an increase of the inductance L or a decrease of the

resistance R, Eq. (3.68) defines the initial current more accurately.

Eq. (3.68), characterizing initial distribution of the current, constitutes

the essential feature of the electromagnetic induction and later will be

generalized and applied to more complicated medium. In fact, the

left-hand side of Eq. (3.68) defines the magnetic flux through the area

of the ring caused by induced current at the instant t¼0 when the pri-

mary flux disappears. Thus, the induced current arises at the ring of such

magnitude I(0) that, at the first instant magnetic flux, LI(0) is exactly

equal to the primary flux Φ0. This induced current is trying to preserve

the flux due to the primary field. If, for example, the primary magnetic

field instantly arises at the moment t¼ 0, then the induced current has

such direction and magnitude that the total flux Φ through the area,

bounded by the ring, is equal to zero at t¼ 0. In essence we observe

the fundamental phenomenon of the inertia of magnetic flux. This study

clearly shows that there are two factors governing the behavior of

induced current. One is the inertia of the magnetic flux Φ, which tends

to keep the current unchanged. The second is a conversion of the elec-

tromagnetic energy into heat, which results in a decrease of the current

with time. The larger the resistivity R the faster is the decay.
3.3.4 Sinusoidal Primary Magnetic Field
Suppose that the primary magnetic field varies as a sinusoidal function

A sin ωt. To determine the induced current, we use Eq. (3.56). Because

the primary flux is presented as Φ0 sin ωt, for the current I(t), we have

I tð Þ¼ I0 exp �t=τ0ð Þ�ωΦ0

L
exp �t=τ0ð Þ

ðt
0

exp
x

τ0

� 	
cosωxdx

Taking into account that

ð
exp αxð Þcosβxdx¼ expαx

α2 + β2
αcosβx+ β sinβxð Þ

for the induced current in the ring, we have
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I tð Þ¼ I0 exp �t=τ0ð Þ�Φ0

L

ωτ0 cosωt

1+ ωτ0ð Þ2�
Φ0

L

ωτ0ð Þ2 sinωt
1+ ωτ0ð Þ2

+
Φ0

L

ωτ0

1 + ωτ0ð Þ2 exp �t=τ0ð Þ

Inasmuch as the initial value of the current is equal to zero (I0 ¼ 0), for

the sinusoidal currents at (t≫ τ0), we have

I tð Þ¼�Φ0

L

ωτ0 cosωt

1+ ωτ0ð Þ2�
Φ0

L

ωτ0ð Þ2 sinωt
1+ ωτ0ð Þ2 (3.70)

Let us introduce notations

a ωð Þ¼�Φ0

L

ωτ0ð Þ2
1 + ωτ0ð Þ2 , b ωð Þ¼�Φ0

L

ωτ0

1 + ωτ0ð Þ2 (3.71)

This gives

I tð Þ¼ a sinωt + bcosωt (3.72)

and the induced current is presented as a sum of two oscillations. One is

a sin ωt, which changes synchronously with the primary magnetic field

and is called the in-phase component:

InI ¼ a sinωt

The second oscillation b cos ωt is shifted in phase by 90 degrees with

respect to the primary magnetic field and is called the quadrature

component:

QI ¼ bcosωt

There is another interpretation of Eq. (3.72). In fact, let us represent

magnitudes of these components in the form

a¼Acosϕ, b¼A sinϕ (3.73)

Then the induced current is written as

I tð Þ¼A cosϕ sinωt + sinϕcosωtð Þ¼A sin ωt +ϕð Þ (3.74)

Therefore, we can say that induced current I(t) is the single sinusoidal

oscillations with the same frequency ω as the primary field B0(t) and phase

shift ϕ. As follows from Eqs. (3.71), (3.73), for the amplitude and phase of

the current, we have
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A¼ a2 + b2
� �1=2¼Φ0

L

ωτ0

1 + ωτ0ð Þ2� �1=2 , ϕ¼ tan�1 1

ωτ0
(3.75)

Frequency responses of the quadrature and in-phase components, as well

as the amplitude and phase, are shown in Fig. 3.5. Again, we can interpret

Eq. (3.73) as two currents shifted by phase in 90 degrees with respect to each

other or a single current with an amplitude and phase defined by Eq. (3.75).

Both interpretations are equivalent and widely used by engineers. In spite

of the apparent simplicity of the analyzed thin ring object, the considered

frequency responses contain general features typical for much more compli-

cated conducting objects.
The Range of Small and Large Parameters of ωτ0
Assuming ωτ0< 1, we can expand the right hand side of Eq. (3.71) in a

series. This gives

a ωð Þ¼Φ0

L
� ωτ0ð Þ2 + ωτ0ð Þ4� ωτ0ð Þ6 + ωτ0ð Þ8�⋯
� �

b ωð Þ¼Φ0

L
�ωτ0 + ωτ0ð Þ3� ωτ0ð Þ5 + ωτ0ð Þ7�� � (3.76)
QI InI

A j

(A) (B)

(C) (D)

wt0

wt0 wt0

wt0

Π
2

Fig. 3.5 (A) Quadrature component of the current. (B) In-phase component of the
current. (C) Amplitude of the current. (D) Phase of the current.
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Thus in the low-frequency limit the quadrature and in-phase compo-

nents of the induced current can be represented as a series containing either

odd or even powers of ω. It is interesting that this feature remains valid for

induced currents arising in any confined conductor surrounded by an insu-

lator and even in some special cases of a medium unbounded dimension.

Both series converge if:

ωτ0< 1 (3.77)

In other words, the radius of convergence of these series is

ω¼ 1

τ0
(3.78)

As follows from the theory of complex variables, the radius of conver-

gence of the power series is the distance from the origin (ω¼ 0) to the

nearest singularity of the functions a(ω) and b(ω). To determine the location

of this singularity, we have to treat these functions as functions of complex

variable ω and consider the denominator in Eq. (3.71). It becomes equal to

zero when ω¼� i

τ0
. That is, the spectrum has two poles located on the

imaginary axis ofω. It is essential that the radius of convergence of the series,
describing the low-frequency part of the spectrum, is expressed in terms of

the time constant of the ring. This fact reflects an important relationship

between the low-frequency part of the spectrum and the late stage of the

transient response observed in confined conductors. Now suppose that

the frequency is so low that we can consider only the first term in series.

Then, we have

a ωð Þ��Φ0

L
ωτ0ð Þ2 and b ωð Þ¼�Φ0

L
ωτ0,

QI ωð Þ��Φ0

L
ωτ0ð Þcosωt, InI ωð Þ��Φ0

L
ωτ0ð Þ2 sinωt, if ωτ0≪ 1

(3.79)

In this frequency range, the quadrature component is dominant and

directly proportional to the conductivity of the ring and frequency. Also,

it does not depend on the inductance L because τ0¼L=R. Such behavior

can be explained as follows. If we disregard the flux caused by induced

current, Φs≪Φ0, then the total flux is practically equal to the primary one:

Φ�Φ0 sinωt
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Respectively, the electromotive force in the ring is

Ξ¼�dΦ
dt

¼�ωΦ0 cosωt

Applying Ohm’s law, we obtain for the quadrature component of

induced current

QI ωð Þ¼�ωΦ0

R
cosωt¼�Φ0

L
ωτ0ð Þcosωt

Thus, the first term of the series of the quadrature component describes

the current that arises due to the primary flux only. This feature is essential

for understanding the signals that are recorded in induction logging. In con-

trast, the in-phase component is caused by a secondary flux. In our approx-

imation, ωτ0≪ 1, the flux generated by the quadrature component of the

current is

Φ1¼LQI ωð Þ¼�ωΦ0

R
L cosωt¼�ωτ0Φ0 cosωt

Therefore,

dΦ1

dt
¼ω2τ0Φ0 sinωt

and for the in-phase component of the current induced in the ring, we have

InI ωð Þ¼�ω2τ0Φ0

R
sinωt¼�Φ0

L
ωτ0ð Þ2 sinωt

which is identical to the first term of the series of the in-phase component

(Eq. 3.76). Applying the same approach, we can obtain subsequent terms of

the series. Note that the term “the low frequency part of the spectrum” is

sometimes confusing. In fact, it does not mean that the equations are valid

only when frequencies are small. In fact, validity of equations and frequency

is also defined by resistivity and geometry of the object. For instance, if the

parameter τ0 is small, the upper limit of “the low frequency spectrum” can

be large and increase with reduction of the parameter τ0¼L=R.
In the high frequency limit, we have

ωτ0≫ 1: (3.80)

As follows from Eq. (3.71), in this range the in-phase component dom-

inates, and, with an increase of the frequency, it approaches a constant value
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determined by the primary magnetic flux and geometric parameters of

the ring:

b ωð Þ! 0, a ωð Þ!�Φ0

L
if ωτ0!∞ (3.81)

Comparing Eqs. (3.69), (3.81), we see that the magnitude of the induced

current at the early stage of the transient response (t≪ τ0) coincides with that
at the high frequency part of the spectrum. This is not accidental and is valid

for an arbitrary conductive medium. The behavior of the frequency and

transient responses, given by Eqs. (3.81), (3.69), is analogous to induced cur-

rents in confined conductors with an arbitrary shape of cross-section.

As follows from the Biot-Savart law, the quadrature and in-phase com-

ponents of the secondary magnetic field are generated by the corresponding

components of the induced current. Therefore, the frequency and transient

responses of magnetic field and induced currents are similar.
3.3.5 Two Inductively Connected Rings Excited by an
External Source

This example illustrates how inductive coupling affects induced currents in

the neighboring object. The objects are circular rings withR1, L1 andR2, L2
that are the resistor and inductance of the first ring and the second ring, cor-

respondingly. Mutual inductance between rings is M. The rings are excited

by another source-ring carrying current I0 and having the radius r0. Induced

currents in the rings are denoted as I1 and I2. The centers of the rings are

placed on the z axis, as in Fig. 3.6.

We analyze two regimes of excitation: the harmonic excitation when

current source is sinusoidal function of time and transient regime when

current is abruptly changing from finite value to zero.
Harmonic Excitation
Variable with time current source I0(t) induces current I1(t) in the first and

I2(t) in the second ring. According to Kirchhoff law, the sum of all the volt-

ages around the ring is equal to zero. This leads to the following system of

equations with respect to I1(t) and I2(t):

E10 tð Þ¼ I1 tð ÞR1 +L1

dI1 tð Þ
dt

+M
dI2 tð Þ
dt

E20 tð Þ¼ I2 tð ÞR2 +L1

dI2 tð Þ
dt

+M
dI1 tð Þ
dt

8><
>: (3.82)



z

r1

r2

z1

z2

I0

I1

I2

r0
r

Fig. 3.6 Two inductively connected rings excited by an external source.
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where E10(t) and E20(t) are external electromotive forces induced by the

current ring in the first and the second ring, M10 and M20 are the mutual

inductances between current ring r0 and ring r1 and r2, correspondingly.

In the case of harmonic excitation

I tð Þ¼ I0 sinωt, E10 tð Þ¼�M10I0ωcosωt, E20 tð Þ¼�M20I0ωcosωt

and we have the following system with respect to the complex amplitudes

I1
∗ and I2

∗:

E10¼ I∗1R1� I∗1 jωL1� I∗2 jωM ¼ I∗1Z1� I∗2 jωM
E20� I∗1 jωM + I∗2R2� I∗2 jωL2¼�I∗1 jωM + I∗2Z2



(3.83)

where Z1 and Z2 are the impedances of the rings:

Z1¼R1� jωL1

Z2¼R2� jωL2

Solving Eq. (3.83), we receive

I∗1 ¼E10

Z2� jωMð Þ
Z1Z2 + ωMð Þ2

I∗2 ¼E20

Z1� jωMð Þ
Z1Z2 + ωMð Þ2

(3.84)



124 Basic Principles of Induction Logging
Equating the denominator in Eq. (3.84) to zero, we find poles that are

related to characteristic decay τ1,τ2 of the rings:

τ1τ2� τ2
� �

ω2 + i τ1 + τ2ð Þω�1¼ 0

where τ1¼L1=R1 and τ2¼L2=R2, τ2¼M2=R1R2.

The latter gives

ω¼�i τ1 + τ2ð Þ� � τ1 + τ2ð Þ2 + 4 τ1τ2� τ2ð Þ� �1=2
2 τ1τ2� τ2ð Þ (3.85)

or introducing ω¼ jω
, we find two poles:

ω
 ¼� τ1 + τ2ð Þ� τ1 + τ2ð Þ2�4 τ1τ2� τ2ð Þ� �1=2
2 τ1τ2� τ2ð Þ (3.86)

Let us consider several scenarios corresponding to the different couplings

between rings.

a. Case one: No interaction between rings, M ¼ 0.
When mutual inductance M ¼ 0, we receive well-known expres-

sions for characteristic decays of two independent circuits:
ω
 ¼� τ1 + τ2ð Þ� τ1� τ2ð Þ
2τ1τ2

and ω

1 ¼� 1

τ1
, ω∗

2 ¼� 1

τ2

b. Case two: Weak interaction, M2≪L1L2.
In this case τ1τ2≫ τ2, (τ1 6¼ τ2), and we have
ω
 �� τ1 + τ2ð Þ� τ1� τ2ð Þ+2τ2 τ1� τ2ð Þ�1

2τ1τ2
∗ ∗
For the poles ω1 and ω2 , we obtain
ω∗
1 �

�τ2 + τ2 τ1� τ2ð Þ�1

τ1τ2
¼� 1

τ1
+

τ2

τ1τ2 τ1� τ2ð Þ (3.87)

ω∗
2 �

�τ1 + τ2 τ1� τ2ð Þ�1

τ1τ2
¼� 1

τ2
+

τ2

τ1τ2 τ1� τ2ð Þ (3.88)
If interaction is small, the position of poles is close to the limiting case

of M ¼ 0, but the presence of the second term of an opposite sign in

Eqs. (3.87), (3.88) indicates the shift of the poles toward a smaller value

of 1/τ1 and 1/τ2. The consequence of this shift has important physical
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implications that will be better understood when we analyze transient

regime.
c. Case three: Strong interaction, M2=L1L2� 1.
This scenario takes place when the distance between rings z2�z1ð Þ
is smaller than the radius of rings. For simplicity, we assume that

τ1¼ τ2¼ τ0� τ. In this case, two rings behave as one ring with charac-

teristic decay 2τ0 and pole, located at
ω*��2τ0� 4τ02�4 τ20� τ2
� ��� �1=2

2 τ20� τ2ð Þ ¼� 1

τ0 + τð Þ�� 1

2τ0
(3.89)
Step-Function (Transient) Excitation
Now assume that, at t¼ 0, the current in the source is abruptly changing

from I0 to 0.

Taking into account that
d

dt
1 tð Þð Þ¼ δ tð Þ, the transient process in the

rings is described by the following system:

E10 tð Þ¼�M10

dI0 tð Þ
dt

¼�I0M10δ tð Þ¼ I1 tð ÞR1 +L1

dI1 tð Þ
dt

+M
dI2 tð Þ
dt

E20 tð Þ¼�M20

dI0 tð Þ
dt

¼�I0M20δ tð Þ¼ I2 tð ÞR2 +L2

dI2 tð Þ
dt

+M
dI1 tð Þ
dt

8>><
>>:

(3.90)

The matrix form of the system (Eq. 3.90) is

dI1

dt

dI2

dt

2
664

3
775¼ L11 M

M L22

" #�1

	 �I1R1� I0M01δ tð Þ
�I2R2� I0M02δ tð Þ

" #
(3.91)

where the inverse matrix L
_
is calculated as

L
_¼ L1 M

M L2

 ��1

¼ 1

det

L2 �M

�M L1

 �

and det ¼L1L2�M2. This system of two ordinary differential equa-

tions (3.91) along with initial conditions I1 0ð Þ¼ I2 0ð Þ¼ 0 can be solved

numerically using the Runge-Kutta method. The delta function can be

approximated as a rectangular pulse with the height 1/ht and width ht.
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(In the numerical implementation, it is important to maintain an integra-

tion time step several times smaller than ht). Resistor R and inductance

are defined by Eqs. (3.50), (3.52). The mutual inductance between two

rings, having radius ri and rj, and separated vertically by the distance z,

is calculated as

Lij ¼ μ0
ffiffiffiffiffi
rirj

p 2

k
�k

� 	
K kð Þ�2

k
E kð Þ

 �

where

k2 ¼ 4rirj

ri + rj
� �2

+ z2

and K(k), E(k) are full elliptic integrals of the first and second kind,

correspondingly.

In the following example, we select the radius of the source ring

r0 ¼ 1 m, while r1¼ r2¼ 0:1 m and a¼ 0:01 m. Resistivity of the first ring

ρ1 is fixed and equal to 1 ohm, resistivity of the second ring ρ2 is varying.
a. Case one: Weak interaction, M2≪L1L2.
To simulate weak interaction, we separate rings vertically by

z¼ z1�z2¼ 0:75 m≫0:1 m, where z1 and z2 are distances between

source ring and two other rings, correspondingly. The solutions of

the system (3.91), I1(t) and I2(t), are presented in Fig. 3.7.

The transient decay in the first ring (Fig. 3.7A) is solely defined by the

time decay τ1, and only at the very late stage, t=τ1 � 10, the second ring

manifests itself: the smaller the resistivity of the second ring the earlier it

manifests itself by slowing down the time decay. At the same time, when

resistivity approaches ρ2¼ 1 ohmm or above, the effect of the second

ring becomes negligible. In other words, in the case of weak interaction,

only the more conductive second ring, ρ2=ρ1 < 1, may slow down the

time decay in the first ring.

The transient currents in the second ring, I2(t), are presented in

Fig. 3.7B (solid lines). Also, there is the set of curves (dashed lines),

corresponding to the case when interaction is absent (M ¼ 0). When

resistivity is relatively small (ρ2=ρ1< 1), the dashed and solid lines coin-

cide, demonstrating no effect of the first ring on the transient current

I2(t): the transient process takes place with characteristic decay τ2. At
the same time when ρ2=ρ1� 1:5 the current I2(t) is affected by the tran-
sient process in the first ring. This is especially pronounced at
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ρ2=ρ1¼ 10, when only an initial stage, t=τ1� 1, is defined by the char-

acteristic decay τ2. At t=τ1� 1, the transient process is in the second ring

is driven by the characteristic time τ1 of the first ring. The time range

Δt/τ1 when decay of I2(t) is defined by τ2 is expanded with increase

of the conductivity of the second ring 1/ρ2. For example, at

ρ2=ρ1¼ 2 it is about Δt=τ1� 5 (Fig. 3.7B).
b. Case two: Strong interaction, M2≪L1L2.
Strong interaction is simulated by reducing the distance between

rings to Δz¼ z2�z1¼ 0:03 m (Fig 3.8).
Again, the left subplot (Fig. 3.8A) corresponds to the transient process I1(t) in

the first ring, and the subplot on the right (Fig. 3.8B) depicts I2(t). Due to the

closeness of the rings, the mutual coupling is much more pronounced com-

pared with that in the previous case. Particularly, when conductivity of the

second ring is high (ρ2¼ 0:25 ohmm), the transient decay in the first ring is

driven by parameter τ2 if t=τ1� 3. When ρ2¼ ρ1¼ 1 ohmm, in accordance

with (3.89), the characteristic decay is equal to 2τ1. The influence of the sec-
ond ring practically disappears if ρ2=ρ1> 4. Similarly, a strong influence of

the first ring is observed on I2(t), (Fig. 3.8B). Although at ρ2¼ 0:25 ohmm,

the presence of the first ring with ρ1¼ 1 ohmm is practically negligible

(compare solid and dashed lines), it becomes significant at all resistivity values
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above 0.5 ohm. (In the case of the weak interaction, the influence of the first

ring was not visible at ρ2=ρ1< 1:0). Thus, we see that a better conductor

may affect a transient process in the second object. When coupling is strong,

the influence is observed at earlier times and at smaller conductivity contrast

compared with the case of the weak interaction. Moreover, when coupling

is strong, even less conductive object slows down a transient process in the

more conductive one.
3.3.6 Notes on Measurements of Induced Electric and
Magnetic Fields

Coils are often used for measuring time-varying magnetic fields. Suppose

that a conducting loop, as shown in Fig. 3.9, is placed in the magnetic field

B(t). In general, the field E is arbitrary oriented with respect to the loop, and

the voltmeter connected in series with the receiver measures the voltage

along the path L between terminal points, b and c:

V ¼
ðb
c

E 	 dl¼
ðb
c

Eldl (3.92)
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where El is the tangential to the loop component dl. When the radius of the

loop cross-section is much smaller than its length, the voltage is practically

independent of the position of the path L inside the loop. If the receiver con-

sists of n loops, then the voltage is

V ¼ n

ðb
c

Eldl

When the circuit intervals ab and cd are close to each other, we can write

ðb
a

E 	 dl¼�
ðd
c

E 	 dl or

ðb
a

E 	 dl+
ðd
c

E 	 dl¼ 0 (3.93)

Taking into account Eq. (3.93) and almost coincident positions of points

a and d, Eq. (3.92) can be rewritten as

V ¼
ða
d

E 	 dl¼
þ
L

E 	 dl¼
þ
L

Eldl¼Ξ: (3.94)

Thus, the voltmeter measures, in essence, the electromotive force along

the receiver loop. As a rule, the internal resistance of the voltmeter is high;

therefore, the current in the loop is extremely small. For this reason, we can

disregard the influence of its magnetic field; correspondingly, the

electromotive force is defined by only the external electric field E(t).
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Inasmuch as the voltage is path dependent, a change of the position, size, and

shape of the loop results in a change of the electromotive force, even though

terminal points of the voltmeter remain in the same place. As is seen in

Fig. 3.9, in general, regardless of how small the loop is, it is impossible to

determine the electric field from the electromotive force Ξ. However, there

is one exception in which measurements with the loop allow us to calculate

E(t). In fact, suppose that this field is tangential to the loop surface, and its

magnitude is constant. Then, in accordance with Eq. (3.94), we have

El ¼Ξ
l

where l is the loop length. A Coulomb electric field Ec caused by charges has

no influence on the electromotive force becauseþ
Ec 	 dl¼ 0

In particularly, these charges are often located on the surface of the loop.

Moreover, in the quasistationary approximation the field of charges is

described by Coulomb’s law, and, due to the electrostatic induction, the

Coulomb’s electric field is equal to zero inside the receiver loop.

By measuring electromotive force Ξ, we also can estimate the rate of

change of the magnetic flux through the loop. Indeed, according to

Faraday’s law, we have

dΦ
dt

¼
ð
S

_B 	 dS¼
ð
S

_BndS¼�Ξ (3.95)

If the size of the loop is small enough, the normal component of the field
_Bn is uniform within the loop and equal to

_Bn¼�Ξ
S

where S is the area of the loop.

The magnetic field also can be determined:

Bn tð Þ¼Bn t*ð Þ� 1

S

ðt
t*

Ξ xð Þdx (3.96)
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Here, t∗ is the time at which the field is known. In particular, if t* !∞
and Bn t*ð Þ¼ 0, then

Bn tð Þ¼�1

S

ðt
t*

Ξ xð Þdx
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Before we describe the theory of induction logging, it is useful to study the

propagation of electromagnetic fields in a conducting and polarizable

medium and formulate conditions when quasi-stationary approximation is

valid. We start from the simplest case of a plane wave whose surfaces of con-

stant phase form a plane surface normal to the direction of propagation.
4.1 SINUSOIDAL PLANE WAVE IN A UNIFORM MEDIUM

4.1.1 Expressions for the Field
Pri
//d
Suppose that in the plane XOY there is a current source with the density

ix ¼ i0f atð Þ

that is independent of the coordinate y. As in the case of a nonconducting

medium, we assume that the electromagnetic field is independent of
nciples of Induction Logging © 2017 Elsevier Inc.
x.doi.org/10.1016/B978-0-12-802583-3.00004-6 All rights reserved.

133

http://dx.doi.org/10.1016/B978-0-12-802583-3.00004-6


134 Basic Principles of Induction Logging
coordinates x and y and has only two nonzero components: Ex and By. From

Eq. (2.93) it follows that

@2Ex

@z2
� γμ0

@Ex

@z
� εμ0

@2Ex

@t2
¼ 0

@2By

@z2
� γμ0

@By

@z
�εμ0

@2By

@t2
¼ 0

(4.1)

When the second term is zero (γ¼ 0), we arrive at the wave equation

derived earlier. Applying d’Alembert’s method, the wave equation can be

solved for the arbitrary function f(at), characterizing the primary source.

The essential feature of this method is that an argument of the solution

must have the form t�z=ν or z�νt, where v is the velocity of propagation.
But this approach cannot be applied to Eq. (4.1) due to the presence of the

term, proportional to the conductivity. As a result, in general, there is no

closed-form solution of Eq. (4.1), except for a special case of a sinusoidal

time-varying source. In this case, the field is also a sinusoidal function of

the same frequency. This an important fact allows one to apply a Fourier

integral and obtain a general solution when the primary current is an arbi-

trary function of time. Suppose that the current ix and electromagnetic field

vary with time as

ix¼ i0 sinωt

Ex z, tð Þ¼E0x zð Þcos ωt�ϕð Þ, By z, tð Þ¼B0y zð Þcos ωt�ψð Þ (4.2)

As shown in Chapter 2, the last expressions can also be presented as

Ex z, tð Þ¼ReE∗
0x exp �iωtð Þ, By z, tð Þ¼ReB∗

0y exp �iωtð Þ (4.3)

through the complex amplitudes

E∗
0x ¼E0x exp iϕð Þ, B∗

0y¼B0y exp iψð Þ (4.4)

containing information about the amplitude and phase of the field. As was

demonstrated earlier, the form Eq. (4.3) greatly simplifies a solution of

Eq. (4.1). Substituting Eq. (4.3) into Eq. (4.1), we obtain equations for

the complex amplitudes:

Re
@2E∗

0x

@z2
+ iγμ0ωE

∗
0x +ω2εμ0E

∗
0x

� �
¼ 0
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Re
@2B∗

0y

@z2
+ iγμ0ωB

∗
0y +ω2εμ0B

∗
0y

( )
¼ 0

These equations are satisfied if the complex amplitudes are solutions of

the one-dimensional Helmholtz equation:

@2E∗
0x

@z2
+ k2E∗

ox¼ 0 (4.5)

@2B∗
0y

@z2
+ k2B∗

0y¼ 0 (4.6)

where k2¼ iγμ0ω+ω2εμ0 is the square of the wavenumber k. The solutions

of Eqs. (4.5), (4.6) are well known:

E∗
0x¼C1 exp ikzð Þ+C2 exp �ikzð Þ

B∗
0y¼D1 exp ikzð Þ+D2 exp �ikzð Þ (4.7)
where C and D are constants. The wavenumber is a complex value

k¼ a+ ib (4.8)

and, correspondingly, in place of Eq. (4.7) we have

E∗
ox¼C1 exp �bzð Þ exp iazð Þ+C2 exp bzð Þ exp �iazð Þ

B∗
0y¼D1 exp �bzð Þ exp iazð Þ+D2 exp bzð Þ exp �iazð Þ (4.9)
In addition, it is assumed that a>0 and b>0. A plane wave has to decay

with the distance, because its amplitude is attenuated by conducting

medium. The second terms in Eq. (4.9) do not satisfy this requirement

and have to be discarded. This gives

E∗
0x¼C1 exp �bzð Þ exp iazð Þ, B∗

0y¼D1 exp �bzð Þ exp iazð Þ (4.10)

Next, we find relationship between constants C1 and D1. We can sub-

stitute Eq. (4.3) into the first of Maxwell’s equations

curl E¼�@B

@t
Taking into account independence of the field from coordinates x and y,

we obtain:

@E∗
0x

@z
¼ iωB∗

0y
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This gives

C1 ¼ω

k
D1 (4.11)

Since k is a complex number, we conclude that there is a phase shift

between the electric and magnetic fields, which depends on conductivity,

dielectric constant, and frequency. In particular, in a nonconducting

medium the phase shift is zero. In contrast, when conduction currents

are dominant, the phase shift is equal to �π=4. Applying Biot-Savart’s

law near the source, as in the case of a nonconducting medium, it is easy

to express the real constant D1 in terms of the current source ix. As long as

the electric and magnetic fields satisfy all conditions of the theorem of

uniqueness, the expressions in Eq. (4.10) are the solution of the boundary

value problem.
4.1.2 The Plane Wave as a Function of Time and Distance
To analyze the behavior of the plane wave consider the function By(z, t)

By¼D1 exp �bzð Þ cos ω t� a

ω
z

� �h i
(4.12)

At each observation point the magnetic field is a sinusoidal function of

time, but the spatial dependence on the distance z is described by the prod-

uct of sinusoidal and exponential functions. Of course, the electric field has a

similar form. From Eq. (4.12) it follows that the velocity of propagation of

the sinusoidal wave is

v¼ω

a
(4.13)

By definition, during the period T, the phase plane moves a distance

equal to the wavelength λ:

λ¼ νT or λ¼ ν

f

Thus,

λ¼ 2π

a
(4.14)

and the wavelength is inversely proportional to the real part of the

wavenumber. Let us introduce a parameter
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bλ¼ 2π
b

a
(4.15)

which determines the attenuation of the wave within the distance equal to

the wavelength. If this parameter is large, the field strongly decays over the

distance of one wavelength, and the sinusoidal character is hardly observable.

For instance, when a¼b the field decays by a factor of exp �2πð Þ over every
following wavelength. It would require a great deal of imagination to see a

propagation of such wave.

bλ> 1 (4.16)

If we observe diffusion rather than propagation (Fig. 4.1A, solid line).

Correspondingly, in place of Eq. (4.1) we have the following diffusion

equations:

@2Ex

@z2
� γμ0

@Ex

@t
¼ 0,

@2By

@z2
� γμ0

@By

@t
¼ 0
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Fig. 4.1 (A) Sinusoidal wave, bλ> 1 (solid line) and bλ≪1 (dotted line); (B) magnetic
dipole and vector potential in spherical coordinates; (C) frequency responses of the field
amplitudes bR

∗ and eϕ
∗; (D) bθ

∗ curve index is the parameter X ¼ R=R0.
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which describe the quasi-stationary fields. In contrast, when the product is

small

bλ≪ 1 (4.17)

propagation becomes visible, and we can observe the sinusoidal character of

the field. It propagates over several wavelengths before attenuation becomes

noticeable (Fig. 4.1A, dotted line). This consideration allows us to qualita-

tively distinguish three possible scenarios where the field exhibits either

features of propagation, diffusion, or both. Regardless of how small the fre-

quency ω is, the field reaches any observation point by propagation as a

wave. Indeed, a sinusoidal source current can always be presented as a system

of pulses following one after another. Due to conversion of electromagnetic

energy into heat in a conducting medium, there is always attenuation, which

becomes stronger with an increase of a distance from the primary source.

Now we can study the dependence of attenuation, velocity, and wave-

length of a plane wave in a uniform medium on the frequency and electric

parameters of the medium. Let us determine the real and imaginary parts of

the wavenumber:

k¼ a+ ib¼ iγμ0ω+ω2εμ0
� �1=2

(4.18)

As follows from Eq. (4.12), the imaginary part of k defines the decrease of

the field amplitude, while the real part affects the phase. Taking the square of

both sides of Eq. (4.18), we obtain the system of equations with respect to a

and b:

ω2εμ0¼ a2� b2 and γμ0ω¼ 2ab (4.19)

After solving a system (4.19) we get:

a¼ k0
1 + β�2
� �1=2

+ 1

2

" #1=2

, b¼ k0
1 + β�2
� �1=2�1

2

" #1=2

(4.20)

Here k0¼ω εμ0ð Þ1=2 and β¼ωε=γ is the ratio of the real and

imaginary parts of the wavenumber.
4.1.3 The High and Low Frequency Limits
Suppose that parameter β is large; that is, displacement currents prevail.

Expanding the right side of Eq. (4.20) in a series, we obtain expressions

for the real and imaginary parts of the wavenumber:
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a� aε 1+
1

8
β�2

� 	
and b� bε 1�1

8
β�2

� 	
(4.21)

where

aε¼ω εμ0ð Þ1=2, bε ¼ γ

2

μ0
ε

� �1=2

: (4.22)

Therefore, at the high frequency limit, β� 1, the real part of the

wavenumber is practically independent of conductivity and is directly

proportional to the frequency.

As follows from Eq. (4.13), in this frequency range the velocity of

propagation is defined mainly by the dielectric constant that is, almost

independent of frequency and conductivity. It is nearly the same as in a non-

conducting medium:

ν¼ 1

εμ0ð Þ1=2
¼ c

εrð Þ1=2
, if β� 1 (4.23)

where c¼ 3�108 m=s. The imaginary part of the wavenumber b, charac-

terizing decrease of the field with distance, is governed by the term bε, which

is directly proportional to conductivity and practically independent of the

frequency. As follows from Eq. (4.22),

bελ� π

β
≪ 1

Correspondingly, with an increase of the frequency the effect of the field

decay over one wavelength decreases, and the wave phenomena becomes

noticeable. At the same time, the field does not propagate far away from

the source because of attenuation. The ratio of aε and bε is

bε

aε
¼ 1

2β
< 1 (4.24)

As is seen from Eq. (4.21), even at β being close to unity, the real and

imaginary parts of the wavenumber k differ only slightly from the limiting

values aε and bε. Thus, at the high frequency limit sinusoidal waves decay

almost at the same rate, and have practically equal velocity εμ0ð Þ�1=2
, which

slightly increases with the frequency.

In contrast, when the conduction current prevails and β< 1, Eq. (4.20)

gives
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a� aγ 1+
β

2

� 	
and b¼ bγ 1�β

2

� 	
if β< 1 (4.25)

Here

aγ ¼ bγ ¼ γμ0ω

2

� �1=2

¼ 1

δ
(4.26)

The parameter δ is called the skin depth and is expressed as:

δ¼ 2

γμ0ω

� 	
1=2 (4.27)

Thus, within the range of β< 1 the attenuation is described by

Eq. (4.26), and becomes smaller with a decrease of conductivity and fre-

quency. As follows from Eq. (4.12) the skin depth is equal to the distance

where the magnitude of the sinusoidal plane wave decreases by a factor

e� 2:718. It should be noted that under real conditions, when the field is

generated by a finite size source and depends on coordinates y and z, the

field decay is even stronger. The velocity of propagation is given by

ν¼ω

a
¼ 2ωρ

μ0

� 	1=2

or ν¼ 10ρfð Þ1=2 km=s (4.28)

and it becomes smaller with a decrease of the frequency and resistivity. Also,

the latter can be presented as

ν¼ 2βð Þ1=2 c

εrð Þ1=2

The wavelength is determined from Eq. (4.28):

λ¼ 2πδ or λ¼ 10ρTð Þ1=2 km (4.29)

and increases as the frequency decreases. As follows from Eqs. (4.26),

(4.29), if

bγλ¼ 2π

the decay over a distance of one wavelength is extremely strong. Within this

frequency range the wave phenomena is practically invisible. Functions a(β)
and b(β), normalized by their limiting values, as well as the product bλ, are
shown in Fig. 4.2.
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In the analysis we assumed that conductivity γ and dielectric permittivity

ε are independent of frequency. In fact, some rocks exhibit dispersive behav-

ior, thus parameters γ and ε do depend on the frequency. The dispersive

behavior of the formation is utilized in the dielectric logging, where mul-

tifrequency measurements in combination with an advanced petrophysical

interpretation permit a unique information on rock properties and fluid dis-

tribution. Also note that regardless of how low the frequency is, there is

always propagation of waves through a conducting medium. Otherwise,

the field would instantly appear at any point of a medium regardless of

the distance between the source and observation point. The influence of

conductivity is expressed in two ways. First, the field decays with distance

from the source due to attenuation of the field by conducting media. Sec-

ond, there is, in general, a frequency dispersion of the velocity caused by the

dispersive conductivity.

4.2 FIELD OF THE MAGNETIC DIPOLE IN A UNIFORM
MEDIUM (FREQUENCY DOMAIN)
4.2.1 Solution of Helmholtz Equation

Next we study the frequency responses of the magnetic and electric fields

caused by themagnetic dipole (a small current loop) in a uniform conducting

medium. The dipole moment is

M¼ReM0 exp �iωtð Þiz (4.30)
Here M0¼ I0nS is the magnitude of the moment, I0 is the amplitude of

the sinusoidal current, n is the number of turns in the loop, and S is the area

enclosed by a single turn of the loop. The dipole moment M is directed

along the z-axis (Fig. 4.1C) and iz is the corresponding unit vector. Before

we formulate the boundary value problem, it is useful to recall the behavior
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of the quasi-stationary electric field of the magnetic dipole in a non-

conducting medium (Chapter 3). In the spherical system of coordinates

(Fig. 4.1C) this field has only one component Eϕ. For M ¼M0 cosωt from
Eq. (3.40) we obtain:

Eϕ tð Þ¼ μ0ωM0 sinωt

4πR2
cos θ or E∗

ϕ ωð Þ¼ iωμ0M0

4πR2
cos θ (4.31)

Here Eϕ
∗ is the complex amplitude of the electric field caused by the

primary time-variable magnetic dipole. Inasmuch as the electric field has

only one component confined to horizontal planes, arising conduction

and displacement currents also have only an azimuthal component jϕ
∗.

An inductive electric field can be presented as

E*¼ curlA* or E*¼r�A* (4.32)

where A∗ is the complex amplitude of the vector potential of the magnetic

type. As was demonstrated in Chapter 2, the function A∗ satisfies the

Helmholtz equation and fully describes electromagnetic field components

E∗ and B∗.
We assume that the vector potential has a single z-component, which in

the spherical coordinates depends on the coordinate R:

A*¼A∗
z k,Rð Þiz (4.33)

Then, Helmholtz’s equation is simplified to:

1

R2

d

dR
R2 dA

∗
z

dR

� 	
+ k2A∗

z ¼ 0 (4.34)

Introducing a new function

W ¼A∗
zR

and performing differentiation, we obtain:

dA∗
z

dR
¼�R�2W +R�1 dW

dR
and R2 dA

∗
z

dR
¼�W +R

dW

dR

Whence

d

dR
R2 dA

∗
z

dR

� 	
¼R

d2W

dR2

Therefore, Eq. (4.34) becomes
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d2W

dR2
+ k2W ¼ 0

whose solutions are exponential functions exp �ikRð Þ. Thus, the expression
for the z-component of the vector potential is

A∗
z ¼C

exp ikRð Þ
R

+D
exp �ikRð Þ

R
(4.35)

Inasmuch as

�ikR¼�i a+ ibð ÞR¼�iaR+ bR

an increase of R leads to an unlimited increase of the second term of

Eq. (4.35), To meet conditions at infinity, we have to discard this term

and thus reduce Eq. (4.35) to

A∗
z k,Rð Þ¼C

exp ikRð Þ
R

(4.36)

To satisfy the condition near the source, we have to determine the

unknown C. Since the electric field has only the ϕ-component,

Eq. (4.32) gives

E∗
ϕ ¼

1

R

@

@R
RA∗

θ

� ��@A∗
R

@θ


 �
(4.37)

As is seen from Fig. 4.1C,

A∗
R ¼A∗

z cos θ and A∗
θ ¼�A∗

z sin θ

Substituting these expressions into Eq. (4.37) and performing simple

algebraic operations, we obtain

E∗
ϕ¼

C

R2
1� ikRð Þexp ikRð Þ sin θ (4.38)

Near the dipole, the electric field is approaching the value

E∗
ϕ ¼

C

R2
sin θ (4.39)

which tends to that caused by the dipole source only (Eq. 4.31). In essence,

the boundary condition near the source allows us to determine unknown

constant C. Comparing Eqs. (4.31) and (4.39), we obtain
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C¼ iωμ0M0

4π
(4.40)

Finally, the solution for the complex amplitude of the vector potential is

A*¼ iωμ0M0

4πR
exp ikRð Þiz (4.41)

From Eqs. (4.38), (4.40) for the complex amplitude of the electric field

we have:

E∗
ϕ ¼

iωμ0M0

4πR2
1� ikRð Þexp ikRð Þ sin θ (4.42)

To determine the complex amplitudes of the magnetic field we use the

equation derived in Chapter 2 (Eq. 2.104):

iωB*¼ k2A*+ graddivA*: (4.43)

Inasmuch as the vector potential is directed along the z-axis there

are only BR and Bθ nonzero components of magnetic field. First, let us

calculate divA∗. Taking into account that divergence is independent of

the system of coordinates, it is convenient to perform derivation in Cartesian

coordinates:

divA*¼ dA∗
z

dz

Carrying out differentiation, we obtain

divA*¼� iωμ0M0

4πR2
exp ikRð Þ 1� ikRð Þcos θ (4.44)

since

dR

dz
¼ cos θ

Expressing grad in spherical coordinates, we have

iωB∗
R ¼ k2A∗

R +
@

@R
divA* and iωB∗

θ ¼ k2A∗
θ +

1

R

@

@θ
divA*

Differentiating and bearing in mind that

A∗
R ¼A∗

z cos θ and A∗
θ ¼�A∗

z sin θ

we obtain
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B∗
R ¼ 2μ0M0

4πR3
exp ikRð Þ 1� ikRð Þ cos θ

B∗
θ ¼

μ0M0

4πR3
exp 1� ikR�k2R2

� �
sin θ

(4.45)

Thus, Eqs. (4.42), (4.45) describe the complex amplitudes of the field of

the magnetic dipole at any point in a uniform medium. The field is com-

prised of the primary dipole source, as well as the field caused by conduction

and displacement currents arising in a medium. Correspondingly, it depends

on several factors, such as the dipole moment, the frequency, the product

kR, and the coordinates of the observation point. It is convenient to normal-

ize the field by the primary field of the dipole in free space. Then, we have:

e∗ϕ¼
E∗
ϕ

E∗
ϕ0

¼ 1� ikRð Þexp ikRð Þ, b∗R ¼ B∗
R

B∗
R0

¼ 1� ikRð Þexp ikRð Þ

b∗θ ¼
B∗
θ

B∗
θ0

¼ 1� ikR�k2R2
� �

exp ikRð Þ
(4.46)

These expressions depend only on the parameter kR, which simplifies

the field analysis. The primary field components Eϕ0
∗, BR0

∗, and Bθ0
∗ are

described by simple formulas given earlier. For the amplitude and phase,

as well as the quadrature and in-phase components we have:

e∗ϕ
��� ���¼ exp �bRð Þ 1+ bRð Þ2 + a2R2

 �1=2
, ψϕ¼ aR� tan�1 aR

1+ bR
(4.47)

Ineϕ ¼ InbR ¼ e∗ϕ
��� ���cosψϕ and Qeϕ¼QbR ¼ e∗ϕ

��� ��� sin ψϕ (4.48)

Similarly, for the azimuthal component of the magnetic field we obtain

b∗θ
�� ��¼ exp �bRð Þ 1+ bR+ b2R2� a2R2

� �2
+ aR+2abR2
� �2h i1=2

ψθ ¼ aR� aR+2abR2

1 + bR+ b2R2� a2R2

(4.49)

For the in-phase and quadrature components we have:

Inbθ ¼ b∗θ
�� ��cosψθ, Inbθ ¼ b∗θ

�� �� sin ψθ (4.50)

In Eqs. (4.47), (4.49) a and b are the real and imaginary parts of the com-

plex number k.
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4.2.2 Dependence of the Field on the Frequency and
Observation Point

To study the frequency responses of the field amplitudes it is convenient

to introduce two parameters, namely a characteristic length R0 and char-

acteristic frequency ω0. The parameter R0 is defined from the relation

bεR0¼ 1 or

R0¼ 2

γ μ0=εð Þ1=2
¼ ρ εrð Þ1=2

188:5
(4.51)

The characteristic frequency is the frequency at which the displacement

and conduction currents are equal

ω0ε

γ
¼ 1 (4.52)

The complex amplitudes bR
∗,bθ

∗, and eϕ
∗ can be treated as functions of

the dimensionless parameters β¼ω=ω0 and X ¼R=R0, where R is the dis-

tance from the dipole to the observation point. A set of typical curves illus-

trating the dependence of the functions jbR∗j and jbθ∗j on the parameter β is
given in Fig. 4.1C and D, correspondingly. With an increase of frequency

the electromagnetic field first decreases; near the characteristic frequency the

amplitude of the field passes through a minimum and then grows. With a

decrease of the characteristic length R0¼ ρ εrð Þ1=2
188:5

, the minimum becomes

smaller and shifts toward higher frequencies. If the frequencies are lower

than ω0, the field is practically independent of dielectric permittivity

(Eq. 4.25) and becomes quasi-stationary. For frequencies higher than the

characteristic frequency, the field is greater and might be orders of magni-

tude larger than the primary field. In this part of the spectrum the field

depends on both conductivity and dielectric permittivity, but the imaginary

part of the wavenumber b is independent of the frequency. Measuring the

field magnitude and phase we may obtain information about both conduc-

tivity and dielectric permittivity. Consider a field behavior as a function of

the separation between dipole and observation point R. As follows from

Eq. (4.46), and, taking into account that

k¼ a+ ib¼ kj jexp iξð Þ and BR ¼Re B∗
R exp �iωtð Þ �

we obtain



147Propagation and Diffusion in a Conducting Uniform Medium
BR ¼ 2μ0M0

4π
exp �bRð Þ cos ωt� aRð Þ

R3
� kj j
R2

sin ωt� aR� ξð Þ

 �

cos θ
or

BR ¼ 2μ0M0

4πR3
exp �bRð Þ cos ωt� aRð Þ� kj jR sin ωt� aR�ξð Þ½ �cos θ
Also,

Bθ ¼ μ0M0

4πR3
exp �bRð Þ cos ωt� aRð Þ� kj jR sin ωt� aR�ξð Þ½

� k2
�� ��R2 cos ωt� aR�2ξð Þ� sin θ (4.53)
and

Eϕ ¼ μ0ωM0

4π
exp �bRð Þ sin ωt� aRð Þ

R2
� kj j

R
cos ωt� aR� ξð Þ


 �
sin θ
or

Eϕ¼ μ0M0

4πR2
ω exp �bRð Þ sin ωt� aRð Þ� kj jRcos ωt� aR�ξð Þ½ � sin θ

As we see, the field is presented as a combination of sinusoidal waves

decaying with the distance from the dipole. There are two factors which

result in a decrease of the field: one is attenuation caused by conversion

of electromagnetic energy into heat; the term exp �bRð Þ appears due to this
factor. The second factor is geometry of the dipole source: the wave moves

in all directions and the energy density decreases with the distance even in a

nonconducting medium. As follows from Eq. (4.53) at relatively small sep-

arations, when kj jR≪ 1, the magnetic field almost synchronously varies

with the dipole current and rapidly decreases with distance as 1/R3. This

range, kj jR≪ 1, is called the near zone. For instance, if conduction currents

prevail (ω<ω0), we have:

k iωμ0γð Þ1=2 ¼ 2ið Þ1=2
δ

¼ 1+ i

δ

δ¼ 2

γμ0ω

� 	1=2

or δ¼ 103

2π

10ρ

f

� 	1=2

m

(4.54)
Correspondingly, the near zone is defined by the condition

R=λ≪ 1 (4.55)
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where λ¼ 2πδ. For illustration, consider two examples. First, suppose that

ρ¼ 10ohmm and f ¼ 10kHz. Then δ¼ 16m and this distance defines,

approximately, the boundary of the near zone. If the frequency is increased

to f ¼ 106Hz, the first term of Eq. (4.53) describes the field at distances

which are smaller than 1 m. In general, when terms aR and ξ are disregarded,
the quasi-stationary field is observed; that is, both the current and magnetic

field change synchronously. In the beginning of the intermediate zone the field

decays as in the near zone and then starts to decrease slower. The phase shift

between the field and the dipole current also changes with distance

(Eq. 4.53). This change is caused by superposition of waves, which differ-

ently depend on distance R (Eq. 4.53). Finally, when R> λ we observe the
wave zone where

BR ¼�2μ0M0

4π
exp �bRð Þ kj j

R2
sin ωt� aR�ξð Þcos θ

Bθ ¼�μ0M0

4π
exp �bRð Þ k2j j

R
cos ωt� aR�2ξð Þ sin θ

Eϕ¼�μ0ωM0

4π
exp �bRð Þ kj j

R
cos ωt� aR� ξð Þ sin θ

(4.56)

In the wave zone the field decays relatively slower and Bθ >BR, pro-

vided that the observation point is not placed in the vicinity of the z-axis.

In summary, we may note:

1. Regardless of the frequency, there are always three zones of the different

field behavior.

2. In each zone there is propagation of sinusoidal waves.

3. Their attenuation is caused by the geometric spreading and conversion of

electromagnetic energy into heat.

4. At high frequency, ω>ω0, the electromagnetic wave propagates with

almost the same velocity as in a nonconducting medium and attenuation

is directly proportional to the conductivity and, practically, independent

of frequency. In contrast, at low frequencyω<ω0, the velocity is mainly

defined by conductivity and frequency:

v¼ω

a
¼ 2ω

γμ0

� 	1=2
and the field is governed by the diffusion equation. The latter is equiv-

alent to the assumption that displacement currents are disregarded and

the field instantly appears at all points of a medium regardless of distance

from the source.
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4.3 TRANSIENT FIELD OF THE MAGNETIC DIPOLE
IN A UNIFORM MEDIUM
4.3.1 Expression for the Vector Potential and Field
Components
For better understanding of propagation and diffusion, we also consider a

transient field caused by the magnetic dipole in a uniform medium. Suppose

that the dipole current arises instantaneously, so that its magnetic moment

M0 is described as a step-function of time:

M0¼ 0 t< 0

M0 t� 0

�
(4.57)

To derive the transient field we proceed from the Fourier integrals:

F tð Þ¼ 1

2π

ð∞
�∞

S ωð Þexp �iωtð Þdω and S ωð Þ¼
ð∞

�∞

F tð Þexp iωtð Þdt (4.58)

The first equation shows that the function F(t) can be presented as a sum

of an infinite number of sinusoids (harmonics), and their amplitudes and

phases are characterized by the spectrum (complex amplitude) S(ω), given
by the second equation. In accordance with Eq. (4.58) the spectrum of the

step-function is

S ωð Þ¼M0

ð∞
0

exp iωtð Þdt

because the current is zero when t< 0. To calculate this integral, we start

from a slightly different convergent integral:

ð∞
0

exp iω� pð Þt½ �dt

where p is a small positive number and then find the limit when p! 0. Per-

forming integration, we obtain the spectrum of the step function:

S ωð Þ¼�M0

iω
(4.59)

Thus, the step-function is a sum of sinusoids of the same phase, but their

amplitudes decrease with an increase of frequency. In other words, the
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maximum energy of the dipole is concentrated at the low frequencies. The

field generated at these frequencies decays relatively slowly with the

distance from the source and, correspondingly, has greater depth of pen-

etration. As we already know, the vertical component of the complex

amplitude Az
∗ is

A∗
z¼

iωμ0M0

4π

exp ikRð Þ
R

If the moment is described as �M0=iω, then for the vector potential at

each frequency we have:

A∗
z ωð Þ¼�μ0M0

4π

exp ikRð Þ
R

Applying Fourier’s integral to the last expression, we obtain the formula

for the vector potential in the time domain

Az tð Þ¼�μ0M0

8π2R

ð∞
�∞

exp i kR�ωtð Þdω (4.60)

Here k¼ iγωμ0 + εμ0ω
2ð Þ1=2, and Az(t) is the vector potential of

magnetic type. Integration in Eq. (4.60), using a table of integrals, gives

the following expression for Az(t):

Az¼�
0 t< τ0

�μ0M0

4πR
exp �qτ0ð Þδ t� τ0ð Þ+ qτ0 exp �qtð Þ I1 q t2� τ20

� � �
t2� τ20
� �1=2

( )
t� τ0

8>><
>>:

(4.61)

Here

q¼ 1

2

γ

ε
, τ0 ¼ εμ0ð Þ1=2R (4.62)

I1 q t2� τ20
� �1=2� ih

is a modified Bessel’s function of the first order, and

δ t� τ0ð Þ is the Dirac delta function defined as

ðb2
b1

f x0ð Þδ nð Þ x0 �xð Þdx0 ¼ �1ð Þnf nð Þ xð Þ if b1� x� b2

0 if x< b1;x> b2

(
(4.63)
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As follows from Eq. (4.61), the field at some point of a medium can be

observed only after the instant

τ0¼ εμ0ð Þ1=2R (4.64)

With increase of the distance R, the signal appears at later times. Thus,

the wave front propagates with velocity defined by high frequency

harmonics:

v¼ 1

εμ0ð Þ1=2
¼ c

εrð Þ1=2
(4.65)

Using Eq. (4.61), it is easy to derive expressions for the components of

the electromagnetic field. By analogy with the frequency domain, we have:

Eϕ ¼�@Az

@R
sin θ

and, omitting some simple algebraic operations, we obtain

Eϕ¼ 0 if t< τ0

Eϕ¼E
1ð Þ
ϕ +E

2ð Þ
ϕ if t� τ0

(4.66)

where

E
1ð Þ
ϕ ¼�μ0M0

4πR2
1 + qτ0 +

q2τ20
2

� 	
δ t� τ0ð Þ+ τ0δ

0 t� τ0ð Þ

 �

exp �qτ0ð Þ sin θ if t� τ0

E
2ð Þ
ϕ ¼�μ0M0

4πR2
q2τ30 exp �qtð Þ

I2 q t2� τ20
� �1=2h i
t2� τ20

sin θ if t> τ0

(4.67)

because

I2 xð Þ¼ I0 xð Þ�2I1 xð Þ
x

To determine the magnetic field we use the first Maxwell equation

curl E¼�@B

@t

which gives
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_BR ¼ 1

R sin θ

@

@θ
Eϕ sin θ
� �

and _Bθ ¼ 1

R

@

@R
REϕ

� �
The expression for the _Bθ turns out to be fairly complicated, so in the

subsequent analysis we consider _BR and Eϕ components only. For the time

derivative of the radial component of the magnetic field we have:

_BR ¼ _B
1ð Þ
R + _B

2ð Þ
R

where each term is equal to zero if t< τ0. Taking into account (4.67), we

have:

_B
1ð Þ
R ¼ μ0M0

2πR3
1 + qτ0 +

q2τ20
2

� 	
δ t� τ0ð Þ+ τ0δ

0 t� τ0ð Þ

 �

exp �qτ0ð Þ�cos θ

_B
2ð Þ
R ¼ μ0M0

2πR3
q2τ30 exp �qtð Þ

I2 q t2� τ20
� �1=2h i
t2� τ20

cos θ

(4.68)

Integration of the last expressions with respect to time gives the magnetic

fields:

BR ¼ 0 and Bθ ¼ 0 if t< τ0 (4.69)

B
1ð Þ
R ¼ μ0M0

2πR3
1 + qτ0ð Þh t� τ0ð Þ+ τ0δ t� τ0ð Þ½ �exp �qτ0ð Þ cos θ (4.70)

B
2ð Þ
R ¼ μ0M0

2πR3
q2τ30

ðt
τ0

exp �qxð Þ
I2 q x2� τ20

� �1=2h i
x2� τ20

dx cos θ, if t� τ0 (4.71)

where I2 is the modified Bessel functions of the second order, while h t� τ0ð Þ
is the step function

h t� τ0ð Þ¼ 0 t< τ0
1 t> τ0

�

As follows from Eqs. (4.69)–(4.71), the electromagnetic field

depends on:

1. Time t, distance from the dipole R and angle θ.
2. The velocity of the high frequency propagating waves is defined as

v¼ 1

εμ0ð Þ1=2
¼ R

τ0
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3. The parameter q is equal to γ/2ε, which has dimension of t�1 and

characterizes the decay of high frequency waves in a medium.

Similar to the frequency domain, we present the magnetic fields in units of

field of the static dipole and functions bR, bθ:

BR ¼ 2μ0M0

4πR3
bR cos θ, Bθ ¼ μ0M0

4πR3
bθ sin θ

4.4 THE FIELD IN A NONCONDUCTING MEDIUM

4.4.1 Expressions for the Field

First, we look at the field in a nonconducting medium. In accordance with

Eq. (4.70) when q¼ 0 and t> τ0 we have:

b
1ð Þ
R ¼ h t� τ0ð Þ+ τ0δ t� τ0ð Þ
e
1ð Þ
ϕ ¼�δ t� τ0ð Þ� τ0δ

0 t� τ0ð Þ
(4.72)

Also from Eq. (4.67)

Eϕ¼ μ0M0

4πR2
eϕ sin θ (4.73)

At the observation point R it is natural to distinguish three successive

stages. If t< τ0 the field is absent. Then at the instant t¼ τ0 the wave front
arrives and after it, t> τ0, the magnetic field instantly becomes a constant

while the electric field vanishes. The sensor measures the mean value of

the electric field within some small time interval:

E τ0ð Þ¼ 1

Δt

ðτ0 +Δt=2

τ0�Δt=2

E tð Þdt (4.74)

Taking into account (4.72)–(4.73), we obtain

E τ0ð Þ¼�μ0M0

4πR2
sin θ (4.75)

4.4.2 Duhamel’s Integral
Prior to this we have considered fields produced by a step-function source.

To handle sources of an arbitrary shape
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M tð Þ¼ 0 t< 0

M tð Þ t� 0

�

it is convenient to use Duhamel’s integral. The idea of the method is as fol-

lows. The input signal M(t) is represented as the sum of standard signals for

which the system responseH(t), called the response function is known. Nor-

mally, the Heaviside step-function h(t) serves as the standard signal. This is

illustrated in Fig. 4.3, where the dipole moment M(t) is represented as a

sum of subsequent elementary step-functions h t� τð Þ with the amplitudes

M0(τ)dτ. At the limit of Δτ! 0 the sum is presented as the integral

M tð Þ¼M 0ð Þ+
ðt
0

dM

dτ
h t� τð Þdτ

The output response of the system is expressed as the integral of the prod-

uct of the delayed H t� τð Þ and derivative of the input signal M0(t). Thus,
knowing the response of the system to the impact of the Heaviside Function,

it is possible to predict the system response to an arbitrary inputM(t). In the

case of magnetic field, assuming that the response function H tð Þ¼AB is

known, the magnetic field B(t), corresponding to the M(t) pulse excitation

is calculated as

B tð Þ¼M 0ð ÞAB tð Þ+
ðt
0

dM τð Þ
dτ

AB t� τð Þdτ (4.76)
t1 t2 t3

Δt

ΔM ΔM1

M(0)

M(t)

t0

ΔM2

ΔM3

ΔM4

Fig. 4.3 Representation of an arbitrary function as a sum of step-functions.
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For instance, in accordance with Eq. (4.72),

b
1ð Þ
R ¼

ðt
0

dM

dτ
h t� τ0� τð Þ+ τ0δ t� τ0� τð Þ½ �dτ

Taking into account that the step-function is equal to unity for positive

values of argument (0< τ< t� τ0), we have

ðt
0

dM

dτ
h t� τ0� τð Þdτ¼

ðt�τ0

0

M 0 t� τ0� τð Þdτ¼M t� τ0ð Þ

Also, applying Eq. (4.63), we obtain

b
1ð Þ
R tð Þ¼M t� τ0ð Þ+ τ0M

0 t� τ0ð Þ (4.77)

By analogy,

e
1ð Þ
ϕ tð Þ¼�M 0 t� τ0ð Þ� τ0M

00 t� τ0ð Þ (4.78)

Thus, the time domain electromagnetic field in a nonconducting

medium is expressed in terms of the moment M(t) and its first and second

derivatives.

For illustration, consider two examples.
Example One
Suppose that

M tð Þ¼
0 t< 0

kt 0� t�T , k¼ 1

T
1 t>T

8<
: (4.79)

Applying Eq. (4.77), we have for the radial component of the field

(Fig. 4.4)

b
1ð Þ
R tð Þ¼

0 t< τ0
kt τ0� t� τ0 +T

1 t> τ0 +T

8<
:

The azimuthal component behaves similarly. When the moment is a lin-

ear function of time, the magnetic field changes in a similar way, except at



1

0 T

M(t)

t

1

0

kt0

T t0+ T

bR(t)

t
t0

(1)

Fig. 4.4 Magnetic field bR
(1)(t) in the case of linear magnetic moment.
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the instants t¼ τ0 and t¼ τ0 +T , where it changes abruptly. At the same

time, the electric field is given by

e
1ð Þ
ϕ ¼

0 t< τ0
1=T τ0 � t� τ0 +T

0 t> τ0 +T

8<
:

which is zero except over the interval T where it is a constant.
Example Two
Consider the case when the moment varies as

M tð Þ¼
0 t< 0

sinωt 0<T <C

0 t>C

8<
:

Then, applying again Eqs. (4.77), (4.78), we present the field as a sum of

two sinusoidal functions, having different amplitudes and 90 degrees phase

shift. The radial component is

bR tð Þ¼
0 t< τ0
sin ω t� τ0ð Þð Þ+ωτ0 cos ω t� τ0ð Þð Þ τ0� t� τ0 +C

0 t> τ0 +C

8<
:

Of course, if T ≫ τ0 and t≫ τ0, the field becomes a quasi-stationary and

changes almost synchronously with the dipole moment.
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4.5 THE TRANSIENT FIELD IN A CONDUCTING MEDIUM

Next we return to study the dependence of the electric field on time in
the case of a conducting medium. The expressions for the field are given by

Eqs. (4.67), (4.73). As in the case of a nonconducting medium, the wave

front travels with velocity ν¼ c= εrð Þ1=2 and until the moment t¼ τ0 the

magnitude of the field is zero. The intensity eϕ
(1) of the signal at t¼ τ0 essen-

tially depends on the parameter qτ0:

qτ0¼ 1

2
γ

μ0
ε

� �1=2

R¼ b∞R¼ R

R0

¼m (4.80)

whereR0¼ 1=b∞ is the characteristic length, introduced in the previous sec-

tion, and b∞ coincides with the high frequency limit for the imaginary part

of the wavenumber k. Taking into account (4.51), we have:

m¼ 188:5

ρ εrð Þ1=2
R (4.81)

For the most practical cases of borehole geophysics this quantity is a very

large number, and one can assume that the amplitude of the first arrival is

practically zero due to the very small values of the exponential term. It is

convenient to represent the function Eϕ
(2) as

E
2ð Þ
ϕ ¼� Mρ

2πR4
e
2ð Þ
ϕ sin θ (4.82)

Here

e
2ð Þ
ϕ ¼m3 exp �mnð Þ

I2 m n2�1ð Þ1=2
h i

n2�1
(4.83)

and n¼ t

τ0
� 1.

First, consider the field at the moment when it arrives, n¼1. Applying

the expansion of the function I2(z) in series and using only the leading term

I2 zð Þ� z2

8

we obtain
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e
2ð Þ
ϕ � 1

8
m5 exp �mð Þ (4.84)

Function eϕ
(2) has a maximumwhenm¼5. If the distance from the dipole

R does not exceed 5R0, the field increases with conductivity. It also increases

with distance if observed at R< 5R0. Large values of m correspond to the

extremely small fields of almost zero value. Thus, in most cases the field

is equal to zero at the first arrival, t¼ τ0. Now, suppose that the

argument of the function I2 in Eq. (4.83) is large:

m n2�1
� �

≫ 1

Replacing I2(z) by its asymptotic expression

I2 zð Þ� exp zð Þ
2πzð Þ1=2

at z≫ 1

we obtain

eϕ� e
2ð Þ
ϕ � 1

2πð Þ1=2
m5=2

n2�1ð Þ5=4
expm n2�1

� �1=2�n
h i

(4.85)

This equation is applicable when the field is observed at times

t≫ τ0 n≫ 1ð Þ.
Then we can write

eϕ � 1

2πð Þ1=2
m

n

� �5=2

exp � m

2n

� �
(4.86)

which describes an independent on dielectric permittivity the quasi-

stationary field. Curves of the function eϕ(n) are shown in Fig. 4.5. The

index of curves is parameter m¼R=R0. If the distance from the dipole does

not exceed 5R0 the electric field decreases monotonically with time. How-

ever, with an increase of the parameter m (an increase of conductivity or dis-

tance, or a decrease of dielectric permittivity), the maximum of eϕ shifts to a

later time. Therefore, observing the field in a conducting medium we can

distinguish the following stages of the transient response:

1. The field is equal to zero until the moment τ0¼R

c
εrð Þ1=2. For example,

if observations are performed at distances from the dipole around 1 m,

the arrival time τ0 is of the order of nanoseconds.
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2. At the instant τ0 the field intensity is a function of the distance from the

dipole and electrical parameters of themedium. After the initial wave front

passes the observation point, the electric field does not disappear instanta-

neously. At the beginning,when the time of observation is close to τ0, both
the conduction and displacement currents generate the magnetic field. In

otherwords, thechangeof theelectric fieldwith timecannotbedisregarded

at the early stage of the transient response when it is only several times

greater than τ0. With an increase of resistivity, the time interval, where

displacement currents play an essential role, becomes wider.

3. In the last stage when the electric field varies with time relatively slowly,

displacement currents can be disregarded. In this final stage, the field

becomes a quasi-stationary and demonstrates features typical for diffu-

sion phenomena. The larger the conductivity is, the earlier the time

moment when transition to a quasi-stationary regime occurs.

Next, consider the electric field as a function of the distance from the dipole.

Using Eq. (4.67), we have

E
2ð Þ
ϕ ¼�M0ρ

2π

qtð Þ3
νtð Þ4FE sin θ

where

FE ¼ x exp �qtð Þ
I2 qt 1�x2ð Þ1=2
h i

1�x2
and x¼R

νt
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Graphs, of the electric field as a function of distance, are shown in

Fig. 4.6. The curve index is the parameter qt. For small values of qt, the max-

imum of the field intensity occurs near the wave front and it decreases

linearly while approaching the dipole. At large values the maximum moves

away from the wave front.

The diffusion equation does not allow us to study the first arrival of

energy or the initial stages of the transient response. In the case of sinusoidal

oscillations, the quasi-stationary approximation is described by a sinusoidal

wave, whose amplitude strongly decays with the distance. An accuracy of

this approximation is defined by the ratio of displacement and conduction

currents. Propagation and diffusion phenomena take place not only in the

case of the step-function excitation. The same phenomena are observed

when the pulse is of an arbitrary shape. Of course, the shape affects behavior

of the field. For example, when the pulse has a rectangular shape of a very

small width comparable to τ0, the field within the pulse is subjected to influ-
ence of both the displacement and conduction currents. In other words, this

field propagates as high-frequency waves. At the same time, outside the

pulse the field is relatively weak because the fields caused by the step-

functions, comprising the pulse, almost cancel each other, and the quasi-

stationary stage is hardly noticeable. Correspondingly, a system of such

alternating step-functions, following one after another, approximately rep-

resents the high-frequency wave, when only propagation is observed. With

an increase of the pulse width the quasi-stationary stage appears inside the

pulse as well as outside because the cancelation effect becomes weaker.
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In developing the theory of induction logging, we focus our attention on

quasistationary fields observed in the borehole in the presence of cylindrical

and horizontal boundaries. However, to gain understanding of peculiarities

of fields in complicated formations, it is useful to study fields in a uniform

medium excited by a vertical magnetic dipole and obtain insight into the

physical principles that form the basis for induction logging.
5.1 EXPRESSIONS FOR THE FIELD

When a magnetic dipole with a sinusoidal current is placed in a uni-
form conducting medium, a change of the primary magnetic field with

time causes a primary vortex electric field, and the latter gives rise to

the induced currents. These currents and their interaction cause an appear-

ance of the secondary magnetic and electric fields. Due to the symmetry,

the interaction does not change a current’s direction, and in the spherical

system of coordinates they have only a ϕ-component. Because the system

is linear, the secondary field is also a sinusoidal function of the same fre-

quency as the primary field. In Chapter 4, we derived equations for the

electromagnetic field of the magnetic dipole in a uniform medium when

both conduction and displacement currents are present. Taking into

account Eqs. (4.42), (4.45), we have for the complex amplitudes of the

quasistationary field:
Basic Principles of Induction Logging © 2017 Elsevier Inc.
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E∗
φ¼

iμ0ωM0

4πR2
1� ikRð Þexp ikRð Þ sin θ

B∗
R ¼ μ0M0

2πR3
1� ikRð Þexp ikRð Þcos θ

B∗
θ ¼

μ0M0

4πR3
1� ikR�k2R2
� �

exp ikRð Þ sin θ

(5.1)

Here the wave number is

k¼ 1+ i

δ
, δ¼ 2

γμ0ω

� �1=2

¼ 103

2π
10ρTð Þ1=2m (5.2)

where T is the period of oscillation and, as before, δ is the skin depth. The

dipole moment varies as

M ¼M0 cosωt (5.3)

and, in accordance with the Biot-Savart law, it generates primary magnetic

fields, BR
(0) and Bθ

(0):

B
0ð Þ
R ¼ μ0M0

2πR3
cos θ cosωt and B

0ð Þ
θ ¼ μ0M0

4πR3
sin θ cosωt (5.4)

This field is confined to meridian planes and synchronously changes with

the dipole current. Earlier we called this field quasistationary. Its variation

with time causes the vortex electric field (Chapter 3) with complex

amplitude:

E
0ð Þ∗
ϕ ¼ iωμ0M0

4πR2
sin θ (5.5)

and for the field Eϕ
(0) we have:

E 0ð Þ
φ ¼Re

iωμ0M0

4πR2
exp �iωtð Þ

� �
¼ωμ0M0

4πR2
sin θ sinωt (5.6)

which is confined to horizontal planes and exists at any point in space

regardless of whether the medium is conductive. The primary electric

and magnetic fields are shifted in-phase with respect to each other by

90 degrees. As in the general case (Chapter 4), it is convenient to express

the complex amplitudes of the field in a conducting medium in terms of

the primary field, that is
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b∗R ¼ 1� ikRð Þexp ikRð Þ
b∗θ ¼ 1� ikR�k2R2

� �
exp ikRð Þ

e∗φ¼ 1� ikRð Þexp ikRð Þ
(5.7)

Inasmuch as the right-hand sides in Eq. (5.7) are complex numbers,

we can say that there is a phase shift between the field and the dipole current.

For instance, in the case of the radial component we have:

BR ¼ μ0M0

2πR3
cos θRe cR + idRð Þexp �iωtð Þ½ �

or

BR ¼ μ0M0

2πR3
cos θ cR cosωt + dR sinωt½ � (5.8)

where

cR + idR ¼ b∗R:

By analogy,

Bθ ¼ μ0M0

4πR3
sin θ cθ cosωt+ dθ sinωt½ � (5.9)

Here

cθ + idθ ¼ b∗θ

In essence, the field is a sinusoidal wave that relatively rapidly decays with

the distance from the dipole. We can also interpret fields as a sum of two

harmonic functions, called the in-phase and quadrature components:

InbR ¼ cR cosωt QbR ¼ dR sinωt

Inbθ ¼ cθ cosωt Qbθ ¼ dθ sinωt
(5.10)

By definition, the real and imaginary parts of the complex amplitude are

the amplitudes of the in-phase and quadrature components, respectively.

The in-phase component changes synchronously with the primary field,

whereas the quadrature component is shifted in-phase by 90 degrees. In gen-

eral, these oscillations have different amplitudes. Similarly, the electric field

and the current density can be represented as the sum of the quadrature and

in-phase components. According to the Biot-Savart law, the quadrature
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component of the secondary magnetic field arises due to currents that are

shifted in-phase by 90 degrees with respect to the current in the dipole,

whereas the in-phase component of the field is the algebraic sum of the pri-

mary field and the in-phase component of the secondary field. The latter is

contributed by induced currents in the medium that are in-phase with the

dipole current. This representation is useful for understanding the physical

principles of induction logging, which is based on measurements of

corresponding components of the field. It is natural to distinguish two spe-

cial cases when either radial or equatorial components exist: θ¼ 0 (bR 6¼ 0

and bθ ¼ 0) and θ¼ π=2 (bR ¼ 0 and bθ 6¼ 0).

5.2 LOW AND HIGH FREQUENCY ASYMPTOTIC

First, consider the low frequency spectrum (or limit) of the field.
Expanding exp(ikR) in the series

exp ikRð Þ¼
X∞
n¼0

ikRð Þn
n!

and substituting this into Eq. (5.7) after some simple algebra, we have:

b∗R ¼ 1+
X∞
n¼2

1�n

n!
2n=2pn exp i

3πn

4

� �
(5.11)

Here

p¼ γμ0ω

2

� 	1=2

R¼R

δ
(5.12)

is the parameter characterizing the distance between the dipole and an obser-

vation point expressed in units of skin depth δ. Sometimes the parameter p is

called the induction number. Taking into account Eq. (5.11), we see that the

series describing the low frequency part of the spectrum contains whole and

fractional powers of ω. As follows from this equation:

Imb∗R ¼ dR � p2�2

3
p3 and Reb∗R ¼ cR � 1�2

3
p3 (5.13)

or

ImB∗
R � μ0M0

2πR3
cos θ

γμ0R
2

2
ω� γμ0R

2ð Þ3=2
3 2ð Þ1=2

ω3=2 � � �
" #

(5.14)
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and

ReB∗
R � μ0M0

2πR3
cos θ 1� γμ0R

2ð Þ3=2
3 2ð Þ1=2

ω3=2 � � �
" #

(5.15)

Thus, within the range of small parameter p, the quadrature and in-phase

components are related to the frequency, the conductivity, and the distance

from the dipole in completely different manners. The first term on the right-

hand side of Eq. (5.15) characterizes the primary field, which is caused only

by the dipole current. The next term describes the in-phase component of

the secondary magnetic field, which arises due to the currents induced in the

conductive medium. At the same time, all the terms describing the quadra-

ture component correspond to the secondary field. Comparison of the last

two equations shows that the in-phase component of the secondary field is

more sensitive to changes in conductivity than the first term of the quadra-

ture component, and in this low frequency limit the in-phase component is

independent of the dipole-receiver distance. In fact, this interesting feature

at p≪ 1 indicates potentially large depth of penetration of the in-phase com-

ponent compared to that of the quadrature component. In a similar manner,

we obtain expressions for the azimuthal component of the field:

Imb∗θ ��p2 +
4

3
p3 and Reb∗θ � 1+

4

3
p3 (5.16)

In accordance with Eq. (5.7) at the high frequency range when p≫ 1,

the in-phase and quadrature components of the field approach zero:

Reb*! 0 or Rebs* ¼�b0 and Imb*! 0

where bs* is the complex amplitude of the secondary magnetic field. At such

frequencies the induced currents are concentrated in the vicinity of the

dipole causing strong skin effect. Correspondingly, the secondary

in-phase component differs from the primary field by sign only.

Since the radial and azimuthal components behave similarly, we may

focus on the radial component:

Imb∗R ¼ exp �pð Þ 1+ pð Þ sin p�p cos p½ �
Reb∗R ¼ exp �pð Þ 1+ pð Þ cos p+ p sin p½ � (5.17)

The graphs, illustrating dependence of both quadrature and in-phase

field components on the parameter p, are presented in Fig. 5.1A and B.With

an increase in the induction number, the quadrature component (Imb∗R)
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Fig. 5.1 (A) Quadrature and (B) in-phase components of the magnetic field.
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increases, reaches maximum, and then tends to zero. By contrast, the

in-phase component decreases and then, like the quadrature component,

approaches zero in an oscillating manner. According to Eq. (5.13), at the

low frequency limit, the amplitude of the quadrature component prevails

over the secondary in-phase component InbR
s , and we have:

QBR ¼ μ0M0

4πR
γμ0ω cos θ sinωt, p≪ 1 (5.18)

Hence in the range of a small parameter, the quadrature component is

directly proportional to the conductivity and the frequency, and inversely

proportional to the distance from the magnetic dipole. As will be shown

later, some of these features of the field also remain valid in a nonuniform

conducting medium. From Eq. (5.17), we also see that at p≪ 1 the

in-phase component of the secondary field InBz
s is much smaller than the

primary field and the quadrature component of the secondary field QBR:

InBs
z≪QBR ≪B

0ð Þ
R (5.19)

Because of this inequality (5.19) low frequency induction measurements

require high-accuracy compensation of the primary field.

5.3 EXPRESSION FOR INDUCED CURRENTS

Let us analyze the behavior of the field in terms of the distribution of
induced currents. Applying Eq. (5.7) and Ohm’s law:

j¼ γE
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we have the following expression for the current density at any point in a

uniform medium:

j∗ϕ¼
iγμ0ωM0

4πR2
exp ikRð Þ 1� ikRð Þ sin θ (5.20)

As in the case of the magnetic field, we represent the current density as

the sum of the quadrature and in-phase components, and, using Eq. (5.20),

obtain:

Imjφ¼ γμ0ωM0r

4πR3
exp �pð Þ 1+ pð Þ cos p+ p sin p½ �

Rejφ¼�γμ0ωM0r

4πR3
exp �pð Þ 1+ pð Þ sin p� p cos p½ �

(5.21)

The distribution of currents represents a system of rings located in planes

perpendicular to this axis (Fig. 5.2A) and having a common axis with that of

the dipole. According to Eq. (5.5), for the density of induced currents arising

due to the primary electric field, we have:

j 0ð Þ∗
φ ¼ γE 0ð Þ∗

φ ¼ iγμ0ωM0r

4πR3
(5.22)

and their phase is shifted by 90 degrees with respect to the dipole current.

If interaction between induced currents is negligible, then Eq. (5.22)

describes the actual distribution. In this case, the current density at any point

in the medium is a product of two terms. The first term depends on the

dipole moment, frequency, and conductivity at the observation point; the

second is determined by coordinates of the point of observation. Finding

current distribution andmagnetic field of these currents is an elementary task

when interaction between induced currents is negligible and the primary

electric field does not intersect any boundaries. This last condition is critical

because appearance of the electric charges changes the direction of the

current density; the geometry of currents becomes unknown, making it

impossible to apply the Biot-Savart law.

In Chapter 6 we demonstrate that the approximation based on the use

of Eq. (5.22) is the foundation of Doll’s “geometrical factor theory” in

“low frequency” induction logging. The behavior of amplitude of the cur-

rent jϕ
(0) in planes perpendicular to the dipole axis is shown in Fig. 5.2B. It

also illustrates that increase of the distance from the dipole along z-direction

z1< z2< z3 leads to the shift of the maximal density along the radial

direction.
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Introducing notation:

j0¼ γμ0ωM0

4π

r

R3

we may rewrite Eq. (5.21) as

Qjφ¼ j0 exp �pð Þ 1+ pð Þ cos p+ p sin p½ �
Injφ¼ j0 exp �pð Þ 1+ pð Þ sin p�p cos p½ � (5.23)

Analyzing functions Eq. (5.23) we can see how the actual current den-

sity, jϕ, differs from j0 for different values of p. The quadrature and in-phase

components of jϕ normalized by j0 are shown in Fig. 5.2C and D. For small
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values of the parameter p� 0:7, the quadrature component of the current

density is essentially the same as j0, indicating that interaction between

induced currents is negligible. As the parameter p increases, the ratio

Qjϕ/j0 decreases, passes through zero, and for large p, approaches zero in

an oscillating manner. The ratio In(jϕ/j0) has a completely different charac-

ter. At small p the ratio Injϕ/j0 approaches zero, then increases to a maximum

value at p� 1:5 and tends to zero again in an oscillating manner. The actual

distribution of currents, in contrast to j0, is determined by both geometric

factors and the interaction of currents. Although at small values of p the

quadrature component of the current density is dominant (Fig. 5.2C and

D), there is a range of pwhere the in-phase component is significantly larger.

The main features of the magnetic field can be analyzed, proceeding

from the distribution of the corresponding components of the current den-

sity. If the frequency is low enough and the medium has a relatively high

resistivity, the range of distances for which the actual current density Qjϕ
is almost equal to j0 becomes large and the magnetic field QB is defined

entirely by currents in this area. In this frequency limit the depth of inves-

tigation cannot be increased by lowering frequency despite increased

penetration of the field into the formation. Both the current density Qjϕ
in this area and magnetic field caused by these currents are directly propor-

tional to the frequency, Eq. (5.22). Within some range of the parameter p,

the dimensions of this volume remain much greater than the distance from

the dipole to an observation point. As the parameter p increases (e.g., by an

increase of the frequency), the size of this volume becomes smaller, leading

to decreased growth of QB with frequency. As frequency increases further,

there is a rapid decrease of both ratioQjϕ/j0 and the quadrature component

of magnetic field.

By analogy, the behavior of the in-phase component of the field can be

explained by the in-phase component of the current. Unlike the quadrature

component Qjϕ, which is not indicative of the diffusion in the medium,

the in-phase component clearly shows a diffusion process. For instance, a

maximum of Injϕ moves away from the dipole when the frequency

decreases, indicating an increased sensitivity of magnetic field to the distant

parts of a medium. The depth of penetration of the in-phase component

gradually increases with a decrease of frequency, regardless of the distance

between the dipole and an observation point. This feature of the in-phase

component manifests itself primarily when the separation between the

dipole and receiver is comparable to or less than the thickness of the skin

depth (similar behavior is observed in the transient field discussed in
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Chapter 10). Inasmuch as the density of the current Injϕ around the dipole is

small, the field component, InB, is defined by currents located relatively far

from the probe. For this reason, a change of relatively small distance between

the dipole and receiver practically has no effect on the field. However, with

further increase of separation, the dipole-receiver distance has greater influ-

ence. These general features of the quadrature and in-phase components of

the field remain valid for a nonuniform medium as well.
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In 1949, Henri Doll suggested the method of induction logging for measur-

ing the electrical resistivity of formations surrounding a borehole [1]. He also

developed an approximate geometrical factor theory, allowing one to estab-

lish a relation between parameters of a geo-electric section and a signal, mea-

sured by the induction probe. The basis of this theory is the assumption that

the frequency of the induction probe, located on the borehole axis, is rel-

atively low, and the mutual interaction of currents induced in the borehole

and surrounding axially symmetric medium can be neglected.

This assumption implies 90 degrees phase shift between induced currents

in the medium and the current in a transmitting coil. Thus, the signal
Principles of Induction Logging © 2017 Elsevier Inc.
//dx.doi.org/10.1016/B978-0-12-802583-3.00006-X All rights reserved.

173

http://dx.doi.org/10.1016/B978-0-12-802583-3.00006-X
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measured by a receiver coil of the induction probe consists of two parts.

The first is the primary signal, caused by a transmitting coil located in free

space; the second part is caused by induced currents in a medium whose

amplitude depends on the conductivity of formation. Analysis of the field

of a magnetic dipole in a uniform medium (Chapter 5) shows that the

behavior of the field and the induced currents assumed in Doll’s theory

is a good approximation of the actual situation when the transmitter-

receiver distance, frequency, and conductivity are relatively small. Later,

we compare results of a field calculation using the Doll’s theory and exact

solutions and establish conditions when the theory of geometric factor is

valid. Doll’s theory permits a simple derivation of the quadrature (out-of-

phase) component of the magnetic field in a medium with either horizon-

tal or cylindrical interfaces, provided that the field is caused by a vertical

magnetic dipole directed along the vertical axis of the borehole. In this

case, there is no component of electric field perpendicular to the bound-

aries between regions of different conductivity and, therefore, no surface

electrical charges. Of course, Doll understood very well the phenomenon

of skin effect as well as the conditions under which this effect is negligible.

In practice, these conditions define useful operating frequencies of induc-

tion logging, and it is not occasional that, after 60 years, most induction

logging instruments still use frequencies in the range that are close to those

suggested by Doll.

6.1 TWO-COIL PROBE

Describing Doll’s geometrical factor theory we begin from the basic
concept of the geometrical factor of a simple two-coil probe.

6.1.1 Geometrical Factor of the Elementary Ring
Let us consider the region formed by the intersection of two horizontal

planes with two coaxial cylindrical surfaces having a common axis with

the borehole (Fig. 6.1).

The elementary region bounded by the planes and cylindrical surfaces

forms a horizontal ring, which is filled with a uniform medium. Its cross-

section dS is rectangular; for convenience, we assume that the region has unit

area (dS¼ 1). It is essential that dimensions of the cross-section are small

compared with the ring’s radius. Doll called this part of the medium an

“elementary unit ring.” Now we find the signal at the receiver of a two-coil



Fig. 6.1 Elementary ring with respect to the two-coil induction probe.
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induction probe caused by the induced current circulating in the ring. As

shown earlier (Eq. 3.42), the primary electric field of a dipole in free space is

Eϕ ¼ iμ0ωrMT

4πR3
1

Here r is the radius of the ring, MT is a magnetic moment of the trans-

mitter coil, and R1 is the distance from the transmitter coil to the ring. Then

Ohm’s law directly gives the complex amplitude of the induced current in

the ring as

I� ¼ iγμ0ωrMT

4πR3
1

if dS¼ 1 (6.1)

where γ is the conductivity of the medium occupied by the ring (Fig. 6.2).

Cross-sections of elementary rings with a maximal geometrical factor lie

on the solid circle. Because the ring’s cross-section is small:

dr≪ r and dz≪z
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Fig. 6.2 (A) Geometry of elementary current rings used in Eq. (6.1). The black boxes on
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(B) Elementary rings whose cross sections lie on circles that pass through transmitter
and receiver coils with centers on the r axis.
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the elementary ring forms a circular loop of radius r. The current in the ele-

mentary ring with radius r generates the secondary magnetic field, which has

only the vertical component at the axis:

B�
z¼

μ0I
�r2

2R3
2

(6.2)

Here, R2 is the distance from points of the ring to the receiver coil. The

flux of this secondary magnetic field piercing a small receiver coil along the

axis is

Φ� ¼ μ0
2

I�r2

R3
2

S2n2

where S2 and n2 are area and number of turns in the coil, respectively.

For the complex amplitude of the electromotive force in the coil, arising

due to a sinusoidal in time magnetic field, we have

Ξ� ¼ iωΦ� ¼ iωμ0
2

I�r2

R3
2

S2n2 (6.3)

Substituting Eq. (6.1) into Eq. (6.3), we obtain the expression for the

electromotive force in the small receiver coil, generated by the secondary

magnetic field:
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Ξ¼�π

2
f 2μ20γ I0S1S2n1n2

r3

R3
1R

3
2

(6.4)

where I0 is the current amplitude in the transmitter coil, S1, n1, and S2,n2 are

areas and number of turns of the transmitter and receiver coils, respectively;

f is the frequency of the field. By definition

MT ¼ I0S1n1

is the magnetic moment of the transmitter coil. Also the product

MR ¼ S2n2

is called the moment of the receiver coil, so that Eq. (6.4) can be rewritten as

Ξ¼�π

2
f 2μ20γMTMR

r3

R3
1R

3
2

Note that the transmitter and receiver moments have different units

(Am2 and m2), but this notation is still convenient, especially for discussing

multicoil probes.

Let us write the last equation in the form

Ξ¼K0γg0 (6.5)

where

K0¼�π

2
f 2μ20I0S1S2n1n2

is the coefficient that depends on parameters of the two-coil probe, and

g0 ¼ r3

R3
1R

3
2

(6.6)

is a function depending on the radius and location of the ring as well as on the

probe length L. Doll called this function “the geometric factor of an elemen-

tary ring” or the “elementary geometric factor.” Thus, the signal generated

by the current in an elementary ring within a medium is directly propor-

tional to the conductivity and geometric factor of the ring. Now we repre-

sent the function g0 in a cylindrical coordinate system, r,z with its origin at

the middle of the induction probe (Fig. 6.2). Because

R1¼ r2 + L=2+ zð Þ2� �1=2
, R2¼ r2 + L=2�zð Þ2� �1=2
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we have for the function g0:

g0¼ r3

r2 + L=2+ zð Þ2� �3=2
r2 + L=2�zð Þ2� �3=2 (6.7)

Following Doll, we introduce a new function g:

g¼L

2
g0¼L

2

r3

r2 + L=2+ zð Þ2� �3=2
r2 + L=2�zð Þ2� �3=2 (6.8)

At the same time, the probe coefficient K0 is multiplied by 2/L:

K ¼ 2

L
K0

It will be shown later that the geometric factor of the whole space is equal

to unity. In accordance with Eq. (6.8), this factor g depends on the angle

under which both coils of the induction probe are seen from any point of

the elementary ring, and it is equal to

g¼ sin3A

2L2
(6.9)

Indeed, as follows from Fig. 6.2,

sinA

L
¼ sinα

R2

, sinα¼ r

R1

,
sinA

L
¼ r

R1R2

and, therefore,

g¼L

2

r3

R3
1R

3
2

¼L

2

sin3A

L3
¼ sin3A

2L2

In other words, for a given probe length L the elementary geometric

factor is defined by the angle under which the probe is seen from points

of the elementary ring. Thus, all elementary rings have the same geometric

factor, if the probe is seen under the same angle from the ring’s points.

Consequently, they contribute the same signal if they have the same con-

ductivity. The cross-sections of elementary rings with the same geometrical

factor lie along circles that pass through the transmitter and receiver coils and

have their centers on the r axis. Fig. 6.2A illustrates this concept for such

circles of different radii. Elementary rings for which sinA¼ 1 have the max-

imum geometric factor, which are equal to 1/2L2. Cross-sections of these

rings are located on the circle with radius L/2.
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6.1.2 Solution of the Forward Problem
Now we derive the signal, caused by induced currents in a whole space. In

fact, making use of the principle of superposition and neglecting interaction

of induced currents, the electromotive force is equal to the sum of the signals

from all elementary rings, i.e.:

Ξ¼K

ð
S

γgdS (6.10)

where dS is the cross-section of the elementary ring. In general, the conduc-

tivity can be a continuous or discontinuous function of coordinates. In par-

ticular, if the medium is uniform, we have

Ξ¼Kγ

ð
S

gdS¼Kγ

ð
r

dr

ð
z

gdz

Inasmuch as radii of elementary rings change from 0 to∞ and the coor-

dinate z varies from �∞ to +∞, the expression for electromotive force in

uniform medium is

Ξ¼Kγ

ð∞
0

dr

ð∞
�∞

gdz (6.11)

As follows from Eq. (6.8), this double integral gives

ð∞
0

dr

ð∞
�∞

gdz¼
ð∞
0

dr

ð∞
�∞

L

2

r3

r2 + L=2+ zð Þ2� �3=2
r2 + L=2�zð Þ2� �3=2dz¼ 1 (6.12)

and

Ξ¼Kγ

In other words, the geometric factor of uniform medium is equal to

unity. Let us consider a nonuniform medium divided into different uniform

regions, as shown in Fig. 6.3.

Taking into consideration the axial symmetry, we denote the regions

with letters A, B, C, D, and E. The contribution of every uniform part

of the medium to the total signal is proportional to the product of the

corresponding conductivity and geometric factor of this part. By definition,
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Fig. 6.3 Conductivity distribution in a nonuniform medium.
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the latter is a sum of geometric factors of elementary rings over the area of

the considered part of the medium. For example, if conductivities of parts A,

B, C, D, and E are equal to γA, γB, γC, γD, and γE, the total electromotive

force is

Ξ¼K γA

ðð
A

gdS+ γB

ðð
B

gdS+ γC

ðð
C

gdS+ γD

ðð
D

gdS+ γE

ðð
E

gdS�
2
4 (6.13)

Here ðð
A

gdS⋯
ðð
E

gdS

are geometric factors of the corresponding parts of the medium. Introducing

notations

GA¼
ðð
A

gdS, GB¼
ðð
B

gdS⋯GE ¼
ðð
E

gdS

we obtain the following expression for the magnitude of the electromotive

force:

Ξ¼K γAGA + γBGB + γCGC + γDGD + γEGEð Þ (6.14)
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Inasmuch as the geometric factor for a whole uniformmedium is equal to

unity, we always have

GA +GB +GC +GD +GE ¼ 1 (6.15)

As follows from Eq. (6.14) the electromotive force is given by the sum of

products of geometrical factors and the conductivities of different regions of

the media. Thus the conductivity of a region and its geometric factor has a

similar influence on the signal. For instance, a region with a high conduc-

tivity and small geometrical factor and a region with low conductivity and

large geometrical factor make the same contributions to the total signal, if

their conductivity-geometric factor products are the same.
6.1.3 Apparent Conductivity
By analogy with the apparent resistivity in direct-current methods, Doll

introduced the apparent conductivity γa defined by

γa
γ1

¼ Ξ
Ξun γ1ð Þ (6.16)

It characterizes how the measured electromotive force differs from that

in a uniform medium with conductivity γ1. This definition is equivalent to

the more commonly used definition, utilizing K-factor:

γa¼Ξ=K:

In accordance with Eqs. (6.12) and (6.14), for the apparent conductivity

γa and apparent resistivity ρa we have:

γa¼ γAGA + γBGB + γCGC + γDGD + γEGE (6.17)

ρa¼ γAGA + γBGB + γCGC + γDGD + γEGE½ ��1
(6.18)

The concept of an elementary geometric factor makes it easy to derive

expressions for the signal caused by currents in various parts of a conducting

medium. Doll also used geometrical factors of elementary horizontal and

cylindrical layers to study both the vertical and radial characteristics of the

two-coil probes, as well as much more complicated induction systems.

The concept of geometric factor, which is often called “geometrical factor

theory,” can be summarized as:
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1. In geometrical factor theory, induced currents are generated only by the

primary electric field of the transmitter coil:

E0�
ϕ ¼ iωμ0MTr

4πR3

2. The theory implies that the mutual interaction between induced cur-

rents is neglected, and thus every element of a medium manifests itself

independently, regardless of the resistivity of neighboring parts. This

theory does not predict an in-phase component of the secondary

magnetic field.

3. The Doll’s approximation is more valid in regions that are close to the

source where induced currents are mainly defined by the primary elec-

tric field. In areas located far from the source, currents are subject to the

skin effect and geometrical factor theory is less applicable. As the length

of the probe increases, the frequency must be lowered in order for Doll’s

approximation to remain accurate.

4. Simplicity of the theory is based on an axially-symmetric geometry of a

media and absence of electrical charges at the boundaries of regions with

different conductivities. In the absence of axial symmetry surface charges

appear, whose density depends on the magnitude of the normal compo-

nent of electric field at the boundary and on the resistivity contrast across

the boundary. In such cases, it becomes impossible to retain the concept

of a geometric factor, although at a sufficiently low frequency, the quad-

rature component of magnetic field is still directly proportional to the

frequency and conductivity.

In the following chapter, we show that geometrical factor theory represents

the first approximation of the integral equation, describing the response of

induction tool in a medium with varying electrical conductivity. Now we

use Doll’s theory to study the response of induction probes in different for-

mations and start from horizontally-layered media.
6.2 THE VERTICAL RESPONSES OF THE TWO-COIL
PROBE IN THE MEDIA WITH THE HORIZONTAL

BOUNDARIES
6.2.1 Geometric Factor of an Elementary Layer

By analogy with an elementary ring whose cross section is small, a layer

whose thickness is much less than the probe length can be considered as

an elementary layer. The geometrical factor of an elementary layer is defined
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by a summation of the geometrical factors of its elementary rings, which are

all located at the same distance z with respect to the origin. The radius of

these elementary rings ranges from zero to infinity. Thus, the geometric fac-

tor of an elementary layer Gz is

Gz ¼
ð∞
0

gdr (6.19)

where g is the geometric factor of the elementary ring. Making use of

Eq. (6.8), we have

Gz ¼L

2

ð∞
0

r3dr

r2 + L=2+ zð Þ2� �3=2
r2 + L=2�zð Þ2� �3=2

Here L is the probe length. Introducing notations:

L=2+ z¼m, L=2�z¼ n, and r2¼ x

we obtain

Gz ¼L

4

ð∞
0

xdx

x2 + m2 + n2ð Þx+m2n2½ �3=2

or

Gz¼L

4

ð∞
0

xdx

x2 + bx+ cð Þ x2 + bx+ cð Þ1=2
(6.20)

where

m2 + n2¼ b, m2n2 ¼ c

This integral is well known and is equal to

Lc

4c� b2ð Þc1=2�
Lb

2 4c� b2ð Þ
Thus, the geometric factor of an elementary layer is

Gz ¼ L

2 m+ nð Þ2 (6.21)
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In case when the elementary layer is located between coils of the probe:

�L=2< z<L=2

the geometric factor Gz is

Gz ¼ 1

2L
(6.22)

and it is independent on coordinate z. When the layer is located above or

below the probe:

z<�L=2 or z>L=2

the geometrical factor is

Gz¼ L

8z2
(6.23)

And again, the geometric factor of the whole space is equal to unity:

G¼L

8

ð∞
L=2

dz

z2
+

L

2L
+
L

8

ð�∞

�L=2

dz

z2
¼L

8

2

L
+
1

2
+
L

8

2

L
¼ 1

According to Eqs. (6.22), (6.23), the geometric factors of elementary

layer located outside the probe decrease inversely proportional to z2 while

geometric factors of all elementary layers located inside the probe are equal

toGz ¼ 1= 2Lð Þ. A curve, illustrating the behavior of geometric factorGz (in

units of L) as a function of z, is shown in Fig. 6.4. Themiddle of the two-coil

probe is located at the origin of coordinates.

It is useful to notice that geometrical factors of two regions:

�L

2
< z<

L

2
, z<�L

2
, and z>

L

2

have the same value, equal to 0.5. As follows from definition of the function

Gz, the geometric factor of a layer with very small thickness dz≪L is equal

toGzdz and it is dimensionless. Since the functionGz gives sensitivity of the

probe to induced currents in elementary layers, Doll called this function Gz

the vertical response of a two-coil probe.

6.2.2 Geometric Factor of a Layer With a Finite Thickness
Using geometric factor of an elementary layer it is easy to find geometric

factors of layers with a finite thickness. To proceed it is necessary to present
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Fig. 6.4 Geometric factor of an elementary layer as a function of the layer position z.
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the layer as a sum of elementary layers and perform summation of their geo-

metric factors. Let us consider several positions of the two-coil probe with

respect to the bed.

Case 1
The probe is located outside the bed of finite thickness (Fig. 6.5A). To

derive the geometric factor of this bedGbwe integrate functionGz over

the interval from z1 to z2 which characterizes the bed thickness. Thenwe

have
Gb¼L

8

ðz2
z1

dz

z2
¼L

8

1

z1
� 1

z2

� �
(6.24)
Assuming that coordinate z0 corresponds to the middle of the bed

and taking into account that
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Fig. 6.5 Position of the probe with respect to the bed. (A) Probe is outside the bed.
(B) One coil is inside while the other one is outside the bed.
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z1¼ z0�H=2 and z2¼ z0 +H=2
we have
Gb¼LH

8

1

z20� H=2ð Þ2 (6.25)
Here, H is the bed thickness, z0 is the distance from the middle of

the bed to the center of a two-coil probe. This equation is applied if the

upper coil of the probe does not intersect the low boundary of the

bed, i.e., it is valid if
z1�L

2
or z0�L +H

2

Case 2
One coil is inside of the bed, while the other one is outside (Fig. 6.5B).

To derive the geometric factor of a bed with thickness H, we have to

sum up geometric factors of the parts of the bed located outside and

inside the probe. In accordance with Eq. (6.23), the part outside the

probe is
G1¼L

8

1

L=2
� 1

z0 +H=2ð Þ
� �

¼ 1

4
� L

8 z0 +H=2ð Þ
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The geometric factor of the part h1 located inside the probe is
G2¼ h1

2L
¼ 1

2L

L

2
�z0 +

H

2

� �
because
h1¼L=2� z0�H=2ð Þ

Therefore, for the geometric factor of the bed, we have
Gb¼G1 +G2¼ 1

2
� 1

2L
z0�H=2ð Þ� L

8 z0 +H=2ð Þ (6.26)
This formula is applicable until the upper coil of the probe is located

within the bed and thickness of the bed is smaller than the probe length,

H <Lð Þ, i.e., when

L�Hð Þ=2� z0� L +Hð Þ=2
When the bed thickness is greater than the probe length H >Lð Þ,
this formula can be used until the lower coil does not intersect the lower

boundary of the bed, i.e., when z0� H�Lð Þ=2.

Case 3
Theprobe is located against the bed (Fig. 6.6). There are twopossible cases:

a. The probe length exceeds the bed thickness H <Lð Þ; thus, the geo-
metric factor Gb is
Gb¼ H

2L
(6.27)
H

R

T

0
H

R

T

z0 z0

0

(A) (B)

6.6 Position of the probe with respect to the bed (Case 3). (A) Probe length exceeds
bed thickness. (B) Thickness of the bed is greater than the length of the probe.
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b. The thickness of the bed is greater than the length of the probe

H >Lð Þ; thus, the geometric factor Gb is
Gb¼ L

2L
+
L

8

2

L
� 1

z0 +H=2

� �
+
L

8

2

L
� 1

z0�H=2

� �

¼ 1

2
+
1

4
� L

8 z0 +H=2ð Þ +
L

8 z0�H=2ð Þ +
1

4

¼ 1+
LH

8 z20� H=2ð Þ2� �
(6.28)
These equations can be applied, provided that
0� z0<
L

2
�H

2
if H <L
and
0� z0<
H

2
�L

2
if H >L
Derived formulas allow us to determine apparent conductivity for a

two-coil probe located in a medium with two horizontal interfaces.
6.2.3 Apparent Conductivity in the Presence of a Layer With
Finite Thickness

As follows from Eq. (6.17) in case of a layer with conductivity γ1 surrounded
by a medium of conductivity γ2 for the apparent parameter γa, we have

γa¼ γ1G1 + γ2G2 (6.29)

where G1 and G2 are geometric factors of the layer and surrounding

medium, correspondingly. By definition, the sum of these factors is equal

to unity, i.e.,

G2¼ 1�G1

Before we discuss apparent conductivity in the presence of a layer of a

finite thickness, let us consider the influence of one horizontal interface.

If the probe is located in a medium with conductivity γ2 (Fig. 6.7A), then
in accordance with Eq. (6.24), the geometric factors of both half-spaces are

G1 ¼ L

8z0
, G2¼L

8

2

L
� 1

z0

� �
+

L

2L
+
L

8

2

L
¼ 1� L

8z0
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Fig. 6.7 Two-coil probe in a medium with one interface. (A) Both coils are located in the
same layer. (B) Coils are located in different layers.
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and

γa¼ γ2� γ2� γ1ð Þ L

8z0
, z0�L=2

This formula is applicable when the interface is above the probe. In the

case when the interface is below the probe (z0�L=2), we have

γa¼ γ1� γ1� γ2ð Þ L

8z0

When coils are located in different layers �L=2� z0�L=2 (Fig. 6.7B),
the geometric factors are

G1¼L

8

2

L
+

1

2L

L

2
�z0

� �
¼ 1

2
� z0

2L
, G2¼ 1

2L

L

2
+ z0

� �
+
L

8

2

L
¼ 1

2
+

z0

2L

For the function γa, we have

γa¼
1

2
γ1 + γ2ð Þ+ γ2� γ1ð Þ z0

2L

Apparent conductivity curves for different positions of the probe with

respect to the interface are shown in Fig. 6.8. One can notice that the value

of the apparent conductivity is equal to the mean value of both conductiv-

ities when the probe center is located at the interface.

Now we turn to apparent conductivity curves in the presence of a layer.

Because it is assumed that conductivity above and beneath the layer is the
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Fig. 6.8 Normalized apparent conductivity curves for different positions of a two-coil
probe with respect to the interface.

190 Basic Principles of Induction Logging
same, we can restrict ourselves to cases when z0 is positive. In deriving for-

mulae for apparent conductivity for various positions of the probe, we use

the equations of geometric factors of a layer of finite thickness.

Case 1
Probe is located outside the layer (Fig. 6.5A).

The expression for the apparent conductivity is
γa¼ γbGb + γsGs
where γb and Gb are the conductivity and geometric factor of the layer,

and γs, Gs are the conductivity and geometric factor of the surrounding

medium. Because
Gs ¼ 1�Gb
we can rewrite the expression for the apparent conductivity as
γa¼ γbGb + γs 1�Gbð Þ¼ γs +Gb γb� γsð Þ (6.30)



191Geometrical Factor Theory of Induction Logging
According to Eq. (6.25), the geometric factor of the layer is
Gb¼ LH

8 z20� H=2ð Þ2� �

Substituting this expression into Eq. (6.30), we obtain
γa¼ γs + γb� γsð Þ LH

8 z20� H=2ð Þ2� � (6.31)
The latter applies until the upper coil does not intersect the low

boundary of the layer, i.e., if z0 �H=2+L=2.
Case 2
One coil is located inside the layer (Fig 6.5B). In this case, according to

Eq. (6.26) the geometric factor of the layer is
Gb¼ 1

2
�z0�H=2

2L
� L

8 z0 +H=2ð Þ

Substituting the expression for Gb into Eq. (6.30), we obtain
γa¼
γb + γs
2

+
γs� γb
2L

z0�H=2ð Þ+ γs� γbð Þ L

8 z0 +H=2ð Þ (6.32)
This formula applies when
L�H

2
� z0�L +H

2

provided that H �L. In the case of (H �L), Eq. (6.32) is valid when
H�L

2
� z0�L +H

2

Case 3
The layer is located either between the probe coils (H �L), or the probe

is inside the layer (H �L) (Fig. 6.6A and B). For the first case (Eq. 6.27),

we have
Gb¼ H

2L
Correspondingly,
γa¼ γs + γb� γsð Þ H
2L

(6.33)
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This equation is applied if 0� z0� L�Hð Þ=2 and H <L. When

H �L, according to Eq. (6.28), we have
Gb¼ 1+
LH

8 z20� H=2ð Þ2� �

Thus,
γa¼ γb + γb� γsð Þ LH

8 z20� H=2ð Þ2� � (6.34)
if 0< z0 � H�Lð Þ=2.
Note that, upon introducing new variables, one can represent these

equations in the form that does not contain the length of the probe.

Curves, showing dependence of γa/γb on the ratio of the layer thickness

to probe length, are presented in Fig. 6.9, H=L� 1. Calculations have

been made using equation
γa
γb
¼ 1+

γs
γb
�1

� �
L

2H
With increase of conductivity of the surrounding medium and a

decrease of the layer thickness, the influence of the surrounding medium
20
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6.9 Apparent conductivity γa/γb as a function of H/L (H=L� 1). Center of a probe
cides with the middle of the layer. Curve’s index is γb/γs.
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becomes greater. If the conductivity of the layer γb is significantly smaller

than γs, the apparent conductivity is strongly affected by the surrounding
medium and only for a large ratio (H/L) approaches the conductivity of

the layer. In such cases, the vertical characteristic of the two-coil induc-

tion probe is essentially worse than the one corresponding to the

response of the normal probe used in electrical logging with direct cur-

rent. If the layer conductivity is greater than that of the surrounding

medium, for most typical values of γb/γs, the influence of the surround-
ingmedium becomes insignificant whenH=L> 4. Apparent conductiv-

ity curves γa/γb for the case of the layer thinner than the probe length are
shown in Fig. 6.10. They are calculated as
γa
γb
¼ γs
γb

+ 1� γs
γb

� �
H

2L
If the layer’s resistivity is higher than that of the surrounding medium

and its thickness is less that 0.2L, the layer is practically invisible to
1

10

0.1
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12832
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6.10 Curves of ratio γa/γb as a function of H=L, H=L� 1ð Þ when the center of a
e coincides with the middle of the layer. The index is γb/γs.
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induction logging. This behavior is directly opposite to the DC electrical

logging, which is sensitive to the presence of the resistive layer. Thin

conductive layers may have essential influence on induction tool

responses; with an increase of the ratio γb/γs the apparent conductivity
γa tends to a constant value of S1/2L, where S1¼ γbH is the longitudinal

conductance of the layer and can become much greater than γs
(Fig. 6.10).

Let us consider a case when the probe is located opposite to a system

of very thin layers. Then, the expression for the apparent conductivity

(6.33) is
γa¼ γs 1�
Xn
1

hi

2L

 !
+ γb

Xn
1

hi

2L
¼ γs 1� H

2L

� �
+ γb

H

2L
(6.35)
where hi is the thickness of the i-layer, n is number of layers, and

H ¼
Xn
i¼1

hi. A set of thin layers located against the probe is equivalent

to one layer having the same longitudinal conductivity and thickness

equal to the sum of thicknesses of all thin layers. Eq. (6.35) can be gen-

eralized for the more general case of different conductivities and thick-

nesses of layers. It is noticeable that in all cases above Doll’s theory have

allowed us to study vertical characteristics of the probe using only ele-

mentary functions.

Finally, following Eqs. (6.4) and (6.16), we derive an expression for

the quadrature component of magnetic field:
Ξ¼Kγa¼� 2

L

ω2μ20MTMR

8π
γa¼�QB�

zωMR
Here,
QB�
z¼

ωμ20MT

4πL
γa
Then, for the quadrature component of magnetic field bz, normal-

ized by the primary field B0
z ¼ μ0MT=2πL3, we have
Qb�z¼
QB�

z

B0
z

¼ωμ0L
2

2
γa (6.36)
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6.3 RADIAL CHARACTERISTICS OF TWO-COIL
INDUCTION PROBE
Following Doll, we begin to study the radial response of the two-coil

probe located at the borehole axis, assuming that the surrounding medium is

uniform. For the apparent conductivity γa, we have

γa¼ γ1G1 + γ2G2

where γ1, γ2 and G1, G2 are conductivity and geometric factors of the

borehole and formation, respectively.

6.3.1 Geometric Factor of the Borehole
By definition, the geometric factor of the boreholeG1 is a sum of geometric

factors of elementary rings, located inside the borehole and, in accordance

with Eq. (6.8), we have

G1¼L

2

ð
S

gdS¼L

2

ð∞
�∞

dz

ða
0

r3

R3
1R

3
2

dr

or

G1¼L

2

ð∞
�∞

dz

ða
0

r3dr

r2 + L=2+ zð Þ2� �3=2
r2 + L=2�zð Þ2� �3=2 (6.37)

where a is the borehole radius. Unlike the geometric factor of the layer, the

radial characteristics of the probe G1 cannot be expressed through elemen-

tary functions. There were numerous attempts to simplify Eq. (6.37) and

make it more convenient for calculations. For instance, Doll performed

integration of geometric factors of elementary rings and obtained the follow-

ing expression:

G1 αð Þ¼ 1� 1

1+ 4=α2ð Þ1=2
E kð Þ+ 2

α2
E kð Þ�K kð Þ½ �

� �
(6.38)

Here E and K are elliptical integrals of the first and second kind,

k¼ α

α2 + 4ð Þ1=2
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and α¼L=a is the ratio of the probe length to the borehole radius. At the

end of 1950s, Kudravchev (Russia) obtained another expression for the G1:

G1¼ 1�2α

π

ð∞
0

A mð Þcos αmdm (6.39)

where

A mð Þ¼m

2
2K0 mð ÞK1 mð Þ�mK2

1 mð Þ+mK2
0 mð Þ� �

(6.40)

and K0(m),K1(m) are modified Bessel functions of a second kind. The form

(Eq. 6.39) is convenient for the analysis because

α¼L

a
(6.41)

is a single parameter that defines the geometric factor of the borehole. Later,

Eq. (6.39) will be derived rigorously, but here it is used to study radial

responses of a two-coil probe. Also we need an expression for the geometric

factor of the formation, which is

G2¼ 2α

π

ð∞
0

A mð Þcos αmdm (6.42)

First, consider the function A(m). For the sufficiently large m, we have

the following asymptotes:

K0 mð Þ� exp �mð Þ π

2m

� �1=2
1�0:125

m

� �
,

K1 mð Þ� exp �mð Þ π

2m

� �1=2
1 +

0:375

m

� �

When m!∞, the integrand in Eq. (6.39) rapidly decreases, and calcu-

lation of the integral in this range of m becomes a simple matter. When

m! 0, the corresponding asymptotes are

K0 mð Þ!� ln
m

2
+C

� �
, K1 mð Þ! 1

m

whereC is some constant. Substituting these expressions into Eq. (6.40), we

obtain
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A mð Þ!K0 mð Þ!� ln
m

2
+C

� �
, as m! 0 (6.43)

Thus, the integrand has a logarithmic singularity as m tends to zero. In

order to remove this singularity, we make use of the following equation:

1

1+ α2ð Þ1=2
¼ 2

π

ð∞
0

K0 mð Þ cos αmð Þdm

Then, the function G1 can be presented in the form

G1 αð Þ¼1�2α

π

ð∞
0

A mð Þ cos αmð Þdm¼ 1� α

1+ α2ð Þ1=2

+
2α

π

ð∞
0

K0 mð Þ�A mð Þ½ �cos αmð Þdm
(6.44)

In accordance with Eq. (6.43), the integrand in Eq. (6.44) is free of sin-

gularities, and its calculation represents a relatively simple task.Next, we find

the asymptotic expression for the geometric factor of the borehole, starting

from the case when the probe length L is small compared with the size of the

borehole. In this case, parameter α tends to zero while the functionG1 tends

to unity as

G1 αð Þ� 1�0:5862α, if α≪ 1 (6.45)

Nowwe consider the case when probe length L is much greater than the

borehole radius a. Let us first analyze the integrand in Eq. (6.44), which is the

product of two functions:

Φ mð Þ¼K0 mð Þ�A mð Þ and cos αmð Þ
The first function gradually changes with m, while the second oscillates

with a period,

m¼ 2π

α

and decreases with an increase of α. For this reason the integral in Eq. (6.44)
is defined by the function Φ(m) and its derivatives when m approaches zero,

provided that α≫ 1: In fact, integrating by parts we receive
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ð∞
0

Φ mð Þcosαmdm¼ 1

α

ð∞
0

Φ mð Þd sinαm¼ 1

α
Φ sin αmð Þj∞0 � 1

α

ð∞
0

Φ0 mð Þ sinαmdm

¼ 1

α
Φ sinαmj∞0 +

1

α2
Φ0 cosαmj∞0 � 1

α2

ð∞
0

Φ
00
mð Þcosαmdm

(6.46)

For the large values of m, the function Φ(m) and its derivatives tend to

zero; therefore, instead of Eq. (6.46), we have

ð∞
0

Φ mð Þcosαmdm¼�0

α
�Φ 0ð Þ� 1

α2
�Φ0 0ð Þ� 1

α2

ð∞
0

Φ
00
mð Þcosαmdm (6.47)

For small values of m (m! 0), we have

K0 mð Þ�� lnm�m2

4
lnm+

m2

4
�C and K1 mð Þ� 1

m
+
m

2
lnm�m

4

Substituting these expressions into Φ(m) gives

Φ mð Þ� 1

2
+
1

4
m2 lnm, Φ0 mð Þ�m

2
lnm, Φ00 mð Þ� 1

2
lnm, if m! 0

Thus,

ð∞
0

Φ mð Þcosαmdm!� 1

2α2

ð∞
0

lnmcosαmdm� 1

2α2

ð∞
0

K0 mð Þcos αmdm! 1

2α2
π

2α

if α≫ 1.

Then, for the geometric factor (Eq. 6.44), we get

G1 αð Þ� 1� 1+ α�2
� 	�1=2

+
1

2α2
¼ 1

α2
¼ a2

L2
, if α≫ 1 (6.48)

Therefore, for large values of α, the geometric factor of the borehole is

inversely proportional to α2. (This peculiarity is used to design “focusing”

probes with minimal sensitivity to the borehole.) Comparison of

Eq. (6.48) versus exact solution shows that Eq. (6.48) describes with suffi-

cient accuracy the value of function G1(α) if α> 4. In other words, the

asymptotic behavior is already observed when the probe length exceeds
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twice the borehole diameter. Similarly, we can obtain the following terms

for the expansion of the function G1(α) for the large values of α. For exam-

ple, the expansion with the second term gives

G1 αð Þ� 1

α2
+
3 ln α�4:25

α4
if α≫ 1 (6.49)

The geometric factorG1(α) for the small and large values of parameter α
in comparison with an exact solution, obtained through numerical calcula-

tions, is shown in Fig. 6.11. As we can see, the asymptotes describe with

sufficient accuracy the value of function G1(α) if α> 4 or α< 0:6.
6.3.2 Radial Characteristics of Two-Coil Probe
The functionG1(α) allows us to study the radial responses of induction pro-
bes in a mediumwith cylindrical interfaces. Again, we use the concept of the

apparent conductivity γa:

γa
γ1

¼ QBz

QBz0 γ1ð Þ or
γa
γ1

¼ QΞ
QΞ0 γ1ð Þ (6.50)

where γ1 is the borehole conductivity, QBz and QΞ are the quadrature

components of magnetic field and electromotive force, respectively, while

QBz0(γ1) and QΞ0(γ1) are quadrature components of the field and
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electromotive force of the two-coil probe in medium with conductivity γ1.
According to Eq. (6.36), we have

Qbz0 γ1ð Þ¼ μ0ωL
2

2
γ1 and Qbz¼ μ0ωL

2

2
γa (6.51)

As follows from Eq. (6.50), the ratio γa/γ1 shows how the field or the

measured electromotive force differs from the same quantity in a uniform

medium with conductivity γ1. This method of introduction of the apparent

conductivity is natural only within Doll’s theory, where the skin effect is

negligible. By definition, for the apparent conductivity, we have

γa¼
XN
n¼1

γnGn (6.52)

For a cylindrically layered medium with borehole and formation, we

obtain

γa¼ γ1G1 + γ2G2¼ γ2 +G1 γ1� γ2ð Þ (6.53)

while in the presence of an invasion zone, we have

γa¼ γ1G1 + γ2G2 + γ3G3 (6.54)

A very short probe is mainly sensitive to the currents in the vicinity of the

probe; that is,

γa! γ1 if α! 0 (6.55)

On the other hand, as the probe length increases, the geometric factor of

every cylindrical layer of finite thickness decreases, while the geometric fac-

tor of the formation approaches unity. Therefore, the depth of investigation

in the radial direction increases; that is, for any given conductivity distribu-

tion γ(r) there is such length L, when the probe is mainly sensitive to the

conductivity of the formation γN:

γa! γN if α!∞ (6.56)

This is illustrated in Fig. 6.12 where apparent conductivities γa/γ1 are
presented for the different ratios of γ2/γ1. It is seen that the influence of

the borehole becomes greater as its conductivity or radius increases. Of

course, as the probe length increases (α!∞), the quadrature component

of magnetic field Bz approaches that in a uniform medium having
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conductivity γN. For illustration, let us consider one numerical example,

assuming L¼1 m, a¼0.1 m, and ρ2/ρ1¼30.

Then, as follows from Eq. (6.54), G1 � 0:01, and, for the apparent con-
ductivity, we have

γa
γ2

¼ 1+
γ1
γ2
�1

� �
G1 � 1:29

showing a significant (29%) contribution from the borehole. In reality,

it is even stronger, because the geometrical factor theory does not take

into account the skin effect that reduces contribution of formation into

the measurements. Also, in the presence of an invasion zone, distortion

of the apparent conductivity of a two-coil probe becomes even stronger,

especially in the case of the conductive invasion when ρ1< ρ3< ρ3.
Although the induction logging was first introduced for the measure-

ments in boreholes filled with water-based muds, these measurements are
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more suitable in boreholes with a nonconducting mud. Also, a comparison

of radial responses of the two-coil induction probe versus responses of the

standard DC two-electrode probe (Fig. 6.13) showed no advantages of

induction measurements in the case of conductive borehole fluid. Naturally,

the first field experiments had shown that the conductive borehole makes a

strong influence on the induction measurements. To overcome the short-

comings of the two-coil induction probe, Doll suggested multicoil differen-

tial probes (1949). He also developed an approach for determining

parameters of the corresponding tools, which have much better radial and

sometimes vertical characteristics. This made the induction measurements

one of the most successful in the logging industry and are now widely used

all over the world.
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We have to point out that quantitative interpretation, based on the

geometrical factor concept, requires relatively low frequencies. But at such

frequencies, the secondary field, containing the information about a

medium conductivity, is always much smaller than the primary field, and

this situation creates a serious measurement problem for detecting a small

signal in the presence of a larger one. Although the primary and secondary

signals are shifted in phase with respect to one another, even a small error in

the detecting electronics may greatly decrease the accuracy of the measure-

ments. To improve measurements, engineers undertook several steps. The

first was compensation of the electromotive force of the primary field at the

receiver coil. For this purpose, an additional coil is placed into the receiver

line of the probe, as is shown in Fig. 6.14. This compensating coil has a

smaller number of turns than the main receiver coil and is located relatively

closer to the transmitter. Moments of receiver coils are chosen in such a way

that the primary electromotive force at the compensating coil has the same

amplitude but an opposite sign to the primary electromotive force in the

main receiver. Thus, in place of a two-coil probe, we obtain the three-coil

probe, consisting of two two-coil probes. The first probe has length L,

which characterizes the distance between transmitter and the main receiver

coil, while the second probe, formed by the transmitter coil and the com-

pensating receiver coil, has a smaller length L1. The output of the three-coil
0

d

T

L1

R1

R2

L2

Fig. 6.14 Three-coil induction probe; d is the distance between centers of the short and
long two-coil probes.



204 Basic Principles of Induction Logging
probe is the combination of the outputs of the two receiver coils. Because

the number of turns in the compensating coil is considerably smaller than

that of the receiver coil, the secondary signal from formation induced in this

coil has only a minor effect on the total secondary signal. (The same

approach of compensation of the primary field is used in multicoil probes).

However, this method alone does not provide sufficient accuracy of mea-

surements in the real borehole conditions, when changes in pressure and

temperature cause fluctuation of the primary and thus affect the responses

in the coils. Because electromotive forces caused by the primary and the sec-

ondary field are shifted in phase by 90 degree, the original three-coil probes

designed by Doll measured only the quadrature component of the field (or

in-phase component of EMF). This procedure greatly reduces an influence

of the primary electromotive force instability. The next improvement was

the usage of a negative feedback scheme, which permits stabilization of the

measurements by reinjecting the electronic drift back into the system. Of

course, with time, due to great progress in quality of materials and electron-

ics, it became possible to measure even small in-phase components of the

secondary magnetic field (or quadrature of EMF).
6.4 MULTICOIL OR “FOCUSING” INDUCTION PROBE

Analysis of the field in a media with horizontal and cylindrical inter-
faces shows that a two-coil induction probe has noticeable advantages over

direct-current probes only in boreholes filled with nonconductive fluids. In

the case of conductive fluids, the influence of induced currents in the bore-

hole can be so strong that only very long probes can permit determination of

the formation resistivity. The last circumstancemotivated developers to look

at the alternative approach, which permits deep depth of investigation with

relatively short probes. The approach is based on the focusing of electromag-

netic field into the deep part of the formation.

Proceeding from geometrical factor theory, let us analyze multicoil pro-

bes provided that currents in any part of a medium create a signal defined by

the conductivity of the region in question and its geometric factor. The con-

tribution of various parts of a medium in forming a signal, essentially depends

on the probe length: with an increase of the probe length, the influence of

remote parts of a medium increases; consequently, the relative contribution

of induced currents near the probe becomes smaller. By applying probes of

various lengths with a different number of turns and connected in series
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either in the same or opposite directions, one can significantly reduce the

signal caused by currents in any element of the medium.

However, improvement of radial characteristics of the probe, practically,

always leads to deterioration of its vertical characteristics and vice versa.

Indeed, reduction of the near borehole regions and penetration of the field

into the deep part of formation requires a long probe with reduced vertical

characteristics. Moreover, increase in the length leads to reduction of the

measured signal level. Thus, the opposite requirements have to be satisfied

simultaneously to improve the radial and vertical characteristics of a

multicoil probe. As will be shown later, under certain conditions it can

be done, although, in general, an improvement of the radial characteristic

of a probe results in deterioration of the vertical one and vice versa.

A multicoil probe can be treated as a sum of two-coil probes. Early in

the development of probes with improved radial response, they were called

“focusing” probes by an analogy with the focusing of optical and seismic

waves. Wave-field focusing uses the phenomenon of constructive and

destructive interference to enhance a response: for example, by using a lens

to force a set of parallel light rays converge at some point. The physics of a

multicoil “focusing” probes is based on a completely different principle: the

addition and subtraction of geometrical factors.
6.4.1 Conditions for the Application of “Focusing” Probes
Geometrical factor theory assumes that the interaction between currents is

absent, i.e., that all currents induced in a conducting medium are shifted in

phase by 90 degrees, regardless of distance from the source. For this reason,

signals induced in different measuring coils are in phase with each other. In a

more general case, when skin effect manifests itself, the induced currents

have both in-phase and quadrature components, and the magnitude of

the quadrature component depends on distribution of conductivity in a

medium. Correspondingly, geometric factors become different from the

ones determined by the geometric factor theory. Deviation from Doll’s

region leads to a serious deterioration of the “focusing” features developed

under the assumption that the interaction between currents in those parts of

a medium (borehole, invasion zone), the influence of which should be sig-

nificantly reduced is absent.

However, the absence of such an interaction is not sufficient for appli-

cation of focusing probes. Indeed, we may present a probe signal as a sum of

the signal, caused by the currents, which are not affected by skin effect and a
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signal generated by currents in the external area, for example, in the forma-

tion. Because the skin effect increases with the distance from the primary

source increases, the distribution of currents in the external area depends

on the currents in the near probe area. For this reason, this first eliminated

area may still indirectly affect distribution of currents in the formation. In

this case, the signal from the formation is not only a function of its conduc-

tivity but also a function of the conductivity and geometry of the borehole

and invasion zone. Therefore, the second condition for application of

“focusing” probes is the absence of an influence of currents in the internal

area on the current distribution in the formation. The skin effect in the for-

mation has to manifest itself in the same manner, as if the borehole and inva-

sion were absent.

It turns out that two conditions listed above are often met far beyond the

range of small induction numbers, and, correspondingly, the “focusing”may

perform even at higher frequencies than those dictated by Doll’s original

theory. In the following chapter, we discuss the approximate theory of

the induction logging, accounting for the skin effect and satisfying the above

two conditions. A comparison between this theory and exact solution will

allow us to establish the maximal frequency when the multicoil probes are

still able to reduce the influence of the borehole and invasion zone.
6.4.2 Three- and Multicoil Probes
Focusing probes consist of several two-coil probes. The main probe has

maximal product of the transmitter and receiver coil moments. Also, there

are some additional probes, which are located either inside or outside the

main probe. In the most successful focusing probes, both types of additional

two-coil probes are present. In all multicoil probes, transmitting coils as well

as receiving ones, are connected in series. Because all transmitting coils have

the same current, and the area of coils is the same for all transmitters and

receivers, it is convenient to characterize the moments of all coils by the

number of turns. The coil, wounded in the opposite direction to the main

probe, is characterized by the negative number of turns.

Let us consider the geometric factor of a cylinder for suchmulticoil probe.

For each two-coil probe the function G1(r,L) characterizes a signal caused

by induced currents in a uniform cylinder with radius r. By selecting partic-

ular lengths of the two-coil probes and changing their number of turns, it is

possible to achieve three goals. First is to reduce the borehole and invasion

zone effect and obtain the geometric factor with minimal contribution into
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the signal from the cylinder with relatively large radius. Second is to max-

imize the signal caused by the currents outside of this cylinder. Besides, these

“focusing” probes should have sufficient vertical resolution to guarantee an

accurate interpretation in relatively thin layers.

The multicoil probes can be divided into symmetrical and non-

symmetrical ones, considering the location of additional coils with respect

to the center of the main probe. In a symmetrical arrangement, the identical

two-coil probes are located symmetrically with respect to the center of the

main probe. Symmetrical probes, unlike nonsymmetrical ones, have a sym-

metrical response with respect to the center of a bed provided that the resis-

tivity of a medium above and below the bed is the same. Symmetrical

vertical response is also observed in a modified symmetrical multicoil probe

where the number of turns in all transmitters or receivers is changed by the

same coefficient. An example of such symmetrical probe will be shown con-

sidering the dual induction tool. Depending on location of additional coils,

multicoil probes can also be classified as probes with internal, external, and

mixed “focusing.” In probes with internal “focusing,” the additional coils

are located between the main ones; with external “focusing,” they are

located outside the main probe, and probes with mixed “focusing” addi-

tional coils are placed inside and outside the main probe. An example of

the simplest nonsymmetrical three-coil probe is depicted in Fig. 6.14.

Examples of symmetrical probes with internal, external, and mixed

“focusing” are shown in Fig. 6.15.

In 1952 Schlumberger introduced the first focusing induction probe

5FF27, which had two external “focusing” coils and one internal coil.

The length of the main two-coil probe was around 0.7 m (27 in.), and it
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Fig. 6.15 Multicoil symmetrical “focusing” probes with (A) internal, (B) external, and
(C) mixed “focusing.”
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provided limited depth of investigation, especially in a presence of invasion.

In 1956 they introduced 5FF40 with a slightly deeper depth of investigation,

but it was still insufficient in wells drilled with salty muds. Then, the Lane

Well Company (Disterhoft, Hartlineand Thomsen) introduced a multicoil

induction tool with a deeper depth of investigation. In 1959 Schlumberger,

in turn, developed the 6FF40 probe [2], which became an industry standard

and through variousmodificationswas successfully used bywell logging com-

panies for more than 30 years all over the world. About the same time, Doll,

recognizing that a multicoil probe is a superposition of two-coil probes,

suggested to measure individual signals of each two-coil probe and, then,

numerically form different combinations obtaining information about cylin-

drical layers, located at different distances from the borehole.

In the late 1950s, Russian geophysicists, following achievements by US

logging companies, started developing the theory and equipment for induc-

tion logging. The first nonsymmetrical induction probe was developed in

1959 by Akselrod (Baku). Slightly later, Russian well logging operators

began to use the symmetrical induction probe 6 F1, designed by Plusnin

(Moscow). This probe had similar parameters to the 6FF40. At the same

time, further development of induction logging theory took place in Novo-

sibirsk [3], where it was accompanied by the design of the first high-

frequency induction probe (VIK).

To illustrate the concept of “focusing” probes, we consider only two

examples. Proceeding from the known expression for the electromotive

force in a two-coil probe, caused by the quadrature component of the

magnetic field,

Ξ¼�ω2μ20MTMR

4πL
γa

we find expressions for the measured signal in the multicoil probes. Let us

start from the simplest three-coil probe.
Example One
Three-coil probes (Fig. 6.14).

This focusing probe [3] consists of one transmitting coil and two receiv-

ing coils, which have opposite direction of turns. Then, the measured

electromotive force is

Ξ¼�ω2μ20MT

4π

γa Lð Þ
L

MR� γa L1ð Þ
L1

MR1


 �
(6.57)
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Here, L1 and MR1 are the length and the receiver moment of the short

two-coil probe, L1<L. Bearing in mind that the primary electromotive

force for the main two-coil probe is

Ξ0 Lð Þ¼�ωμ0MTMR

2πL3

instead of Eq. (6.57), we have

Ξ¼ 1

2
ωμ0 L2 Ξ0 Lð Þj jγa Lð Þ�L2

1 Ξ0 L1ð Þj jγa L1ð Þ� �
(6.58)

Suppose that the number of turns in receiving coils is chosen to compen-

sate the primary field:

Ξ0 Lð Þj j ¼ Ξ0 L1ð Þj j (6.59)

Then, Eq. (6.58) is simplified to

Ξ¼ 1

2
Ξ0 Lð Þωμ0 L2γa Lð Þ�L2

1γa L1ð Þ� �
(6.60)

When the invasion zone is absent, we have

Ξ¼ 1

2
Ξ0 Lð Þωμ0 γ1 L2G1 Lð Þ�L2

1G1 L1ð Þ� �
+ γ2 L2G2 Lð Þ�L2

1G2 L1ð Þ� �� 	
(6.61)

HereG1 andG2 are geometric factors of the borehole and formation, and

their sum is equal to unity. Suppose that L1≫ a1, where a1 is the borehole

radius, then, as follows from Eq. (6.49),

G1� 1

α2
+
3 ln α�4:25

α4
(6.62)

where α¼L=a1. Substitution of the leading term of the latter into Eq. (6.61)

gives an approximation for Ξ:

Ξ� 1

2
Ξ0 Lð Þωμ0 L2�L2

1

� 	
γ2 (6.63)

which does not depend on parameters of the borehole. As soon as the radius

of the invasion zone is much smaller than the probe length L1, an influence

of this zone is also negligible. Let us present Eq. (6.60) as

Ξ¼L2

2
Ξ0 Lð Þ 1� p2

� 	
ωμ0 γ1G

�
1 + γ2G

�
2

� 	
(6.64)
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Here, p¼L1=L< 1 and

G�
1 ¼

G1 Lð Þ� p2G1 L1ð Þ
1�p2

, G�
2 ¼

G2 Lð Þ�p2G2 L1ð Þ
1� p2

(6.65)

are geometric factors of the three-coil probe for the borehole and formation,

respectively. Assuming that α≫ 1, we have for the function G1
∗:

G�
1 �

1

p2α4
2:17� 3 lnp

1�p2
�3 ln α

� �
(6.66)

In Fig. 6.16, we show the borehole geometrical factor for a three-coil

probe. It illustrates reduced sensitivity of the probe to the region close to

the borehole axis. At the initial part of the radial response, G1
∗ has negative

values, which are much smaller than those of the geometric factors for the

two-coil probes G1(L1) and G1(L). Near the radius, where

3 ln α¼ 3 ln
L

a1
� 2:17� 3 ln p

1�p2
1 1.5 2 2.5 3 3.5 a
0

2

4

6

8

G1*

Fig. 6.16 Borehole geometric factor of the three-coil probe as a function of parameter α.
Parameters of the probe are L¼ 1:4 m, p¼ 0:7.
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the geometric factor G1
∗ is equal to zero and then rises monotonically,

approaching unity. A combination of two factors—compensation of the pri-

mary field and behavior of the function G1(α) as 1/α
2 provides a significant

reduction of the borehole and invasion zone on the signal, if probe length L

is several times greater than radius of the invasion a2.

Of course, as the probe length increases, the effect of “focusing” man-

ifests itself stronger. For illustration, Fig. 6.17 shows behavior of apparent

conductivity curves for a medium with an invasion zone. When parameter

p increases the focusing properties of the probe improve for the expense of

the signal level. Let us consider the vertical response of the three-coil probe

starting from the geometric factor of an elementary layer. Sometimes it is

called the “vertical response function of a probe.” From Eq. (6.65) we have

G�
z ¼

Gz L, zð Þ� p2Gz L1,z+ dð Þ
1� p2

(6.67)

where, according to Eq. (6.21), Gz(L,z) is

Gz L, zð Þ¼ L

2
L

2
+ z

����
����+ L

2
�z

����
����

� �2
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and

d¼�L=2+L1=2¼�L
1�pð Þ
2

(6.68)

is the distance between centers of the short and long two-coil probes

(Fig. 6.14). This equation for the depth-offset d is valid for a three-coil probe

with one transmitter located at the bottom of the probe (see Fig. 6.14).

Obviously, if the probe is turned upside down, the offset d changes the

sign. Geometric factors of the elementary layer for three-coil and

corresponding two-coil probes (p¼0.5) are shown in Fig. 6.18. Geometric

factors of an elementary layer for different three-coil probes are shown in

Fig. 6.19. Corresponding offsets are¼d=L¼ 0:7, �0:375, and �0:125.
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As we see, the vertical characteristics of three-coil probes can be quite com-

plicated if the layer thickness is smaller than the length of the main probe.

Suppose that the center of the three-coil probe is located against the layer

and its middle coincides with the center of the main two-coil probe

(Fig. 6.20A). As in the case of the two-coil probe, we consider a function

γa=γb¼ f H=Lð Þ for different ratios of γb/γs (Fig. 6.20B). Here, L is the thick-

ness of the layer with conductivity γb, L is the length of the main two-coil

probe, and γs is the conductivity of the surrounding medium (“shoulders”).

Examples of profiling curves are given in Fig. 6.21. The three-coil probe

has almost the same vertical response as the two-coil probe, but displays

some asymmetry with respect to the center of the layer and is slightly more

influenced by surrounding medium. The latter is also true for any multicoil

probe with internal “focusing” and probes with the external focusing, when

the thickness of the layer is greater than the probe length. Indeed, we may to

recall that the geometric factor of the two-coil probe placed in the middle
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of the layer, and having the same thickness as the probe length, is equal 0.5.

Suppose that the length of the main two-coil probe is equal to the thickness

of more resistive layer, and that external focusing probes are located in the

surrounding medium. In this case, the vertical response of the probe is

improved due to a relatively large reduction of the signal from the surround-

ing medium compared with the marginal reduction from the layer.

Focusing probes are more affected by the skin effect compared with the

two-coil probes of the same length due to increased sensitivity to the deep

part of the formation, where interaction between induced currents are the

most pronounced.

Also, the vertical response of the three-coil probe is slightly worse than

that of the two-coil probe.

Example Two
Multicoil probe 6FF40

The probe was introduced in 1960 and became the industry standard for

30 years. The 6FF40 array has six coils with the main transmitter-receiver

pair spaced 40 in. (102 cm) apart. The main design parameters of the array

are the spacing between the coils, the number of turns, and the polarity of

each coil. The three transmitting and receiving coils are each connected in

series to produce one signal output. The 6FF40 was designed to read deep

into the formation while minimizing the signal close to the tool and

maintaining reasonable vertical resolution.

This symmetrical focusing probe 6FF40 is shown in Fig. 6.22. One of the

objectives of the focusing probe is to compensate primary electromotive

force (EMF). In the dipole approximation with parameters presented in
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Fig. 6.22 Configuration of the symmetrical focusing probe 6FF40.
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Fig. 6.22 (distances between coils and their moments), the uncompensated part

of the primary field is more than 3% of the primary field of the main two-coil

probe. Obviously, such level of compensation is insufficient for measurements

of the secondary field. In reality these calculations may not be relevant because

of the contribution of other factors such as the finite sizes of the coils, inaccuracy

in coil positions, or unevenwindingof thewire in the coils. For this reason, posi-

tions of the two external focusing coils are adjusted to account for all distorting

effects to provide required compensation. At the same time, these small adjust-

ments do not have a visible effect on the focusing properties of the probe.

The symmetrical probe 6FF40 could be defined by six parameters, which

characterize the distance between coils and moments of coils. Values of

these parameters were chosen graphically using the radial characteristic of

two-coil probes, and they are given below in Table 6.1. As shown in

Fig. 6.22, this system can be presented as a sum of nine two-coil probes with

the lengths (Li), products of number of turns in the transmitter and the receiver

(Mi), andoffsets of its centers fromthecenterof themainprobe (di), givenbelow:

1. L1¼L, M1¼ n2, d1¼ 0;

2. L2¼ piL, M2¼ c2i n
2, d2¼ 0;

3. L3¼ peL, M2¼ c2i n
2, d2¼ 0;

4. L4¼L1 +L2

2
¼ 1+ pi

2
L, M4¼�cin

2, d4¼L1

2
�L4

2
¼L1�L2

4
¼ 1�pi

4
L;

5. L5¼L2 +L1

2
¼ 1+ pi

2
L, M5¼�cin

2, d5¼L2

2
�L5

2
¼L2�L1

4
¼�1�pi

4
L;

6. L6¼L3�L1

2
¼ pe�1

2
L, M6¼�cen

2, d6¼L1

2
+
L6

2
¼L1 +L3

4
¼ 1+ pe

4
L;

7. L7¼L3�L1

2
¼ pe�1

2
L, M7¼�cen

2, d7¼�L3

2
+
L7

2
¼�L3�L1

4
¼�1+ pe

4
L;

8. L8¼L3�L2

2
¼ pe� pi

2
L, M8¼ cicen

2, d8¼L2

2
+
L8

2
¼L2 +L3

4
¼ pi + pe

4
L;

9. L9¼L3�L2

2
¼ pe� pi

2
L, M9¼ cicen

2, d9¼�L3

2
+
L9

2
¼�L3�L2

4
¼�pi + pe

4
L

The total electromotive force is equal to

Ξ¼ Ξ L1ð Þj j+ Ξ L2ð Þj j+ Ξ L3ð Þj j� Ξ L4ð Þj j� Ξ L5ð Þj j� Ξ L6ð Þj j
� Ξ L7ð Þj j+ Ξ L8ð Þj j+ Ξ L9ð Þj j

(6.69)
Table 6.1 Parameters of the 6FF40 Focusing Probe
L (inches) pi pe n ci ce

40 0.5 2.5 60 0.25 0.066667
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Inasmuch as ci< 1, ce< 1, terms 1, 4, 5, 6, and 7 give the main contribu-

tion into the measured signal. As shown above, the secondary signal in the

main two-coil probe is

Ξ¼�ω2μ20
4πL1

MTMRγa L1ð Þ

where MT ¼ I0Sn and MR ¼ Sn. Therefore, from Eq. (6.69), we have

Ξ¼�ω2μ20
4πL1

MTMR γa L1ð Þ+ c2i
pi
γa L2ð Þ+ c2e

pe
γa L3ð Þ� 2ci

1+ pi
γa L4ð Þ� 2ci

1+ pi
γa L5ð Þ




� 2ce

pe�1
γa L6ð Þ� 2ce

pe�1
γa L7ð Þ+ 2cice

pe� pi
γa L8ð Þ+ 2cice

pe� pi
γa L9ð Þ

�
(6.70)

If formation resistivity does not change in a vertical direction, the sym-

metrical probes 4 and 5 measure the same signals. The same is true for the

pair of coils 6 and 7, 8 and 9. Then, Eq. (6.70) is transferred into

Ξ¼�ω2μ20
4πL1

MTMR γa L1ð Þ+ c2i
pi
γa L2ð Þ+ c2e

pe
γa L3ð Þ




� 4ci

1+ pi
γa L4ð Þ� 4ce

pe�1
γa L6ð Þ+ 4cice

pe�pi
γa L8ð Þ

� (6.71)

In particular, if a medium is an infinite cylinder with a radius r and con-

ductivity γ1 for the signal Ξ, we have

Ξ¼�ω2μ20
4πL1

MTMRγ1 G1 L1ð Þ+ c2i
pi
G1 L2ð Þ+ c2e

pe
G1 L3ð Þ




� 4ci

1+ pi
G1 L4ð Þ� 4ce

pe�1
G1 L6ð Þ+ 4cice

pe� pi
G1 L8ð Þ

�
:

(6.72)

Here, G1 is the geometric factor of the borehole for a two-coil probe.

With increase of r the function G1 tends to unity. It is natural to introduce

the geometric factor of the borehole for a multicoil probe as

G�
1 ¼ 1+

c2i
pi
+
c2e
pe
� 4ci

1+ pi
� 4ce

pe�1
+

4cice

pe� pi


 ��1

G1 L1ð Þ+ c2i
pi
G1 L2ð Þ




+
c2e
pe
G1 L3ð Þ� 4ci

1+ pi
G1 L4ð Þ� 4ce

pe�1
G1 L6ð Þ+ 4cice

pe�pi
G1 L8ð Þ

�
(6.73)
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In such case, the geometric factor G1
∗ changes from zero to unity; there-

fore, the sum of geometric factors of a borehole, invasion zone, and the for-

mation is equal to unity. Correspondingly, the apparent conductivity in a

medium with cylindrical boundaries is

γa¼ γ1G
�
1 + γ2G

�
2 + γ3G

�
3 (6.74)

and

G�
2 ¼G�

1 r2ð Þ�G�
1 r1ð Þ, G�

3 ¼ 1�G�
1 +G�

2

Finally, for the signal Ξ, we have

Ξ¼�ω2μ20
4πL1

MTMR 1+
c2i
pi
+
c2e
pe
� 4ci

1+ pi
� 4ce

pe�1
+

4cice

pe� pi

� �
γa (6.75)

The geometric factor G1
∗ for the probe 6FF40 is shown in Fig. 6.23.

To illustrate the radial responses of 6FF40 and two-coil probe, the curves

of the apparent conductivity are shown in Fig. 6.24.

Next, we describe the vertical responses of the 6FF40 probe and first

consider the geometric factor of an elementary layer for this probe. By anal-

ogy with the geometric factor of the elementary layer for a three-coil probe

and making use of Eqs. (6.70) and (6.73), we obtain
1 2 3 4 5 6 7 8 9
0

0

0.2

0.4

0.6

0.8

G1*

a1, m

Fig. 6.23 Borehole geometrical factor for the symmetrical focusing 6FF40 probe. The
function G1

∗ is plotted as a function of the borehole radius for the parameters in
Table 6.1.
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G�
z ¼ 1+

c2i
pi
+
c2e
pe
� 4ci

1+ pi
� 4ce

pe�1
+

4cice

pe� pi


 ��1

Gz L1, d1ð Þ+ c2i
pi
Gz L2, d2ð Þ



+
c2e
pe
Gz L3, d3ð Þ� 2ci

1+ pi
Gz L4, d4ð Þ� 2ci

1+ pi
Gz L5, d5ð Þ

� 2ce

pe�1
Gz L6, d6ð Þ� 2ce

pe�1
Gz L7, d7ð Þ+ 2cice

pe�pi
Gz L8, d8ð Þ+ 2cice

pe�pi
Gz L9, d9ð Þ

�
(6.76)

Here

Gz L, zð Þ¼ L

2 L=2+ zj j+ L=2�zj jð Þ2

and offsets di are derived in the beginning of this subsection.

The geometric factors of the elementary layer for the 6FF40 and two-coil

probe with L¼40 in. are shown in Fig. 6.25. A geometric factor of the

6FF40 probe has some “horn” effect caused by the positioning of the focus-

ing coils with respect to the elementary layer boundaries (Fig. 6.25).

Profiling curves of γa/γs as function of logging depth for the 6FF40

probe, assuming no influence of the borehole and invasion are presented

in Fig. 6.26. Two cases are shown: H¼6.67 ft and H¼13.33 ft, which,

respectively, correspond to H/L1¼2 and H/L1¼4. For comparison, the

dashed and dotted lines show responses for a two-coil probe with L¼40 in.
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One can see that 6FF40’s vertical response has a flat part over the bed with

H/L1¼4.

In 1962 Schlumberger developed a dual induction probe (DIL tool),

which contains 6FF40 and a smaller probe to better resolve parameters of

the invasion zone. The dual induction tool (tools DIT-D and DIT-E) is

shown in Fig. 6.27.
Evolution of Multicoil Focusing Probes
The dual induction system with two focusing probes was the first step

towards the development of more general multicoil induction arrays. The

6FF40 and the dual induction probes had a long and continuing success, pro-

viding both deep depths of investigation and good vertical resolution. How-

ever, with time these tools were unable to satisfy all the needs of the industry,

which required greater depth of investigation in the presence of large inva-

sion. Moreover, the industry also desired tools capable of resolving thin beds

with the thickness down to 0.3–0.6 m. To meet the needs of the industry,

Schlumberger (AIT) and Western Atlas (HDIL) developed array induction

tools, which were comprised of plurality of the tree-coil probes.

Both AIT and HDIL generate resistivity logs from measurements made

at several different depths of investigation ranging from several to tens of
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inches. The differences between the curves enable characterization of the

invaded zone and determination of the deep formation resistivity.

6.5 CORRECTIONS OF THE APPARENT CONDUCTIVITY

Focusing probes are designed to remove influence of the borehole
and invasion zone and measure formation conductivity. However, some

influence of these parts of a medium remains; correspondingly, the apparent

conductivity differs from the conductivity of a formation. In most cases,

there is an influence of medium (so-called shoulders), located above and

beneath a bed, especially if their conductivity is greater than that of a

bed. Also a displacement of a probe from the borehole axis causes a change

of an apparent conductivity. In addition, function γa is equal to conductiv-

ity of a uniform medium only in the absence of skin effect, which in reality

is always present. Below, we describe some approximate methods (correc-

tions), which allow one to take into account the influence of these unde-

sirable factors.

6.5.1 Skin Effect Corrections
As previously discussed, the skin effect increases with the probe length, for-

mation conductivity, and frequency. Because measured signal Ξ is propor-

tional to the frequency, we face two opposing tendencies: on one hand, it is

useful to increase the frequency to generate a larger signal and improve ver-

tical response; on the other hand, it is attractive to use a lower frequency to

minimize the skin effect and benefit from the simplicity of the low-

frequency approximation. To meet these opposing requirements the

multicoil induction probes are equipped with the option of selecting a fre-

quency, for example, 10, 20, and 40 kHz.Moran suggested a method to cor-

rect for the skin effect, assuming that the measured signal is caused only by

currents in a formation. To make a correction, he used an apparent conduc-

tivity curve in a uniform medium (Fig. 6.28.) A horizontal axis depicts the

corrected value of conductivity, while the y-axis is the apparent conductiv-

ity. By drawing a horizontal line, corresponding to a measured value of γa,
one may find the point of intersection with the curve γa¼ f γð Þ and perpen-
dicular from this point to the x axis gives a corrected conductivity. As one

can see in Fig. 6.28, the skin effect is practically negligible for formations

with conductivity lower than 0.1 S/m. But at conductivity of 1.0 S/m, it

becomes quite visible and, for the two-coil probe, leads to more than

20%, 35%, and 56% error at 10, 20, and 40 kHz, correspondingly.
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A similar curve for the 6FF40 probe is shown in Fig. 6.29, and, as pointed

out earlier, the skin effect here is larger than for the corresponding main

40-in. two-coil probe. The increased skin effect is caused by deeper pene-

tration of the field into the formation. In a medium with high conductivity,

this correction method may give two values of corrected conductivity. For

example, if the apparent conductivity for the probe 6FF40 at a frequency of

20 kHz is equal to 1 S/m, it may correspond either to formation resistivity of

0.7 ohm-m or 0.125 ohm-m. In order to avoid such ambiguity, it is neces-

sary either to use a lower frequency or combination of several frequencies.

In the case of 6FF40, instead of the graphical approach, the approximate

equation

log γcorrecteda ¼ log aγað Þ+ abγa (6.77)

can be used. Here, coefficients a¼ 1:0899 and b¼ 0:000135 are chosen to

provide an exact conductivity reading of 6FF40 in 500 mS/m formation.

The apparent conductivities in this equation are expressed in mS/m. The

correction technique described above is applied only if an influence of



10 kHz

20 kHz

40 kHz

0.001

0.01

0.1

10

1

Formation conductivity (S/m)
0.001 0.01 0.1 1 10

A
pp

ar
en

t c
on

du
ct

iv
ity

 (
S

/m
)

Fig. 6.29 Apparent conductivity for the 6FF40 probe as a function of the conductivity of
a uniform formation.

224 Basic Principles of Induction Logging
“shoulders” is negligible. This limitation motivated development of alterna-

tive correction techniques. They are valid in a uniform and nonuniform

medium, provided that the low frequency signal can be described by only

two terms of the series for the both quadrature and in-phase components.

The corrections rely on the fact that the second terms for both components

are equal to each other. For instance, as follows from Eqs. (5.14) and (5.15)

for a two-coil probe in a uniform medium, we have

QB�
z�

μ0MT

2πL3

γμ0L
2

2
ω� γμ0L

2ð Þ3=2
3 2ð Þ1=2

ω3=2 +⋯

( )
(6.78)

InB�
z�

μ0MT

2πL3
1� γμ0L

2ð Þ3=2
3 2ð Þ1=2

ω3=2⋯

( )
(6.79)

The first term of the quadrature component (Eq. 6.78) corresponds to

the secondary signal in geometrical factor theory, while the first term of

the in-phase component (Eq. 6.79) represents the primary field, which is
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compensated in all multicoil probes. Because second terms are the same and

amulticoil probemeasures both quadrature and in-phase components, a skin

effect correction can be made by subtracting the in-phase component from

the quadrature component. This technique was first used in the dual induc-

tion tool, which does measure both components.

Next, consider one more approach allowing for reduction of the skin

effect. Let us modify (6.78) and keep only the first two terms:

QB�
z

4πL

ωμ20MT

� γ� γμ0L
2ð Þ1=2

3 2ð Þ�1=2
γω1=2 (6.80)

As follows from Eq. (6.36), the left-hand side of this equation is the mea-

sured apparent conductivity. By rewriting this equation for two frequencies,

we receive

γa f1ð Þ� γ� γμ0L
2ð Þ1=2

3 2ð Þ�1=2
γ 2πf1ð Þ1=2 (6.81)

γa f2ð Þ� γ� γμ0L
2ð Þ1=2

3 2ð Þ�1=2
γ 2πf2ð Þ1=2 (6.82)

Multiplying Eq. (6.81) by
ffiffiffi
f2

p
and Eq. (6.82) by

ffiffiffi
f1

p
and subtracting one

from another, we obtain the following skin effect correction formulae:

γcorrecteda ¼ γa f1ð Þ ffiffiffi
f2

p � γa f2ð Þ ffiffiffi
f1

pffiffiffi
f2

p � ffiffiffi
f1

p (6.83)

If measurements are performed at more than two frequencies, one can

apply a least-squares technique and further improve accuracy of this

approach.

6.5.2 Borehole Correction
Usually the focusing probe allows one to remove influence of the borehole,

but if its radius is large and conductivity greatly exceeds that of the forma-

tion, γm=γf > 100, an influence of the borehole should be taken into

account. Because the borehole diameter and its conductivity are known

from independent measurements, it is easy to make an approximate correc-

tion. Indeed, as follows from Eq. (6.29),

γa¼ γmGb + γf 1�Gbð Þ (6.84)
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where γm and γf are the mud and formation conductivity, respectively, and

Gb is the geometric factor of the borehole. Thus

γcorrected ¼ γa� γmGb

1�Gb

(6.85)

In the case of the 6FF40 probe Gb is typically smaller than 0.01, and,

Eq. (6.85) is reduced to

γcorrected � γa� γmGb (6.86)
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Chapter 6 describes Henri Doll’s theory of induction logging, which

provides a good approximate representation of the field at low induction

numbers when the skin effect is negligible. In this chapter, we shall consider

two other approximations that in many cases can greatly simplify determi-

nation of the field, while still taking into account the skin effect. We start

with the so-called hybrid method [1].
7.1 PHYSICAL PRINCIPLES OF THE HYBRID METHOD

As was shown earlier, the geometrical factor theory is based on the
assumption that the secondary currents in a conducting medium are deter-

mined solely by the electric field generated by the time-varying primary

magnetic field of the transmitting coil. This assumption implies that the

interaction between secondary currents, which generates the skin effect,

is neglected. As a result, the secondary currents have only a quadrature

component. However, the analysis of the field has demonstrated that
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228 Basic Principles of Induction Logging
the magnitude of the actual secondary currents in a uniform medium

(Chapter 5) decreases faster than predicted by the geometrical factor theory.

The same behavior is observed in a more complicated medium—the

values of the quadrature component of the magnetic field are smaller than

those calculated from the geometrical factor theory. There was definitely

a need for approximation that would take into account the skin effect while

still avoiding time-consuming numerical calculations. One so-called hybrid

method was developed in Russia in 1963 [1], and is still sometimes used in

solving forward and inverse problems. In this section, we describe this

approximate method, which under certain conditions accurately accounts

for the skin effect. The hybrid method is quite simple. Let us represent

the currents in the space around the induction probe as a sum of two parts,

namely: (a) currents in an “internal” region, where the induction probe is

located; and (b) currents in an “external” region. For simplicity, we assume

that the conductivity of the external region is constant. Suppose that two

conditions are valid:

(1) The induced currents in the internal region are shifted in-phase by

90 degrees with respect to the dipole current, and their density depends

only on the conductivity of the medium at a given location. In other

words, mutual interaction between currents induced within this region

is practically absent, and they are induced only by the primary vortex

electric field of the magnetic dipole.

(2) The induced currents in the external area do not depend on the resis-

tivity within the internal area; thus the interaction between currents

located in these two different areas can be ignored. This condition

emphasizes the fact that the skin effect manifests itself at relatively large

distances from the source.

7.2 DERIVATION OF THE EQUATION FOR THE FIELD

Proceeding from these assumptions we derive simple expressions for
the quadrature and in-phase components of the magnetic field. Let us

represent the quadrature component of the magnetic field as a sum of the

magnetic fields caused by currents in the internal and external areas:

QB�
z ¼QBi�

z +QBe�
z

or

Qb�z ¼Qbi�z +Qbe�z (7.1)
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where the superscripts “i” and “e” denote the components of the magnetic

field caused by currents within the internal and external areas, respectively.

In Eq. (7.1), all terms are normalized by the field in free space

B 0ð Þ
z ¼ μ0M

2πL3
Here,M is the magnetic moment of the source coil, and L is the distance

between the source and receiving coil of a two-coil probe. Results of

Chapter 6, as well as the first assumption above, enable us to represent

the magnetic field Qbi�z as

Qbi�z ¼ωμ0L
2

2
γia (7.2)
where γa
i is the apparent conductivity for the internal area. In accordance

with Eq. (6.17), the apparent conductivity is related to the actual conduc-

tivity as:

γia¼ γaGA + γBGB + γCGC +⋯+ γFGF (7.3)
Here, GA,GB,GC, and GF are geometric factors of homogeneous

regions in the internal area with corresponding conductivities γA, γB,γC,
and γF. First consider the special case when the conductivities of the internal
and external areas are equal to each other and we have a uniform medium.

Then, the field can be presented in the form:

Qbun�z γeð Þ¼Qbi�z γeð Þ+Qbe�z γeð Þ (7.4)
This last expression follows from the assumption that the field in the exter-

nal area does not depend on the conductivity of the internal area. In Eq. (7.4),

Qbz
un(γe) is the quadrature component of the field in a uniformmediumwith

the conductivity of the external area, γe, andQbz
i (γe) is the quadrature com-

ponent of the field caused by currents of the internal area whose conductivity

is also γe. As follows from the first assumption, this part of the field can be

expressed through the geometric factor of the internal area, Gi;

Qbi�z γeð Þ¼ωμ0L
2

2
γeGi (7.5)
Therefore, for the quadrature component of the field caused by currents

in the external area we have:

Qbe�z γeð Þ¼Qbun�z γeð Þ�Qbi�z γeð Þ¼Qbun�z γeð Þ�ωμ0L
2

2
γeGi (7.6)
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Correspondingly, for the total quadrature component of the field in a

nonuniform medium, we obtain:

Qb�z¼
ωμ0L

2

2
γia +Qbun�z γeð Þ�ωμ0L

2

2
γeGi

¼Qbun�z γeð Þ+ ωμ0L
2

2
γia� γeGi

� �
(7.7)

where γa
i is given by Eq. (7.3). Thus, according to the hybrid method, to

determine the field it is sufficient to know the geometric factors of the

corresponding parts of the internal area and the field of the magnetic dipole

in a uniformmediumwith the conductivity of the external area, γe. The field
in a uniformmedium is well known, while calculation of geometrical factors

is a simple matter, which for some typical cases was already addressed. The

first term of the right-hand side in Eq. (7.7) accounts for the skin effect in a

uniform medium with conductivity γe. It is proper to emphasize again that

Eq. (7.7) corresponds to the special case of the uniform external medium,

although later this limitation will be dropped and the method applied to

more general cases.

Now let us show that as the induction number p¼L=δ decreases,

Eq. (7.7) describes the field derived from the geometrical factor theory.

Here, L is again the length of the two-coil probe and δ is the skin

depth in the external area. As was shown in Chapter 5, the quadrature com-

ponent of the magnetic field in a uniform medium can be expressed in the

form:

QBun�
z

B0
z

¼Qbun�z γeð Þ¼ γeμ0ωL
2

2
, if p≪ 1 (7.8)

Substitution of Eq. (7.8) into Eq. (7.7) gives:

Qb�z ¼
ωμ0L

2

2
γeGe + γAGA + γBGB +⋯+ γFGF½ � (7.9)

where Ge is the geometrical factor of the external area. The last equation

coincides with the expression derived by Doll. Now using the relation

between the apparent conductivity and the field we have:

γa¼
2

ωμ0L2
Qb�z ¼ γuna + γia� γeGi
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or

γa
γe
¼ γuna

γe
+
γia
γe
�Gi¼ γuna

γe
+
γA
γe
GA +

γB
γe
GB +⋯+

γF
γe
GF �Gi (7.10)

Unlike geometrical factor theory, the hybrid method predicts a value for

the in-phase component of the field caused by the secondary currents.

In fact, because the currents in the internal area do not contribute to the

in-phase component, we can write:

Inb�z ¼ Inbun�z γeð Þ (7.11)

In particular, for small values of the induction number we have:

Inb�z� 1�2

3
p3e (7.12)

Thus we obtained an in-phase component of the field that is the same as

if the whole medium was uniform. Expressions (7.7), (7.11), describing

in-phase and quadrature components, can be combined into the complex

field:

b�z ¼ bun�z γeð Þ+ iωμ0L
2

2
γia� γeGi

� �
(7.13)

Next, we derive expressions for the field in some typical geo-electrical

models.

7.2.1 Media With Cylindrical Boundaries
First, suppose that there is no invasion zone (Fig. 7.1A). Then, from

Eq. (7.13) we obtain:

Qb�z ¼Qbun�z γ2ð Þ+ ωμ0L
2

2
γ1� γ2ð ÞG1 αð Þ (7.14)

and

Inb�z¼ Inbun�z γ2ð Þ
Correspondingly,

γa
γ2
¼ γuna γ2ð Þ

γ2
+

γ1
γ2
�1

� �
G1 αð Þ (7.15)

Here, γ1, γ2 are conductivities of the borehole and formation, respec-

tively; G1 is the geometric factor of the borehole; α¼L=a1 is the ratio of



(A) (B) (C) (D)

Fig. 7.1 Medium with (A) one and (B) two cylindrical boundaries; (C) medium with one
cylindrical and two horizontal boundaries; (D) mediumwith two cylindrical and two hor-
izontal boundaries.

232 Basic Principles of Induction Logging
the length of the two-coil probe and borehole radius; and Qbun�z γ2ð Þ and
γa
un(γ2) are the quadrature component of the magnetic field and the

apparent conductivity in a uniform medium with conductivity γ2. As
follows from Eq. (7.14), to determine the field, we have to know the

field in a uniform medium and the geometric factor of the borehole.

In Chapter 8, we show that the use of Eq. (7.14) is much simpler than

a rigorous numerical solution of the corresponding forward problem.

Next, suppose that there is also an invasion zone, which, together with

the borehole, forms the internal area (Fig. 7.1B). Then by an analogy

with Eq. (7.14), we have:

Qb�z ¼Qbun�z γ3ð Þ+ ωμ0L
2

2
γ1� γ3ð ÞG1 +

ωμ0L
2

2
γ2� γ3ð ÞG2 (7.16)

Inb�z¼ Inbun�z γ3ð Þ (7.17)
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where G1 and G2 are the geometrical factors of the borehole and invasion

zone, respectively. Of course, in the range of the small induction number,

the in-phase component is:

Inb�z� 1�2

3
p33 (7.18)
7.2.2 Media With Borehole and a Layer of Finite Thickness
In this more general case (Fig. 7.1C), the borehole is still the internal region

and a two-layered medium with horizontal boundaries is treated as the

external area. Applying the same approach, we obtain:

Qbz¼Qb�z γ2, γ3ð Þ+ ωμ0L
2

2
γ1� γ2ð ÞG�

1 +
ωμ0L

2

2
γ1� γ3ð Þ G1�G�

1

� �
(7.19)

Here, Qb�z γ2, γ3ð Þ is the quadrature component of the magnetic field in

the absence of the borehole when conductivity of the bed and surrounding

medium are γ2 and γ3, respectively; G1 is the geometric factor of the bore-

hole, andG�
1 is the geometric factor of the part of borehole that is contained

within the bed. For the in-phase component we have:

Inb�z¼ Inb�z γ2, γ3ð Þ (7.20)

Later we demonstrate that in the range of small induction numbers,

Eq. (7.20) becomes:

Inb�z� 1�2

3
p33 (7.21)

In this case, the in-phase component of the secondary field is defined by

conductivity γ3 surrounding the bed. Note that it is a simple matter to

generalize Eq. (7.19) for the case in which the media above and beneath

the bed have different conductivities.
7.2.3 Media With Horizontal Bed and Invasion
Now suppose that the bed has an invasion zone (Fig. 7.1D). By analogy with

the previous case, we have for the quadrature component:
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Qb�z ¼Qb�z γ3, γ4ð Þ+ ωμ0L
2

2
γ1� γ3ð ÞG�

1

+
ωμ0L

2

2
γ2� γ3ð ÞG��

1 +
ωμ0L

2

2
γ1� γ4ð Þ G1�G�

1

� � (7.22)

and

Inb�z¼ Inb�z γ2, γ3ð Þ (7.23)

for the in-phase component. As shown earlier, we can expect that at the

range of small parameter

Inb�z� 1�2

3
p34 (7.24)

Here,Qb�z γ3, γ4ð Þ is the quadrature component of the field in a medium

with only two horizontal boundaries;G�
1 is the geometrical factor of the part

of the borehole against the invasion zone, and G��
1 is the geometrical factor

of the invasion zone, which can be presented as:

G��
1 ¼G�

1 a2ð Þ�G�
1 a1ð Þ:

Some comments:

1. The method described in this section represents a natural extension

of Doll’s theory and is called the hybrid method because the concepts

of both geometric factor and skin effect are used in derivations.

2. The hybrid method is much simpler to apply than rigorous numerical

calculations, and is therefore useful for quick estimates of the field in

typical geo-electrical scenarios.

3. This hybrid method is valid in the range of frequencies for which the

borehole and invasion zone do not contribute to the in-phase

component of the field. In particular, in the case of cylindrical bound-

aries, the in-phase component is defined only by the conductivity of the

formation.

4. The derived equations also enable us to formulate conditions when geo-

metrical factor theory can be applied with sufficient accuracy. As was

shown in this section, the quadrature component of the field can be

written in the form:

Qb�z � p2 γ1ð Þf γi
γ1
,Gi

� �
�2

3
p3 γsð Þ (7.25)
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Here, γ1 is conductivity of the borehole, γi characterize the conduc-
tivity of an invasion zone, formation bed, and a surrounding medium; γs is
the conductivity of the whole space surrounding a bed.When conductiv-

ities above and below the bed are different from each other, γs corresponds
to the largest value of conductivity. Functions Gi describe geometric

factors of the borehole, invasion zone, and formation. Thus, for each

model of a medium, the geometrical factor theory can be applied if
p2 γ1ð Þf γi
γ1
,Gi

� �
≫

2

3
p3 γsð Þ (7.26)
For instance, in a uniform medium we obtain the known conditions
p≪1
since f
γi
γ1
,Gi

� �
¼ 1 and γ1¼ γs ¼ 1.

5. In accordance with Eqs. (7.24), (7.25), the second term of the quadrature

component coincides with the in-phase component of the secondary

field. Correspondingly, by measuring the in-phase component, we

can correct for the skin effect and determine the first term of the quad-

rature component (7.25) (Chapter 6).

6. Limits of the hybrid method were established by conducting rigorous

numerical calculations and comparing results versus approximate solu-

tions. The comparison was carried out for the layered formations with

cylindrical boundaries and it was shown that for some typical cases, a

satisfactory accuracy can be reached if

f < 0:2�ρmin= μ0L
2

� �
where ρmin is theminimal resistivity comprising themedium andL�1 m.

Themethodmight be useful in studying focusing systems because the last

inequality coincides with conditions favorable for application of focusing

probes.
7.3 A VOLUME INTEGRAL EQUATION AND ITS LINEAR
APPROXIMATION
The geometrical factor theory and the hybrid method are derived

from specific assumptions about the distribution of induced currents in a

medium. In this section we demonstrate that both approaches follow from
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the first (linear) approximation of the integral equation for the electrical

field. To derive an integral equation for the electric field, we assume that

a vertical magnetic dipole is located on the borehole axis and the medium

is axially-symmetric. The time-variable moment of magnetic dipole creates

a magnetic field, which, in accordance with Faradey’s law, produces primary

vortex electric field E�
0. Because of the axial symmetry, the electric field does

not intersect boundaries between media of different conductivities and,

therefore surface charges are absent. As a result, the electromagnetic field

is generated solely by the primary source and induced currents in the

medium.

The density of the induced current is determined by the Ohm’s law:

j� ¼ γ E�0
0 +E�

s

� �
(7.27)

Here, E�
0 and E

�
s are the complex amplitudes of the primary and second-

ary electric fields and γ is conductivity at a given point. Induced currents and
the primary electric field have only the azimuthal component jφ, which dras-

tically simplifies the derivation of the integral equation. Visually, we can

imagine the whole space filled with an infinite set of elementary current

tubes of circular shape, whose centers are located on the borehole axis. Each

tube creates the electric field at the point of observation p equal to:

dE�
sφ pð Þ¼ iωμ0G p, qð Þj�φ qð ÞdS (7.28)

Here dS is the cross-sectional area of the elementary tube, G(p,q) is

a Green’s function that depends on geometrical parameters and can be

presented in explicit form; while j�φ qð Þ is the complex amplitude of the total

current density at the point q. Performing integration of Eq. (7.28) over the

entire cross section occupied by current tubes, we receive:

E�
sφ pð Þ¼ iωμ0

ð
S

G p, qð Þj�φ qð ÞdS

or

E�
sφ pð Þ¼ iμ0ω

ð
S

γ qð ÞE�
0φ qð ÞG p, qð ÞdS+ iωμ0

ð
S

γ qð ÞE�
sφ qð ÞG p, qð ÞdS (7.29)

where integration is performed over the region (r > 0 and �∞< z<∞).

This is a Fredholm integral equation of the second kind for the secondary
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field E�
sφ qð Þ. The equation connects the secondary electric field at any point

in the medium with the electric field of the primary source and induced

currents. Let us rewrite Eq. (7.29) in the form:

E�
sφ pð Þ¼F pð Þ+ iωμ0

ð∞
�∞

dz

ð∞
0

γ qð ÞG q, pð ÞE�
sφ qð Þdr (7.30)

where

F pð Þ¼ iωμ0

ð∞
�∞

dz

ð∞
0

γ qð ÞE�
0φ qð ÞG p, qð ÞdS (7.31)

is the secondary electric field created by the primary field E�
0φ. By discarding

the second term in Eq. (7.30), we arrive at the first approximation of the

volume integral equation

E�
sφ pð Þ�F pð Þ¼ iωμ0

ð∞
�∞

dz

ð∞
0

γ qð ÞE�
0φ qð ÞG p, qð ÞdS (7.32)

It is essential that the integrand on the right-hand side of this equation is

known, so that Eq. (7.32) represents a formula for calculating an approxima-

tion to the secondary electric field. By disregarding the second term in

Eq. (7.30), we assume that the induced currents arise only due to the primary

field in free space, which exactly coincides with the main assumption of

geometrical factor theory. Thus Doll’s theory represents a first order approx-

imation in solving the integral equation (7.29).

Although the electric field on the axis of the borehole is equal to zero, the

electromotive force Ξ� arising in a horizontal loop of a finite size r can be

estimated as

Ξ� ¼ 2πrnE�
φ

where n is the number of turns in the receiver coil.

The approximation described by Eq. (7.32) implies that induced currents

are caused only by the primary electric field, and that the skin effect is absent,

because no interaction between induced currents is taken into account.

Inasmuch as these assumptions are made regardless of the distance from

the primary source, it is natural to expect that the function F(p) correctly

describes the field at sufficiently low frequencies only when the probe is



238 Basic Principles of Induction Logging
insensitive to remote parts of a medium where the skin effect is always

present.

7.4 A SURFACE INTEGRAL EQUATION
FOR THE ELECTRIC FIELD
Eq. (7.30) is not very convenient to use because of numerical compli-

cations caused by the infinite limits in r and z directions. Furthermore, it

does not allow derivation of simple asymptotic expressions that take into

account the skin effect. To facilitate calculation of the field and obtain more

accurate expression valid at any frequencies, we derive an integral equation

along the surfaces located at the fixed distances of r.
7.4.1 Integral Equation for Cylindrically Layered Formation
We start by assuming that there is no invasion zone and that the medium

surrounding the borehole is uniform. Then, proceeding from Green’s for-

mula we obtain an integral equation for the component E�
ϕ in which the

integration is performed over the cross section of the borehole only. The

vector electric field E� at any regular point of a homogeneous medium

satisfies the vector Helmholtz equation:

r2E� + k2E� ¼ 0 (7.33)

Let us represent the electric field as a sum of two components:

E� ¼E�
0 +E�

1 (7.34)

where E�
0 is a function that obeys the following equation outside and inside

the borehole:

r2E�
0 + k22E

�
0 ¼ 0 (7.35)

except at location of the dipole, and describes the electric field of a magnetic

dipole in a uniform medium with the conductivity of the formation γ2. The
field E�

0 consists of the field of the dipole source in free space and the field of

the currents induced in the uniform medium. The second term E�
1 in

Eq. (7.34) appears because of the presence of the borehole with conductivity

γ1 and radius a. Substituting Eq. (7.34) in Eq. (7.35), we find that the field E
�
1

satisfies the equation

r2E�
1 ¼�k2E�

1�k2E�
0�r2E�

0 (7.36)
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Taking into account Eq. (7.35) for the region of the formation and the

borehole we have:

r2E�
1 ¼�k22E

2
1, if r � a (7.37)

and

r2E�
1 ¼�k21E

�
1 + k22�k21

� �
E�
0, if r	 a (7.38)

Unlike the total field E�, the functions E�
0 and E

�
1 do not characterize the

actual electric field in the medium, and application of the Biot-Savart law

directly to the terms γ1E�
0, γ2E

�
0 and γ1E�

1, γ2E
�
1 is not straightforward. At

the same time, by applying the Biot-Savart law for the total current densities

γ1 E�
0 +E�

1

� �
and γ2 E�

0 +E�
1

� �
we may calculate the magnetic field. By definition, the complex amplitudes

of the electric field are

E�
0 ¼E�

0iφ and E�
1 ¼E�

1iφ (7.39)

where iϕ is a unit vector directed along the φ-coordinate line. Next, we

introduce a vector function P� ¼P�iϕ, which along with its derivative, is

a continuous function and satisfies the equation

r2P� + k22P
� ¼ 0 (7.40)

except at the point p, at which the field is determined. Also at this point the

function P� ¼P�iϕ has a singularity of logarithmic type. Consider the

expression

P�r2E�
1�E�

1r2P�

It is obvious that

P�r2E�
1 ¼P�iϕ iϕr2E�

1 +E�
1r2iϕ

� �
By analogy,

E�
1r�P� ¼E�

1iφ iφr2P� �P�r2iφ
� �

Thus, we have proved that

P�r2E�
1�E�

1r2P� ¼P�r2E�
1 �E�

1r2P� (7.41)
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The next step is to use the two-dimensional Green’s formula and derive

an integral equation in the formwe are interested in.Wemay notice that the

anomalous field E�
1 is a continuous function of a point of integration q, but

the function P(p,q) depends on both the point q and an observation point p

where the electric field is determined.

The Green’s formula is given as:ð
S

φr2ϕ�ϕr2φ
� �

dS¼
þ
l

φ
@ϕ

@n
�ϕ

@φ

@n

� �
dl

Here, functions ϕ and φ are continuous at any point of the surface S,

and l is a contour surrounding the surface. The normal n is directed outward

at the area of integration. To apply this formula to functions E1 and P, we

have to surround an observation point p by a small circle lp, because the latter

has a singularity at the point p. Then, for the borehole and formation we

have:ð
S1

ðP�r2E�
1 �E�

1r2P�ÞdS¼
þ
l0

P�@E
�
1

@n
�E�

1

@P�

@n

� �
dl

+

þ
l

P�@E
�
1

@r
�E�

1

@P�

@r

� �
dl if r < a

(7.42)

andð
S2

P�r2E�
1 �E�

1r2P�� �
dS¼�

þ
l

P�@E
�
1

@n
�E�

1

@P�

@n

� �
dl if r> a (7.43)

Here, l is the line parallel to the z-axis at r ¼ a that corresponds to the

radius of the borehole, and lp is a small circular contour around the point

p (Fig. 7.2); @=dn is the normal derivative. The negative sign at the right-

hand side of Eq. (7.43) is selected because of the opposite direction along

the line l in integrals of Eqs. (7.42), (7.43). As follows from Eqs. (7.37),

(7.38):

P�r2E�
1 �E�

1r2P� ¼ 0, if r> a

and

P�r2E�
1 �E�

1r2P� ¼ k22�k21
� �

E�
1P

� + k22�k21
� �

E�
0P

�, if r < a



Fig. 7.2 Integration contours in Eq. (7.42).
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From continuity of functions E and P and their derivatives at the bore-

hole boundary, from the last two equations we have:

k22�k21
� �ð

S1

E�
1P

�dS+ k22�k21
� �ð

S1

E�
0PdS¼

þ
lp

P�@E
�
1

@n
�E�

1

@P�

@n

� �
dl (7.44)

To proceed in deriving an equation for the anomalous field E1 for any

point p in the borehole, let us define the function

G¼ iωμ0P

as the electric field caused by the circular unit current with radius rp. Later we

demonstrate that it can be presented as:

iωμ0
π

Irk

ð∞
0

I1 rkυð ÞK1 rυð Þcosmzdm if r � rp

iωμ0
π

Irk

ð∞
0

I1 rυð ÞK1 rkυð Þcosmzdm if r 	 rp
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Correspondingly, in place of Eq. (7.44), we have:

γ2� γ1ð Þ
ð
S1

E�
1 qð ÞG� q, pð ÞdS+ γ2� γ1ð Þ

ð
S1

E�
0 qð ÞG� q, pð ÞdS

¼ 1

iωμ0

þ
lp

G�@E
�
1

@n
�E�

1

@G�

@n

� �
dl (7.45)

Next consider the integral on the right-hand side of the last equation

when point q of the contour lp approaches an observation point p and radius

r of the circle tends to zero. Taking into account that radius vector r and

normal n have opposite directions we obtain:þ
lp

G�@E
�
1

@n
�E�

1

@G�

@n

� �
dl¼

þ
lp

E�
1

@G�

@r
�G�@E

�
1

@r

� �
dl: (7.46)

In approaching the current circle, the electric fieldG� is defined only by
the current element located in the vicinity of the point q. Inasmuch as the

distance between the point q and this element tends to zero, it can be treated

as infinitely long current line. It is well known [2] that the electric field of

such source placed in a uniform medium is

G� ¼ iωμ0
2π

K0 k2rð Þ (7.47)

where K0(k2r) is a modified Bessel function of the second kind, and

K0 k2rð Þ!� ln r if r! 0

Bearing in mind that the field E�
1 and @E�

1=@r have finite values and

@G�

@r
!� iωμ0

2πr
if r! 0

the contour integral in Eq. (7.45) can be replaced with �E�
1 pð Þ. Thus, this

equation becomes

E�
1 pð Þ¼ γ1� γ2ð Þ

ð
S1

E�
1 qð ÞG� q, p, k2ð ÞdS+ γ1� γ2ð Þ

ð
S1

E�
0 qð ÞG� q, p, k2ð ÞdS

(7.48)

The latter is the Fredholm integral equation of the second kind, where

integration is performed over the region of the borehole only. Next suppose
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that there is an invasion zone with conductivity γ2, surrounded by the for-

mation with conductivity γ3. The function G� has the same meaning as

before and satisfies the equation

r2G� + k22G
� ¼ 0 (7.49)
In accordance with Eqs. (7.37), (7.38), for the anomalous field E�
1 we have:

r2E�
1 ¼�k21E

�
1 + k23�k21

� �
E�
0 if 0< r < a1

r2E�
1 ¼�k22E

�
1 + k23�k22

� �
E�
0 if a1< r< a2

r2E�
1 ¼�k23E

�
1, if r> a2

(7.50)
where a1 is the radius of the borehole and a2 is the outer radius of the inva-

sion zone. Applying Green’s formula to the regions of the borehole, the

invasion zone, and the formation, respectively, we have the following

equations:ð
S1

G�r2E�
1 �E�

1r2G�� �
dS¼�2πE�

1 pð Þ+
ð
l1

G�@E
�
1

@r
�E�

1

@G�

@r

� �
dl

(7.51)ð ð � �� �

S2

ðG�r2E�
1 �E�

1r2G�ÞdS¼
l1

�G�@E1

@r
+E�

1

@G

@r
dl

+

ð
l2

G�@E
�
1

@r
�E�

1

@G�

@r

� �
dl

(7.52)

ð ð� �

S3

G�r2E�
1 �E�

1r2G�� �
dS¼

l2

�G�@E
�
1

@r
+E�

1

@G�

@r
dl (7.53)

Here, l1 and l2 are straight lines located at the boundaries between the

borehole region S1 and the invasion zone S2 and between the invasion zone

and formation region S3, respectively. Now taking into account Eq. (7.46)

and performing a summation of Eqs. (7.51)–(7.53), we obtain an integral

equation that includes two surface integrals over half cross sections of the

borehole and invasion zone:

E�
1 pð Þ¼ γ1� γ3ð Þ

ð
S1

E�
0 qð ÞG� k3, p, qð ÞdS+ γ2� γ3ð Þ

ð
S2

E�
0 qð ÞG� k3, p, qð ÞdS

+ γ1� γ3ð Þ
ð
S1

E�
1 qð ÞG� k3, p, qð ÞdS+ γ2� γ3ð Þ

ð
S2

E�
1 qð ÞG� k3, p, qð ÞdS

(7.54)
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It is clear that the integral equations (7.44), (7.54) coincide with each

other if k1¼ k2 or k2 ¼ k3. Thus, we derived integral equations for two cases

when the solution of the boundary value problem can be obtained in explicit

form. In both cases the Green’s function corresponds to a uniform medium

with the conductivity of the formation.

7.4.2 Integral Equation for Horizontally Layered Formation
Next we derive the integral equation for the case in which the

formation with conductivity of γ2 has a finite thickness. Let us introduce

a new Green’s function that, outside the source region, is a solution of

the equations

r2G� + k22G
� ¼ 0 if z1 < z< z2

r2G� + k23G
� ¼ 0 if z< z1 or z> z2

(7.55)

where z1 and z2 are the lower and upper boundaries of the layer; k2 and k3
are the wave numbers of the layer and the surrounding medium, respec-

tively. Also assume that the function G� ¼G�iϕ and its first derivative with

respect to z are continuous at the interfaces between the formation and the

adjacent medium. From the physical point of view, the function G� repre-
sents the electric field of a circular filament in a horizontally layeredmedium,

and it can be expressed in an explicit form as an integral. As before, we

represent the total electric field as a sum:

E� ¼E�
1 +E�

0 (7.56)

where E�
0 ¼E�

0iϕ the electric field of the magnetic dipole in the layered

medium, andE�
1 ¼E�

1iϕ is the secondary electric field caused by the presence

of the borehole. Therefore, in the formation layer and in the adjacent media,

respectively, we have:

r2E�
0 ¼�k22E0 and r2E�

0 ¼�k23E0 (7.57)

Taking into account Eqs. (7.36), (7.57), we have the following equation

in the formation:

r2E�
1 ¼�k22E

�
1 (7.58)

and in the adjacent medium:

r2E�
1 ¼�k23E

�
1 (7.59)
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In the part of the borehole that is located against the formation layer we

have:

r2E�
1 ¼ k22�k21

� �
E�
1 (7.60)

and in the part of the borehole that is located against the adjacent

medium:

r2E�
1 ¼ k23�k21

� �
E�
1 (7.61)

Correspondingly, the function

G�r2E�
1 �E�

1r2G�

is equal to zero within the formation layer and the surrounding medium.

At the same time, it is equal to

k22�k21
� �

E�
0G

� + k22�k21
� �

E�
1G

�

in the part of the borehole located against the formation layer and to

k23�k21
� �

E�
0G

� + k23�k21
� �

E�
1G

�

in the adjacent medium. Then, applying Green’s formula we obtain an

integral equation for the secondary electric field

E�
1 pð Þ¼ F�

1 pð Þ+ γ3� γ1ð Þ
ð
S2

E1 qð ÞG� p, qð ÞdS

+ γ2� γ1ð Þ
ð
S1

E1 qð ÞG� p, qð ÞdS
(7.62)

Here

F�
1 pð Þ¼ γ3� γ1ð Þ

ð
S2

E�
0 qð ÞG� p, qð ÞdS+ γ2� γ1ð Þ

ð
S1

E�
0 qð ÞG� p, qð ÞdS,

(7.63)

where S1 and S2 are the regions of the borehole located against and outside

the formation layer correspondingly.

The solution of the integral equation (7.62) enables us to determine the

electric field, and therefore the total electric field in the receiver. In the pres-

ence of an invasion zone, the integral equation has the form:
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E�
1 pð Þ¼F�

2 + γ3� γ1ð Þ
ð
S2

E�
1 qð ÞG� p, qð ÞdS+ γ2� γ1ð Þ

ð
S1

E�
1 qð ÞG� p, qð ÞdS

+ γ4� γ2ð Þ
ð
S3

E�
1 qð ÞG� p, qð ÞdS

Here, S3 is the region representing the invasion zone in the formation

with the wave number k2. Also

F�
2 ¼ γ3� γ1ð Þ

ð
S2

E�
0 qð ÞG� p, qð ÞdS+ γ2� γ1ð Þ

ð
S1

E�
0 qð ÞG� p, qð ÞdS

+ γ4� γ2ð Þ
ð
S3

E�
0 qð ÞG� p, qð ÞdS

(7.65)

It is obvious that all previous cases follow from Eqs. (7.64), (7.65).
7.4.3 Integral Equation and the Born Approximation
At the end of the 19th century the mathematician Carl Neumann developed

the theory of integral equations for potential fields and, in particular, con-

structed formal solutions to these integral equations as an infinite series of

terms, which is now called the Neumann series. The first term on the

right-hand side of this series is called the first or linear approximation of

the solution, similar to linear term in a Taylor series expansion of a function.

Before Neumann’s work, the physicist Lord Rayleigh had used the linear

term as a first approximation to the integral equation that describes the scat-

tering of light by small objects. In 1926, Max Born applied this approach in

the approximate solution of integral equations that describe the scattering of

quantum mechanical wave functions, and now it is commonly called the

Born approximation in the physics literature. When applied to our case,

the Born approximation for the field E�
1 is

E�
1 pð Þ�F�

2 pð Þ (7.66)

with F�
2 given by Eq. (7.65). For simplicity, consider the simplest model

with one cylindrical boundary. Then Eqs. (7.64), (7.65) give:

E�
1 ¼ γ2� γ1ð Þ

ð
S1

E�
0 k2, qð ÞG� k2, p, qð ÞdS (7.67)
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In this approximation the sources of the secondary field arise due to the

field E�
0(k2,q) created by a magnetic dipole located in a uniform medium

characterized by the wave number k2. The function G�(p,q,k2) describes
the electric field of a current ring, whose cross section passes through the

point q in the (r,z) plane. The functionE�
0(q,k2) has a very simple expression,

and G�(p,q,k2) can also be expressed with elementary functions. Thus, cal-

culation of the field E�
1 by integration over the borehole region is a relatively

simple task. The situation is not much more complicated in the presence of

an invasion zone. When the formation has a finite thickness, solving the for-

ward problem in the presence of the borehole requires complicated numer-

ical techniques. At the same time the use of Born approximation is much

simpler. Note that when frequencies are relatively low E�
0 can be replaced

by the primary field in a free space withG� describing the field of the current
ring in a free space. For instance, for the case of one cylindrical interface,

instead of Eq. (7.65), we obtain:

E�
1 ¼ γ2� γ1ð Þ

ð
S1

E�
0 qð ÞG� p, qð ÞdS (7.68)

This is the same expression that was derived earlier using the hybrid

method. Finally, replacing the field E�
0( p) in Eq. (7.56) by the first term

of its expansion in series of a small parameter (the induction number), we

arrive at the expression, which corresponds to the geometrical factor theory.

Thus, the geometrical factor theory and the hybrid method are particular

cases of the first approximation of the integral equation (Born approxima-

tion). In conclusion, we note that in a mediumwith only cylindrical bound-

aries, the Born and hybrid approximations require practically the same

computation effort, but in the presence of the horizontal interfaces, the

hybrid method is simpler to apply.

Numerical calculations show that for typical in induction logging fre-

quencies, the hybrid method describes the field with error less than 5%

unless the ratio γ1=γ2	 200. At the same time, the Born approximation is

even better and permits accurate calculations in a wider range of frequencies

and conductivity contrasts.
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We derive an expression for the vertical component of a magnetic field on

the axis of a borehole when the source of the primary field is a vertical

magnetic dipole and the formation has an infinite thickness and several

radial zones. Special attention is paid to the asymptotic behavior of both

quadrature and in-phase components.
8.1 THE BOUNDARY VALUE PROBLEM FOR THE
VECTOR POTENTIAL
In the formulation of the boundary value problem it is

assumed that:
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1. The borehole surrounding the induction probe is uniform and isotropic.

2. The electrical properties of the medium do not change in the direction

parallel to the borehole axis. This means that the top and bottom of the

bed are significantly distant from the probe.

3. The borehole shape is an infinitely long circular cylinder.

4. Amedium located between the borehole and the bed represents a system

of coaxial cylindrical layers with the axis coinciding with the

borehole axis.

5. The transmitter and receiver coils of the probe are located on the

borehole axis, and they can be considered dipoles because they are small

compared to both the probe length and the borehole radius.

Thus, the boundary problem is formulated as follows. The medium

comprises a set of (n�1) coaxial cylindrical surfaces with radii

a1,a2,a3,…,an�1, separating n isotropic cylindrical layers having conductiv-

ity γi i¼ 1,…,nð Þ. Magnetic permeability and dielectric constant are usually

assumed to be equal to those in a free space, μ0,ε0. The vertical magnetic

dipole is located at the borehole axis and its moment is a sinusoidal function

of time, causing a primary electrical field to have only an azimuthal compo-

nent Eϕ
(0). The currents, induced in the horizontal planes of the medium, also

have only an azimuthal component. Therefore, the vector lines of the cur-

rents are circles with a center on the borehole axis, and the corresponding

boundary value problem can be solved by using only one component of the

vector potential. As shown in Chapter 2, for the complex amplitude of the

vector potential A�
z, we have:

r2A�
z + k2A�

z ¼ 0 (8.1)

and

E� ¼ curlA�, iωB� ¼ k2A� + gradivA� (8.2)

Here k is a wave number

k2¼ iγμ0ω and k¼ iγμ0ω

2

� �1=2

1 + ið Þ¼ 1+ ið Þ
δ

(8.3)

where δ is the skin depth.

Let us choose a cylindrical system of coordinates (r, ϕ, z) with a magnetic

dipole, placed at the origin of this system (Fig. 8.1). The moment of the

magnetic dipole is oriented along the z-axis. As mentioned in the previous



Mz

a1

z

• (r,f,z)

a2

r

g 1 g 2 g 3

m1 m2 m3

Fig. 8.1 Medium with two cylindrical boundaries and the magnetic dipole on the axis.
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section, we look for a solution using only the z-component of the vector

potential A�
z.

According to Maxwell’s equations, the vector potential must satisfy

several conditions:

1. Function A�
z is a solution of Helmholtz’s equation in every part of the

medium:

r2A�
z + k2A�

z ¼ 0 if R 6¼ 0
This equation can be written in the form:
1

r

@

@r
r
@A�

z

@r

� �
+

1

r2
@2A�

z

@ϕ2
+
@2A�

z

@z2
+ k2A�

z¼ 0 (8.4)

2. Near the origin of coordinates system the function A�
z tends to the

vector potential of magnetic dipole in a uniform medium, that is:

A�
z ¼

iωμ0M0
0

4πR
exp ikRð Þ

3. At the interface r ¼ am tangential components of both the electric field

E and function B/μ are continuous functions. The electrical field

has only Eϕ component, but the magnetic field is characterized by

two components Br and Bz, and they are expressed through the vector

potential as:
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E�
ϕ ¼�@A�

z

@r
, iωB�

r ¼
@2A�

z

@r@z
, iωB�

z¼ k2A�
z +

@2A�
z

@z2
, E�

ϕ ¼�@A�
z

@r
(8.5)

� � � �
Here Az,Eϕ,Br , and Bz are complex amplitudes of the

corresponding vectors. Therefore, boundary conditions for the vector

potential at the interface of a medium of a different conductivity and

magnetic permeability can be written in the form:
@A�
z,m

@r
¼ @A�

z,m+1

@r
and
1

μi
k2mA

�
z,m +

@2A�
z,m

@z2

� �
¼ 1

μm+1

k2m+1A
�
z,m+1 +

@2A�
z,m+1

@z2

� �
(8.6)

4. With an increase of the distance from the magnetic dipole the function

A�
z tends to zero. Moreover, the function A�

z has to obey the following

conditions, related to the medium and the source. First, due to the axial

symmetry the vector potential and all the field components do not

depend on the ϕ coordinate, that is A�
z ¼A�

z r, zð Þ. Also, the vector

potential does not depend on the sign of the z-coordinate because of

a symmetry of a primary source with respect to the plane z¼ 0:

A�
z r, zð Þ¼A�

z r, �zð Þ
To find the field we have to solveHelmholtz’s equation, which is a differential

equation of the second order with partial derivatives with respect to coordi-

nates r and z. To solve this equationwe represent the solution as the product of

two functions depending on one argument only. Consequently, we have:

A�
z¼T rð ÞΦ zð Þ

Substituting the latter into Eq. (8.4) and taking into account that A�
z is

independent of ϕ we obtain

Φ
r

@

@r
r
@T

@r

� �
+T rð Þ@

2Φ
@z2

+ k2T rð ÞΦ zð Þ¼ 0 (8.7)

Dividing both sides by T(r)Φ(z) we have

1

rT

@

@r
r
@T

@r

� �
+

1

Φ
@2Φ
@z2

+ k2¼ 0
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Let us represent the left hand side of this equation as a sum of two

terms:

Term1¼ 1

rT

@

@r
r
@T

@r

� �
+ k2, Term2¼ 1

Φ
@2Φ
@z2

At first glance each term depends on the argument r or z, and Eq. (8.7)

can be written as

Term1 rð Þ+Term2 zð Þ¼ 0

Obviously, the last equation might hold if each term does not depend on

the coordinate and represents a constant value. For convenience we desig-

nate this constant in the form �m2, where m is a constant of separation.

Thus, instead of Helmholtz’s equation, we obtain two ordinary differential

equations of the second order:

1

Tr

d

dr
r
dT

dr

� �
+ k2¼�m2

and

1

Φ
d2Φ
dz2

¼�m2

(8.8)

Reduction of partial differential equation down to two ordinary differen-

tial equations represents the essence of the method of separation of variables.

The symmetry of the field with respect to coordinate z suggests the

negative sign in the equation for the function Φ(z):

d2Φ
dz2

+m2Φ¼ 0 (8.9)

The solutions to Eq. (8.9) are the trigonometric functions sinmz and

cosmz. In particular, the function cosmz provides a symmetry of the poten-

tial with respect to the plane z¼0. Correspondingly, the equation for the

function T(r) becomes

1

r

d

dr
r
dT

dr

� �
� m2�k2
� �

T ¼ 0

Introducing a new variable y

y¼ m2�k2
� �1=2

r
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and performing differentiation we obtain

d2T yð Þ
dr2

+
1

y

dT yð Þ
dy

�T yð Þ¼ 0

The solutions to the last equation are modified Bessel functions of zero

order I0(y) andK0(y). Bearing in mind thatA�
z r, zð Þ¼A�

z r, �zð Þ, we should
use only the function cosmz for the solution of Eq. (8.9) and, correspond-

ingly, for each value of the separation constant we have:

A�
z r, z,m, kð Þ¼T r, kð ÞΦ zð Þ

¼ CmI0 r, k,mð Þ+DmK0 r, k,mð Þ½ �cosmz (8.10)

By definition the function A�
z r, z,mð Þ satisfies the Helmholtz equa-

tion, and we may think that the first step in solving the boundary value

problem is accomplished. However, this assumption is incorrect because

the function A�
z r, z,mð Þ depends on m, which appears as a result of

transformation of Helmholtz’s equation into two ordinary differential

equations. At the same time, the vector potential A�
z, describing an elec-

tromagnetic field in the medium, is independent of m. Inasmuch the

function A�
z r, z,mð Þ, given by Eq. (8.10), obeys the Helmholtz equation

for any m, we present the solution in the form of an integral as a super-

position of partial solutions A�
z r, z,mð Þ corresponding to different values

of m (0�m<∞):

A�
z ¼

ð∞
0

CmI0 m, k, rð Þ+DmK0 m, k, rð Þ½ �cosmzdm (8.11)

which becomes independent of m after integration.
8.2 EXPRESSIONS FOR THE FIELD COMPONENTS

Taking into account the symmetry of the field with respect to the
plane z¼ 0, the expression for the vector potential within the borehole

can be written as:

A�
z1 ¼

iωμ1M0

4π

exp ik1Rð Þ
R

+
2

π

ð∞
0

CI0 m1rð Þcosmzdm
2
4

3
5 (8.12)
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because the function K0(m1r) tends to infinity as r! 0. Here

m1¼ m2�k21
� �1=2

, and C is some function, which does not depend on

coordinates. From the theory of Bessel’s function it follows that

exp ik1Rð Þ
R

¼ 2

π

ð∞
0

K0 m1rð Þcosmzdm

Thus

A�
z1¼

iωμ1M0

2π2

ð∞
0

K0 m1rð Þ+CI0 m1rð Þ½ �cosmzdm (8.13)

The right-hand side of this equation represents the Fourier’s integral.

First, consider a solution when the invasion zone is absent. Inasmuch as

the function Io(mr) increases to infinity when r!∞, the vector potential

within the formation is

A�
z2¼

iωμ2M0

2π2

ð∞
0

DK0 m2rð Þcosmzdm (8.14)

Let us recall one remarkable property of Fourier’s integrals. Considering

the equality:

ð∞
0

Ψ1 mð Þcosmzdm¼
ð∞
0

Ψ2 mð Þcosmzdm

we derive that

Ψ1 mð Þ¼Ψ2 mð Þ
Then substitution of Eqs. (8.13), (8.14) into Eq. (8.6) gives

m1 �K1 m1a1ð Þ+CI1 m1að Þ½ � ¼�m2K1 m2a1ð ÞD
μ2m

2
1 K0 m1a1ð Þ+CI0 m1a1ð Þ½ � ¼ μ1m

2
2K0 m2a1ð ÞD

since

I 00 xð Þ¼ dI0 xð Þ
dx

¼ I1 xð Þ, K 0
0 xð Þ¼ dK0 xð Þ

dx
¼�K1 xð Þ
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Here I1(x),K1(x) are Bessel functions of the first order. Solving the sys-

tem we obtain

C¼ μ1m2K0 m2a1ð ÞK1 m1a1ð Þ�μ2m1K0 m1a1ð ÞK1 m2a1ð Þ
μ1m2K0 m2a1ð ÞI1 m1a1ð Þ+ μ2m1I0 m1a1ð ÞK1 m2a1ð Þ (8.15)

D¼ μ2m1

m2a1 μ1m2K0 m2a1ð ÞI1 m1a1ð Þ+ μ2m1I0 m1a1ð ÞK1 m2a1ð Þ½ � (8.16)

The function A�
z along with coefficients in Eqs. (8.15), (8.16) satisfies all

conditions of the boundary value problem and thus describes the vector

potential and components of the electromagnetic field. As follows from

Eq. (8.5) the complex amplitudes of the field within the borehole are

E�
ϕ¼E�

0ϕ�
iωμ1M0

2π2

ð∞
0

m1CI1 m1rð Þcosmzdm

B�
z ¼B�

0z�
μ1M0

2π2

ð∞
0

m2
1CI0 m1rð Þcosmzdm

B�
r ¼B�

0r �
μ1M0

2π2

ð∞
0

mm1CI1 mrð Þ sinmzdm

(8.17)

Here E�
0ϕ,B

�
0z, and E�

0r are complex amplitudes of the field in a uniform

medium with parameters γ1,μ1. In particular, at the borehole axis we have

E�
ϕ¼ 0 and B�

r ¼ 0

B�
z ¼B�

0z�
μ1M0

2π2

ð∞
0

m2
1C cosmzdm (8.18)

The primarymagnetic field in a nonconductingmedium along the z-axis

caused by the magnetic dipole is

B 0ð Þ
z ¼ μ1M0

2πL3

and, correspondingly, the vertical component of the normalized magnetic

field is

b�z¼
B�
z

B
0ð Þ
z

¼ b�0z�
L3

π

ð∞
0

m2
1C cosmLdm (8.19)
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Here L is the length of the two-coil probe, while the function b�0z was
described in detail in Chapter 5. It is obvious that in the presence of several

cylindrical interfaces we arrive at the expression similar to Eq. (8.19), but

with the modified function C. For instance, in the case of two cylindrical

interfaces and a nonmagnetic medium the function C is

C¼Δ1

Δ
(8.20)

Here

Δ1¼ �m2I0 m2a1ð ÞK1 m1a1ð Þ�m1K0 m1a1ð ÞI1 m2a1ð Þ½ �
� m3K1 m2a2ð ÞK0 m3a2ð Þ�m2K0 m2a2ð ÞK1 m3a2ð Þ½ �
+ m2K0 m2a1ð ÞK1 m1a1ð Þ�m1K0 m1a1ð ÞK1 m2a1ð Þ½ �
� �m3I1 m2a2ð ÞK0 m3a2ð Þ�m2I0 m2a2ð ÞK1 m3a2ð Þ½ �

Δ¼ �m2I0 m2a1ð ÞI1 m1a1ð Þ+m1I0 m1a1ð ÞI1 m2a1ð Þ½ �
� m3K1 m2a2ð ÞK0 m3a2ð Þ�m2K0 m2a2ð ÞK1 m3a2ð Þ½ �
+ m2K0 m2a1ð ÞI1 m1a1ð Þ+m1I0 m1a1ð ÞK1 m2a1ð Þ½ �
� �m3I1 m2a2ð ÞK0 m3a2ð Þ�m2I0 m2a2ð ÞK1 m3a2ð Þ½ �

(8.21)

and

m1¼ m2�k21
� �1=2

, m2¼ m2�k22
� �1=2

, k23¼ m2�k23
� �1=2

Also a1 and a2 are the radii of the borehole and invasion zone, respec-

tively. Thus, the complex amplitude of the magnetic field on the borehole

axis is expressed in terms of an improper integral, and its integrand represents

the product of complex function m1
2C and the oscillating multiplier cosmL.

Let us study the frequency response of the Bz field and start from the case

when the induction number is either too small or too large.
8.3 THE MAGNETIC FIELD IN THE RANGE OF SMALL
INDUCTION NUMBER
A small induction number corresponds to the near zone, when trans-

mitter to receiver spacing, L, is much smaller than the wave length λ or the
wave number k tends to zero:

p≪ 1 or kLj j≪ 1 (8.22)

To analyze the asymptotic behavior, we apply three different approaches.
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8.3.1 The First Approach for Deriving the Leading Term of the
Quadrature Component (Transition to Doll’s Formula)

At the beginning consider the case when an invasion zone is absent and

μ1¼ μ2 ¼ μ0. Then as follows from Eq. (8.15) we have

m2
1C¼m2

1

m2K0 m2a1ð ÞK1 m1a1ð Þ�m1K1 m2a1ð ÞK0 m1a1ð Þ
m2K0 m2a1ð ÞI1 m1a1ð Þ+m1K1 m2a1ð ÞI0 m1a1ð Þ (8.23)

If k1j j≪m and k2j j≪m then keeping the first two terms in Taylor’s

expansion for the functions m1 and m2 we obtain:

m1¼ m2�k21
� �1=2¼m 1� k21

m2

� �1=2

	m�1

2

k21
m

m2¼ m2�k22
� �1=2¼m 1� k22

m2

� �1=2

	m�1

2

k22
m

(8.24)
By analogy we have:

I0 m1a1ð Þ	 I0 ma1ð Þ�1

2

k21a1

m
I 00 ma1ð Þ

I1 m1a1ð Þ	 I1 ma1ð Þ�1

2

k21a1

m
I 01 ma1ð Þ

K0 m1a1ð Þ	K0 ma1ð Þ�1

2

k21a1

m
K 0

0 ma1ð Þ

K1 m1a1ð Þ	K1 ma1ð Þ�1

2

k21a1

m
K 0

1 ma1ð Þ

(8.25)

Substituting Eqs. (8.24), (8.25) into Eq. (8.23) and making use of recur-

rence relations of Bessel functions:

I 00 xð Þ¼ I1 xð Þ, K 0
0 xð Þ¼�K1 xð Þ,

Iν�1 xð Þ� Iν+1 xð Þ¼¼ 2ν

x
Iν xð Þ, Iν�1 xð Þ+ Iν+1 xð Þ¼¼ 2I 0v xð Þ,

Kν�1 xð Þ�Kν+1 xð Þ¼�2ν

x
Kν xð Þ, Kν�1 xð Þ+Kν+1 xð Þ¼�2K 0

v xð Þ

after simple algebra we obtain

m2
1C¼ k22�k21

� �ma1
2

� 2K0 ma1ð ÞK1 ma1ð Þ�ma1 K2
1 ma1ð Þ�K2

0 ma1ð Þ� �� 	 (8.26)

Thus, the quadrature component of themagnetic field expressed in terms

of the primary field (8.19) is
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Qbz¼ γ1μ0ωL
2

2
+
L3

2π
s�1ð Þγ1μ0ω

ð∞
0

ma1

� 2K0K1�ma1 K2
1 �K2

0

� �� �
cosmLdm

(8.27)

Here s¼ γ2=γ1. Let us introduce notations

x¼ma1, α¼L=a1

Then Eq. (8.27) can be rewritten as

Qbz ¼ωμ0L
2

2
γ1 + γ2� γ1ð Þ2α

π

ð∞
0

x

2
2K0K1�x K2

1 �K2
0

� �� �
cos αxdx

8<
:

9=
;

or

Qbz ¼ωμ0L
2

2
γ1G1 + γ2G2ð Þ (8.28)

where

G2¼ 2α

π

ð∞
0

x

2
2K0 xð ÞK1 xð Þ�x K2

1 �K2
0

� �� �
cos αxdx (8.29)

and

G1¼ 1�G2

In the same manner we can derive Doll’s theory or low frequency

asymptotic for the medium with several cylindrical interfaces. Making

expansion of radicals mi with respect to a small parameter, it was assumed

that ki
2/m2 is less than unity. Since integration is performed from 0, there

are always some small values of m when ratio ki
2/m2 exceeds unity and

our assumption is not valid. But it turns out that for very small values of

k, contribution of this part of integration can be neglected, provided that

only the leading term of the field is calculated. At the same time, if we

are interested in the following terms of the low-frequency spectrum, it is

advisable to use a different approach.
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8.3.2 The Second Approach for Deriving the Leading Term
of the In-Phase Component

By applying the first approach we were able to derive the leading term of the

series describing the quadrature component of the magnetic field. To obtain

the leading term for the in-phase component of the secondary field, we have

to recall that magnetic field B�
0z on the axis of the magnetic dipole in a uni-

form medium can be presented as

B�
0z¼

μ0M0

2πL3
1 +
X∞
n¼2

1�n

n!
ikLð Þn

" #

Neglecting all terms except the first three, we have

B�
0z 	

μ0M0

2πL3
1 +

k2L2

2
+
1

3
i kLð Þ3 +⋯


 �
(8.30)

The second term of this series is the leading term for the quadrature com-

ponent, k2¼ iγμ0ω, while the last term

μ0M0

2πL3

i

3
kLð Þ3¼ μ0M0

6π
ik3 (8.31)

defines the leading term of the in-phase component, as well as the second

term of a quadrature component. Now we demonstrate that in a more

general case, when there are cylindrical boundaries, the leading term of

the in-phase component of the secondary field B�
z is also defined by

Eq. (8.31), provided that k corresponds to an external medium of the for-

mation. To proceed let us represent the integral on the right-hand side of

Eq. (8.17) as a sum of two integrals

ð∞
0

m2
1C cosmzdm¼

ðm0

0

m2
1C cosmzdm+

ð∞
m0

m2
1C cosmzdm (8.32)

where m0 is a very small number. In the case of the second integral when the

value ofm is greater than themagnitude of wave numbers:m> k, the radicals

can be expanded in series by powers k2/m2. Correspondingly, the integrand

C can be presented as:

C¼
X∞
n¼1

an
k1

m

� �2n

if m>m0 (8.33)
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where an are coefficients that depend on the parameters of the medium.

Because the external integral

ð∞
m0

m2
1C cosmzdm
does not contain point m¼0, we can replace it with the series

ð∞
m0

m2
1C cosmz¼

X∞
n¼1

bnk
2n
1 (8.34)

Therefore, the series describing the external integral has only terms

of even powers of wave number, k, and the integer powers of ω. This sug-
gests that the terms of the series with odd powers of k, in particular k3, can be

derived from an expansion of the internal integral only, provided that

k! 0, m! 0 (8.35)

Taking into account the behavior of modified Bessel functions for a

small argument:

I0 xð Þ	 1, I1 xð Þ	 x

2
, K0 xð Þ	� ln x, K1 xð Þ	 1

x

the function C can be presented as

C	m2K0 m2a1ð ÞK1 m1a1ð Þ�m1K0 m1a1ð ÞK1 m2a1ð Þ
m1K1 m2a1ð Þ

or

C	m2

m1

K1 m1a1ð Þ
K1 m2a1ð ÞK0 m2a1ð Þ�K0 m1a1ð Þ (8.36)

Replacing the ratio K1(m1a1)/K1(m2a1) with its asymptotic value we

finally have:

C	m2
2

m2
1

K0 m2a1ð Þ�K0 m1a1ð Þ and m2
1C	m2

2K0 m2a1ð Þ�m2
1K0 m1a1ð Þ

Thus, the internal integral can be presented as

ðm0

0

m2
1C cosmzdm	

ðm0

0

m2
2K0 m2a1ð Þ cosmzdm�

ðm0

0

m2
1K0 m1a1ð Þ cosmzdm (8.37)
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Taking into account that

exp ikiRð Þ
R

¼ 2

π

ð∞
0

K0 mirð Þ cosmzdm

and keeping in mind that we are interested in odd powers of k, the following

equality can be written:

μ0M0

2π2

ð∞
0

m2
1C cosmzdm¼�B�

0z k2Rð Þ+B�
0z k1Rð Þ (8.38)

where B�
0z k2Rð Þ and B�

0z k1Rð Þ are magnetic fields on the surface of the bore-

hole in a uniform medium with resistivity of a formation and borehole,

respectively, R¼ a2 + z2ð Þ1=2. Substituting Eq. (8.38) into Eq. (8.17) we

have:

B�
z 	B�

oz k1zð Þ+B�
0z k2Rð Þ�B�

0z k1Rð Þ (8.39)

Again, the latter is valid in the range of small induction numbers only

when the terms of a series proportional to odd powers of the wave number

are considered. As follows from Eq. (8.31), the second term of a series,

describing the magnetic field on the borehole axis, is:

i
μ0M0

6π
k32

Thus, we see that the leading term of the in-phase component of the sec-

ondary field Bz coincides with that in a uniform medium with conductivity

of a formation:

InBz ! InB0z k2Lð Þ (8.40)

This result does not depend on the ratio of conductivities as well as the

probe length. In other words, at the range of small parameter the borehole

becomes “transparent” and does not contribute into the in-phase compo-

nent. Next, we demonstrate that the same result is valid for a three-layered

medium. Let us proceed from Eqs. (8.20), (8.21), again assuming that

m! 0, k! 0. Introducing notations
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b1¼�m2I0 m2a1ð ÞK1 m1a1ð Þ�m1K0 m1a1ð ÞI1 m2a1ð Þ
c1¼m3K1 m2a2ð ÞK0 m3a2ð Þ�m2K0 m2a2ð ÞK1 m3a2ð Þ
b2¼m2K0 m2a1ð ÞK1 m1a1ð Þ�m1K0 m1a1ð ÞK1 m2a1ð Þ
c2¼�m3I1 m2a2ð ÞK0 m3a2ð Þ�m2I0 m2a2ð ÞK1 m3a2ð Þ
b3¼�m2I0 m2a1ð ÞI1 m1a1ð Þ+m1I0 m1a1ð ÞI1 m2a1ð Þ
c3¼m2I1 m1a1ð ÞK0 m2a1ð Þ+m1I0 m1a1ð ÞK1 m2a1ð Þ

and taking into account the behavior of modified Bessel functions for the

small argument we have

b1	�m2K1 m1a1ð Þ¼ m2

m1a1
, c1	 m3

m2a2
K0 m3a2ð Þ� m2

m3a2
K0 m2a2ð Þ

b2	 m2

m1a1
K0 m2a1ð Þ� m1

m2a1
K0 m1a1ð Þ, c2	� m2

m3a2

b3	�m1m2a1

2
+
m1m2

2
! 0, c3! m1

m2a1

Whence, for small values of m and k we obtain

C	 b1c1 + b2c2

c2c3
¼ b1c1

c2c3
+
b2

c3

Inasmuch as

c2c3¼� m1

m3a1a2
, b1c1¼� m3

m1a1a2
K0 m3a2ð Þ+ m2

2

m1m3a1a2
K0 m2a2ð Þ,

b1c1

c2c3
¼m2

3

m2
1

K0 m3a2ð Þ�m2
2

m2
1

K0 m2a2ð Þ, b2

c3
¼m2

2

m2
1

K0 m2a1ð Þ�K0 m1a1ð Þ,

we have the following expression for the function m1
2C:

m2
1C	m2

3K0 m3a2ð Þ�m2
2K0 m2a2ð Þ+m2

2K0 m2a1ð Þ�m2
1K0 m2a1ð Þ

Thus, the internal integral has the form

ðm0

0

m2
1C cosmzdm	

ðm0

0

m2
3K0 m3a2ð Þ cosmzdm�

ðm0

0

m2
2K0 m2a2ð Þcosmzdm+

ðm0

0

m2
2K0 m2a1ð Þcosmzdm�

ðm0

0

m2
1K0 m1a1ð Þcosmzdm

(8.41)
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which leads to the following expression for the in-phase component of the

field:

B�
z¼B�

0z k1zð Þ+B�
0z k3R2ð Þ�B�

0z k2R2ð Þ+B�
0z k2R1ð Þ�B�

0z k1R1ð Þ (8.42)

Here

R1 ¼ z2 + a21
� �1=2

and R2 ¼ z2 + a22
� �1=2

Similarly to the case of a two-layered medium, we derive the k3 term

i
μ0M

6π
k33

which corresponds to the in-phase component of the secondary field in a

uniform formation with conductivity γ3. Bearing in mind the expression

for the quadrature component derived earlier, we have the following

expression for the secondary magnetic field (k! 0):

B�
z	

μ0M0

4π

1

L

X3
n¼1

k2i Gi +
2

3
ik33

" #
(8.43)

Here k2i ¼ iγiμ0ω, L is the probe length. For the quadrature and in-phase

component we have:

QBz	 μ0M0

4π

ωμ0
L

X3
n¼1

γiGi�21=2

3
γ3μ0ωð Þ3=2

" #

and

InBs
z	�μ0M0

4π

21=2

3
γ3μ0ωð Þ3=2

(8.44)

where γi,Gi are conductivity and geometric factor of the corresponding part

of a medium such as borehole, invasion, and formation. The last result can be

generalized and applied to the case of invasion zone with resistivity varying

in a radial direction. Also, we have to notice that Eq. (8.44) can be derived

using the hybrid method, which gives

B�
z 	

μ0M0

2πL3
b�z γ3ð Þ+ iωμ0M0

4πL

X2
n¼1

γi�γ3ÞGið (8.45)

By expanding the right-hand side of the latter into a series and keeping

the leading terms only, we arrive at Eq. (8.44).
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1. The first and second approaches give the leading terms for the quadrature

and in-phase components of the series, describing the field on the

borehole axis.

2. Application of the Doll theory almost always requires correction for

the skin effect. At the same time, as follows from Eq. (8.44), at the

low frequency limit the second term for the quadrature component

has the same magnitude as the in-phase component. Therefore, mea-

surements of InBz
s enable us to correct the quadrature component for

the skin effect.

3. We demonstrated that in a medium with cylindrical interfaces the lead-

ing term of the series for the in-phase component is defined by the con-

ductivity of the external part of the formation. In other words, the

borehole and invasion zone become transparent and do not affect the

measurements. As we see later, such behavior is also observed at

the low frequency limit in a medium with horizontal boundaries, as well

as in more complicated cases.

4. This discussion underlines again that the quadrature and in-phase com-

ponents depend quite differently on parameters of the formation, and

thus they have a different depth of investigation.

5. The series, Eq. (8.43), is valid regardless of the probe length.

6. As follows from Eq. (8.44), the second term of the quadrature compo-

nent and the leading term of the in-phase component do not depend on

either probe length or the parameters of the borehole and invasion zone.

Therefore, by measuring these quantities, one can essentially measure

properties of the deepest part of the formation.
8.3.3 The Third Approach to Deriving Asymptotic Expressions
of the Field

We have derived only two terms of the series describing the quadrature

component of the field and the leading term of the in-phase component

of the secondary field. To obtain subsequent terms of both series, it is nec-

essary to perform more cumbersome transformations on expansion of the

internal and external integrals in Eq. (8.32). In the internal integral, Bessel

functions can be expanded in the series because their argument is small. This

reduces the integral to a sum of simple integrals of elementary functions. The

integration of the external integral is based on Eq. (8.34) and calculation of

coefficients bn. Finally, we have the following series describing the field at

the low frequencies:
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B�
z ¼B 0ð Þ

z

X∞
n¼1

a1nk
2n +

X∞
n¼1

a2nk
2n+1 + ln k

X∞
n¼1

a3nk
2n

 !
, (8.46)

where Bz
(0) is the field, caused by the primary source in a free space. Later it

will be shown that only the second and third sum in Eq. (8.46),

corresponding to the internal integral, contribute to the late stage of the tran-

sient field. Holding only first terms of the last two sums in Eq. (8.46), we

arrive at the following asymptotic expressions for b�z�1:

(1) two-layered medium

b�z�1	 f3k
3
1 + f5k

5
1 + f7k

7
1 + l7k

7
1 lnk1, (8.47)
where
f3¼ α3s3=2

3
, f5 ¼ f3

α2s

10
�1� s

2

� �

f7¼ f3
α4s2

280
�α2s 1� sð Þ

20
+

5

32
1� sð Þ2� s 1� sð Þ

10
C�77

60
+
lns

2

� �
 �

l7 ¼�f3
s

10
1� sð Þ (8.48)
C is Euler’s constant,
s¼ γ2=γ1 and α¼L=a1

(2) three-layered medium

b�z�1	 d3k
3
1 + d5k

5
1

Here
d3¼ 1

3
α3s3=21 , d5¼ d3

α2s1
10

� s12

2

� �
, s1¼ γ3=γ1, s2¼ γ2=γ1

s12¼ 1� s2 + s2� s1ð Þβ2, β¼ a2=a1
8.4 FAR ZONE OF MAGNETIC FIELD ON THE AXIS
OF BOREHOLE
Now we focus our attention on the case of a large parameter L/a1
when the probe length exceeds several times the borehole radius. The
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purpose is to find from an asymptotic representation some specific features of

the field that can be further utilized for increasing depth of investigation.

Derivation of asymptotic expression of the field is based on a proper treat-

ment of singularities of the integrand m1
2C on the complex plane of m. In

accordance with Eq. (8.19) the variable of integration m has only real values

0�m<∞, while the probe length L is the multiplayer in the argument of

the oscillating term cosLm. For small values of jkLj the function m1
2C rapidly

decreases with an increase of m. In addition, the presence of the oscillating

factor cosLm also reduces contribution from the integrand at large values

of m. For this reason the integral

ð∞
0

m2
1C cosLmdm (8.49)

is mainly defined by the integrand m1
2C near small values of m, allowing

a derivation of the geometric factors of the borehole, invasion zone,

and formation. With an increase of the wave number jkj the integrand m1
2C

decreases slowly and for m< kj j it does not practically change. Correspond-
ingly, despite an increased number of oscillations the integral is not defined

anymore by the integrand at the initial part of integration and additional trans-

formations of the integral (8.49) are needed to treat the case of kLj j> 1.

8.4.1 Cauchy’s Formula and Deformation of
Integration Contour

To obtain asymptotical expression for the field at kLj j> 1 we use an

approach based on the Cauchy formula. Since

cosmL¼ 1

2
exp imLð Þ+ exp �imLð Þ½ �

we have

ð∞
0

m2
1C cosmLdm¼ 1

2

ð∞
0

m2
1C exp imLð Þdm+

ð∞
0

m2
1C exp �imLð Þdm

2
4

3
5

The latter describes the secondary field, Eq. (8.18). Taking into account

that m1
2C is even a function of m, the last equality can be represented as

ð∞
0

m2
1C cosmLdm¼ 1

2

ð∞
�∞

m2
1C exp imLð Þdm (8.50)
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In accordance with Cauchy’s theorem an integral from an analytical

function f(z) around a closed path l is equal to zero:

þ
l

f zð Þdz¼ 0 (8.51)

which corresponds to a single-valued function f(z) with no singularities

inside l. In other words, the deformation of the contour does not change

the integral if the integration path doesn’t intersect singularities on the com-

plex plane of the variable m. Note that with deformation of the contour of

integration in the upper half plane (Imm> 0), the exponent exp(imL) tends

to zero with increase of Im(m). In general, the integrand in Eq. (8.50) has

two types of singularities, namely, branch points and poles. From

Eq. (8.18) we have:

b�z ¼ b�0z�
L3

π

ð∞
0

m2
1C cosmLdm (8.52)

and the function m1
2C has two branch points at the upper half plane of m:

m¼ k1 and m¼ k2

where this function is not an analytical one. Now consider a closed path D,

shown in Fig. 8.2, consisting of several paths, namely: (1) the original path

from �∞ to∞, (2) the path D1, which includes two lines in the vicinity of

branch cut m1¼ 0, (3) the path D2 which also has two lines near branch cut

m2¼ 0, and finally (4) the semicircle of an infinitely large radius.
Re (m)

Im(m)

K1

K2

Fig. 8.2 The closed path of integration in the upper part of the complex plane of m.
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Since the integrand in Eq. (8.50) has the term exp(imL), the integral

along this last part is equal to zero. Inside the closed path D the integrand

is an analytical function and we can writeþ
D

m2
1C exp imLð Þdm¼ 0 or

ð∞
�∞

m2
1C exp imLð Þdm¼

ð
D1

m2
1C exp imLð Þdm+

ð
D2

m2
2C exp im2Lð Þdm

(8.53)

Integrating along the path, where Rem1¼ 0, we introduce a new var-

iable of integration m1¼ it. Here t is the parameter of the branch line, which

varies from 0 to∞ on the right side of the branch line and from�∞ to 0 on

its left, since the radical changes sign bypassing around the branch point. The

variable of integration m along the contour D1 can be presented as

m¼ �t2 + k21
� �1=2¼ i t2� in21

� �1=2
and correspondingly

dm¼ itdt

t2� in21ð Þ1=2
and m2¼ �i2 + in21� in22

� �1=2
where

n21¼ iγ1μ0ω and n22¼ iγ2μ0ω

Thus, for the integral along both sides around the branch cut m1¼ 0 we

have the following expression:

ð∞
0

ð�t2Þ m2K0 m2a1ð ÞK1 ita1ð Þ� itK0 ita1ð ÞK1 m2a1ð Þ
m2K0 m2a1ð ÞI1 ita1ð Þ+ itK1 m2a1ð ÞI0 ita1ð Þ �




m2K0 m2a1ð ÞK1 �ita1ð Þ+ itK0 �ita1ð ÞK1 m2a1ð Þ
m2K0 m2a1ð ÞI1 �ita1ð Þ� itK1 m2a1ð ÞI0 �ita1ð Þ

� itexp L t2� in21
� �1=2h i

t2� in21ð Þ1=2
dt

(8.54)
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Making use of relations

I0 �ita1ð Þ¼ I0 ita1ð Þ, K0 �ita1ð Þ¼K0 ita1ð Þ+ iπI0 ita1ð Þ
I1 �ita1ð Þ¼�I1 ita1ð Þ, K1 �ita1ð Þ¼�K1 ita1ð Þ+ iπI1 ita1ð Þ (8.55)

we can present the second term in parentheses of Eq. (8.54) in the following

form:

m2K0 m2a1ð Þ �K1 ita1ð Þ+ iπI1 ita1ð Þ½ �+ itK1 m2a1ð Þ K0 ita1ð Þ+ iπI0 ita1ð Þ½ �
�m2K0 m2a1ð ÞI1 ita1ð Þ� itK1 m2a1ð ÞI0 ita1ð Þ

¼m2K0 m2ð ÞK1 itð Þ� itK1 m2ð ÞK0 itð Þ
m2K0 m2ð ÞI1 itð Þ+ itK1 m2ð ÞI0 itð Þ � iπ

(8.56)

Inasmuch as the first terms in Eqs. (8.56), (8.54) are the same, the integral

along the path D1 is greatly simplified and we have:

π

ð∞
�∞

t3
exp �L t2� in21

� �� �
t2� in21ð Þ1=2

dt

This integral, which is being multiplied by 1/π, represents the field of

magnetic dipole b�0z in a uniform medium with conductivity γ1. Thus, as
follows from Eqs. (8.52), (8.53) the field on the borehole axis is expressed

in terms of the integral along the branch cut D2, Rem2 ¼ 0 only. Replacing

the variable m2 ¼ it we have:

m¼ i t2� in22
� �1=2

, dm¼ itdt

t2� in22ð Þ1=2
, m1¼ �t2 + i n22�n21

� �� �1=2
Respectively, the integral along the path D2 can be rewritten as

ð∞
0

m2
1

itK0 ita1ð ÞK1 m1a1ð Þ�m1K0 m1a1ð ÞK1 ita1ð Þ
itK0 ita1ð ÞI1 m1a1ð Þ+m1I0 m1a1ð ÞK1 ita1ð Þ �




�itK0 �ita1ð ÞK1 m1a1ð Þ�m1K0 m1a1ð ÞK1 �ita1ð Þ
�itK0 �ita1ð ÞI1 m1a1ð Þ+m1I0 m1a1ð ÞK1 ita1ð Þ

� it exp �L t2� in22
� �1=2h i

t2� in22ð Þ1=2
dt

(8.57)
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Using Eq. (8.55) we obtain for the numerator inside large square brackets

of Eq. (8.57), the following expression:

m1it I0 m1a1ð ÞK1 m1a1ð Þ+ I1 m1a1ð ÞK0 m1a1ð Þ½ �
� K0 �ita1ð ÞK1 ita1ð Þ+K0 ita1ð ÞK1 �ita1ð Þ½ �

Inasmuch as

I0 xð ÞK1 xð Þ+ I1 xð ÞK0 xð Þ¼ 1

x

the numerator is further reduced to iπ/a1
2, and the field b�z on the borehole

axis is expressed through the integral along the right-hand side of the branch

cut D2

b�z¼
L3

2

ð∞
0

m2
1t exp �L t2�n22

� �1=2h i
t2� in22ð Þ1=2 itK0 ita1ð ÞI1 m1a1ð Þ+m1K1 ita1ð ÞI0 m1a1ð Þ½ �

� dt

�itK0 �ita1ð ÞI1 m1a1ð Þ+m1K1 �ita1ð ÞI0 m1a1ð Þ½ �

(8.58)

The integrand can be presented as a product of two functions: F(m1, t)

and

t3 exp �L t2�n22
� �� �

t2�n22ð Þ1=2

The last function is the integrand of Somerfield integral describing field

in a uniform medium with conductivity γ2. For the sufficiently long probes
this integral is mainly defined by an initial part of the integration path when

m is small and function F(m1, t) varies gradually. By taking this slow-varying

function out of the integral and assuming m¼ 0, we receive

b�z	
1

I20 k22�k21ð Þ1=2a1
h ib�z k2Lð Þ

or

b�z	
1

I20 k22�k21ð Þ1=2a1
h i exp ik2Lð Þ 1� ik2Lð Þ (8.59)
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For the conductivity of the borehole being much greater than conduc-

tivity of a surrounding medium we have:

b�z	
1

I20 ik1a1ð Þ exp ik2Lð Þ 1� ik2Lð Þ (8.60)

The expression (8.59) was first derived byV. Sokolov [1]. He also obtained

the asymptotic formula for themediumwith an invasion zone. In this case there

are three contours around the branch cuts: alongm1¼ 0, m2¼ 0, andm3¼ 0.

Integration along m1¼ 0 gives the field b�0z γ1ð Þ, the integral along branch cut
m2¼ 0 is equal to zero, andanexpression for the field contains the integral along

branchcutm3 ¼ 0only. Inmoregeneral cases ofn cylindrical orplane interfaces

the integration is also reduced to that along the branch cutmn+1¼ 0 only. For

the two cylindrical interfaces we have

b�z¼
1

I20 k21�k22ð Þ1=2a1
h i

I20 k22�k23ð Þ1=2a2
h ib�z k3Lð Þ (8.61)

and it is reduced to Eq. (8.59) either at k2 ¼ k3 or k1¼ k2. Here b�z k3Lð Þ is
the complex amplitude of the field in a uniform medium with a resistivity of

a formation.

As was pointed out in Chapter 1, the behavior of the quasistationary field

often reflects some features of a propagation of the field. Suppose that there is

one cylindrical interface. Then one may imagine that the electromagnetic

field travels from the dipole to an observation point by two passes. One is

the wave moving through the borehole, while the second wave moves from

the dipole to the boundary, then along the borehole surface inside the for-

mation, and the last interval is located between the borehole surface and an

observation point, Fig. 8.3A and B.

The last path suggests that the field can be described by the equation

b�z ¼ f 2 k1, k2ð Þb�unz k2Lð Þ
Comparison with Eq. (8.59) shows that

f ¼ I�1
0 k21�k22
� �1=2

a1

h i
Assuming that the resistivity of the formation is larger than the resistivity

of the borehole, it is natural to expect that with increase of the probe length

the second wave plays the dominant role, while the influence of the wave,

propagating through the borehole, is negligible. Similar interpretation can

be given to Eq. (8.61). Note that wave paths for the three-coil probe have
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Fig. 8.3 (A) Wave path in two-coil probe. (B) Wave path in three-coil probe.
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common elements, located in the borehole, and this leads to a very impor-

tant practical application. Let us present the complex amplitude of the field,

given by Eq. (8.61), as

b�z ¼A�eiϕ� 
A k3Lð Þexp iϕ0 k3Lð Þ½ � (8.62)

where functions A* and ϕ* depend on the conductivity and radii of

the borehole and invasion zone and have no dependency on the probe

length L. The rest of Eq. (8.62) coincides with the complex amplitude of

the field in a uniformmediumwith resistivity of the formation. Suppose that

the field is measured at two distances L1 and L2 from the dipole source,

corresponding to the far zone. By definition the electromotive force in

the receiver is equal to

Ξ Lð Þ¼Ξ0 Lð Þb�z Lð Þ
and their ratio is

Ξ L2ð Þ
Ξ L1ð Þ¼

Ξ0 L2ð Þ
Ξ0 L1ð Þ

b�z L2ð Þ
b�z L1ð Þ

Then Eq. (8.62) gives

Ξ L2ð Þ
Ξ L1ð Þ¼

Ξ0 L2ð Þ
Ξ0 L1ð Þ

A k3L2ð Þ
A k3L1ð Þ exp iΔϕð Þ
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In particular, if moments of receiver coils are chosen in such a way that

primary electromotive forces Ξ0 are the same, Eq. (8.62) gives

Ξ L2ð Þ
Ξ L1ð Þ
����

����¼ b�z L2ð Þ�� ��
b�z L1ð Þ�� ��¼A k3L2ð Þ

A k3L1ð Þ
and

Δϕ¼ϕ0 k3L2ð Þ�ϕ0 k3L1ð Þ (8.63)

As is seen from Eq. (8.63), these two quantities at the far zone, are insen-

sitive to parameters of the borehole and invasion zone, and this remarkable

fact is the main reason why these measurements are used in some modifica-

tions of the induction logging (for example, VIKIZ system). Since amplitudes

aremeasured in the presence of the primary field, the operating frequencies in

such logging systems should be high enough to increase the secondary field

and provide sufficient sensitivity to properties of the formation.

As soon as an observation point is located at the far zone the further

increase of the probe length doesn’t influence the depth of investigation.

From Eq. (8.63) we see that at this zone the ratio of amplitudes and differ-

ence of phases are independent of parameters of the borehole and invasion

zone. To utilize these measurements the three-coil probe, described earlier

as the simplest “focusing” probe, is used. (Historically the measurements of

amplitudes ratio and phase differences were first introduced in dielectric and

later were also applied in induction logging).

8.4.2 Validity of the Approximate Solution
Now we evaluate a range of medium parameters, frequency, and probe

length where approximation (8.59) is valid. First, consider the low fre-

quency part of spectrum when

k22�k21
�� ��a21≪ 1

Then, bearing in mind that

I0 xð Þ	 1+
x2

4
, if x< 1

we have:

1

I20 k22�k21ð Þ1=2a1
h i	 1+

1

2
k21�k22
� �

a21
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Thus

b�z 	
1

2
iωμ0 γ1� γ2ð Þa21bunz k2Lð Þ+ bunz k2Lð Þ

We are interested in the low-frequency spectrum, thus the first term can

be simplified to

b�z 	 i
ωμ0
2

γ1� γ2ð Þa21 + bunz k2Lð Þ

or

b�z ¼ i
ωμ0L

2

2
γ1� γ2ð Þ 1

α2
+ bunz k2Lð Þ

The latter coincides with an equation derived by hybrid method for the

case when the probe length exceeds several times the size of the borehole

(Chapter 7). In particular, considering the quadrature component only

the second term bz
un(k2L) can be replaced with

iωμ0γ2L
2

2

yielding to the expression for

b�z ¼
iωμoL

2

2
γ1

1

α2
+ γ2 1� 1

α2

� �
 �

corresponding to the Doll’s approximation. Therefore, Eq. (8.59) certainly

gives the correct result at the range of small parameters when the probe

length is sufficiently large. Also, this equation describes the field when

the argument of Bessel function is very small and the distance L is large

k22�k21
� �1=2

a1

��� ���≪ 1 and α≫ 1

Considering propagation of waves along the paths, shown in Fig. 8.3A,

one may assume that Eq. (8.59) is also valid when

k1Lj j> 1 and γ1> γ2

In fact, in such case the wave propagating inside of the borehole decays

more rapidly. To confirm these assumptions we compare exact solution ver-

sus an approximate one using Eq. (8.59). The comparison is conducted for

the three-coil probe using two functions T1(α) and T2(α):
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Fig. 8.4 Comparison of approximate and exact solution. Attenuation (A) and phase dif-
ference (B). ρ1 ¼ 0:1ohmm, γ2=γ1 ¼ 1=100.
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T1 αð Þ¼ A L2ð Þ
A L1ð Þ
����

����


Ad L2ð Þ
Ad L1ð Þ
����

����, and T2 αð Þ¼ Δϕ
Δϕd

shown in Figs. 8.4 and 8.5. Ad(L) and A(L) are field amplitudes,

corresponding to the approximate (8.59) and exact solution, respectively.

In practice, instead of ratio of amplitudes we use the attenuation:

20 log
A2

A1

����
����

assuming that receiving moments
M1

M2

¼ L2

L1

� �3

selected to provide zero

attenuation of the field in the air. Index of curves is frequencies, used in

the VIKIZ. In the calculations: a1¼ 0:1 m, L2=L1¼ 0:7.
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Fig. 8.5 Comparison of approximate and exact solution. Attenuation (A) and phase dif-
ference (B). ρ1 ¼ 0:5ohmm, γ2=γ1 ¼ 1=20.
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As we see even in a quite conducive borehole (γ2=γ1¼ 1=100) the

approximate solution (8.59) provides an accurate estimate of both attenua-

tion (Fig. 8.4A) and phase difference (Fig. 8.4) with an error less than 10% if

α> 10: the lower the frequency, lesser the error. In the case of less conduc-

tive borehole (γ2=γ1¼ 1=20) the approximate solution describes responses

with an error not exceeding 5% (Fig. 8.5), when

α> 5 (8.64)
Similar conditions can be derived when there is an invasion zone: the

validity of approximation is shifted toward greater distances from the dipole

and it deteriorates with increase of conductivity and radius of the invasion.
8.4.3 Sensitivity to the Formation of Amplitudes Ratio and
Phase Difference (Three-Coil Probe)

As was pointed out earlier Eqs. (8.59), (8.61) show that attenuation and

phase difference at the far zone allows one essentially to reduce an influence

of the borehole and invasion. Let us consider sensitivity of these two quan-

tities to a change of a formation conductivity and, as example, choose fre-

quencies used in the VIKIZ system, Fig. 8.6, assuming that L1¼ 1 m,

L2¼ 0:7 m, and ρ1¼ 0:5ohmm. Along the vertical axis we plot either atten-

uation Fig. 8.6A or phase difference Fig. 8.6B, while a ratio of conductivities

is plotted along the horizontal axis. Index of curves is frequency. At relatively

small resistivity contrast γ2=γ1� 0:1 attenuation and phase difference have

practically the same sensitivity (ramp of the curve) to the conductivity of

formation, but attenuation is more sensitive when the contrast increases,

γ2=γ1 � 0:1.
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Fig. 8.6 (A) Sensitivity to the conductivity of formation of amplitude ratio and (B) phase
difference.
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It is also useful to compare sensitivity of attenuation At(B�
z) and phase

differenceΔϕ(B�
z) of probes with different length to the conductivity of for-

mation. With this purpose in mind we calculate normalized attenuation and

phase difference by the corresponding values measured in uniform medium

with resistivity of formation:

PA αð Þ¼ At B�
z

� �
At B�un

z

� �
�����

����� and PΔϕ αð Þ¼ Δϕ B�
z

� �
Δϕ B�un

z

� �

shown in Figs. 8.7 and 8.8. Here At B�un

z

� �
and Δϕ(B�un

z ) are attenuation

and phase difference measured in uniform medium with resistivity of a for-

mation. Calculations are performed for the case when f ¼ 3:5 MHz,

a1¼ 0:1 m, ρ1 ¼ 0:5 ohmm, L2=L1¼ 0:7. Index of curves γ2/γ1.
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Fig. 8.8 (A) Sensitivity of attenuation, PA(α), and (B) phase difference PΔϕ(α) to the con-
ductivity of formation in the presence of invasion zone.
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Comparison shows that when α� 5, attenuation and phase difference

have similar sensitivity to the formation and almost the same probe length

is needed to eliminate an influence of the borehole. Also, Fig. 8.8 illustrates

behavior of these functions in the presence of invasion zone, when γ3/γ1 is
varying and a2=a1¼ 4,γ2=γ1¼ 0:1.

Clearly, in the presence of invasion the attenuation is less than phase dif-

ference affected by the borehole, especially when parameter α� 7.
8.4.4 The Main Features of the Field of the Two-Coil Probe
Now consider the main features of frequency responses of this field on the

borehole axis. Results of numerical modeling presented in this section are

based on calculations of the field bz, given by Eq. (8.19) for the models

of a medium with one and two cylindrical interfaces. As we already know:

1. Vertical magnetic dipole induces eddy currents located in horizontal

planes that have shape of circles with the common center on the bore-

hole axis. An electrical field has only azimuthal component Eϕ, but the

magnetic field has two components,Br and Bz. On the borehole axis the

magnetic field is oriented vertically, while both the electrical field, Eϕ,

and the radial component of magnetic field, Br are equal to zero.

2. Induced currents density, jϕ, at any point of medium is characterized

by the in-phase and quadrature component. Unlike the in-phase com-

ponent the quadrature components is shifted in phase by 90 degrees

with respect to the dipole current. Distributions of these components,

In jϕ, and, Qjϕ, are essentially different. The quadrature component is

dominant near the source and rapidly decreases with an increase of the

distance from the dipole, frequency, and conductivity of formation. In

the range whereQjϕ dominates, the skin effect manifests itself similarly

to a uniform medium with resistivity of the formation.

3. Near the source the quadrature componentQjϕ of the current density is

directly proportional to the frequency, but with an increase of the dis-

tance from the source it becomes stronger subjected to an influence of

the skin effect.

4. Near the dipole the in-phase component In jϕ is significantly less than

the quadrature one; with an increase of the distance it reaches a max-

imum and then rapidly approaches zero.

5. In accordance with the Biot-Savart law both the quadrature and the

in-phase component of the field are determined by the distribution

of the quadrature and in-phase component of current density,



280 Basic Principles of Induction Logging
respectively. Examples of the vertical component of magnetic field,

expressed in units of the primary field, are presented in Figs. 8.9 and

8.10 where the quadrature Qb�z and in-phase Inb�z components are

expressed in units of the primary field. The ratio a1/λ1 is plotted along

the abscissa; λ1 ¼ 2πδ1 is the wave length in the borehole, δ1 is the skin
depth. The index of curves is ρ2/ρ1 (Fig. 8.9) and ρ3/ρ1 (Fig. 8.10). For
a three-layered medium, calculations are performed for

ρ2=ρ1¼ 4,a2=a1¼ 4, L=a1¼ 10.
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6. The left-hand asymptote of the frequency response of the quadrature

component is a straight line with a slope of 63°300 with respect to

the horizontal axis. This part of the response corresponds to the case

when intensity of induced currents is defined only by the primary mag-

netic flux and resistivity of a medium. As was mentioned above, the area

where induced currents, shifted in phase by 90 degrees, increases with a

decrease of frequency and an increase of formation resistivity. At the

same time, with an increase of the probe length the volume of the

formation contributing to the measured signal increases and, corre-

spondingly, the influence of the medium near the probe becomes

smaller. For this reason the longer the probe the earlier the deviation

of the quadrature component from its left-hand asymptote begins.

7. The part of the frequency response, Qbz which practically coincides

with its left-hand asymptote is called Doll’s range. Within this range

the quadrature component is significantly larger than the secondary

in-phase component.

8. In a two-layered medium when resistivity of the borehole exceeds that

of the formation (ρ1> ρ2) the departure fromDoll’s range takes place at

the same values of parameter L/δ2 as in a uniform medium with

conductivity γ2.
9. If conductivity of the borehole exceeds that of the formation, γ1> γ2,

and the skin depth in the borehole is significantly larger than its radius,

the Doll’s range is shifted toward larger values of parameter L/δ2.

In this case a relative contribution of induced currents, subjected

to the skin effect in the formation, is smaller than in the case of a uni-

form medium with conductivity γ2. Similar features are observed for

a three-layered medium: with an increase of the conductivity of the

borehole and invasion, as well as its radius a2, the Doll’s range is shifted

towards larger values of L/δ3 compared to a uniform medium with

conductivity γ3.

10. With an increase of parameter a1/λ1 the frequency responseQbz departs

from the left-hand asymptote and within a certain range of parameter

a1/λ1 there is practically no skin effect neither in the borehole nor in the
invasion zone. But in the formation the skin effect manifests itself in the

same manner as in a uniform medium with the resistivity of formation.

This low-frequency range is the most favorable one for the “focusing”

probes. The main features of the field within this range have been

described in detail earlier. This range of a1/λ1 is favorable for application
of the hybrid method.
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11. Frequency responses of the quadrature component, Qbz, for a two-

layered medium has one maximum, which to some extent increases

with an increase of resistivity of the borehole. The position of the

maximum is mainly defined by resistivity of the formation. For exam-

ple, an increase of the borehole conductivity by a factor of 100 only

slightly shifts the maximum to a range of lower frequencies. In some

cases, when the invasion zones are relatively large, we can observe

two maxima.

12. With increase of the frequency the skin effect leads to increased influ-

ence of the borehole and reduced sensitivity to the formation; in the

presence of thick conductive invasion frequency response in a three-

layered medium almost coincides with response in a two-layered

medium with resistivity of invasion ρ2. Within Doll’s range, the influ-

ence of the borehole is defined by geometric factors and distribution of

resistivity in the medium. Within a broad range of frequencies, far

beyond the Doll’s range, the influence of the borehole and invasion

zone depend on their geometric factors and resistivity, but the influence

of the formation is determined by the skin depth in a medium with

resistivity of formation ρ3.
13. In a wide range of frequencies, when the skin depth δ1 is several times

larger than the borehole radius, the influence of resistive borehole is not

significant and the frequency response of the field,Qbz, practically coin-

cides with that corresponding to a uniform medium with the resistivity

of the formation.

14. Since the responseQbz has a maximum the same value of the quadrature

component can be observed at two different values of a1/λ1. The ambi-

guity can be removed by using either an additional measurement or

prior information.

15. Selection of frequencies for induction logging cannot be based only on

the study of the field in a medium with cylindrical interfaces. However,

these calculations allow us to study radial characteristics of two-coil pro-

bes, as well as probes consisting of several coils. In particular, the calcu-

lations permit to establish a range of frequencies and resistivities

favorable for application of “focusing” multicoil probes.

16. Although both in-phase and quadrature component depend on the

same geo-electric properties of formation, their frequency responses

are quite different. At the range of small parameter a1/λ1 (low frequen-

cies, high resistivity) the function Inbz
s tends to zero as ω3/2, and with a

decrease of frequency the ratio of the in-phase and quadrature
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components rapidly decreases. In this range the in-phase component

Inbz
s depends on the conductivity of formation as γ3/2. With an increase

of the ratio a1/λ1 the in-phase component of the secondary field

increases and then becomes greater than the quadrature component.

In particular, when skin depth is smaller than the borehole radius,

the in-phase component prevails and function Inbz
s approaches�1 indi-

cating the concentration of the induced currents in the borehole.

17. With a decrease of frequency maximum of the induced currents is

shifted deeper from the borehole providing increased sensitivity of

the in-phase component to the remote part of the formation. But com-

plexity in the cancelation of the primary field, coinciding with the

in-phase secondary component, makes application of this component

quite difficult. For this reason it is more practical to use a quadrature

component. Because of the strong skin effect at the high frequency,

the induced currents are concentrated near the borehole, and quadrature

component of the field mainly provides information about an invasion

zone and the borehole. At the same time decrease of the frequency leads

to increase of the depth of investigation only up to a certain limit. Below

this limit contribution of the borehole and invasion into the measure-

ments remains practically the same and quite significant, especially for

the short-spaced probes. In other words, the depth of investigation

is limited, regardless of frequency. To overcome the limit one

should increase a length of the probe. This outlines a current trend in

the development of advanced logging tools toward multiarray systems

with frequencies in the range of tens to thousands of kilohertz. These

systems mainly rely either upon measurements of the quadrature com-

ponent or attenuation and phase difference. Also, as follows from

Eq. (8.43), combination of quadrature components at two different

frequencies

QBz ω2ð Þ
ω2

�QBz ω1ð Þ
ω1
allows us to remove leading linear term and achieve a depth of inves-

tigation, similar to that of the in-phase component. As was mentioned

above, the presence of this linear term doesn’t permit an increased depth

of investigation by a simple decrease of the frequency.
18. When invasion zone is absent and measurements are performed in the

far zone, the sensitivities of the attenuation and phase difference to the
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formation are practically the same. But in the presence of invasion

attenuation is significantly more sensitive to the properties of formation.

8.5 DISPLACEMENT OF THE PROBE FROM THE
BOREHOLE AXIS
In real conditions the induction probe may be shifted from the bore-

hole axis. Below we study the effect of this displacement on the readings of

the two- and three-coil probes. Shift of the probe leads to change in the

geometry of the induced currents and appearance of the surface charges at

the boundary between borehole and formation. Since the surface electric

charges give rise to the electric field, the induced currents are generated

by both an inductive electric field and charges. In general, these vortex

and galvanic parts are related to each other, but at the range of small induc-

tion number they are independent.

Inasmuch as the density of charges depends on the conductivity of the

borehole and formation the concept of the geometric factor is not applicable

anymore. However, there is one exception, namely when conductivity of

the formation γ2 is small and the coefficient

K12¼ γ1� γ2
γ1 + γ2

is close to unity. At the range of small induction number the charges are

mainly created by the primary electric field, and correspondingly we can

expect that the in-phase component of the secondary field tends to that

in a uniform medium with resistivity of the formation:

Inb�z ! Inb�unz γ2ð Þ, if p! 0

In other words, it is less sensitive to the probe displacement than the

quadrature component. The same tendency is observed in dual-frequency

transformation:

QB�
z ω1ð Þ
ω1

�QB�
z ω2ð Þ
ω2

which has reduced sensitivity to the near borehole zone. Of course, when

the probe is shifted from the borehole axis the current lines aren’t circles any-

more and have some vertical component. In general, determination of the

magnetic field with no symmetry is rather a complicated problem, which is

usually solved numerically either by a finite element or finite difference
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techniques. But if the medium is symmetrical one, the semianalytical

approach allows us to reduce the original non 1D problem to the series

of 1D problems [2]. Our analysis of an influence of the probe displacement

is based on the use of the last approach. First we consider the range of small

induction number when interaction of currents inside the borehole can be

neglected. Then, by analogy with the response of the two-coil probe we

have:

Qb�z¼
ωμ0γ1a

2
1α

2

2
Gd

1 α, s, dð Þ+ sGd
2 α, s, dð Þ� �

(8.64)

Here

α¼L=a1, s¼ γ2=γ1, d¼ r=a1

The parameter d characterizes a displacement of the probe, normalized

by the borehole radius. Inasmuch as analytical expression for the field is

absent, we cannot derive formulas for the function Gd(α, 0,d), and particu-

larly the asymptote for α ≫1. Nevertheless we can try to determine the

function G1
d approximately for the limiting case of a nonconductive forma-

tion, s¼ 0. In such case the influence of galvanic part of the field is maximal

and there is no normal component of the current on the borehole surface.

From Eq. (8.64) we obtain

F ¼ α2Gd
1 α, 0, dð Þ¼ 2

ωμ0a
2
1γ1

Qb�z (8.65)

Behavior of the function F(α) is shown in Fig. 8.11, where index of cur-
ves is the parameter d and ρ1¼ 1 ohmm, a1¼ 0:1 m.

The displacement of the probe makes strong influence on the function

F(α), which approaches the constant value with increase of the probe length.
In other words, the functionG1

d, characterizing an influence of the borehole,

decreases as 1/α2:

Gd
1 ! 1=α2, if α ≫ 1

regardless of the displacement. Correspondingly, with an increase of α the

normalized response of the two-coil probe Qb�z also tends to the constant,

but the field decays as the primary field. With an increase of d transition

to the asymptote is observed at larger values of the probe length. Bearing

in mind the main features of the three-coil probe, we can expect reduction

of the effect of displacement on this probe.
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When parameter s¼ γ2=γ1 is small and charge density reaches a maximal

value, the functionG1
d has almost the same asymptotic behavior as in the case

when s¼ 0. To confirm this behavior we use a ratio

r QZð Þ¼Qb�z α, d, sð Þ=Qb�unz γ2ð Þ

indicating closeness of the response Qb�z to that in the homogeneous

medium with conductivity γ2. Results of calculations for two-coil,

Fig. 8.12A, and three-coil, Fig. 8.12B, probes at small induction number

are presented below. Parameter α varies from 2 to 20, while other
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Fig. 8.12 (A) Effect of probe displacement on two-coil and (B) three-coil probe. Function
r QZð Þ¼Qb�z α, d, sð Þ=Qb�unz γ2ð Þ. Index is a displacement of the probe.
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parameters are: a1¼ 0:1 m, ρ1¼ 0:2 ohmm and s¼0.02. The index of cur-

ves is the parameter d.

With an increase of the probe length all curves approach unity, but in the

case of three-coil probe Fig. 8.12B it takes place at much smaller probe

length. Bearing in mind the main feature of the latter, we can expect such

asymptotic behavior of the function G1
d regardless of the contrast s. In other

words, the three-coil probe demonstrates “focusing” properties.

It is noticeable that an increase of the displacement for the two-coil probe

leads to the reduced influence of the borehole, while for the three-coil probe

the opposite tendency takes place. This behavior is observed in a wide range

of frequencies typical for induction logging.

Earlier we pointed out that at the low frequency limit the in-phase

component of the secondary field is less sensitive to the borehole than the

quadrature component. This is confirmed by Fig. 8.13, where effect of dis-

placement on the two-coil probe at frequency f ¼ 50 kHz is presented in the

form of a ratio

r Inzð Þ¼ Inb�z�1
� �

= Inb�unz γ2ð Þ�1
� �

indicating closeness of the response Inb�z to that in the homogeneous

medium with conductivity γ2. Here ρ1¼ 0:2 ohmm, s¼ 0:02, a1¼ 0:1 m.

The data clearly show reduced impact of the displacement on the

in-phase component compared to the two-coil quadrature component
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. Index is a displacement of the probe.
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(Fig. 8.12A), although it is more pronounced compared to the three-coil

quadrature component (Fig. 8.12B). Finally, we compare the effect of

displacement on the attenuation and phase difference for the VIKIZ at

the frequency of 3.5 MHz. The formation model is the same as in

Fig. 8.13. The results of calculations are in Fig. 8.14.

Along y-axis we show normalized functions PAt(α) and PΔϕ(α)
representing attenuation and phase difference normalized by that in a uni-

form medium with conductivity γ2. Fig. 8.14A and B shows that the atten-

uation is less sensitive to the probe displacement compared to the phase

difference. The graphs above can be used to perform corrections for the

displacement when the parameters of the borehole and value of the displace-

ment are known.
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In this chapter we consider vertical responses of two-coil induction probes

located at different locations with respect to the horizontal interfaces

between a bed and a surrounding medium. Special attention is paid to

the effects that the frequency has on the vertical responses of the probe as

well as the ratio of conductivities, and geometric parameters such as forma-

tion thickness and probe length and position.
9.1 VERTICAL COMPONENT OF THE FIELD
OF A MAGNETIC DIPOLE
Suppose that there are two parallel interfaces that divide a space into

three parts as shown in Fig. 9.1. The vertical magnetic dipole is placed at the

origin of the cylindrical system of coordinates, and its moment is oriented

along the z-axis.

Themagnetic permeability of the medium is equal to 4π�10�7H=m. As
in the case of a medium with cylindrical interfaces, we introduce the vector
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potential of the electrical type with complex amplitude obeying the Helm-

holtz equation:

r2A∗ + k2A∗ ¼ 0 (9.1)

As was shown before

E� ¼ curlA�, B� ¼ k2A� + graddivA� (9.2)

Due to the axial symmetry the boundary value problem can be solved

using only the z-component of the vector potential:

A� ¼ 0, 0,A�
z

� �
(9.3)
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which depends on two coordinates: r and z. Then Eqs. (9.2), (9.3) give

B�
r ¼

@2A�
z

@r@z
, B�

z ¼ k2A�
z +

@2A�
z

@z2
, B�

ϕ¼ 0
and

E�
r ¼E�

ϕ ¼ 0, E�
ϕ¼�iωμ0

@A�
z

@r
(9.4)
From the continuity of tangential components of the field, boundary

conditions for the vector potential at interfaces are:

A�
iz¼A�

kz and
@A�

iz

@z
¼ @A�

kz

@z
if z¼ hi (9.5)
Near the origin of the coordinate system, where the dipole is located, the

field tends to that of a magnetic dipole in a uniform medium. Therefore, for

the vector potential we have:

A�
z!

μ0M0

4π

eikR

R
, as R! 0 (9.6)
where R2¼ r2 + z2. At infinity (R!∞), the field and correspondingly, the

vector potential, vanish. Thus, to find the field, it is necessary to solve the

equation:

r2A�
iz + k2i A

�
iz¼ 0 (9.7)
and satisfy conditions (9.5) as well as a corresponding behavior of the field

near the dipole and at infinity. The equation above is the Helmholtz equa-

tion and, in a cylindrical system of coordinates, it can be presented in the

form:

@2A�
z

@r2
+
1

r

@A�
z

@r
+
@2A�

z

@z2
+ k2i A

�
z ¼ 0
because
@A�

z

@ϕ
¼ 0. Letting A�

z ¼U rð ÞV zð Þ and applying the method of sep-

aration of variables, we obtain two ordinary differential equations:

d2U rð Þ
dr2

+
1

r

dU rð Þ
dr

+m2U ¼ 0 and
d2V

dz2
� m2�k2i
� �

V ¼ 0 (9.8)
where m is the separation constant. The first equation of the set (9.8) is a

Bessel equation, and its solutions are Bessel functions of the first and second

kind:

U rð Þ¼AJ0 mrð Þ+BY0 mrð Þ
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Function Y0(mr) tends to infinity as r! 0, and therefore it cannot

describe a field. The solution of the second equation is:

V zð Þ¼Ce� m2�k2ð Þ1=2z +De m2�k2ð Þ1=’2z

Thus, the general solution of Eq. (9.7) can be presented in the form:

A�
zi r, zð Þ¼

ð∞
0

N1e
m2�k2ið Þ1=2z +N2e

� m2�k2ið Þ1=2zh i
J0 mrð Þdm (9.9)

The sign of radical m2�k2i
� �1=2

is chosen in such way that its real part is

positive:

Re m2�k2i
� �1=2

> 0 (9.10)

We present the field in a medium where the dipole is located as a sum:

A�
1z¼

μ0M0

4π

exp ikRð Þ
R

+A�s
z (9.11)

whereAz
∗s describes the secondary field. It is known that the vector potential

of the magnetic dipole is expressed as a Sommerfeld integral:

exp ikRð Þ
R

¼
ð∞
0

m

m2�k2ð Þ1=2
exp m2�k2

� �1=2
z

h i
J0 mrð Þdm

Now we derive formulas for the vector potential for various positions of

the dipole with respect to the interfaces:

Case 1: The magnetic dipole is located outside the bed, as shown in

Fig. 9.1A
In accordance with Eqs. (9.9), (9.11) and taking into account the con-

dition at infinity, expressions for the vector potential in each part of a

medium can be written in the form:
A�
1z ¼

μ0M0

4π

ð∞
0

m

m1

e�m1 zj j +D1e
m1z

� �
J0 mrð Þdm z� h1

A�
2z ¼

μ0M0

4π

ð∞
0

D2e
m2z +D3e

�m2z½ � J0 mrð Þdm h1� z� h2

A�
3z ¼

μ0M0

4π

ð∞
0

D4e
�m1zJ0 mrð Þdm z� h2

(9.12)
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Here h1 is the distance from the dipole to the nearest interface,

h2 ¼ h1 +H , and H is the bed thickness. From boundary conditions,

Eq. (9.5), we obtain a system of linear equations with respect to

D1, D2, D3, and D4:
m

m1

e�m1h1 +D1e
m1h1 ¼D2e

m2h1 +D3e
�m2h1

�mem1h1 +m1e
m1h1 ¼m2D2e

m2h2 �m2D3e
m2h2

D2e
m2h2 +D3e

�m2h2 ¼D4e
�m1h2

m2D2e
m2h2 �m2D3e

�m1h2 ¼�m1D4e
�m1h2

(9.13)
Solving this system we have:
D1¼�mK12e
�2m1h1 1� e�2m2Hð Þ

m1 1�K2
12e

�2m1Hð Þ , D2¼ 2mK12e
� m1 +m2ð Þh1e�2m2H

m1 +m2ð Þ 1�K2
12e

�2m1Hð Þ ,

D3¼ 2me� m1�m2ð Þh1

m1 +m2ð Þ 1�K2
12e

�2m1Hð Þ , D4 ¼ 4m1m2e
� m1�m2ð ÞH

m1 +m2ð Þ2 1�K2
12e

�2m1Hð Þ
(9.14)
Substituting these expressions for the coefficients in Eq. (9.12), we

have:
A�
1z ¼

μ0M0

4π

ð∞
0

m

m1

em1 zj j �K12 1� e�2m2Hð Þe�m1 2h1�zð Þ

1�K2
12e

�2m2H

� �
J0 mrð Þdm

A�
2z ¼

μ0M0

4π

ð∞
0

2me�m1h1e�m2 z�h1ð Þ 1+K12e
2m2 z�h1�Hð Þ� �

m1 +m2ð Þ 1�K2
12e

2m2Hð Þ J0 mrð Þdm

A�
3z ¼

μ0M0

4π

ð∞
0

4mm2e
� m2�m1ð ÞHe�m1z

m1 +m2ð Þ2 1�K2
12e

�2m2Hð Þ J0 mrð Þdm

(9.15)
Here z is the distance between the dipole and an observation point.

As follows from these equations, the vertical component of the magnetic

field, measured with the two-coil probe at the z-axis when r¼ 0 is:
b 1ð Þ�
z ¼ b�0z γ1ð Þ�1

2

ð∞
0

m3

m1

K12 1� e�2m2αð Þe�m1 2β�1ð Þ

1�K2
12e

�2m2α
dm if β� 1

b 2ð Þ�
z ¼

ð∞
0

m3e�m1βe�m2 1�βð Þ 1+K12e
2m2 1�β�αð Þ� �

m1 +m2ð Þ 1�K2
12e

�2m2αð Þ dm if 1� β� 1�α

b 3ð Þ�
z ¼

ð∞
0

2m3m2e
� m2�m1ð Þαe�m1

m1 +m2ð Þ2 1�K2
12e

�2m2αð Þdm if β� 1

(9.16)
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Here, b�z is the complex amplitude of the field, expressed in units of

the primary field equal to b0z0¼ 2μ0M0=4πz3. Also:
K12¼m2�m1

m2 +m1

, mi¼ m2�k2i z
2

� �1=2
, α¼H

z
, β¼ h1

z

�
H is the bed thickness, and b0z is the field in a uniform medium with

conductivity γ1. The last equation of the set (9.16) corresponds to the

case of the layer located between the dipole and the observation point,

and as it follows from this formula, the field does not depend on the posi-

tion of the layer with respect to the probe coils.
Case 2: The magnetic dipole is located within the bed, as shown in

Fig. 9.1B
For the dipole located within the bed, expressions for the vector poten-

tial can be written in the form:
A�
1z¼

μ0M0

4π

ð∞
0

D1e
m1zJ0 mrð Þdm if z� h2

A�
2z¼

μ0M0

4π

ð∞
0

m

m2

e�m2 zj j +D2e
m2z +D3e

�m2z

� �
J0 mrð Þdm if h2� z� h1

A�
3z¼

μ0M0

4π

ð∞
0

D4e
�m1zJ0 mrð Þdm, if z� h1

(9.17)
where h1 is the distance from the dipole to the upper interface of the bed,

h2 ¼H�h1, and H is the bed thickness. To determine the unknown

coefficients, we use the boundary conditions, which lead to the follow-

ing system:
D1e
�m1h2 ¼ m

m2

e�m2h2 +D2e
�m2h2 +D3e

m2h2

m1D1e
�m1h2 ¼me�m2h2 +m2D2e

�m2h2 �m2D3e
m2h2

D4e
�m1h1 ¼ m

m2

e�m2h1 +D2e
m2h1 +D3e

�m2h1

�m1D4e
�m1h1 ¼�me�m2h1 +m2D2e

m2h1 �m2D3e
�m2h1

(9.18)
In this case, the field is considered only inside the bed, inasmuch as

expressions for the field outside the bed can be derived from the set of

Eq. (9.16). Solving the system (9.18) we find:
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D2 ¼mK12e
�2m2h1 1 +K12e

�2m2h2ð Þ
m2 1�K2

12e
�2m2Hð Þ and

D3 ¼mK12e
�2m2h2 1 +K12e

�2m2h1ð Þ
m2 1�K2

12e
�2m2Hð Þ

(9.19)
Substituting these expressions into the second equation of (9.17), we

obtain:
A�
2z¼

μ0M0

4π

ð∞
0

m

m2

e�m2 zj j

+
mK12 e�m2 2h1�zð Þ + e�m2 2h2 + zð Þ +2K12e

�2m2H coshm2z
� �

m2 1�K2
12e

�2m2Hð Þ J0 mrð Þdm
(9.20)
In accordance with Eqs. (9.4), (9.20), the expression for the vertical

component of the magnetic field on the dipole axis related to the primary

field is:
b�z ¼ b�0z γ2ð Þ
+
1

2

ð∞
0

m3K12 e� 1+ 2αð Þm2 + e� 2α�2β�1ð Þm2 + 2K12e
�2αm2 coshm2

� �
m2 1�K2

12e
�2αm2ð Þ dm,

(9.21)
where α¼H=z, β¼ h2=z. If coils of the probe are located symmetrically

with respect to the interfaces, 2β¼ α�1, the latter equation can be pres-

ented as:
b�z¼ b�0z +
ð∞
0

m3K12e
�2αm2

m2

eαm2 +K12 coshm2

1�K2
12e

�2αm2
dm (9.22)
Next we derive equations for the field in one special case.
9.2 THE FIELD OF THE VERTICAL MAGNETIC DIPOLE
IN THE PRESENCE OF A THIN CONDUCTING PLANE
Let us assume that the length of the probe is significantly greater than

the thickness of the bed (Fig. 9.1C). Then, if its conductivity is much larger

than that of the surrounding medium and the skin depth inside the bed is

much greater than its thickness, the bed can be replaced by a thin conducting

plane with conductance S, equal to the product of the conductivity and

thickness of this layer.
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Such replacement enables one to use approximate conditions—which

do not rely on the field inside the bed—instead of the exact boundary con-

ditions. From a continuity of the tangential component of the electrical field

we have:

E�
1ϕ ¼E�

2ϕ (9.23)

Circulation of the magnetic field along the contour abcd is equal to the

current piercing this contour (Fig. 9.1C), hence we can write:þ
Bdl¼B1rdr�B2rdr¼ μ0drdhEϕ, h! 0

or

B�
1r �B�

2r ¼ μ0SE
�
ϕ (9.24)

where S is the conductance of the thin layer. Correspondingly, the boundary

conditions for the vector potential have the form:

A�
1z ¼A�

2z,
@A�

1z

@z
�@A�

2z

@z
¼�iωμ0SA

�
2z (9.25)

For the function A�
z outside the conducting plane we have:

A�
1z ¼

μ0M0

4π

ð∞
0

m

m1

e�m1 zj j +D1e
m1z

� �
J0 mrð Þ if z� h1

A�
2z ¼

μ0M0

4π

ð∞
0

D2e
�m2zJ0 mrð Þdm if z� h1

(9.26)

Substituting these expressions into Eq. (9.25), we obtain the system of

equations for determination of D1 and D2:

�D1e
m1h1 +D2e

�m1h1 ¼ m

m1

e�m1h1 , m1D1e
m1h1

+ m1� iωμ0Sð ÞD2e
�m1h1 ¼me�m1h1

Solving this system we have:

D1 ¼ mK2
s e

�2m1h1

m1 2m1�K2
s

� � and D2¼ m

2m1�K2
s

� � (9.27)

here K2
s ¼ iωμ0S. Therefore, for the vector potential we obtain:
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A�
1z¼

μ0M0

4π

ð∞
0

m

m1

e�m1 zj j +
mK2

s e
�m1h1

m1 2m1�K2
s

� �em1z

" #
J0 mrð Þdm

and

A�
2z ¼

μ0M0

4π

ð∞
0

2m

2m1�K2
s

em1zJ0 mrð Þdm

Correspondingly, for the vertical component of the magnetic dipole

along its axis we have:

b�1z¼ b�0z γ1ð Þ+ ns

2

ð∞
0

m3em1 1+ 2αð Þ

2m1�ns
dm, b�2z¼

ð∞
0

m3em1

2m1�ns
dm (9.28)

where m1 ¼ m2�k21z
2

� �1=2
, α¼ h1=Z, and ns ¼ iμ0ωSz.

The derived formulas enable us to study the vertical characteristics of the

two-coil probes in the presence of a thin conducting layer surrounded by the

uniform medium.
9.3 THE TWO-COIL INDUCTION PROBE IN BEDS
WITH A FINITE THICKNESS
9.3.1 Dependence of the Field on the Parameter p¼ L=δ1

First we assume that the two-coil probe is located symmetrically with respect

to the interfaces of the bed. The vertical component of the magnetic field on

the z-axis, expressed in units of the primary field, is defined by three param-

eters: the ratio of the probe length, L, to the skin depth, δ1, in the bed; the

ratio of conductivity of the bed to that of the surrounding medium; and the

ratio of the bed thickness, H, to the probe length.

Examples of the quadrature and in-phase components of the field

b�z(L/δ1), are presented in Figs. 9.2 and 9.3. Similar to the cases of a uniform

medium and a medium with cylindrical interfaces, the in-phase component

of the secondary field jInbs�z j gradually increases with an increase of the argu-
ment, then reaches a value slightly exceeding the primary field, and finally,

approaches unity in an oscillating manner. The quadrature component also

increases initially, then reaches a maximum before decreasing and

approaching zero. Such behavior of both components of the complex

amplitude of the quasistationary field is typical for any conducting media.
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An analysis of the results of calculations allows us to outline the following

features of the field:

1. For small values of parameter L/δ1 (low frequency, high resistivity) the

in-phase component of the secondary field is much smaller than the

quadrature component: Inbsz≪Qbz. Comparison of quadrature and
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in-phase components leads to the conclusion that in the range of small

parameter, induced currents in the medium surrounding the bed have a

much stronger influence on the in-phase component than on the quad-

rature component. In the limit when parameter L/δ1 tends to zero,

the in-phase component of the magnetic field approaches that of a

uniform medium with the conductivity of the surrounding medium

(Chapter 7):

Inbs�z !�2

3
p32 (9.29)
Here
p32¼
γ2μ0ω

2

� 	3=2

L3
It is essential that this result does not depend on the ratio of the bed

thickness and the probe length (H/L), as well as the ratio of conductiv-

ities. In other words, with a decrease of L/δ1, the bed becomes transpar-

ent to the in-phase component regardless of the probe length. Within

this range of L/δ1 the in-phase component is much less sensitive to

the bed than the quadrature component. Its asymptotic behavior

according to Eq. (9.29), is mainly defined by the conductivity of a

surrounding medium.
2. In the range of small parameter, the quadrature component of the field is

directly proportional to the frequency and conductivity following Doll’s

theory. The left-hand asymptote of the frequency response is described

by the function Qb�z(L/δ1):

Qb�z¼
ωμ0L

2

2
γ1G1 + γ2G2ð Þ¼ p21 G1 +

γ2
γ1
G2


 �
(9.30)
Earlier, we used this equation to study in detail the vertical responses

of the two-coil probe and, in particular, demonstrated that the influence

of a surrounding medium is rather strong when a bed is more resistive

and has a relatively small thickness. By analogy with the case of a medium

with cylindrical boundaries, we will derive Eq. (9.30) from an exact

solution. In fact, according to Eq. (9.22), the vertical component of

the magnetic field along the dipole axis is:
b�z¼ b�0z γ1ð Þ+
ð∞
0

m3K12e
�2αm2

m2

eαm2 +K12 coshm2

1�K2
12e

�2αm2
dm, α� 1
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where b�0z(γ1) is the field in a uniform medium with a bed conductivity

expressed in units of the primary field and
m1¼ m2� in1ð Þ1=2, m2¼ m2� in2ð Þ1=2, K12¼ m2�m1ð Þ= m2 +m1ð Þ,
n1 ¼ γ1μ0ωL

2, n2¼ γ2μ0ωL
2, s¼ γ1=γ2, α¼H=L

2
Expanding the radicals in a series by small parameters ni/m :
m1�m� in1

2m
, m2�m� in2

2m
,

and considering only the first term, we obtain for the integrand:
�1

4
s�1ð Þn1e�αm1

�
Correspondingly, taking into account the expression for b0z(γ1), the
integral becomes equal to
� i

4α
s�1ð Þγ2μ0ωL2
Thus, the field in the range of small parameter n1 is:
b�z¼
iγ1μ0ωL

2

2
� i

4α
s�1ð Þγ2μ0ωL2
and
Qb�z¼
ωμ0L

2

2
γ1G1 + γ2G2ð Þ¼ p21 G1 +

γ2
γ1
G2


 �
where
G1¼ 1�1=2α and G2¼ 1=2α
Of course, the latter was already derived in Chapter 6, proceeding

from the concept of a geometric factor. Therefore, Doll’s theory is in

fact the theory of a very small parameter, which characterizes the dimen-

sions of a model, expressed in units of the skin depth. For example, with a

decrease of the probe length, parameter L/δ also decreases. From the

physical point of view, this means that the effect of induced currents near

the dipole, which are shifted in-phase by 90 degrees and do not interact

with each other, increases.
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3. Until now we have considered the range of parameter p when the func-

tionQb�z increases in direct proportion to p
2. As was shown in Chapter 7,

there is a range in which components of the field behave as:

Qb�z ¼
ωμ0L

2

2
γ1� γ2ð ÞG1 +Qb�0z γ2ð Þ and Inb�z¼ Inb�0z γ2ð Þ (9.31)

�
Here G1 is the geometric factor of the bed, and b0z is the field in a

uniform medium with a conductivity of the surrounding medium γ2.
With further increase of the parameter p, induced currents in the bed

become more subject to the skin effect, and the quadrature component

Qb�z grows at a decreasing rate. Finally, it reaches a maximum and then

decreases in value, approaching zero in an oscillating manner. An

increase of the parameter p can be caused by either an increase of the

probe length or a change in frequency. The former leads to increased

sensitivity of the probe to remote parts of the medium; the latter causes

an increase of the skin effect near the probe.

With an increase of the parameter L/δ1, the in-phase component of

the secondary field also increases, and at the upper limit, it approaches

that of the primary field
b�z
�� ��! μ0M0

2πL3
Correspondingly, induced currents are concentrated in the vicinity

of the source, and their direction is opposite to the direction of the cur-

rent in the source dipole. In other words, the primary and secondary

fields cancel each other, and the resulting field in a conducting medium

is equal to zero.
9.3.2 Some Features of the Apparent Conductivity Curves
Next we consider dependence of apparent conductivity on the frequency. In

general, apparent conductivity can be introduced in different ways, but we

follow Doll’s approach:

γa¼
2

ωμ0L2
Qb�z (9.32)

Such apparent conductivity reads true conductivity in a uniform

medium only within Doll’s domain, but outside of this range the apparent

conductivity differs from the true conductivity.
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In most practical cases, the field behavior either corresponds to the Doll

approximation or relatively close to it. At the same time, when frequency is

sufficiently high and the resistivity of a bed is known, it is appropriate to

introduce apparent conductivity as

γa¼ γ1
Qb�z

Qb�0z γ1ð Þ
����

���� (9.33)

Of course, within the range of small parameter, Eqs. (9.32), (9.33) lead to

the same results for γa.
Let us consider the case when the bed is thicker than the length of the

two-coil probe located in the middle of the bed Fig. 9.4. Normalized appar-

ent conductivity (9.32) is plotted as a function of L/δ1. The index of curves is
γ1/γ2. This figure shows that all curves of the apparent conductivity at the

left-hand part are in the Doll’s range and parallel to the horizontal axis. In

this range, an increase of the conductivity of the surrounding medium γ2
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Fig. 9.4 Apparent conductivity curves. The index is γ1/γ2.
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leads to increased readings of apparent conductivity. But with increase of the

frequency, the skin effect in the surrounding medium becomes stronger,

causing a decrease of γa. This means that a relative contribution of currents

in the bed increases and the influence of the conductive surrounding

medium on the response becomes less than what follows from the Doll’s the-

ory. This observation was made many years ago [1] and motivated the usage

of frequencies higher than those in the original system. Of course, the fre-

quencies should not be increased at the expense of reduced depth of inves-

tigation in the radial direction. This is one reason why in the latest systems of

the lateral induction soundings, the highest frequencies are used for the

shortest probes having shallow depth of investigation, and lowest frequen-

cies in the long-spaced probes permitting deep lateral sounding.

Comprehensive numerical calculations show that decrease of the bed

thickness leads to a deviation from the left-hand asymptote at the smaller

frequencies if γ2> γ1. It is appropriate to relate the maximal values of the

parameter L/δ1 to the resistivity and frequency, when the Doll’s approxima-

tion is valid. As a result, for the frequency of 20 kHz and γ1> γ2 corrections
due to the internal skin effect are small, and for the relatively thick bed

(α>8) and low resistivity (ρ1 � 1ohmm), they range between 10% and

20%. But if conductivity of the bed is smaller than that of the surrounding

medium, then the influence of the skin effect can be significant. For instance,

for f ¼ 20kHz, ρ1 ¼ 20ohmm, and ρ2¼ 2:5ohmm, L¼1 m and H¼2 m,

the value of apparent conductivity, γ2/γ1, is equal to 2.0 versus 2.8,

corresponding to the Doll’s theory:

γa¼ γ1 +
1

2α
γ2� γ1ð Þ (9.34)

The influence of the internal skin effect manifests itself to an even greater

extent if higher frequencies, for example 60 kHz and above, are used. Also,

apparent conductivity curves show that with an increase of the probe length

the influence of the skin effect becomes stronger. As mentioned previously,

this is related to the increased sensitivity of the field to the remote parts of the

medium. Tominimize interpretation error, it is highly advisable to use exact

numerical solutions, which accurately take into account the skin effect in the

surrounding medium. Analysis of the field in a medium with cylindrical

interfaces (borehole, invasion zone, formation) shows that the skin effect

in a radial direction also has to be taken into account. However, the impact

of the skin effect on the radial responses is usually less pronounced than that

on the vertical responses. In theory, we can use such a high frequency that



304 Basic Principles of Induction Logging
the influence of induced currents in the surrounding medium is practically

negligible and thus detection of resistive beds (γ1≪ γ2), having relatively

small thickness, (L�H) will be improved. However, the intent to elim-

inate the influence of the surrounding medium may require frequencies of

dozens of megahertz deteriorating a radial response of the probe, especially

when the invasion zone presents and has intermediate resistivity ρ2
between the borehole and formation (ρ1< ρ2< ρ3). Also, high frequencies
increase the influence of the borehole and the dielectric properties of for-

mation. These issues essentially reduce attractiveness of very high frequen-

cies for reduction of the influence of the surrounding medium on γa. But
an increase of frequency within certain limits, when the radial response

practically does not change, can significantly improve characteristics of

the vertical response of the probe. It is not a coincidence that all modern

systems of induction logging use frequencies that are much higher than

20 kHz.

Now let us consider the main features of the apparent conductivity

γa/γ1 when the bed is thinner than the probe located in the middle of

the bed (Fig. 9.5). As was shown earlier, in this case the field does not

depend on the position of the bed inside the probe, and it can be presented

in the form:

b�z¼ 2

ð∞
0

m3m2e
� m2�m1ð Þαe�m1

m1 +m2ð Þ2 1�K2
12e

�2αm1ð Þdm, α� 1

Comparing the curves of apparent conductivity for both thick (α> 1)

and thin (α< 1) beds, we conclude that in the latter case, the low-frequency

asymptote takes place for larger values of the parameter L/δ1 (γ2< γ1).
Asymptotic representation for the function γa/γ1, as L=δ1! 0, can be

derived in the same manner as Eq. (9.34). Omitting intermediate manipu-

lations we receive:

γa
γ1

¼ γ2
γ1
� γ2

γ1
�1


 �
α

2
(9.35)

Of course, this equation coincides with the one derived using the geo-

metric factor (Chapter 6). By analogy, it is a simple matter to obtain an

expression for the apparent conductivity, which is valid for larger values

of the parameter L/δ1 (Chapter 7).
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Assuming a 90 degrees phase shift in the induced currents inside the bed,

and no interaction between them and currents in the surrounding medium,

we have:

γa
γ1
¼ γuna

γ1
� γ2

γ1
�1


 �
α

2
(9.36)

where γa
un is an apparent conductivity in a uniform medium with conduc-

tivity γ2. Obviously, within Doll’s domain this value coincides with γ2.
Eq. (9.36) is valid for larger values of parameter L/δ1 than Eq. (9.35), and

this fact becomes more noticeable for relatively resistive beds. Analysis of

apparent conductivities shows that thin beds with resistivity greater than

that of the surrounding medium are hardly noticeable when the parameter

L/δ1 is small. For example, if α� 0:3 and γ1=γ2 � 1=8, the influence of the
bed does not exceed 5%–10%. On the contrary, the presence of thin con-

ductive layers is more pronounced. For example, for small values of L/δ1,
when α� 0:3 and γ1=γ2¼ 8, the influence of the bed reaches 50%.
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9.4 PROFILING CURVES FOR A TWO-COIL PROBE
IN A BED OF FINITE THICKNESS
As was shown in the first section, the signal and the apparent conduc-

tivity depend on

• the ratio between the probe length, L, and the skin depth in a surround-

ing medium L/δ2.
• the ratio between the bed thickness and the probe length: H/L.

• the ratio between conductivity of the bed and the surrounding medium

γ1/γ2.
• thepositionof theprobewithrespect to thebed,whichcanbecharacterized

by the distance between the middle of the bed and the center of the probe.

(Needless to say, the measured electromotive force depends on the

moments of the transmitter and receiver, as well as on the probe length

and frequency). The formulas for calculation of the fieldswere derived ear-

lier. We again use the following definition for the apparent conductivity:

γa
γ1
¼ 2

γ1μ0ωL2
Qb�z

Let us consider the influence of the main factors, mentioned above, on

the shape of the profiling curves corresponding to certain values of γ1/γ2 and
H/L. In the analysis it is advisable to distinguish four typical cases.

Case I: Conductive bed
Profiling curves for the layers with thicknessH=L¼ 4,2,1 are presented in

Fig. 9.6A–C. The index of curves is the parameter n2¼ γ2μ0ωL
2. Along

the x-axis we depict the apparent conductivity. The y-axis depicts the dis-

tance between the middle of the bed and center of the probe, expressed in

units of the bed thickness. The curves are symmetrical with respect to the

middle of the bed. In the case of the thick layer H=L¼ 4 and frequency,

corresponding to Doll’s region limit (n2 ¼ 0:01), the apparent conductiv-
ity readings are only 20% below the true value. The deviation from the

true value increases as the layer becomes thinner (Fig. 9.6B) and it reaches

50% in the case ofH=L¼ 1. In accordance with Doll’s theory, the ratio of

γa/γ1 corresponding to the bed interface and its middle point is:
η¼ 0:5 	 1�1=4α

1�1=2α
, α¼H=L� 1
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According to this formula, only for the relatively thick layers the

parameter η approaches the value of 0.5. In such cases the bed thickness

can be determined by using points of the profiling curves, corresponding

to half of the maximal value. For example, an error in H does not exceed

3% if α¼ 4:0 (Fig. 9.6A), but it increases to 10% for α¼ 2:0 (Fig. 9.6B)

and 80% for α¼ 1:0 (Fig. 9.6C).With an increase of frequency, the appar-

ent conductivity readings γa/γ1 at the middle of the bed experience strong

skin effect and significantly deviate from the true conductivity of the bed.

Furthermore, the width of an intermediate zone, where apparent conduc-

tivity γa differs from a uniform medium with conductivity γ2, becomes

narrower and the readings are closer to the true conductivity γ2.
Case II: Thick resistive bed
Typical profiling curves for the thick H=L¼ 4 bed are presented in

Fig. 9.7. With an increase of parameter n2, the width of the intermediate

zone decreases. Unlike the previous case, an increase of the frequency

leads to a better detection of the resistivity of the bed. In the example

from Fig. 9.7, apparent conductivities γa/γ1 against the bed practically

approach the true conductivity, while outside of the bed the readings

become lower due to the strong skin effect. In particular, when

(n2¼ 0:64), γ1=γ2¼ 1=16 and H=L¼ 4, the readings outside of the

bed γa/γ1 are 1.6 times lower compared to the true value, Fig. 9.7.
Case III: Thin conductive bed
Examples of profiling curves, corresponding to this case, are presented in

Fig. 9.8A and B. Similarly to the first case, when parameter n2¼ 0:01 is in
the Doll’s range, the readings outside of the bed correspond to the true

conductivity of the surrounding formation. In the middle of the profiling

curves, readings are largely off the true conductivity values (Fig. 9.8A).

With increase of the frequency (n2 ¼ 0:32), the skin effect becomes pro-

nounced, reducing apparent conductivity along the entire profiling curves

(Fig. 9.8A) and making determination of the thin bed impossible.

The situation improves with a gradual increase of the layer thickness

to H=L� 0:5.
Case IV: Thin resistive bed
The profiling curves, shown in Fig. 9.9, behave similarly to the curves

corresponding to the case of a thick resistive layer (second case). It is clear

that skin effect is pronounced even at the relatively low frequency

(n2¼ 0:01), leading to the lower apparent conductivity inside and outside
thebed.An increase in the frequency (n2¼ 0:64) shifts the ratio γa/γ1 closer
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to unity, although the value of γa still significantly deviates from γ1.
For example, when γ1=γ2¼ 16 andH=L¼ 0:5, the apparent conductivity
in themiddle of the bed is more than seven times larger than the true value.

Determination of the thickness of such thin resistive beds using

points, corresponding to half of the maximal value of γa/γ1, is practically
impossible.
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In 1963, mathematician P.P. Frolov (Moscow), investigating the transient

electromagnetic field on the earth’s surface, showed that measuring the

transient field with relatively small separation between the transmitter and

receiver reveals information about the distribution of resistivity beneath

the earth’s surface. This was not an expected result because in surface and

borehole geophysics, experts strongly believed that only an increased sepa-

ration between transmitter and receiver permits increased depth of investi-

gation. Soon after his publication, a newmethod of surface geophysics called

transient soundings in the near zone was developed and found broad appli-

cation in Russia and globally. The possibility of studying resistivity of the

formation around the borehole with a short two-coil probe triggered an

interest in transient electromagnetic measurements within the logging

industry, resulting in several publications and development of the transient

induction logging theory in the 1970s. Like the induction phenomena in a

frequency domain, the main features of the transient field can be studied by

analyzing the field in a simple model of a uniform medium.
10.1 TRANSIENT FIELD OF THE MAGNETIC DIPOLE
IN A UNIFORM MEDIUM
Suppose that the constant current in the small loop (magnetic dipole)

vanishes instantly following a shape of a step function:

I ¼ I0 if t� 0

0 if t> 0

�
(10.1)

In contrast to a general case discussed in Chapter 4, we focus our atten-

tion here on the quasi-stationary field when displacement currents are

disregarded and the propagation speed is infinitely large. Under these

assumptions, the field instantly appears at any point of a medium regardless

of the distance from the source. In reality, this corresponds to the time of

observation greatly exceeding the time needed for the field to arrive at
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the observation point. We proceed from the expression for the vector

potential A�
z for the quasi-stationary field assuming k2� iωγμ0:

A�
z ¼

iωμ0M0

4π

exp ikRð Þ
R

Fourier’s transform of the last expression gives the following for the time

domain:

Az tð Þ¼ μ0M0

4π 2πð Þ1=2R
u

t
exp �u2=2
� �

(10.2)

and

u¼ 2πR

τ
, τ¼ 2πρt�107

� �1=2
(10.3)

The same result can be derived from a general expression for the vector

potential (Eq. 4.61), letting ε, and therefore the time of arrival of the wave,

τ0, to be zero.
10.1.1 Expressions for the Field
Taking into account Eq. (10.2) and the known relations between the vector

potential and field components:

E� ¼ curlA�

we obtain the following expressions for the components of the electromag-

netic field in the time domain:

BR ¼ 2μ0M0

4πR3
bR cos θ¼ 2μ0M0

4πR3
Φ uð Þ� 2

π

� �1=2

u exp �u2=2
� �" #

cos θ

Bθ ¼ μ0M0

4πR3
bθ sin θ¼ μ0M0

4πR3
Φ uð Þ� 2

π

� �1=2

u 1+ u2
� �

exp �u2=2
� �" #

sin θ

Eϕ ¼ M0ρ

4πR4
eϕ sin θ¼ 2

π

� �1=2
M0ρ

4πR4
u5 exp �u2=2

� �
sin θ

(10.4)
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where

Φ uð Þ¼ 2

π

� �1=2ðu
0

exp �x2=2
� �

dx

is the probability integral.
10.1.2 Main Features of the Transient Field
To illustrate the main features of the field components (Eq. 10.4) we present

numerical data in Table 10.1, containing values of bR,bθ, and eϕ as functions

of the parameter u.

The corresponding curves are shown in Fig. 10.1.

First, let us study the transient response at the early transient stage (t! 0)

after the current in the source is switched off. In this case, u!∞ and the

function Φ(u) tends to unity, so that we have

BR ¼ 2μ0M0

4πR3
cos θ, Bθ ¼ μ0M0

4πR3
sin θ, Eϕ¼ 0 (10.5)

As predicted by Faraday’s law, at the early stage, the induced currents

arise initially near the source and attempt to maintain magnetic field

unchanged. From Eq. (4.61), which takes into account displacement cur-

rents, it follows that at the initial moment the field is absent in all parts of

a medium. But in accordance with equations for the quasi-stationary field,

the field propagates instantaneously and has a finite value, even when t< τ0,
while in fact it equals to zero. To derive the late stage of the transient field,

we should expand the probability integral in a series of a small parameter u.

Performing an expansion, we have

Φ uð Þ� 2

π

� �1=2

u�u3

6
+
u5

40
�⋯

� �
(10.6)

Substituting this series into Eq. (10.4), we obtain approximate formulas

for components of the secondary field:



Table 10.1 Field Components as Functions of the Parameter u
u R/τ 12bR 12bθ eϕ bR bθ

0.0500 0.796E�02 0.3300E�04 �0.6661E�04 0.249E�06 1.0000 1.000

0.0595 0.946E�02 0.5561E�04 �0.1118E�03 0.592E�06 0.9999 1.000

0.0707 0.113E�01 0.9364E�04 �0.1878E�03 0.140E�05 0.9999 1.000

0.0841 0.0134 0.1575E�03 �0.3152E�03 0.334E�05 0.9998 1.000

0.100 0.0159 0.2649E�03 �0.5290E�03 0.793E�05 0.9997 1.001

0.119 0.0189 0.4452E�03 �0.8873E�03 0.188E�04 0.9996 1.001

0.141 0.0225 0.7476E�03 �0.1487E�02 0.446E�04 0.9993 1.001

0.168 0.0268 0.1254E�02 �0.2488E�02 0.1058�03 0.9987 1.002

0.238 0.0379 0.3518E�02 �0.6917E�02 0.590E�03 0.9965 1.007

0.283 0.0450 0.8760E�02 �0.1147E�01 0.138E�02 0.9941 1.011

0.336 0.0535 0.9780E�02 �0.1891E�01 0.324E�02 0.9902 1.019

0.400 0.0630 0.1623E�01 �0.3091E�01 0.754E�02 0.9838 1.031

0.476 0.0770 0.2676E�01 �0.4993E�01 0.173E�01 0.9732 1.050

0.556 0.0900 0.4378E�01 �0.7930E�01 0.393E�01 0.9562 1.080

0.673 0.1070 0.7081E�01 �0.1229 0.877E�01 0.9292 1.123

0.80 0.1270 0.1128 �0.1839 0.1899 0.8872 1.184

0.951 0.1514 0.1758 �0.2612 0.3955 0.8242 1.261

1.13 0.1801 0.2661 �0.3432 0.7799 0.7339 1.343

1.35 0.2141 0.3873 �0.3988 1.423 0.6127 1.399

1.60 0.2560 0.5355 �0.3732 2.326 0.4645 1.373

1.90 0.3028 0.6945 �0.2048 3.256 0.3055 1.205

Continued
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Table 10.1Field Components as Functions of the Parameter u—cont’d
u R/τ 12bR 12bθ eϕ bR bθ

2.263 0.3601 0.8368 0.1222 3.659 0.1632 0.878

2.691 0.4283 0.9354 0.5192 3.014 0.0646 0.481

3.20 0.5093 0.9834 0.8271 1.600 0.0166 0.173

3.805 0.6057 0.9977 0.9662 0.457 0.232E�02 0.338E�01

4.525 0.7203 0.9999 0.9972 0.541E�01 0.135E�03 0.278E�02

5.382 0.8650 0.9999 0.9999 0.185E�02 0.229E�05 0.662E�04

6.400 1.019 1.0000 1.0000 0.109E�04 0.673E�08 0.273E�06

7.611 1.211 1.0000 1.0000 0.537E�08 0.160E�11 0.944E�10

9.051 1.441 1.0000 1.0000 0.788E�13 0.117E�16 0.974E�15
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Fig. 10.1 Field components bR,bθ, and eϕ in a uniform medium.
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BR ��μ0M0

6πR3

2

π

� �1=2

u3 1� 3

10
u2

� �
cos θ

Bθ � μ0M0

6πR3

2

π

� �1=2

u3 1�3

5
u2

� �
sin θ

Eϕ�� M0ρ

4πR4

2

π

� �1=2

u5 1�u2

2

� �
sin θ

(10.7)

By keeping only the first term in Eq. (10.7), we receive

BR ��μ0M0

6πR3

2

π

� �1=2

u3 cos θ¼� μ0M0

12π πð Þ1=2
μ3=20 γ3=2

t3=2
cos θ

Bθ � μ0M0

6πR3

2

π

� �1=2

u3 sin θ¼ μ0M0

12π πð Þ1=2
μ3=20 γ3=2

t3=2
sin θ

Eϕ�� 2

π

� �1=2
M0ρ

4πR4
u5 sin θ¼� M0

16π πð Þ1=2
μ5=20 γ3=2

t5=2

(10.8)
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These expressions describe the field at a late stage with acceptable accu-

racy when u< 0:2. During this time interval, the transient field does not

depend on the separation between the source and observation point,

exhibiting a stronger dependency on conductivity ∝γ3=2 than the quadra-

ture component, which is typically measured in a frequency regime. For

illustration, some values of parameter u as a function of resistivity ρ and time

t, if R¼1 m, are given in Table 10.2.

Table 10.2 shows that the value of u¼ 0:2, corresponding to the late

stage, is reached quite soon at t¼ 16μs, even in the conductive mediumwith

resistivity of 1 ohm m. The independence of the late stage field from the dis-

tance between transmitter and receiver suggests that the sources of the sec-

ondary field are located at distances from an observation point significantly

larger than the probe length R. Now, consider the behavior of the current

density. As follows from Eq. (10.4), the current density in a whole space is

jϕ ¼� 2

π

� �1=2
M0

4π

sin θ

R4
u5 exp �u2=2

� �
(10.9)

Graphs of function

F ¼ 1

R4
u5 exp �u2=2

� �
are shown in Fig. 10.2. As time increases, the maximum of the current den-

sity shifts toward the deeper part of the medium. For this reason, electro-

magnetic fields on the axis of the transmitting dipole, become more

sensitive over time to the remote parts of the medium.

Let us confirm this assumption through the following consideration. We

mentally represent whole uniform space as a system of concentric spherical

shells. At any moment, a measured magnetic field is defined by the distribu-

tion of currents in the shells. By applying Biot-Savart’s law and omitting

intermediate transformations related to the calculation of the magnetic field,

we may find the ratio between the electromotive force, caused by the cur-

rents in shells with the radius larger than R2, and the electromotive force in

the coil, located at the distance R1:

G u1, αð Þ¼ 1�1

3
u21

� �
exp �u2

2 α2�1
� �

=2
� �

where α¼R2=R1 and u1¼ 2πR1=τ. CurvesG(u1,α) are shown in Fig. 10.3.



Table 10.2 Parameter u for Different Values of Resistivity and Time
ρ
(ohm m) t51 μs t54 μs t59 μs t516 μs t525 μs t536 μs t549 μs t564 μs t581 μs t5100 μs

0.1 2.50 1.25 0.84 0.63 0.50 0.42 0.36 0.31 0.28 0.25

0.5 1.11 0.56 0.7 0.28 0.22 0.19 0.16 0.14 0.12 0.11

1.0 0.80 0.40 0.27 0.20 0.16 0.13 0.11 0.10 0.09 0.08

5.0 0.35 0.18 0.12 0.088 0.071 0.059 0.051 0.044 0.039 0.035

10.0 0.25 0.125 0.084 0.063 0.050 0.042 0.036 0.01 0.028 0.025
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At the earlier times, currents are concentrated mainly near the dipole,

and the field, measured at point R1, does not practically depend on induced

currents located in remote parts of a medium (u1!∞,G! 0). By contrast,

for the late stage (u1! 0), the field is mainly defined by currents induced in

an external area (R>R2) and G u1, αð Þ! 1. Thus the measurements



Table 10.3 Electromotive Force (μV)
ρ
(ohm m) t51 μs t54 μs t59 μs t516 μs t525 μs

0.1 0.543E+04 0.179E+04 0.365E+03 0.101E+03 0.355E+02

0.5 0.600E+04 0.300E+03 0.431E+02 0.106E+02 0.351E+01

1.0 0.290E+04 0.115E+03 0.158E+02 0.381E+01 0.126E+01

5.0 0.334E+03 0.109E+02 0.145E+01 0.346E+00 0.113E+00

10.0 0.122E+03 0.390E+01 0.515E+00 0.122E+00 0.402E�01

321Induction Logging Based on Transient EM Measurements
performed at the late stage are defined by currents of the remote parts of a

medium, providing increased depth of investigation. Such behavior can also

be expected in a nonuniform medium. As the depth of investigation

increases radially, the sensitivity of the probe to the parts of formation

located above and below the probe also increases, at, of course, the expense

of the reduced signal level.

Let us estimate the signal level at different moments of time in the 1 m

long two-coil probe. We assume an effective transmitter-receiver moment

ofMTMR ¼ 0:1 Am4. Calculated electromotive forceΞ values are presented

in Table 10.3.

The values of Ξ are calculated using the following equations:

Ξ¼MTMR

2πL3
ρeϕ and eϕ¼ 2

π

� �1=2

u5 exp �u2=2
� �

The data in Table 10.3 demonstrate asymptotic behavior Ξ∝1=t5=2 of
the signal at the late stage.

10.2 TRANSIENT FIELD OF THE MAGNETIC DIPOLE IN
A MEDIUM WITH CYLINDRICAL INTERFACES
10.2.1 Fourier Integral and Calculation of the
Transient Field
In Chapter 8, we studied frequency responses of a magnetic dipole in the

presence of cylindrical interfaces. Here, we use those results to study the

transient field, proceeding from the Fourier integral:

F tð Þ¼ 1

2π

ð∞
�∞

F� ωð Þexp �iωtð Þdω
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and

F� ωð Þ¼
ð∞
0

F tð Þexp iωtð Þdt (10.10)

where F(t) some component of the transient is field, and F�(ω) is the product
of the complex amplitudes of the field and the spectrum of excitation.When

the primary magnetic field of the dipole is varying as the step function:

B0 tð Þ¼B0 if t< 0 and B0 tð Þ¼ 0 if t> 0

the excitation spectrum is defined by Eq. (10.10):

F0 ωð Þ¼ 1

iω
(10.11)

Harmonic amplitudes (Eq. 10.11) have the same phase and decrease

inversely with the frequency. Because the low-frequency harmonics dom-

inate in the spectrum of the step function, this type of excitation is an effi-

cient way of delivering energy to the remote parts of a medium. As follows

from Eq. (10.10), the primary magnetic field can be written as:

B tð Þ¼B0

2π

ð∞
�∞

1

iω
exp �iωtð Þdω (10.12)

where the integration path does not include the point ω¼ 0. Let us present

the integral (Eq. 10.12) as a sum:

1

2πi

ð∞
�∞

exp �iωtð Þ
ω

dω¼ 1

2πi

ð�ε

�∞

exp �iωtð Þ
ω

dω

+
1

2πi

ð+ε
�ε

exp �iωtð Þ
ω

dω+
1

2πi

ð
+ε

exp �iωtð Þ
ω

dω

We choose a semicircular path of integration surrounding the origin

ω¼ 0, and let the radius of the semicircle tend to zero. It is convenient

to introduce a new variable ϕ:

ω¼ ρ exp iϕð Þ
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that gives

dω¼ iρ exp iϕð Þdϕ
and for the second integral we have

1

2πi

ð+ε
�ε

exp iωtð Þ
ω

dω¼ 1

2πi

ð2π
π

iρexp iϕð Þ
ρexp iϕð Þdϕ¼ 1

2

Thus the expression for the primary field in which the variable of

integration ω takes only real values is

B tð Þ¼Bω¼0

2
+

B0

2πi

ð∞
�∞

exp �iωtð Þ
ω

dω (10.13)

Correspondingly, for the secondary transient field caused by the step

function we have

B tð Þ¼B�
ω¼0

2
+

1

2πi

ð∞
�∞

B� ωð Þ
ω

exp �iωtð Þdω (10.14)

Here,

B� ωð Þ¼ReB� ωð Þ+ iImB� ωð Þ
is the complex amplitude of the field. The expression (10.14) is convenient

for numerical calculations because it is carried out along the real values of

frequencies. Let us write Eq. (10.14) in the form:

B tð Þ¼B�
ω¼0

2
+

1

2π

ð∞
�∞

ImB� ωð Þcosωt�ReB� ωð Þ sinωt
ω

dω�

i

2π

ð∞
�∞

ImB� ωð Þ sinωt+ReB� ωð Þcosωt
ω

dω

(10.15)

As follows from Eq. (10.10)

ReB� ωð Þ¼ReB� �ωð Þ and ImB� ωð Þ¼�ImB� �ωð Þ
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Correspondingly, the second integral in Eq. (10.15) is equal to zero, and

because the integrand is an even function of the frequency, we further

receive

B tð Þ¼B�
ω¼0

2
+
1

π

ð∞
0

ImB� ωð Þcosωt�ReB� ωð Þ sinωt
ω

dω (10.16)

Next, we make one more simplification. Because the current source

changes as a step function, and there is no secondary field at t< 0

(B tð Þ¼B0 at t< 0), Eq. (10.16) yields

0¼�B�
ω¼0

2
+
1

π

ð∞
0

ImB� ωð Þcosωt + ImB� ωð Þ sinωt
ω

dω (10.17)

From the last two expressions, we obtain

B tð Þ¼ 2

π

ð∞
0

ImB� ωð Þ
ω

cosωtdω and

B tð Þ¼B ω¼0ð Þ � 2

π

ð∞
0

ReB� ωð Þ
ω

sinωtdω (10.18)

For the time derivatives we have

@B

@t
¼�2

π

ð∞
0

ImB� ωð Þ sinωtdω and

@B

@t
¼�2

π

ð∞
0

ReB� ωð Þ cosωtdω (10.19)

Because the primary electric field is zero, the corresponding transforma-

tions for the electric field take the form:

Eϕ tð Þ¼ 2

π

ð∞
0

ImE�
ϕ

ω
cosωt dω and Eϕ tð Þ¼�2

π

ð∞
0

ReE�
ϕ

ω
sinωt dω (10.20)

The last set of equations (Eqs. 10.18–10.20) is used to calculate the tran-

sient field from the frequency responses. Next, we analyze some important

asymptotic features of the transient field at the early and late transient stage.



325Induction Logging Based on Transient EM Measurements
10.2.2 The Early and Late Stage of Magnetic Field
on the Borehole Axis

As was mentioned, at the beginning of the transient process the internal skin

effect leads to appearance of induced currents mainly in the vicinity of the

source, and thus the measured magnetic field contains information about the

conductivity of the borehole only. With time the diffusion manifests itself

and induced currents appear in the surrounding medium. To investigate

the asymptotic behavior of the magnetic field caused by these currents,

we proceed from the first equation of (10.18) assuming that the parameter

t is large. First, we introduce a new notation:

ϕ1 ωð Þ¼ ImB� ωð Þ
ω

and it gives

B tð Þ¼ 2

π

ð∞
0

ϕ1 ωð Þcosωtdω (10.21)

Assuming that the value of t is large, and performing integration by parts,

we obtain

B tð Þ¼ 2

π

ϕ1 sinωt

ω

				
∞

0

�1

t

ð∞
0

ϕ0
1 ωð Þ sinωtdω

2
4

3
5

¼ϕ1 sinωt

ω

				
∞

0

+
1

t2
ϕ0
1 cosωt

				
∞

0

� 1

t2

ð∞
0

ϕ00
1 ωð Þ cosωtdω

(10.22)

By continuing integration by parts, we can obtain the following terms of

this expansion. At first glance, calculation of these terms requires knowledge

of spectrum at the high frequencies. However, because the integrands in

Eq. (10.21) contain rapidly oscillating functions at t!∞, the value of

the integral is mainly defined by the initial part of the integration

corresponding to the low-frequency range of the spectrum. Thus such an

approach does not require function ϕ1 at the high frequencies, and the

obtained series (Eq. 10.22) is suitable for derivation of an asymptote at

the late stage. This asymptote is controlled by the low frequency of the spec-

trum and its derivatives with respect to the frequency; the intermediate and

high-frequency parts of the spectrum have practically no control over the

late stage of the transient field. If the derivative is a dominant factor, then
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the field behaves quite differently from that at the low frequency; this case

will be discussed later. In the same manner, we can obtain a series expansion

using a real component of the spectrum:

ϕ2¼
ReB�

ω

As was shown in Chapter 8, the low-frequency spectrum for any com-

ponent can be presented as a sum:

X∞
n¼1

c
nð Þ
1 k2n +

X∞
n¼1

c
nð Þ
2 k2n+1 +

X∞
n¼1

c
nð Þ
3 k2n ln k (10.23)

Here, k¼ iγμ0ωð Þ1=2 and c1, c2, c3 are coefficients depending on the geo-

electric parameters, distance, and the moment of the dipole source. Note

that the first sum of Eq. (10.23)

X∞
n¼1

c
nð Þ
1 k2n

has no effect on the late stage of the transient field. In fact let us rewrite this

term as a sum of the real and imaginary parts:

X∞
n¼1

c
nð Þ
1 k2n¼

X∞
n¼1

a
nð Þ
1 ω2n + i

X∞
n¼1

b
nð Þ
1 ω2n�1 (10.24)

For the Fourier transform of Eq. (10.24), we obtain two types of inte-

grals, namely

Ln¼
ð∞
0

ω2n�1 sinωtdω and Mn¼
ð∞
0

ω2n�2 cosωtdω (10.25)

which are the limiting cases (β! 0 and t!∞) of more general integrals:

Ln ¼ lim

ð∞
0

ω2n�1 exp �βωð Þ sinωtdω

Mn¼
ð∞
0

ω2n�2 exp �βωð Þcosωtdω
(10.26)
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Presentation (Eq. 10.26) is valid because introduction of the exponential

term exp �βωð Þ does not change the initial part of the integration, which
defines the integrals (Eq. 10.26) at t tending to infinity. These integrals

are expressed through elementary functions, and they approach zero when

β tends to zero. Thus we have shown that the first sum in Eq. (10.23), which

contains only the integer power ofω, makes no contribution to the late stage

of the transient field. At this stage, only fractional powers of ω and logarith-

mic terms determine the transient response. This fact plays a fundamental

role in understanding the relationship between the frequency and time

domain responses of the field. For example, the quadrature component at

the low frequency is controlled by the leading linear term of ω, while the
following terms, containing fractional powers of ω and lnω, have a negli-
gible effect. However, these less significant terms affect the behavior of

the transient field at the late stage, making it difficult to establish an intuitive

one-to-one relationship between the time and frequency responses. Specif-

ically, the first linear term in the series for the quadrature component essen-

tially differs from the rest of the terms by not contributing at all into the late

stage of the transient signal. By contrast, the leading term in the series expan-

sion for the in-phase component of the secondary field contains either a frac-

tional power of ω or lnω. For this reason, we may expect that the behavior

of this component of the secondary magnetic field at the low frequency is

practically the same as that of the transient field during the late stage. Indeed,

such similarity is observed in a uniform whole space and in more

complex media as well.

Next, using the second and third sum on the right-hand side of

Eq. (10.23), we may determine the series that describes the late stage.

The second sum can be written in the form:

X∞
n¼1

c
nð Þ
2 k2n+1¼

X∞
n¼1

a
nð Þ
2 ω 2n+1ð Þ=2 + i

X∞
n¼1

b
nð Þ
2 ω 2n+1ð Þ=2

For calculation of the series in the time domain, we can use either the first

or the second sum of the last expression. For example, let us use the in-phase

component of the field:

X∞
n¼1

a
nð Þ
2 ω 2n+1ð Þ=2¼ a

1ð Þ
2 ω3=2 + a

2ð Þ
2 ω5=2 +⋯
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Substituting this sum into the Fourier integral (Eq. 10.18) we obtain

�2

π

X∞
n¼1

a
nð Þ
2

ð∞
0

ωn�1=2 sinωt dω (10.27)

Since we are mainly concerned with the behavior of the integral at

t!∞, we need to consider only the initial part of the integration path. Let-

ting n¼1 we have

I1¼
ð∞
0

ω1=2 sinωtdω

Integrating I1 by parts and discarding the high-frequency portion of the

spectrum, we obtain

I1¼�1

t

ð∞
0

ω1=2d cosωt¼�1

t
ω1=2 cosωt

				
∞

0

�1

2

ð∞
0

cosωt

ω1=2
dω

2
4

3
5

¼ 1

2t

ð∞
0

cosωt

ω1=2
dω¼ 1

2t3=2

ð∞
0

cos x

x1=2
dx

The last integral is well defined:

ð∞
0

cosx

x1=2
dx¼ π

2


 �1=2

Thus

I1¼ 1

2

π

2


 �1=2 1

t3=2
(10.28)

For n¼2 we have

I2¼
ð∞
0

ω3=2 sinωtdω
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Integrating twice by parts, we obtain

I2 ¼�1

t
ω3=2 cosωt

 �				

∞

0

�3

2

ð∞
0

ω1=2 cosωt dω

2
4

3
5¼ 3

2t

ð∞
0

ω1=2 cosωt dω

¼ 3

2t2

ð∞
0

ω1=2d sinωt dω¼ 3

2t2
ω1=2 sinωt

				
∞

0

�1

2

ð∞
0

sinωt

ω1=2
dω¼� 3

4t5=2

ð∞
0

sin x

x1=2
dx

In as much as

ð∞
0

sin x

x1=2
dx¼ π

2


 �1=2

we have

I2¼�3

4

π

2


 �1=2 1

t5=2
(10.29)

Using the same approach, any term in the sum (Eq. 10.27) can be cal-

culated. We can see that a term proportional to ω3/2 generates a term in

the time domain proportional to t�3=2. Therefore, the portion of the spec-

trum described by the sum: X
a
nð Þ
2 ωn+1=2

is responsible for the appearance of a sum

Xea nð Þ
2

1

tn+1=2
(10.30)

in the expression for the late stage of a transient field.

The third term in Eq. (10.23) can be written as:

X∞
n¼1

c
nð Þ
3 k2n ln k¼ ln k

X∞
n¼1

c
nð Þ
3 k2n ¼ ln γμ0ωð Þ1=2 exp i

π

4


 �h i
X∞
n¼1

c
nð Þ
3 γμ0ωð Þn exp i

π

2


 �
n¼ ln γμ0ωð Þ1=2 + i

π

4

h i
X∞
n¼1

c
nð Þ
3 γμ0ωð Þn cos π

2
n+ i

X∞
n¼1

c
nð Þ
3 γμ0ωð Þn sin π

2
n

" #
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Letting n¼ 2p and n¼ 2p�1 in the first and second sums, respectively,

and taking into account that

cos πp¼ �1ð Þp and sin
2p�1

2
π¼ �1ð Þp�1
we receive the following expressions for the real and imaginary parts of the

third sum in Eq. (10.23):

1

2
ln γμ0ωð Þ

X∞
p¼1

�1ð Þpcp γμ0ωð Þ2p�π

4

X∞
p¼1

�1ð Þp�1
cp γμ0ωð Þ2p�1

" #
+

i
π

4

X∞
p¼1

�1ð Þpcp γμ0ωð Þ2p + 1

2
ln γμ0ωð Þ

X∞
p¼1

�1ð Þp�1
cp γμ0ωð Þ2p�1

" # (10.31)
Substituting the real part of the last equation into the Fourier transform,

we obtain two types of integrals:

Ap ¼
ð∞
0

ω2p�2 sinωtdω and Bp¼
ð∞
0

ω2p�1 lnω
� �

sinωtdω (10.32)

For example, when p¼1 we have

A1¼
ð∞
0

sinωtdω¼ lim

ð∞
0

exp �βωð Þ sinωt¼ 1

t
if β! 0 and t!∞

and

B1¼
ð∞
0

ðω lnωÞ sinωtdω¼
ð∞
0

F ωð Þ sinωtdω

where F ωð Þ¼ω lnω.
Integrating by parts, we obtain

B1¼�1

t

ð∞
0

F ωð Þd cosωt¼�1

t
F ωð Þcosωt

				
∞

0

�
ð∞
0

F 0 ωð Þcosωtdω
2
4

3
5

¼�1

t
F ωð Þcosωt

				
∞

0

�1

t

ð∞
0

F 0 ωð Þd sinωt
2
4

3
5

¼�1

t
F ωð Þcosωt

				
∞

0

+
1

t2
F 0 ωð Þ sinωt

				
∞

0

� 1

t2

ð∞
0

F 00 ωð Þ sinωtdω
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Because

F 0 ωð Þ¼ 1+ lnω and F 00 ωð Þ¼ 1

ω

we have

B1¼� 1

t2

ð∞
0

sinωt

ω
dω¼�π

2

1

t2

Similarly, we can derive integrals Ap and Bp for any values of p. It is read-

ily seen that the portion of the low-frequency spectrum described by the last

sum in Eq. (10.23) gives a rise to the sum of terms proportional to 1/tn in the

representation for the late stage of the transient field:

X∞
n¼1

ea nð Þ
3

1

tn
(10.33)

Therefore, as follows from Eqs. (10.30), (10.33), the late stage of the

transient electric and magnetic fields of the magnetic dipole in a conducting

medium can be presented in the form [1]:

X∞
n¼1

ea nð Þ
2

1

tn+1=2
+
X∞
n¼1

ea nð Þ
3

1

tn
(10.34)

In Chapter 8, we showed that the part of the low-frequency spectrum

that does not contain even powers of k is

f3k
3
1 + f5k

5
1 + f7k

7
1 + l7k

7
1 ln k1 +⋯ (10.35)

When the invasion zone is absent, we have

f3¼ α3s3=2

3
, f5¼ f3

α2s

10
�1� s

2

� �

f7¼ f3
α4s2

280
�α2s 1� sð Þ

20
+

5

32
1� sð Þ2� s 1� sð Þ

10
C�77

66
� ln s

2

� �� 
,

l7¼�f3
s

10
1� sð Þ

(10.36)

Here α¼L=a1, s¼ γ2=γ1.
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In the case of two cylindrical interfaces for the first two terms ϕ3 and ϕ5,

corresponding to the low-frequency spectrum, we have

ϕ3¼
1

3
α3s3=21 , ϕ5¼ϕ3

α2s1
10

� s12

2

� �
(10.37)

Here,

s1¼ γ3
γ1
, s2¼ γ2

γ1
, s12¼ 1� s2 + s2� s1ð Þβ2, β¼ a2

a1
(10.38)

Now, using the procedure described earlier, we can present the field and

its derivative at the late stage in a form similar to Eq. (10.34). First, consider

the leading term of this sum:

Bz� μ0M0

12π πð Þ1=2
μ3=20 γ3=23

t3=2
and

@Bz

@t
�� μ0M0

8π πð Þ1=2
μ3=20 γ3=23

t5=2
(10.39)

The latter coincides exactly with expressions for the field in a uniform

medium with resistivity of the deepest part of the formation. In other

words, the field does not depend on the resistivity and radius of either

the borehole or the invasion zone; and such behavior occurs regardless

of the probe length. In principle, the transient induction probe may consist

of one coil only. Although the possibility of using a single-coil probe sounds

very attractive, there are some serious technical challenges to overcome in

implementing this approach, such as large signal dynamic range, ultra-fast

current switch, etc.

The approximate expression for @Bz=@t, which takes into account the

first two terms of the series, has the form:

@Bz

@t
�� 2

π

� �1=2
M0ρ1
2πL3a31

2π

τ1=a1

� �5

3ϕ3�
15

2
ϕ5

8π2

τ1=a1ð Þ2
" #

(10.40)

Here ρ1 and a1 are resistivity and radius of a borehole, respectively; L is

the probe length; and functions ϕ3 and ϕ5 are given by Eqs. (10.37), (10.38).

Comparison with the exact solution for the three-layered models shows

that the asymptotic Eq. (10.40) describes the field with accuracy sufficient

for practical needs, if τ1=a1> 20 or

t>
a21
ρ1
10�5 s½ �
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For example, for ρ1 ¼ 3 ohmm and a1¼ 0:1m, the late stage occurs quite

early, at 0.03μs. In other words, the time range that contains information

about the borehole is very limited.
10.2.3 Apparent Resistivity Curves of the Transient Signals in a
Medium With Cylindrical Interfaces

We present results of calculations of the field, @Bz=@t, in the form of appar-

ent resistivity defined as:

ρτ
ρ1

¼ _B
ls

z tð Þ
_Bz tð Þ

 !2=3

(10.41)

where ρτ and ρ1 are apparent resistivity and borehole resistivity, respectively;

_B
ls

z ρ1, tð Þ is the time derivative of function Bz(ρ1, t) at the late stage in a uni-

form medium with resistivity of the borehole; and _Bz¼ @Bz=@t is the

signal observed on the borehole axis. As was shown earlier:

_B
ls

z ρ1, tð Þ¼ 1

a51

2

π

� �1=2
M0

2π

ρ1
α5

u51 (10.42)

Because

u1¼ 2πα
a1

τ1
, α¼L=a1, τ1 ¼ 2πρ1t�107

� �1=2
,

we have

ρτ
ρ1

¼ 8π3

τ31

π

τ1

� �1=3
M0ρ1
t _Bz tð Þ
� �2=3

(10.43)

or

ρτ ¼
μo
4πt

μ0M0

t _Bz tð Þ
� �2=3

¼K _Bz tð Þ� ��2=3
(10.44)

An advantage of introducing apparent resistivity according to Eq. (10.44)

is independence of the probe coefficient K from the resistivity of a medium.

Examples of apparent resistivity curves for the two-layered media, when

ρ2=ρ1¼ 64 and the invasion zone is absent, are given in Fig. 10.4. The code

is parameter α¼L=a1.
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Fig. 10.4 Apparent resistivity on the borehole axis (invasion zone is absent).
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All calculations are performed for the relatively long probes, exceeding

the diameter of the borehole, α> 2. For this reason, even at the early stage,

the transient field does not tend to that in a uniform medium with resistivity

of the borehole. With a decrease of time, a value of ρτ increases infinitely,
due to the field at the early stage being much smaller than that, calculated

using the formula for the late stage. The shape of the curves essentially

depends on the probe length and conductivity of the medium. With an

increase of time, these curves display a minimum, which becomes deeper

with a decrease of the probe length and an increase of the formation resis-

tivity. Then, with an increase of time, ρτ rapidly increases and approaches

the right-hand asymptote equal to the formation resistivity. Within this

range of time, the smaller the probe length and larger resistivity of the for-

mation, the earlier the time when the main contribution into the measure-

ments comes from the currents induced in the far-located region away from

the borehole and the probe. At the same time, the density of these currents

still depends on the borehole resistivity. The larger the resistivity of the

external area, the more rapidly a transient field and induced currents decay
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near the probe. Correspondingly, the influence of the probe length on the

field reduces at earlier times. The second term in Eq. (10.35) has a form:

f5¼ f3
α2s

10
�1� s

2

� �

For sufficiently large formation resistivity and relatively small probe

length, when conditions

α2s< 1 and s< 1

are met, the second term of the asymptotic (Eq. 10.35) is independent of

formation resistivity and the probe length, and it is mainly defined by the

resistivity of the borehole. Thus if parameters of the borehole are known,

it is possible to correct ρτ for the effect of the borehole at the time range

when the field differs from that in a uniform medium with resistivity ρ2.
As follows from Eqs. (10.40), (10.41) the corrected apparent resistivity is

ρτ
ρ1

� ρ2
ρ1

1�5

3
u21

� �
(10.45)

Here,

u1¼ 2πa1
τ1

The second term in Eq. (10.45), which defines a correction of ρτ at the
late stage, is directly proportional to the conductance of the borehole πa2γ1.
Behavior of the function in Eq. (10.45) is shown in Fig. 10.5. From com-

parison with the exact solution, it follows that Eq. (10.45) provides sufficient

accuracy in determination of ρ2 for a relatively resistive formation,

ρ2=ρ1> 10, if α¼L=a1< 4 and τ1=a1 > 15.

A comparison of the exact solution and asymptotic formula shows that

the field in a two-layer medium becomes practically the same as in a uniform

whole space with resistivity of formation ρ2 if

τ1=a1> 30 or tμsec > 90a21=2πρ1 (10.46)
Apparent Resistivity Curves in the Presence of an Invasion Zone
Examples of apparent resistivity curves in this case are shown in Fig. 10.6.

The data presented are for two sets of the models
ρ2
ρ1

� a2

a1
�ρ3
ρ1
.
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Fig. 10.5 Behavior of function ρτ/ρ2.
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If the resistivity of the invasion is less than that of the formation, the

shape of the ρτ curves is the same as that of the case of two layers, but

the curves are approaching the right asymptote at later times. In the case

of ρ2=ρ3> 1, the change in the shape of ρτ is noticeable for short probes
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and large radii of the invasion zone: at the early stage ρτ increases with time,

reaches some maximum defined by the resistivity of the invasion zone, ρ2,
and then, when currents are mainly located in the conductive formation,

asymptotically decreases approaching its right-hand asymptote, ρ3.
10.3 TRANSIENT FIELD OF THE VERTICAL MAGNETIC
DIPOLE IN A MEDIUM WITH HORIZONTAL

BOUNDARIES

The study of the transient field in a medium with cylindrical bound-

aries enabled us to obtain information about radial responses of two-coil

probes. As time increases, the influence on the field of a surrounding

medium (shoulders), located above and beneath of the layer, becomes

greater and this influence increases with increase of shoulders conductivity.

It is important to establish the maximum time when measurements with a

two-coil probe, located inside the layer of finite thickness, are practically

independent of conductivity of the surrounding medium.With this purpose

in mind, we consider the behavior of the transient field in a medium with

one and two horizontal interfaces.
10.3.1 Transient Field in a Medium With One Horizontal
Boundary

As we showed in Chapter 9, an expression for the harmonic field on the axis

of the magnetic dipole is

B 1ð Þ�
z ¼Bun�

z k1zð Þ+ μ0M0

4π

ð∞
0

m3

m1

m12 exp � 2α�1ð Þm1z½ �dm if α� 1

B 2ð Þ�
z ¼ μ0M0

4π

ð∞
0

2m3

m1 +m2

exp �αm1zð Þexp ½� 1�αð Þm2z�dm if 0� α� 1

(10.47)

Here, k1 and k2 are wave numbers of the first and second medium, and

the dipole is located in the first medium:

m1¼ m2�k21
� �1=2

, m2¼ m2�k22
� �1=2

, and m12¼m1�m2

m1 +m2

Also, z is the probe length, L is the vertical distance from the dipole to

the boundary between two layers and
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α¼L

z

Assuming that the current in the dipole changes as a step function:

I ¼ I0 if t< 0 and I ¼ 0 if t> 0

for the transient field _Bz tð Þ we have

_Bz tð Þ¼�2

π

ð∞
0

ImB�
z ωð Þ sinωdω

Applying this formula and omitting rather simple algebra, we derive the

following asymptotic expression for the late stage:

@Bz

@t
��M0ρ1

πz5
2

π

� �1=2
u51
s�1

s1=2�1

5
� π

2


 �1=2 2α�1ð Þ s+1ð Þ s�1ð Þ2
4

" #

(10.48)

Here, s¼ γ2
γ1
, u1¼ 2πz

τ1
, τ1¼ 2πρ1t�107

� �1=2
.

Examples of the apparent resistivity curves, calculated using Eq. (10.47),

are shown in Fig. 10.7. Apparent resistivity is related with the field as

ρa
ρ1

¼ _B
un

z

_Bz

� �2=3
10 100
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2

1/2
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g2/g1= 1/4

t1/z

Fig. 10.7 Curves of the apparent resistivity for α¼ 1:2. Index of curves is s¼ γ2=γ1.
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where

_B
un

z ¼M0ρ1
2πz5

2

π

� �1=2

u51 exp �u21
2

� �

is the field in a uniform medium with resistivity ρ1.
For the small values of parameter τ1/z, when both the source and obser-

vation point are located in the medium with resistivity ρ1, z<Lð Þ, induced
currents are concentrated near the source and curves approach the same

asymptote ρa¼ ρ1 (Fig. 10.7). As time increases, the influence on the second

medium becomes stronger. Moreover, the higher its conductivity, the ear-

lier it manifests itself. The right asymptotes correspond to the late stage,

which depends on the resistivity of both media. As we can expect, with

an increase of time, the induced currents are located at distances greatly

exceeding L and the field is practically independent of the distance between

the probe and the boundary. Within the early stage, we observe an extre-

mum (maximum if ρ2=ρ1< 1 and minimum when ρ2=ρ1> 1). Appearance

of the extremum can be explained as follows: at the earlier times, the near-

borehole currents produce their own magnetic field, which affects the cur-

rents at some distance from the dipole and, eventually, the field in the

receiver. The effect is the most pronounced in the case of high contrast

between conductivities of the medium. Now, consider the case when the

dipole and observation point are located in the different media (Fig. 10.8).

The left asymptote tends to zero if ρ2=ρ1 > 1 and to infinity when the

second medium is more conductive, ρ2=ρ1< 1. At the early stage, the field,
1 10 100
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1
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8
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2
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rt /r1

t1/z

g2/g1= 1/4

Fig. 10.8 Curves of the apparent resistivity for α¼ 0:6. Index of curves is s.



340 Basic Principles of Induction Logging
measured in the second medium, depends on both resistivity near the source

and resistivity in the vicinity of the observation point. By contrast, at the late

stage, all curves, regardless of the position of an observation point, approach

the horizontal asymptote, which depends on resistivity of both media. As

follows from Eq. (10.48) for the asymptotic value of apparent resistivity,

we have

ρτ
ρ1

¼ 5

2

s�1

s5=2�1

� �2=3
10.3.2 Transient Field of the Vertical Magnetic Dipole Inside
a Layer of Finite Thickness

Suppose that the center of the two-coil probe is located in the middle of a

layer and that the resistivity of a medium above and beneath the layer is the

same. In this case an expression for the vertical component of the field, nor-

malized by the primary field, B0
Z¼ μ0M=2πL3, is equal to

b�z ¼ bun�z k1zð Þ+
ð∞
0

m3m12

m1

exp �2αm1ð Þ exp αm1ð Þ+m12chm1

1�m2
12 exp �2αm1ð Þdm (10.49)

Here, L and H are probe length and the layer thickness, respectively

m1¼ m2�k21
� �1=2

, m2¼ m2�k22
� �1=2

, m12¼m1�m2

m1 +m2

k1 and k2 are the wave numbers of the layer and surrounding medium. Pre-

sentation of the field as a sum of two terms, (Eq. 10.49), is sufficient for the

calculation of the frequency regime and becomes problematic for the calcu-

lation of the transient response at the late stage. The numerical problem is

especially severed when resistivity of the surrounding medium becomes

much larger than the resistivity of the layer: the two terms in Eq. (10.49)

having opposite signs practically cancel each other and an accurate estima-

tion of the spectrum becomes very time consuming. To overcome this

problem it is advisable to modify Eq. (10.49) to the following form:
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b�z ¼ bun�z k1zð Þ+
ð∞
0

F�m3 exp �αm1ð Þ
2m2

+
m3 exp �αm1ð Þ

2m1

� 
dm

+

ð∞
0

m3 exp �αm1ð Þ
2m2

�m3 exp �αm1ð Þ
2m1

� 
dm

To calculate a transient field, the Fourier transform is further applied to the

spectrum. The major challenge here is the calculation of the signal at the late

stage, which requires hardly achievable accuracy of calculations at low fre-

quencies if Eq. (10.50) is applied literally. For this reason, we derive an

asymptotic expression for the low frequency spectrum and use it further

for the estimation of the late stage of the transient field. Applying Taylor’s

expansions in series by powers k2 for all functions in the integrand Eq.

(10.49) and performing analytical integration of the first several terms, for

the case of the conducting surrounding medium we arrive to following

the low-frequency asymptotic:

b�z � c1k
2
1 + c2k

3
1 + c3k

4
1 ln2k2 + c4k

4
1 + c5k

5
1

where

c2¼ 1

3
s3=2, c3¼ αs s�1ð Þ

4
,

c5¼� 1

15
5α2 s5=2�7

4
s3=2 +

3

4
s1=2

� �
� 5

4
s3=2�3

4
s5=2

� �� 

and s¼ ρ1
ρ2
, α¼H

z
.

Coefficients of the first and fourth terms are not given because the latter

contain even powers of frequency and, therefore, do not contribute into the

late stage. Integration by parts of the Fourier integral gives for the late stage:

@Bz

@t
¼�M0ρ1

2πz5
2

π

� �1=2

u51 s3=2� π

2


 �1=2
2αu1s s�1ð Þ

�

+ u21 5α2 s5=2�7

4
s3=2 +

3

4
s1=2

� �
� 5

4
s3=2�3

4
s5=2

� �� � (10.50)

Here
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u1¼ 2πz

τ1
, τ1¼ 2πρ1t�107

� �1=2
The field at the late stage becomes practically equal to that in a uniform

medium with resistivity of a surrounding medium independently on the

probe length. Similarly, we may derive an asymptotic expression describing

the late stage of the transient field in the presence of the non-conducting

surrounding medium (s¼0):

@Bz

@t
¼�3M0ρ1

πz5
α3u81 1�8α2u21�4αu21

� �
(10.51)

In that case, the currents are uniformly distributed along the z-axis,

and the field is directly proportional to the cube of the longitudinal con-

ductance, S¼ γ1H . Results of calculation of the apparent resistivity when

the two-coil probe is located symmetrically inside the layer are shown in

Fig. 10.9A and B.

Each family of curves is characterized by the same parameter α. As we
can see

1. At the early stage, when currents are concentrated near the source, the

field only depends on the resistivity of the layer. Correspondingly, the

left asymptote of curves ρτ/ρ1 is equal to unity.

2. In the late stage, when τ1=z≫1, the currents are practically absent in the

layer, and the curves approach the right asymptote equal ρ2=ρ1, ρ2 6¼∞ð Þ.
3. If ρ2=ρ1> 20, then the curves of the apparent resistivity also have an

intermediate asymptote, which corresponds to the case of a noncon-

ductive surrounding medium. This asymptote occurs at a time interval
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Fig. 10.9 Apparent resistivity curves for (A) α¼ 1 and (B) α¼ 2. Code of the curves
is γ1/γ2.
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in which currents have not yet penetrated the highly resistive surrounding

medium, but inside the layer, they are distributed almost uniformly along

the z-axis.

4. In the case of relatively high conductivity of the surrounding medium,

the curves have a maximum even at relatively small times; such phenom-

enon was explained earlier.

5. Over time, the induced currents move away from an observation point

and the influence on the probe length becomes very small. The calcu-

lation shows that for the given value of ρ2/ρ1, the field is practically

defined by the parameter τ1/H.

6. Apparent resistivity only slightly differs from the resistivity of the layer if

the following conditions are met:

τ1
H

< 6 or tmax
ms < 0:6

H2

ρ1
provided that α� 2 and 16� ρ2
ρ1

� 1

16
.

10.4 TRANSIENT FIELD IN APPLICATION TO DEEP-
READING MEASUREMENTS WHILE DRILLING
During the last decade, the petroleum industry made significant pro-

gress toward developing deep-reading resistivity measurements while dril-

ling (MWD). All major service companies rely on induction tools, which

use a sinusoidal excitation source, to provide information about directional

resistivity on a scale several times greater than conventional logging tools.

Specifically, deep-reading tools developed by service companies such as

Schlumberger, Ltd and Baker Hughes Incorporated identify resistivity

contrasts at tens of meters away from the wellbore. The primary applica-

tion of these tools is detection of up to 20 m away from the borehole of

the oil-water contact and the reservoir faulting. Measurements are per-

formed in the presence of conductive drill pipe, which creates a large

induction signal in the receivers by diminishing sensitivity to the properties

of the formation. To reduce contribution of the signal from the drill pipe

while still providing greater depth of investigation, long three-coil systems

(20–30 m) at frequencies between several to hundreds of kilohertz are

used. The measurements are inverted to obtain distances to boundaries,

resistivity of the reservoir, and the resistivity of the beds above and below

the penetrated layer.
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In many geo-steering scenarios, it is also desirable to detect the presence

of a formation anomaly ahead of the bottom hole assembly. Traditional

frequency-based measurements have limited potential to accomplish these

tasks. The limitation is dictated by a controversy between requirements

of having deep-reading capabilities and the necessity of increasing tool

length. Indeed, deep-reading induction tools require long transmitter-

receiver spacing, which immediately reduces capabilities of detecting anom-

alies ahead of the bottom hole assembly.

In the following paragraphs we explore an alternative approach aimed to

resolve this controversy by using relatively short systems (approximately

7 m) based on transient electromagnetic measurements. Specifically, our

focus is on a deep-reading transient system that is capable of looking ahead

of the drill bit. We show how the effect of the drill pipe in a short system

might be reduced to preserve sensitivity of the measured signals to the prop-

erties of the formation ahead.

The asymptotic formulas, describing both frequency and transient

responses of the field, are very useful for understanding how to suppress

signal from the drill pipe. Unfortunately, deriving them for logging-while-

drilling (LWD) measurements is extremely difficult because the

corresponding forward problem becomes two-dimensional and can only

be solved by applying advanced numerical techniques. At the same time,

solutions for some idealized models are still available, making it possible

to study field characteristics at frequency and time limits that are deemed

important. To simplify the study, we can assume that the drill pipe is a cyl-

inder with a constant radius a, whereas transmitter and receiver coils have the

same radius rk, which slightly exceeds the radius of the cylinder. Such an

approximation enables us to apply the method of separation of variables

and derive formulas for the field at distances exceeding the radius of the

cylinder. First, we study an electric field of the current ring placed in a uni-

form formation and then consider the field of this ring symmetrically placed

around a conductive cylinder.
10.4.1 Normal Field of the Current Ring in a Uniform
Conducting Medium

As in the case of the magnetic dipole, the vector potential of the electric

type A, caused by the current element Idl, is equal to:

dA� ¼ μ0Idl

4π

exp ikRð Þ
R

i (10.52)
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Here, I is the current of the element length dl, and R is the distance

between an observation point p and the current element:

R¼ r2k + r2�2ar cosϕ+ z2
� �1=2

while i is a unit vector indicating the direction of the element dl (Fig. 10.10).

In the cylindrical system of coordinates, the point p and current element

have coordinates (r, 0,z) and (rk,ϕ, 0), respectively.
The vector potential of the current ring located in a horizontal plane

has the ϕ component only (Chapter 1), and for the current element dl

we have

dA�
ϕ pð Þ¼ exp ikRð Þ

R

Iμ0 cos αdl

4π
¼ Iμ0rk

4π

exp ikRð Þ
R

cos αdα (10.53)

The angle α is shown in Fig. 10.10. Similar to the case of the magnetic

dipole, we express the field through cylindrical functions and use the follow-

ing representation for the term exp(ikR)/R:

exp ikRð Þ
R

¼ 2

π

ð∞
0

K0 m2�k2
� �1=2

d
h i

cosmzdm (10.54)

Here, k2¼ iγμ0ω and R¼ z2 + d2ð Þ1=2. Substituting Eq. (10.54) into

Eq. (10.53) and integrating along the ring we obtain

A�
ϕ ¼

Iμ0rk
4π

2

π

ð∞
0

cosmzdm

ð2π
0

K0 m2�k2
� �

1=2d
h i

cos αdα (10.55)
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In accordance with the addition theorem of modified Bessel functions of

the second kind, we have

K0 dυð Þ¼K0 rυð ÞI0 rkυð Þ+2
X∞
n¼1

Kn rυð ÞIn rkυð Þcos nα if r� rk

and

K0 dυð Þ¼K0 rkυð ÞI0 rυð Þ+2
X∞
n¼1

Kn rkυð ÞI0 rυð Þcos nα if r � rk

(10.56)

Replacing in Eq. (10.55) the function K0(dυ) by the right-hand side of

Eq. (10.56), and applying the condition of orthogonality of trigonometric

functions

ð2π
0

cos nα 	 cosmαdα¼ 0 if m 6¼ n

ð2π
0

cos nα 	 cosmαdα¼ π, if m¼ n

we obtain the integral representation for the vector potential of the current

ring in a uniform conductive medium:

A�
ϕ¼

4Iμ0rk
4π

ð∞
0

I1 rkυð ÞK1 rυð Þcosmzdm r � rk

4Iμ0rk
4π

ð∞
0

I1 rυð ÞK1 rkυð Þcosmzdm r � rk

8>>>>>><
>>>>>>:

(10.57)

Here, υ¼ m2�k2ð Þ1=2. Considering that divA¼ 0, for the electric field

E�
ϕ we have

E�
ϕ¼�@A�

ϕ

@t
¼ iωA�

ϕ

or

E�
ϕ ¼

iωμ0
π

Irk

ð∞
0

I1 rkυð ÞK1 rυð Þ cosmzdm if r� rk (10.58)
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E�
ϕ¼

iωμ0
π

Irk

ð∞
0

I1 rυð ÞK1 rkυð Þcosmzdm if r � rk (10.59)

With decrease of the radius rk, the field tends to the field of the magnetic

dipole. In such cases, the ratio z/rk becomes very large and the integral is

defined by small values of m. Then, replacing the Bessel function I1(x) with

the asymptotic value of x/2, we have

E�
ϕ�

iωμ0
2π

Ir2k

ð∞
0

νK1 rνð Þ cosmzdm¼� iωμ0
2π2

Iπr2k
π

2

@

@r

exp ikRð Þ
R

¼ iωμ0
4πR2

Iπr2k exp 1� ikRð Þ sin θ if r� rk

Thus we arrived at the expression for the electric field of the magnetic

dipole. Assuming that the radius of the receiver coil is small and it is located

sufficiently far from the transmitter, we have

B�
z�

μ0M0

2πz3
exp ikzð Þ 1� ikzð Þ (10.60)

The asymptotic behavior of this field was studied in detail in Chapter 4

and, in particular, we found that at a low frequency and, correspondingly, at

the late transient, the expressions for the field are

QBz∝
γω

z
, InBz∝ γωð Þ3=2, Bz tð Þ∝ γ3=2

t3=2
(10.61)
10.4.2 Boundary Value Problem in the Presence of an Ideally
Conductive Cylinder

Now we begin to study the influence on the field of a conductive cylinder

and, accounting for its high conductivity. First, consider the limiting case

when the cylinder is an ideal conductor. Thus we have to solve the bound-

ary value problem for a cylinder with the radius a, surrounded by a medium

with conductivity γ and excited by the current ring with radius rk> a,

located in the plane perpendicular to the axis of the cylinder. In

Chapter 8, we showed that in that case, the solution to the Helmholtz equa-

tion can be presented as a combination of modified Bessel and trigonometric
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functions. Taking into account (Eq. 10.59), the total electric field at r � rk
can presented in the form:

E�
ϕ¼

iωμ

π
Irk

ð∞
0

I1 rυð ÞK1 rkυð Þcosmzdm+

ð∞
0

C υð ÞK1 rυð Þcosmzdm
2
4

3
5

(10.62)

Here, the second integral describes the electric field caused by currents

induced in the cylinder, but the first integral represents the normal field

of the current ring surrounded by a uniform medium. The function E�
ϕ

satisfies the Helmholtz equation and radiation boundary conditions at infin-

ity. At the surface of the ideal conductor, the electric field is equal to zero,

thus we have the following boundary condition to determine the unknown

function C(ν):

I1 aυð ÞK1 rkυð Þ+C υð ÞK1 aυð Þ¼ 0

Whence

C υð Þ¼� I1 aυð ÞK1 rkυð Þ
K1 aυð Þ (10.63)

and for the total electric field we have

E�
ϕ ¼E�n

ϕ � Irk

π
iωμ0

ð∞
0

I1 aυð Þ
K1 aυð ÞK1 rkυð ÞK1 rυð Þ cosmzdm (10.64)

The last equation enables us to estimate an electric field as a function of

the z-coordinate. In particular, for the secondary field in the receiver of the

radius r¼ rk, we obtain

E�s
ϕ ¼� Irk

π
iωμ0

ð∞
0

I1 aυð Þ
K1 aυð ÞK

2
1 rkυð Þcosmzdm (10.65)

In the case of a nonconductive surroundingmedium, the equation earlier

leads to:

E�s
ϕ ¼� Irk

π
iωμ0

ð∞
0

I1 amð Þ
K1 amð ÞK

2
1 rkmð Þcosmzdm
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while for the normal field we have
E�n
ϕ ¼ Irk

π
iωμ0Irk

ð∞
0

I1 rkmð ÞK1 rkmð Þcosmzdm

As follows from the last two equations the secondary electric field and the

normal electric field at the surface of the cylinder differ only by a sign. In

other words, the electric field of induced currents on the surface of the ide-

ally conductive cylinder r¼a completely compensates the primary electric

field caused by the current ring. In the case of the primary source varying

as the step function, the surface currents almost instantaneously arise and

then remain constant with time because there is no diffusion of the currents

into the ideal conductor and correspondingly, there is no conversion of elec-

tromagnetic energy into heat.

Now we again assume that a surrounding medium is conductive and it is

experiencing harmonic excitation. The current ring rk induces primary vol-

ume currents in the medium and surface currents on the cylinder. By def-

inition, the normal field is caused by the current ring and the induced

primary volume currents in the medium, while the anomalous field is

due to the surface currents and their interaction with the volume currents.

Because the current ring is located near the cylinder, and the total field at the

surface of the ideal conductor is equal to zero, the surface currents are mainly

concentrated near the source.

The direction of the surface currents is opposite that of the current

source, and they decay as ∝1=R3 with the distance from the ring. The

smaller the difference between the radius of the ring and the cylinder

rk� að Þ, the larger is the concentration of the surface currents near the ring.

The phase difference between the surface currents and that of the primary

source is 180 degrees.

In the case of the transient excitation, when the source current I0 is

abruptly turned off, the induced currents of the same direction instantly arise

in the vicinity of the source and begin diffusion inside the formation. The

induced currents in the formation cause the normal field, which gives rise to

the currents on the surface of the cylinder. These surface currents create a

secondary field of the opposite direction to the normal field, maintaining

a zero electric field along the entire surface of the cylinder. Similar to the

frequency domain, an influence on the ideally conductive cylinder, even

at the relatively small distance from the source, is practically described by
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the transient field of the equivalent magnetic dipole, located at the center of

the current ring. Thus, at distances several times greater than the size of the

ring, the secondary and normal fields have the same dependence on the con-

ductivity of the formation, observation time, and the distance from the

source. In particular, at the late stage, both the normal and secondary fields

decay as ∝ t5=2. To confirm this qualitative analysis, let us assume that

r ¼ rk, z≫r. In such case, the integral in Eq. (10.65) is mainly defined by

small values of m and its integrand can be approximated as:

I1 aνð Þ
K1 aνð ÞK

2
1 rkνð Þcosmz� a2

2
ν2K2

1 rkνð Þ cosmz� a2

2rk
νK1 rkνð Þ cosmz
Correspondingly, for the electric field E�s
ϕ we have

E�s
ϕ ¼ Ia2

2π
iωμ0

@

@rk

ð∞
0

K0 νrkð Þcosmzdm¼ Ia2

2π
iωμ0 sin θ

@

R

1

R
exp ikRð Þπ

2

or

E�s
ϕ ¼� Ia2π

4πR2
iωμ0 exp ikRð Þ 1� ikRð Þ sin θ (10.66)

Therefore, we arrived at the expression for the electric field of the mag-

netic dipole in a uniform medium. As was mentioned earlier (Eq. 10.4), the

expression for the transient field is

Eϕ tð Þ¼� 2

π

� �1=2
M0ρ

4πR4
u5 exp �u2

2

� �
sin θ

Here,

u¼ 2πR

τ
, τ¼ 2πρt107

� �1=2
(10.67)

Now we compare the dipole transient response Eϕ(t) in a uniform

medium with that from the ring of a finite radius that can be easily obtained

using the frequency response forEϕ(ω) (Eq. 10.59) and Fourier transform. In

the case of a step function, the spectrum is 1= �iωð Þ, and for the transient

response, we have

Eϕ tð Þ¼ 1

2π

ð∞
0

Eϕ ωð Þ exp iωtð Þ
�iω

dω
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In the simulation, for the case of dipole excitation we use a small receiv-

ing loop with a radius of r0¼ 0:01 m. For the ring excitation, transmitting

and receiving coils of the same radius (e.g., rk¼ 0:1 m) are selected. To per-

form a comparison of the electromotive forces excited by the dipole and cur-

rent ring, they are both normalized by the product of transmitter Mt and

receiver Mr moment:

eϕ tð Þ¼Eϕ tð Þ 	 2πr0=MtMr

Normalized transient responses at a very early stage (t� 1 μs), when the

size of the ring is the most pronounced, are shown in Fig. 10.11A and B for

formations of 1 and 100 ohm m, correspondingly. In both cases, the signals

are calculated at two transmitter-receiver spacing of 0.5 and 2 m. The devi-

ation of the ring response from the dipole response is most noticeable in the

conductive formation at the relatively short spacing of 0.5 m. But even at

0.5 m spacing, this difference becomes negligible when the observation time

is greater than 0.1 μs. In the case of the resistive formation, the effect of the

finite size of the ring is practically negligible even at t� 0:03 μs
(Fig. 10.11B). Overall, we see that if the distance between the transmitter
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Fig. 10.11 Early stage transient responses from the whole conductive (A) and resistive
(B) medium excited by the dipole and ring. Index is spacing.
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and receiver is more than five times greater than the radius of the ring, the

dipole and ring responses practically coincide over the entire time range.

Bearing in mind the similarity between the normal field and the field

caused by the ideally conductive cylinder, we may also conclude that for

all practically important transmitter/receiver spacing, the response from

the cylinder surrounded by a conductive medium is described by the field

of magnetic dipole. Later we will see how this fact can be used for the prac-

tical design of the transient logging tool.
10.4.3 Influence on the Finite Conductivity of the Cylinder
Boundary Condition
To find the field in the case of a cylinder of finite conductivity, solving the

boundary value problem requires determination of the magnetic field inside

and outside the cylinder. But we take advantage of two facts and simplify the

problem. First, our goal is the field outside the cylinder only. Secondly, we

are dealing with the cylinder whose conductivity in orders of magnitude is

greater than that of the surrounding medium. Those two factors enable us to

apply the approximate impedance boundary condition that is known as the

Leontovich boundary condition. To proceed let us assume that the plane

wave in a medium with the wave number k1 approaches at some arbitrary

angle the boundary that separates the medium with wave number k2. Then

in accordance with Snell’s law, the direction of the refraction wave is prac-

tically normal to the boundary, provided that

k2j j≫ k1j j
Correspondingly, the electric and magnetic fields of the refraction wave

are parallel to the boundary, and by definition their ratio is equal to the

impedance of the plane wave in the second medium:

E�
2ϕ

B2z

¼Z�
2

μ0

Inasmuch as tangential components of both fields are continuous at the

boundary, we have

E�
1ϕ

B�
1z

¼E�
2ϕ

B2z

¼Z�
2

μ0
(10.68)

where E�
1ϕ and B�

1z are complex amplitudes of the tangential mutually

orthogonal components of the field in the first medium outside the cylinder.

Leontovich had shown that Eq. (10.68) is valid for the more general case of
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an arbitrary boundary and nonplane incident wave, provided that the radius

of the surface curvature greatly exceeds the skin depth. Eq. (10.68) implies

that in the vicinity of the boundary from the side of the second medium, the

field behaves as the plane wave and moves in the direction perpendicular to

this boundary. The practical importance of Eq. (10.68) is the possibility of

avoiding determination of the field in the second medium. Thus, for appli-

cation to our problem of axial-symmetrical excitation of the cylinder, we

have the following expression for the complex amplitude of the impedance:

Z�
2 ¼ μ0

E�
1ϕ

B�
1z

which relates the field in the surrounding medium with the impedance of

the cylinder. On the other hand, for the intrinsic wave impedance Z�
2 of

the plane wave, we have

Z�
2 ¼

ωμ0
k2

¼ ωμ0ρ2ð Þ1=2 exp �iπ=4ð Þ¼ ωμ0ρ2=2ð Þ1=2� i ωμ0ρ2=2ð Þ1=2

Bearing in mind that the Leontovich boundary condition is an approx-

imate one, it is useful to estimate a minimal frequency fmin when the skin

depth δ2 ¼ 2=γ2μ0ωð Þ1=2 in the highly conductive cylinder becomes high

enough to satisfy the condition. Suppose that ρ2¼ 1�10�6ohmm and

δ2¼ 2�10�3m. Then, for the frequency fmin, we have an estimate:

fmin � 1

4�10�6ð Þ
4

8π2

� �
� 1

8π2
106� 104Hz

At such frequency, the corresponding amplitude of the complex imped-

ance jZ�
2 j is quite a small value:

Z�
2

		 		¼ωμ0δ2
21=2

¼ 2π 	 4π 	 10�7 	 2 	 10�3

21=2
104� 10�4ohm

Approximate Solution to the Boundary Value Problem
Following Eq. (10.62), the electric field in the surrounding medium can be

presented as:

E�
ϕ¼

iωμ

π
Irk

ð∞
0

I1 rυð ÞK1 rkυð Þcosmzdm+

ð∞
0

D υð ÞK1 rυð Þcosmzdm
2
4

3
5

(10.69)
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where the first integral is the normal field; andD is an unknown function of

the integrant, which determines the secondary field. At the same time, the

magnetic field might be expressed directly from the Maxwell equation:

1

r

@

@r
rE�

ϕ ¼ iωB�
z

After substituting Eq. (10.69) into the latter, we receive

B�
z¼

Iμ0rk
π

ð∞
0

νK1 rkνð ÞI0 rνð Þ cosmzdm�
ð∞
0

Dν 	K0 rνð Þ cosmzdm
2
4

3
5

From Eq. (10.18), we have

iωμ0
Iμ0rk
π

ð∞
0

I1 aυð ÞK1 rkυð Þcosmzdm+

ð∞
0

D υð ÞK1 aυð Þcosmzdm
2
4

3
5

¼Z�
2 	

Iμ0rk
π

ð∞
0

νK1 rkνð ÞI0 aνð Þcosmzdm�
ð∞
0

DνK0 aνð Þcosmzdm
2
4

3
5

(10.70)
Let us introduce notation:

ξ¼ Z�
2

iωμ0
Because k2¼�iωμγ, for ξ we have

ξ¼ Z�
2

iωμ0
¼ 1

ik2
¼ δ2

i�1ð Þ

where δ2 is a small number because it represents the skin depth of the highly

conductive cylinder and the product ξν is dimensionless. Thus, for the sec-

ondary electric field, we have

E�s
ϕ ¼� iωμ0

π
Irk

ð∞
0

I1 aνð Þ�νξI0 aνð Þ
K1 aνð Þ+ νξK0 aνð ÞK1 rkνð ÞK1 rνð Þcosmzdm (10.71)
For instance, in the case of an ideal conductor ξ¼ 0, the electric field is

E�
ϕ ¼� iωμ0

π
Irk

ð∞
0

I1 aνð Þ
K1 aνð ÞK1 rkνð ÞK1 rνð Þcosmzdm
that coincides with Eq. (10.65) at r¼ rk.
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High-Frequency and Early Transient Stage Asymptote
The fraction in Eq. (10.71) can be presented as:

I1 aνð Þ�νξI0 aνð Þ
K1 aνð Þ+ νξK0 aνð Þ�

I1 aνð Þ
K1 aνð Þ +

I1 aνð Þ
K1 aνð Þ (10.72)

where the last term corresponds to the case of the ideal conductor. Combin-

ing the first two terms in Eq. (10.22) and considering that

I0K1 + I1K0¼ 1= νað Þ
we obtain

I1K1�νξI0K1� I1K1�νξI1K0

K1 K1 + νξK0ð Þ ¼�νξ
I0K1 + I1K0

K1 K1 + νξK0ð Þ¼�ξ
1

a

1

K1 K1 + νξK0½ �

Thus the total field comprises the three field components: the field E�n
ϕ of

the current ring in a uniform medium; the field E�i
ϕ , caused by the presence

of an ideally conductive cylinder; and the field E�s
ϕ , characterizing diffusion,

providing that the skin depth in the cylinder is sufficiently small. For the last

component, we have

E�s
ϕ ¼� iωμ0

πa
ξIrk

ð∞
0

K1 rkνð ÞK1 rνð Þ
K1 aνð Þ K1 aνð Þ+ νξK0 aνð Þ½ � cosmzdm (10.73)
Suppose that the field is observed at a large distance from the current

source. Then the integral is mainly defined by small values of m and к.
By neglecting the second term in the brackets of the denominator and

replacing K1(rkν)/K1(aν) with an asymptotic value of a/rk, we receive

E�s
ϕ �� iωμ0I

πa
rkξ

a

rk

ð∞
0

K1 rνð Þ
K1 aνð Þcosmzdm�� iωμ0I

π
ξa

ð∞
0

νK1 rνð Þcosmzdm

or

E�s
ϕ � iωμ0I

π
ξa

@

@r

ð∞
0

K0 rνð Þcosmzdm¼ iωμ0I

2
ξa

@

@r
R�1 exp ikRð Þ

E�s
ϕ �� iωμ0I

2R2
ξaexp ikRð Þ 1� ikRð Þ sin θ

(10.74)

At first glance, the fieldE�s
ϕ in Eq. (10.74) is small comparedwith the field

of the ideal conductor. However, if the difference in radii of the ring and the

cylinder is small, then the terms describing the normal field and the field
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from the ideal conductor almost cancel each other, and the diffusion term

may dominate. Suppose that ka≪1j j. Then the frequency dependence of

the electric field, caused by the diffusion in the cylinder, is

E�s
ϕ � 1

R3

c

ωγð Þ1=2

Correspondingly, the early stage of the transient process in the cylinder is

defined as:

Eϕ tð Þ¼ c

γ1=2
1

R3

2

π

ð∞
0

cosωt

ω1=2
dω¼ c

R3

1

γ1=2
1

t1=2
(10.75)

This equation suggests that the finite conductivity of the cylinder causes a

very slow decay∝1=t1=2 of the transient field [2]. A large difference in con-

ductivities leads to a very different decay of the transient field in the forma-

tion and the cylinder. Specifically, the late stage of the transient process

(hundreds of microseconds) in the formation corresponds to the early tran-

sient stage in the cylinder. We may expect that in the presence of both cyl-

inder and formation, the slowly decaying term ∝1=t1=2, corresponding to

the cylinder, will completely dominate over the fast decaying signal∝1=t5=2

from the formation.
10.4.4 Effect of Spacing on the Pipe Signal
Now we compare our qualitative analysis with numerical calculations using

the advanced finite element numerical technique. In the model, the source is

the current ring with the radius rk¼ 0:085 m, which slightly exceeds a radius

of the pipe, a¼ 0:07 m. The electromotive force is measured at the distance

z¼ 3 m (Fig. 10.12A) and z¼ 7 m (Fig. 10.12B) between the transmitting

and receiving coils. Resistivity of the entire space is set to

ρ¼ 100, 10, and 1ohmm.

As shown in Fig. 10.12, it is useful to distinguish three different time

ranges:

1. The early time range t< 10 μs. In this case the signal is mainly defined by

the resistivity of the formation.

2. The intermediate range 10� t< 100 μs, when the signal depends on

properties of both the formation and the pipe.
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3. At later times, the influence on currents in the pipe completely domi-

nates, and obtaining measurements of formation resistivity becomes

hardly possible.

At relatively early times, when the diffusion of currents in a pipe is insignif-

icant, the influence of the surrounding medium becomes stronger. This fact

is not occasional, because at such time range, the pipe behaves almost as an

ideal conductor. Correspondingly, we focus our attention on conditions in

which induced currents in the cylinder are located relatively close to the

transmitter coil, but the diffusion in the surrounding medium is described

by the intermediate and late stages. Those conditions correspond to the mea-

surements at the relatively large spacing, when the early stage transient pro-

cess can bemeasured at the expanded time window.However, this approach

alone has a limited value, because it leads to undesirable increase in the tool

length and does not preserve sensitivity to the deep parts of the formation

(see Fig. 10.12, when at t� 100 μs signal from the pipe dominates).

The influence on the pipe signal is even more pronounced when the

object of interest is located ahead of the two-coil probe. For example, let

us consider the case of a conductive layer placed at two distances (distance

to the boundary, or d2b) of 10 and 30 m ahead of the receiving coil

R (Fig. 10.13). The resistivity around the tool and ahead-placed layer is
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ahead of the probe.

Time, s

7.0 m spacing

Time, s

Signal, V

(A) (B)

 

d2b = 10 m 

d2b = 30 m 

d2b = 10, 30 m d2b = 10, 30 m 

d2b = 30 m 

3.0 m spacing

d2b = 10 m 

ratio = 0.002

ratio = 0.03

10−08

10−09

10−10

10−11

10−12

10−13

10−06 10−05 10−04 10−06 10−05 10−04

10−08

10−09

10−10

10−11

10−12

10−13

Signal, V

r1= 50 ohm m
r2= 1 ohm m

a = 7 cm
gpipe= 1.4 × 10−06 S/m
rk= 8.5 cm

Fig. 10.14 Transient response in the presence of ahead-placed conductive layer at the
spacing of 3 m (A) and (B) 7 m. Code of curves is d2b.
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ρ1¼ 50ohmm and ρ2¼ 1ohmm, correspondingly. Our primary objective is

to detect the ahead-placed boundary.

In Fig. 10.14, we show signals in the absence (dashed lines) and presence

(solid lines) of the conductive pipe for two spacing of 3 m (Fig. 10.14A) and

7 m (Fig. 10.14B).

In the absence of the pipe, the signals (dashed lines) are very well distin-

guished and demonstrate high sensitivity to the distance to the boundary,

while the presence of the pipe diminishes the sensitivity by making it
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impossible to resolve the target (overlapping solid lines). In other words, the

transient process is entirely defined by the properties of the pipe.

Like in the previously considered case of a homogeneous formation

(Fig. 10.12), increasing the spacing from L1 ¼ 3 m to L2¼ 7 m leads to

the increase of the relative contribution of the formation into the total signal

because the signal from the pipe drops as∝ 1=z3, while signal from the for-

mation, at least at the late stage, practically does not depend on the spacing.

For example, at 3 m spacing and 100 μs, the ratio of signals from the pipe

and formation is 0.002 (Fig. 10.14A), while at 7 m spacing it increases by a

factor of 7=3ð Þ3¼ 12:7 to 0.03 (Fig. 10.14B). But even at the increased spac-
ing, the ahead-placed boundary is still practically invisible.
10.4.5 Effect of the Increased Pipe Conductivity
on the Transient Response

There is another approach that can also delay diffusion through the pipe, thus

reducing its influence. Looking at the equation for the transient signal

(Eq. 10.75) we may notice that the leading term is inversely proportional

to the square root of pipe conductivity. This suggests a possible reduction

of the signal from the pipe by covering it near the transmitter and receiver

with a material (shield) that has higher conductivity than that of the steel.

First, this assumption is confirmed by the rigorous modeling for the pipe

of different conductivity, changing from γ¼ 1:4�106 S=m (Siemens per

meter) for the steel to γ¼ 0:6�1012 S=m. The intermediate value of

γ¼ 0:6�108 S=m corresponds to the conductivity of the copper; while γ¼
0:6�1010 S=m and γ¼ 0:6�1012 S=m to some hypothetical

“superconductive” materials.

The modeling results for 3 m and 7 m spacing (Fig. 10.15) confirm

reduction of the pipe signal with an increase of the conductivity. This signal

reduction is in full agreement with Eq. (10.75), which indicates on∞ 1=
ffiffiffi
γ

p
dependence on the conductivity of the pipe and∞1=z3 dependence on the
spacing. It is also interesting to notice the fast, practically exponential, decay

of the signal (Fig. 10.15, γ¼ 1:4�106 S=m) at the very late stage, t� 1 ms,

when thickness of the skin layer in the pipe becomes comparable with the

pipe thickness.

Let us explore further the effect of the increased pipe conductivity by

analyzing the transient response in the case of a highly conductive pipe sur-

rounded by homogeneous formations of different resistivity. For illustration,

a modeling is presented for the pipe with γ¼ 0:6�1012 S=m and a set of
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homogeneous formations with ρ¼ 1, 10, and100 ohmm. The results

(dashed lines) at spacing of 3 and 7 m are presented in Fig. 10.16A and B,

correspondingly. In addition, the signals for the homogeneous medium in

the absence of the pipe are also shown (solid lines).
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Fig. 10.16 Transient response in the presence of highly conductive pipe in homoge-
neous formation at (A) 3 m and (B) 7 m spacing. Index of the curves is whole space
resistivity.
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Analyzing these responses we notice the following:

– For the given formation resistivity and spacing there is a time range where

behavior of the signal is slightly affected by the presence of the conductive

pipe. In this time range the skin depth in the pipe is practically equal to

zero and the pipe behaves almost as an ideal conductor (Eq. 10.65).

– The lower the resistivity of the formation, the greater the time rangewhere

the pipe behaves as an ideal conductor (overlapping dashed and solid lines).

For example, in the case of the 100 ohm m formation and 3 m spacing, the

overlap is observed up to t� 4 μs, while in 10- and 1-ohm m formations, it

is extended to t� 30 μs and t� 150 μs, correspondingly.
– Increase in the spacing significantly extends the time range in which the

response follows the response in the whole space. Comparison of the data

in Fig. 10.16 demonstrates an extension by a factor of 4.
10.4.6 Reduction of the Pipe Signal Using Finite Size Copper
Shield and Bucking

Unfortunately, there is no material with such high conductivity as in the

example earlier (γ¼ 0:6�1012 S=m) to replace the steel. But we still may

use available conductive materials, such as copper, γc ¼ 0:6�1008 S=m,

and partially reduce the signal from the pipe. According to Eq. (10.75)

and the data in Fig. 10.15, the copper leads to reduction of the signal from

the pipe by a factor of
ffiffiffiffiffiffiffiffiffiffi
γc=γs

p ¼ 6:55. As we discussed before, the major

effect from the conductive pipe comes from the region near the transmitting

and receiving coils. For this reason, a thin and relatively short copper layer

wrapped around a steel pipe (Fig. 10.17) serves as a shield. In the following

numerical examples, transmitting and receiving coils are placed in the mid-

dle of the 0.75-m long copper shield. In addition, we can further suppress

signal from the pipe by considering that the signal from the pipe decreases

with the spacing as ∞1=L3, while the transient signal from the formation

only slightly depends on the spacing, especially at the late stage. Thus, by

combining two signals at two different spacings, we may substantially reduce

contribution from the pipe into the total signal.

Obviously, the signals should be combined with the weights that are

inversely proportional to L3 or, more precisely, with the weights that pro-

vide no signal in the absence of the formation. For example, let us select two

spacings, L1¼ 5 m and L2 ¼ 7 m, and estimate a coefficient k(t), which pro-

vides the following condition:

Sair tð Þ¼ SairL2
tð Þ�k tð Þ 	 SL1

air tð Þ¼ 0 (10.76)
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Fig. 10.17 Three-coil probe with copper shields surrounded by resistive layer and con-
ductive layer placed ahead of the probe.
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We call the coefficient k(t) the bucking coefficient; the short-spaced

receiving coil is the bucking coil; and the long-spaced coil is the main coil.

In fact, the bucking coil in the transient regime plays a similar role to the

bucking coil used in the three-coil induction system with harmonic excita-

tion, compensating a large signal caused by eddy currents in the pipe.

As we mentioned earlier, the signal from the pipe (Fig. 10.18A) is pro-

portional to∞1=L3, thus the bucking coefficient should approach a constant

value k¼ L1=L2ð Þ3 (Fig. 10.18B). However, with an increase of time, dif-

fusion of currents in the pipe (see Fig. 10.15, γ¼ 1:4�106 S=m) leads to a

small deviation from the constant k: the higher the conductivity of the pipe

(or conductivity of the shield), the later this deviation takes place.

Now let us show effectiveness in suppression of the pipe signal using both

the copper shield and bucking technique when applied to the one of the

most challenging tasks of geo-steering—detection of the target ahead of

the drill bit. It is assumed that resistivity around the transient system is

50 ohm m, while the conductive layer ahead of the drill bit has resistivity

of 1 ohm m. The distance from the transmitter to the bucking andmain coils

is 5 and 7 m, correspondingly. Modeling results are shown in Fig. 10.19A.

First, wemay notice the reduction of the signal amplitude caused by the cop-

per shield. By comparing the upper dashed curve (representing steel) with

the solid curve (representing the pipe with the copper shield) in

Fig. 10.19A, we see that the signal drops by a factor of
ffiffiffiffiffiffiffiffiffiffi
γc=γs

p ¼ 6:55.

Next, using the signals at 5 and 7 m spacing and applying Eq. (10.76), we

obtain a family of the bucked curves corresponding to the different distances
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to the boundary, d2b¼10, 20, and 30 m (solid curves). The curves show the

effectiveness of the transformation defined by Eq. (10.76), and enabling us to

essentially reduce the influence of the pipe and preserve sensitivity to the

target. Moreover, the behavior of the bucked curves is very similar to the

synthetic signals observed in the absence of the pipe (Fig. 10.19A, dashed

lines): the shorter the distance to the target, the closer the bucked curves

to the curves obtained in absence of the pipe. The difference between curves
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is most pronounced at the late stage when the target is located 30 m ahead of

the main coil. The magnified mismatch is shown in Fig. 10.19B and it is

caused by the increased influence of the skin effect in the pipe when the con-

ductive target has limited contribution into the signal. Similar behavior was

observed (Fig. 10.16) when the skin effect in the pipe was especially pro-

nounced in the resistive formation of 100 ohm m.
10.4.7 Improving Formation/Pipe Signals Ratio UsingMagnetic
Shielding

To further reduce the influence of the pipe, one can use a magnetic shield in

the form of a short nonconductive cylindrical ferrite with high magnetic

permeability located between the coils and the pipe. The ferrite’s high per-

meability causes the magnetic field lines to be concentrated in the core mate-

rial, thus increasing the effective magnetic moment of the transmitting coil

(Fig. 10.20).When ferrite is placed in the external magnetic field, it becomes

magnetized, and magnetization currents of different directions arise both

externally and internally of the ferrite’s surface. Specifically, on the external

surface, the currents produce a magnetic field of the same direction with

an external field, while currents on the internal surface (close to the pipe

surface) generate the magnetic field of the opposite direction. As a result,

the total field in the vicinity of the pipe becomes smaller, thus reducing
Pipe

Current

Ferrite

Fig. 10.20 Distribution of vector lines of the magnetic field in the presence of ferrite.
Solid lines show the magnetic field of the primary source (ring); dashed lines correspond
to the magnetic field of the magnetized ferrite.
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the intensity of undesirable induced currents in the pipe. Of course, the

shielding effect on the receiver side is similar to that on the transmitter side.

Let’s see how the ferrite affects the transient response when it is added to

the previously analyzed arrangement, based on the use of the copper shield

and bucking technique.We assume that the ferrite inserts in the transmitting

and each receiving coils are placed at 5 and 7 m, correspondingly. The

length of the ferrite is 25 cm, its thickness is 1.5 cm, and relative permeability

is 100. The position of each coil is centered with respect to the ferrite.

Modeling results are shown in Fig. 10.21 and demonstrate increase of the

signal level and improved resolution with respect to the ahead-placed

boundary. Moreover, the bucked signals (solid lines) practically coincide

with synthetic signals that are calculated in the absence of the pipe. This fact

is desirable because it enables us to exclude pipe from the forward model,

and eventually perform an inversion in a more reasonable amount of time.

Reducing pipe influence on the response was impossible when either

shielding or bucking alone were used. On the other hand, by combining all

the analyzed means wewere able to reach a desirable level of pipe suppression.

10.5 INVERSION OF TRANSIENT DATA IN THE TASK
OF GEO-STEERING
Inversion is a technique for determining the geo-electrical properties

of a formation using induction logging data. In LWD, inversion constitutes a

critical part of the technology because real-time data are used to determine
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the best course for the drilling operation. The measurements are used in

geo-steering to determine dip angle and bed boundaries to keep the well

in the sweet spot throughout long lateral sections. Typically, decisions are

made by jointly interpreting data from gamma ray, acoustic, and resistivity

tools. In the following section we illustrate the main aspects of inversion

using a hypothetical induction probe operating in the time domain andmea-

suring different field components.
10.5.1 Well- and Ill-Posed Problems
In the case of forward modeling, the problem is referred to as well-posed

because the equations and coefficients, which are defined by properties of

the formation, along with primary sources, are known. The corresponding

boundary value problem has a unique solution, which continuously depends

on parameters and the data- small changes in parameters result in small

changes in the solution. With today’s available computational power, solu-

tions to almost any forward modeling problem can be found in a very rea-

sonable amount of time.

In thecaseof the inverse problem, thecoefficients are unknownandhave to

be found using a set ofmeasurements takenwith a logging device. It is called an

inverse problem with respect to the forward problem because it uses the mea-

surements and then calculates properties of the formation. The physics that

relates the formation’s parameters (i.e., the model parameters) to the observed

data is governed byMaxwell equations. The vast majority of inverse problems

are ill-posed because of the lack of uniqueness and continuity with respect to

small changes in thedata.Typically, solving an inverse problemrequires solving

systems of linear equations at some point. The main property of any system is

so-called condition number, which is defined as ratio of the largest to smallest

singular value in the singular value decomposition of a matrix of a system. If a

systemhas linearly independent rows and columns, it is characterized by a small

conditionnumber; otherwise this number is large.As amatterof rule, all inverse

problems lead to systems with a large condition number.

Example 1 Let us look at the system with linearly dependent rows (large

condition number):

x1 + 5x2 ¼ 6+ ε
10x1 + 50:1x2¼ 60:1

�

where ε is some small value. If ε is equal to zero, the solution is x1 ¼ 1,

x2¼ 1, but the small perturbation of the right-hand side by ε¼ 0:001
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leads to the solution x1¼ 2:0, x2¼ 0:8, significantly deviating from the

unperturbed case of ε¼ 0, and illustrating lack of continuity of the solution.

Example 2 This is the famous example of Lanczos, demonstrating the non-

uniqueness or equivalence between different models. Lanczos fitted the

same set of data using first, a set of two exponents and then a set of three

exponents. The results are

f2 tð Þ¼ 2:202exp �4450tð Þ+0:305exp �1580tð Þ,
f3 tð Þ¼ 1:5576exp �5000tð Þ+0:8607exp �3000tð Þ+0:0951exp �000tð Þ

The difference between f2(t) (Fig. 10.22, solid line) and f3(t) (Fig. 10.22,

dotted line) is less than the line width used to plot the data. In the given time

range it is impossible to establish the exact number of exponents in

the model.
10.5.2 Main Elements of the Inversion Algorithm
Any inversion algorithm includes steps of comparison of measured and syn-

thetic data, reproducing the probe response in the presence of the formation.

The combination of formation parameters providing the minimum misfit is

considered to be the solution of the inversion problem (see the following
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diagram). Normally, hundreds and thousands of comparisons between syn-

thetic and measured data are needed to find the solution.

Inversion diagram

Measured data
Model 

vs.
measurements

Forward 
modeling

Inverted model

Adjust model

No

Yes

Initial model

For this reason, forward modeling, which generates synthetic data for the

different geo-electrical models, is the first critical element of the inversion

algorithm. The next component is the strategy used to generate parameters

of formation candidates to be tested for the best fit. Because of the ill-

conditioned nature of the inversion problem, the means for stabilizing or

regularizing the solution constitute another critical element of the inversion.

In particular, regularization includes increase of the data set, optimal number

of parameters subject to inversion, prior information about some of the

parameters, for example, range of parameters variation, and so on. In fact,

any additional information about the model or data constitutes regularized

inversion.

Finally, when the inversion is complete, it is important to have an esti-

mator of the error in inverted parameters. In other words, the interpreter

needs to know error bars, indicating how an error in the measured data

propagated into the error of estimated parameters.

10.5.3 Table-Based Inversion
When the number of parameters is limited, it is possible to invert data

by applying an old-fashioned approach that is based on the precalculated

master curves. Indeed, in the simplest geo-steering landing scenario, the typ-

ical formation model represents two layers and the borehole trajectory is

tilted at some angle with respect to the boundary separating the layers

(Fig. 10.23). Overall, we have only four parameters: resistivity of the upper

layer ρ1, resistivity of the lower layer ρ2, dip angle α, and the most important

parameter in this application, distance to bed d2b.
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Fig. 10.23 Formation model and drilling trajectory.
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We use the simplest arrangement comprising one transmitting and one

receiving coil placed in the upper layer. The task of geo-steering is to pro-

vide an optimal landing point, that is, a point where the well transition into

the horizontal/lateral portion of the well occurs. Let us estimate the time

needed to generate a table using, for example, 30 points to discretize each

parameter. The total number of precalculated transient signals will be 304.

Assuming that the typical time to calculate one master curve on an average

dual-quad processor is approximately 0.1 s, the table can be generated in a

matter of days using only one multicore processing unit. An important fea-

ture of the table-based inversion algorithm is that, for the given probe and

formation model, the master curves are generated only once and used

indefinitely.

The inversion algorithm is simple: we perform a global search by com-

paring the measured data with synthetic data from the table by calculating a

least square deviation λ in each node of the four-parametric table:

λ¼ 1

NT

XNT

j¼1

Sje�Sjs α,ρ1,ρ2,d2bð Þ
S
j
e

� �2

where Se
j,Ss

j are measured and theoretical data, correspondingly; and NT is

the number of time discretes in the precalculated transient signals. Then the

parameters corresponding to the node, providing a minimal value of λ, are
accepted as a possible solution to the inverse problem.
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The data may include some number of logging points along the drilling

trajectory as well as the different measurements corresponding to the differ-

ent orientation of transmitting and receiving coils. Another benefit of the

table-based inversion is simplicity in implementing constraints on the

invertible parameters: the regions of parameters specified by constraints

are simply excluded from the scanning.
10.5.4 Stability of the Inverse Problem Solution
Stability of the inversion is mainly defined by the propagation of error in the

measurements into errors in the inverted parameters.

The solution is stable when noise in the data is not amplified too dras-

tically and the error in the reconstructed parameters is acceptable. Of course,

such notion is subjective. For example, if 10% noise is translated into 10%

error in the parameter, the solution is stable, whereas 100% error in the

parameter would indicate lack of stability.

There are different approaches for studying the stability of the inversion

scheme. One way would be to determine how the result is changing if input

data have been perturbed by some small number. Another way is to examine

how the result of inversion had been changing with respect to a different

realization of the noise while the statistical properties of the noise are kept

the same. The simplest example of such noise is a Gaussian noise having a

probability density function equal to that of the normal distribution with

a fixed standard deviation.

In the following examples we use model in Fig. 10.23 and the 30 nodes

for each parameter to discretize the parameters with a geometric step. The

discretized range for resistivity is from 1 to 200 ohm m, the distance from

transmitter to boundary is in the range from 1 to 50 m, and the deviation

angle is from 0 to 90 degrees. The transient signal is calculated with a geo-

metric step in the time interval from 1 μs to 10 ms (100 points).

The probe is a simple two-coil systemwith axial transmitting and receiv-

ing coils separated by L¼5 m spacing. The length of the perpendicular d2b

from the receiver to the boundary (Fig. 10.23) is called the distance to the

boundary (or so-called true vertical depth), and the distance between the

receiver and the boundary along the trajectory is called measured depth,

Rd2b¼d2b/cos(α) (Fig. 10.23).
To study the stability of the table-based inversion algorithm, we con-

structed numerical experiments consisting of 100 consecutive inversion

runs. In each run, a different noise realization of the same standard deviation
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is used to contaminate the data. The sets of inverted parameters comprise the

results of our statistical inversion. One of the input parameters used in the

experiments is the number of logging points along the drilling trajectory.

By varying this number, we can see how additional logging points affect

the stability of inverted parameters.

In the analysis we look at two sets of the data: in the first set, data from

only one logging point closest to the boundary are included; in the second,

data from two additional logging points from the previous toll positions are

added. In the numerical experiments, there are three different deviation

angles α of 0, 45, and 83 degrees are used, corresponding to the vertical,

deviated, and near-horizontal borehole trajectory, correspondingly. The

standard deviation of the relative Gaussian noise imposed on the data is

either 10% or 20% of the signal level.
Statistical Inversion for the Case of a Vertical Well
(0 Degree Deviation Angle)
In the first example, the boundary is placed at the distance of d2b¼23.5 m

from the receiver, and the resistivity values of the first and second layers are

ρ1¼ 40 and ρ2 ¼ 1ohmm, correspondingly. In the experiments 20% noise is

added to the data. In Fig. 10.24, statistical inversion results are presented for

the case when data are placed at either one logging point at the distance

Rd2b¼23.5 m from the boundary (left subplot) or three logging points at

distances Rd2b¼23.5, 33, 45 (right subplot). In each subplot, the x-axis

represents the inverted deviation angle, and the left y-axis depicts inverted

distance to boundary d2b (dots). The right y-axis shows percentage P of
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Fig. 10.24 Statistical inversion results for (A) one and (B) three data points (vertical well,
20% noise).
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repetitions when inverted parameters d2b and deviation angle resulted in the

same values (gray bars) during 100 sequential runs. The exact values of the

parameters are represented by the black stars and bars.

As shown in Fig. 10.24, the percentage of runs when inversion accurately

found both distance to bed d2b and deviation angle α practically does not

depend on the number of logging points used in the inversion; in both cases

it stays at approximately 40%. At the same time, the number of inversions

resulted with a deviation angle larger than 20 degrees decreases from 17%

to 3% when three logging points instead of one are used. Similarly, we

can see reduction of outcomes with inverted d2b exceeding 24.0 m. In fact,

by increasing the data set from one to three measurements, we effectively

increase the signal-to-noise ratio, and it is eventually to the reduced number

of outliers and increased stability of the inversion. The effect of reduced

noise is further shown in Fig. 10.25 where statistical inversion was con-

ducted for 10% noise. As seen from Figs. 10.24 and 10.25, the main conse-

quence of reduced noise is reduced spread in the inverted parameters.

Specifically, the results in Fig. 10.24 (right subplot, three logging points)

are similar to those presented in Fig. 10.25 (left subplot, one logging point).

The stability of the inversion is further improved when three logging

points are used (Fig. 10.25, right subplot). In particular, in the case of three

logging points and 10% noise, there are no outcomes of inverted angles

larger than 15 degrees. Interestingly, the inversion provided an accurate

result for the resistivity of both layers in all analyzed cases (for this reason,

inverted resistivity is not presented). These parameters are well defined
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Fig. 10.25 Statistical inversion results for (A) one and (B) three data points (vertical well,
10% noise).
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because the data include both an early time range (first microseconds), when

the transient process strongly depends on the resistivity of the upper layer,

and the very late stage (hundreds of microseconds), which is mainly driven

by the resistivity of the bottom layer.
Shallow Distance to the Boundary d2b54.3 m
When the ahead-placed boundary is located at the shallow distance to bed

d2b¼4.3 m, it becomes comparable with the probe length (L¼5.0 m), and

this leads to a significant uncertainty in the inverted parameters. This is

shown in Fig. 10.26, in which results of statistical inversion are presented

for the case of the data contaminated with 20% noise. In the left subplot,

the spread in the deviation angle covers the entire range of 90 degrees. In

other words, there is no stability in determining deviation. But the stability

is drastically improved when data at two points Rd2b¼7.4 and 11.4 m are

added. We can see (Fig. 10.26, right subplot) that the spread in the inverted

deviation angle is reduced by a factor of approximately 4.

Also, the number of outcomes corresponding to the exact solution for

d2b increases from 8% to 48% (compare black bars in the left and right sub-

plots), significantly reducing the number of outliers with deviation angle α
larger than 20 degrees (gray bars, right subplot).
Statistical Inversion for Deviation Angle545 Degrees and Deep
Distance to Boundary Rd2b525 m
The results of statistical inversion for the case of deep d2bwhenRd2b¼25 m

are shown in Fig. 10.27 (noise¼20%). The major difference from the case
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with a zero deviation angle is the significantly more pronounced effect cau-

sed by the increased number of logging points on the inversion result.

Indeed, an increase to three logging points reduces the spread in Rd2b from

the range of 15.3–18.3 m to the range of 17.2–18.3 m.

Although additional logging points placed further from the boundary do

not directly improve sensitivity to the boundary position, their combination

does improve sensitivity to the deviation angle, and this eventually leads to

the improved stability in inverted d2b.
Regularization Using Constraints
In the previous examples we assumed that all four parameters are unknown

and we have no prior information about the parameters of the model. In

many practical cases, however, we do have knowledge about the formation

either in terms of approximate values of those parameters or, at least, the

range of their possible variation. Incorporation of this knowledge into the

inversion scheme reduces the size of the parameter’s space and increases

stability of the inversion. In application to the table-based inversion, incor-

poration of constraints assumes exclusion of some region of the constrained

parameters from the global search or scanning, and there is no surprise that

the reduced parameter space leads to the reduced uncertainty in the inverted

parameters.

The effectiveness of the constraints in reducing uncertainties of param-

eters is illustrated in the following example in which we consider a two-

layered formation with resistivity around the probe of 10 ohm m and

resistivity of the ahead-placed second layer of 1 ohm m. The spacing

between transmitter and receiver is 5 m and the level of the relative noise

is 20%. In the inversion we use two logging points placed at distances of
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Rd2b¼23.5 m and Rd2b¼33.5 m. Results of the statistical inversion are

shown in Fig. 10.28. The subplot on the left represents inversion results

when no constraints are imposed on the parameters. We can see that there

are some outliers in the region above 30 degrees (dots), which correspond to

the scenarios of the receiver intersecting the boundary. The subplot on the

right shows results of the inversion when a constraint on the boundary was

applied (d2b> 0) by imposing the boundary to be below the receiver. The

subplot on the right in Fig. 10.28 shows that the constraints removed all the

erroneous values of parameter d2b by eliminating outliers above 30 degrees.

Overall, table-based inversion is robust and provides satisfactory results in

finding parameters of interest.Uncertainties in deviation angle and resistivities

are in the acceptable range and permit accurate distance to the ahead-placed

boundary. An increased number of logging points are the most beneficial in

case of deviated trajectories and benchmarks with the distance to bed compa-

rable with the transmitter-receiver spacing. Constraints help reduce uncer-

tainties in inverted parameters and avoid erroneous inversion results.
10.5.5 Multiparametric Inversion
In the productive layer, it is important to navigate a horizontal well by

detecting bed boundaries and keeping the well in the sweet spot throughout

long lateral sections. The simplest model that describes this scenario consists

of three layers. The trajectory is assumed to be parallel to the boundaries and

there are at least five parameters of interest: resistivity of each layer, the

thickness of the layer, and position of the probe with respect to the bound-

aries (Fig. 10.27B). The number of parameters can be even higher if addi-

tional layers or anisotropy are taken into account.
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In this case, application of the table-based inversion is not effective

because doing so requires large computation resources to generate the tables

and significant time consumption to perform the scanning through each

node in the table. For five or more invertible parameters, it is advisable to

use advanced optimization techniques that do not rely on precalculated

lookup tables but generate synthetic signal during the inversion.
Gauss-Newton Method
One of the most popular iterative methods for solving a least-squares prob-

lem is the Gauss-Newton (GN) method. This method requires calculation

of the first derivatives of the minimized function Φ x
!� �

, called the Jacobian

matrix Ĵ x
!� �

. The derivatives are calculated with respect to the parameters of

interest (parameters of inversion), comprising a vector of unknowns x
!
. The

function Φ x
!� �

represents sum of squared residuals between measured

yk k¼ 1,…,nð Þk and model-predicted values sk.

In the least-squares formulation, the function Φ x
!� �

is presented as:

f x
!� �¼ Φ x

!� ��� ��2¼Xn
k¼1

sk x
!� �� yk

� �2
(10.76)

where Φ x
!� �

is the column-vector of n elements:

Φ x
!� �¼

s1 x
!� ��y1

� �
s2 x

!� ��y2
� �

…

sn x
!� ��yn

� �
2
664

3
775 (10.77)

These kinds of nonlinear problems are quite popular and have many

practical applications in finding sets of parameters satisfying the measure-

ments. Let Ĵ x
!� �

be a Jacobian matrix of functionΦ x
!� �

, consisting of n rows

and m columns:

Ĵ x
!� �¼

@s1 x
!� �

@x1

@s1 x
!� �

@x2
…

@s1 x
!� �

@xm
@s2 x

!� �
@x1

@s2 x
!� �

@x2
…

@s2 x
!� �

@xm
… … … …

@sn x
!� �

@x1

@sn x
!� �

@x2

@sn x
!� �

@xm

2
66666664

3
77777775

(10.78)
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where n is the number of measurements and m is the number of parameters

in the model.

Then, assuming some initial guess for the vector x
!
0 the sequential

approximations of x
!
j+1 according to the GN method can be found as:

x
!
j+1¼ x

!
j� JT x

!
j

� �
J x

!
j

� �� ��1
JT x

!
j

� �
Φ x

!
j

� �
(10.79)

where ĴT x
!� �

is a transposed Jacobian matrix. The GNmethod relies on the

fact that the second derivatives Hessian matrix, having a least-squares

form of:

Ĥ x
!� �¼

@2f x
!� �

@x1@x1

@2f x
!� �

@x1@x2
…

@2f x
!� �

@x1@xm

@2f x
!� �

@x2@x1

@2f x
!� �

@x2@x2
…

@2f x
!� �

@x2@xm
… … … …

@2f x
!� �

@xm@x1

@2f x
!� �

@xm@x2
…

@2f x
!� �

@xm@xm

2
6666666664

3
7777777775
¼ @f x

!� �
@xi@xj

" #m
i¼1, j¼1

¼ JT x
!� �

J x
!� �

+Q x
!� �

(10.80)

where

Q x
!� �¼Xn

i¼1

Φi x
!� �

Hi x
!� �

(10.81)

can be approximated through the Jacobian matrix as Ĥ x
!� �� JT x

!� �
J x

!� �
.

The approximation is valid unless the residuals Φi x
!� �

become large and

the first term in Eq. (10.80) no longer dominates over the second term.

The improved version of the GN method is the Levenberg-Marquardt

(LM) algorithm, which is based on some heuristic ideas and allows improv-

ing stability and convergence of the iterations.
Levenberg-Marquardt Method
It happens that the GNmethod demonstrates oscillatory features during iter-

ations, manifesting lack of robustness. To overcome this issue, Levenberg

and Marquardt provided a damped least-squares algorithm, which adjusts

some damping factor λ to control rate of convergence. The updated approx-

imation in the LM for x
!
j+1 is

x
!
j+1 ¼ x

!
j� JT x

!
j

� �
J x

!
j

� �
+ λkÎ

� ��1
JT x

!
j

� �
Φ x

!
j

� �
(10.82)
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where Î is the identity matrix and x
!
j+1� x

!
j is the incremental update in the

estimated vector of parameters. The (nonnegative) damping factor, λ, is

adjusted at each iteration. If reduction of Φ x
!� �

is rapid, a smaller value

can be used, bringing the algorithm closer to the GN algorithm, whereas

if an iteration gives insufficient reduction in the residual, λ can be increased.

For large values of λ, the step will be taken approximately in the direction of

the gradient. If either the length of the calculated step or the reduction of

sum of squares from the latest parameter vector fall below predefined limits,

iteration stops and the last parameter vector are considered to be the

solution.

The drawback of the form Eq. (10.82) is that if the value of damping fac-

tor λ is large, inverting JT x
!
j

� �
J x

!
j

� �
+ λkÎ

� �
is not used at all [3]. Marquardt

suggested scaling each component of the gradient according to the curvature

so that there is larger movement along the directions where the gradient is

smaller. This avoids slow convergence in the direction of small gradient.

Therefore, Marquardt replaced the identity matrix, Î with the diagonal

matrix consisting of the diagonal elements of JT x
!
j

� �
J x

!
j

� ��
, resulting in

the LM algorithm:

x
!
j+1¼ x

!
j� JT x

!
j

� �
J x

!
j

� �
+ λkdiag JT x

!
j

� �
J x

!
j

� �� ��1
JT x

!
j

� �
Φ x

!
j

� �


The choice of damping parameter λ is more or less heuristic and mainly

depends on how well the initial problem is scaled. It is recommended to

start from a large number λ0, calculate the residual sum of squares, and then

reduce λ in the next step by a factor of ν. If both of these are worse than

the initial point, then the damping is increased by successive multiplication

by ν until a better point is found with a new damping factor of λ0ν
k for

some k.

If use of the damping factor λ0/ν results in a reduction in squared residual
then this is taken as the new value of and the process continues. If using λ/ν
resulted in a worse residual, but using λ resulted in a better residual, then λ is
left unchanged and the new optimum is taken as the value obtained with λ as
damping factor.

The LM algorithm is a very popular curve-fitting algorithm used in many

software applications for solving generic curve-fitting problems. However,

this algorithm finds only a local minimum like all other iterative procedures,

not a global minimum.
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Combination of Iterative and Table-Based Inversion Algorithms
Both the GN and LM iterative methods of solving least-squares problems

require some initial guess. In the case of geo-steering a horizontal well, it

is a natural choice to use table-based inversion for finding three parameters

of a two-layer model (Fig. 10.29A) and then, use them as an initial guess for

the iterative procedure with five parameters corresponding to the three-

layer model (Fig. 10.29B).

The model in Fig. 10.29B corresponds to a typical scenario of a probe

that is located close to a reservoir roof at the distance d2b1, and the task is

to identify all the parameters, including a distance d2b2 to the reservoir floor.

Of course, the greater the thickness of the middle layer, for which the lower

boundary of the second layer still can be detected, the better for the navi-

gation. In the presented example the transient synthetic responses include

XX, YY, and ZZ components affected by 10% random noise. In the nota-

tion the first index corresponds to the orientation of the transmitting dipole

and the second to the receiving dipole. The models are selected to illustrate

limitations of the inversion in resolving a distance to the lower boundary

d2b2. Therefore, we consider three cases with d2b2¼2, 5, and 10 m, corre-

spondingly. The rest of parameters of the models are ρ1¼ 1ohmm,

ρ2¼ 5ohmm, ρ3¼ 1ohmm, and d2b1¼1 m.

Table 10.4 summarizes the results of inversion experiments. The cells

contain the true value of the parameter (on top), result of the table-based

search (second line), and result of the iterative inversion (at the bottom)

for all three models.

The misfit F shows the relative difference between experimental and

synthetic data normalized by the noise level, and NF is the number of for-

ward modeling performed to find the solution by iterative inversion.
d2b d2b1

d2b2

 

r1 r1

r2

r3

r2

(A) (B)

Fig. 10.29 (A) Three-parametric model used to find initial guess for the (B) five-
parametric model in iterative inversion.



Table 10.4 Original Models and Inverted Parameters

Parameters
ρ1
ohm m

ρ2
ohm m

ρ3
ohm m

d2b1
m

d2b2
m

Misfit
F

Model 1 1 5 1 1 2

Table-based inversion 1 5.46 5.46 0.7 n/a 63.0

Iterative inversion 0.998 5.05 1.01 0.98 2 0.39 (NF¼44)

Model 2 1 5 1 1 5

Table-based inversion 1 5.46 5.46 0.7 n/a 55.0

Iterative inversion 0.98 5.0 1.03 0.97 5.2 0.47 (NF¼61)

Model 3 1 5 1 1 10

Table-based inversion 1 5.46 5.46 0.7 n/a 35.1

Iterative inversion 0.97 5.1 1.3 0.95 7.5 0.35 (NF¼63)
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In all three cases, the table-based inversion provides an accurate estimate

of the resistivity ρ1¼1 ohmm of the upper layer located near the probe. The

resistivities of the second and third layers are determined within the error of

10%, and this error leads to 30% error in d2b1. The inverted d2b1 values are

further improved by the iterative inversion. Also, iterative inversion gives a

very good estimate for the lower boundary d2b2 when it is below 10 m

(Models 2 and 3). But with increase of the thickness of the second layer,

the data become less sensitive to the far-placed boundary, and the error

in d2b2 reaches 30% when d2b2¼10 m (Model 3).
10.5.6 Estimation of Parameter Uncertainties
In addition to estimation of parameters, inversion has to assess their uncer-

tainties. This can be done by through linear approximation of the responses

around the inverted model [4]. Let us denote fi i¼ 1,…,nð Þ measurements

and εi i¼ 1,…,nð Þ noise associated with these measurements, p
!0�vector of

parameters. This noise causes inverted parameters to be defined with some

uncertainties δpj ¼ pj�p0j,
0j0j j¼ 1,…,m, and our goal is to estimate those

uncertainties (Fig. 10.30) assuming that the noise in the data is well known.

The data set might comprise any combination of electromagnetic compo-

nents taken at any subset of times and subarrays. The parameters are electrical

and geometrical properties of the formation and resistivity of the layers.

Taking into account only the linear term of a Taylor series for the signal

decomposition with respect to parameters, we have

δ f
!¼ Ẑ 	 δ p! (10.83)



2dp2

2dp1

p2

p1

Fig. 10.30 Projection of equivalent ellipsoid onto parameter axis.
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where the vector δfi i¼ 1,…,nð Þ describes the change of the signals

corresponding to the change in the parameters δp!j, while the matrix Ẑ is

a Jacobean matrix comprising partial derivatives of the signals with respect

to the parameters of interest p
!0:

Zij ¼ @fi
@pj

p
!o
� �

(10.84)

The matrix Ẑ has n rows and m columns. Each measurement is charac-

terized by the error εi comprising a vector:

εi¼ f 0i
		 		Erri +Aerri (10.85)

where Erri, Aerri are relative and absolute measurements errors, correspond-

ingly. The error might be described, for example, in terms of the standard

deviation. In this case, for the covariance matrix we have

Σ̂¼

: 0

: 0
1

ε2i
0 :

0 :

:

0
BBBBB@

1
CCCCCA (10.86)

Having defined matrixes Ẑ and Σ̂, we also introduce square matrix Â

Â ¼ ẐTΣ2Z (10.87)
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Normalizing the data by the noise we set up a data equivalence region:

1

n
δ f
!

T 	 Σ̂2 	 δ f!¼ 1 (10.88)

and from Eqs. (10.83), (10.86) for the equivalence region for parameters

we have

1

n
δp!T 	 Â 	 δ p!¼ 1 (10.89)

Eq. (10.89) describes m-dimensional ellipsoid in the parameter space [4].

To derive an explicit expression for the variation in parameters δ p! we use

eigenvectors ν
!
i and eigenvalues λi of the matrix Â:

ÂV̂ ¼ Λ̂V̂ (10.90)

where columns of V̂ are the eigenvectors and the diagonal elements are

eigenvalues λi.Then uncertainties in the parameters are expressed through

projections of the ellipsoid to the parameter axis:

δp!j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm
i¼1

li 	 νji
� �2s

(10.91)

The described technique was applied to estimate uncertainties in the

inverted parameters for Model 3 in Table 10.5. The uncertainties are

expressed in % for resistivity and in meters (m) for distances.

It is seen that the better determined parameters (ρ1, ρ2) have a narrow

range of uncertainty compared to the parameter d2b2, which is determined

less accurately.

The described approach does not guarantee that the inverted parameters

are certainly placed in the range of estimated uncertainties; rather it estimates

the range of uncertainties assuming that the inverted model is the one that

fits the measurements.

To conclude, we must emphasize that the nonuniqueness in the param-

eters is an inherent part of the inversion and cannot be completely
Table 10.5 Uncertainties in the Inverted Parameters for Model 3

Model 3
ρ151.0
(ohm m)

ρ255.0
(ohm m)

ρ351.0
(ohm m)

d2b151.0
(m)

d2b2510
(m)

Inverted parameter 0.97 5.1 1.3 0.95 8.5

Range of variation 0.96–0.98 5.05–5.15 1.15–1.45 0.9–1.0 7.1–9.9
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eliminated, but can be reduced. The means to reduce the nonuniqueness

include: completeness of the measurements (spatial, orientational, and time

sampling); decrease of the error in the data; optimal parameterization of the

model, which takes into account only physically important parameters; good

initial guess; and complementary prior information.
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In previous chapters, we have considered various aspects of induction

logging when the source of the field is the vertical magnetic dipole and

the induced currents are located in horizontal planes.

In these cases thin resistive layers, as well as caverns and fractures, that are

perpendicular to the borehole, practically donotmanifest themselves; even in

an anisotropicmediumonly longitudinal conductivitydefines ameasured sig-

nal. To increase sensitivity to thin resistive and anisotropic layers and, possi-

bly, improve the vertical response of the induction probe, we turn to

modification of induction logging with horizontally oriented coils.

11.1 ELECTROMAGNETIC FIELD OF THE MAGNETIC
DIPOLE IN A UNIFORM ISOTROPIC MEDIUM
We start with the simplest case of a uniform conducting and isotropic

medium. By analogy with complex amplitudes caused by the vertical

magnetic dipole (Chapter 5), for the x-oriented dipole, we have
Basic Principles of Induction Logging © 2017 Elsevier Inc.
http://dx.doi.org/10.1016/B978-0-12-802583-3.00011-3 All rights reserved.
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E∗
ϕ¼

iωμ0Mx

4πR2
exp ikRð Þ 1� ikRð Þ sinθ

B∗
R ¼ 2μ0Mx

4πR3
exp ikRð Þ 1� ikRð Þcosθ

B∗
θ ¼

μ0Mx

4πR3
exp ikRð Þ 1� ikR�k2R2

� �
sinθ

(11.1)

whereMx is the transversal dipole moment, k¼ 1+ ið Þ=δ is the wave num-

ber, δ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ωμ0γ

0
� �q

is the thickness of the skin layer, and θ is the inclina-

tion or polar angle of a spherical system of coordinates. Similar to the case of

the vertical magnetic dipole, current lines are also circles, but they are

located in planes perpendicular to the x-axis. When the field is excited by

the transversal dipole, the main component, arising on the borehole axis,

is also oriented along the x-axis.
Mx

L

z

x

Receiver

q

P(R,q,f)
In accordance with Eq. (11.1), for the complex amplitude of this com-

ponent, we have

B∗
x ¼B0 1� ikL�k2L2

� �
exp ikLð Þ (11.2)

where L is the length of the probe, and

B0¼ μ0Mx

4πL3
(11.3)

is the field of the magnetic dipole in free space. Let us introduce function bx
∗,

defined as

b∗x ¼
B∗
x

B0

¼ exp ikLð Þ 1� ikL�k2L2
� �

(11.4)

Transversal induction probe.
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Substituting k¼ 1+ ið Þ=δ into Eq. (11.4), we have the following

expressions for the in-phase and quadrature components of bx
∗

Inb∗x ¼ 1+ pð Þcosp+ p 1+ 2pð Þ sinp½ �exp �pð Þ
Qb∗x ¼ 1+ pð Þ sinp� p 1+ 2pð Þcosp½ �exp �pð Þ

(11.5)

where parameter p¼L=δ is the distance from the dipole expressed in units of

the skin depth. In accordance with Eq. (11.5), for the magnitude

A¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Inb*x
� �2

+ Qb*x
� �2q

and the phase ϕ¼ tan�1 Qb∗x=Inb
∗
x

� �
we have

A¼ exp �pð Þ 1+ pð Þ2 + p2 1 + 2pð Þ2� �1=2
ϕ¼ p� tan�1 p 1+ 2pð Þ= 1+ pð Þ½ �

(11.6)

First, consider a field in the near zone, when the parameter p is small.

Expanding the exponent from Eq. (11.4) in a series and performing elemen-

tary transformations, we obtain

b∗x ¼ 1+
X∞
n¼0

ikLð Þn+2
n+1ð Þ

n! n+2ð Þ (11.7)

Restricting the sum in Eq. (11.7) to the first two terms we have

Inb∗x � 1+
4

3
p3, Qb∗x ��p2 +

4

3
p3 (11.8)

Thus, in the range of the small parameter, the quadrature component

Qbx
∗ prevails over the in-phase component Inb∗x�1

� �
of the secondary field.

The component Qbx
∗ is directly proportional to the frequency and conduc-

tivity, and its magnitude is equal to that of the vertical magnetic dipole

placed at the same distance along the z-axis (Chapter 5). In a wave zone

at distances significantly exceeding the skin depth, the component Bθ
∗ is

greater than BR
∗ , and at an equatorial plane B∗

θ¼π=2¼B∗
x, perpendicular to

the x-axis:

B∗
x ¼�μ0M0

4πL
k2 exp ikLð Þ if kLj j≫ 1 (11.9)

As follows from Eq. (11.1), the ratio of the electric field to the magnetic

field at the wave zone does not depend on the distance, and it is equal to the

impedance in a uniform medium:
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Fig. 11.1 (A) Quadrature and (B) in-phase components of the field.

388 Basic Principles of Induction Logging
E∗
ϕ

B∗
x

¼�ω

k
(11.10)

Graphs of the quadrature and in-phase components of bx
∗ are shown in

Fig. 11.1, and an amplitude and phase of the secondary field b∗x�1
�� �� are

shown in Fig. 11.2.

11.2 BOUNDARY VALUE PROBLEM FOR THE
HORIZONTAL MAGNETIC DIPOLE IN THE

CYLINDRICALLY LAYERED FORMATION

Next we consider a model consisting of formation, borehole, and hor-

izontal magnetic dipole located on the axis. The radius and conductivity of

the borehole are a and γ1, respectively. The formation conductivity is γ2 and
the magnetic permeability of both regions coincides with that in free space.

We introduce a cylindrical system of coordinates, and the magnetic dipole

directed along the x-axis with moment M ¼M0 exp �ωtð Þ is placed at its

origin (Fig. 11.3).

The system of equations for the quasistationary field is

curlE*¼ iωB* divE*¼ 0

curlB*¼ γμ0E* divB*¼ 0
(11.11)
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Fig. 11.3 Horizontal magnetic dipole on the borehole axis.
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In the case of a horizontal dipole the primary vortex electric field, unlike

that of a vertical dipole, intersects the boundary between media with differ-

ent conductivities. For this reason electric charges arise on the borehole

surface, and their density changes synchronously with the electric field at

a given point. The charge density at each point depends on the conductivity

contrast between the borehole and formation as well as on the coordinates of

the point. In this case, when the sources of the secondary field are currents

and charges, it is impossible to express the electromagnetic field using only

one component of the vector potential. Solving the boundary value problem

for the vector potential A∗ leads to a system of differential equations of the

second order. It is convenient to introduce two potentials, namely, an
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electric Ae type and a magnetic Am type, and present a solution as a sum of

the fields, corresponding to these potentials:

E*¼E 1ð Þ* +E 2ð Þ* B*¼B 1ð Þ* +B 2ð Þ*

The relationships between the complex amplitudes of these fields and the

amplitudes of the vector potentials are

E 1ð Þ*¼ iωcurlA∗
e B 2ð Þ* ¼ curlA∗

m
(11.12)

Then, as follows from Eq. (11.11):

B 1ð Þ*¼ k2A∗
e � gradU∗

e E 2ð Þ*¼ iωA∗
m� gradU∗

m
(11.13)

After introducing the following gage conditions:

γU∗
e ¼�divA∗

e and U∗
m¼�divA∗

m (11.14)

we derive the following differential equations of the second order

(Helmholtz equations):

r2A∗
e + k2A∗

e ¼ 0 r2A∗
m + k2A∗

m ¼ 0 (11.15)

In fact, the boundary value problem can be solved using only the vertical

components of the vector potentials, that is:

A∗
e ¼ 0, 0,A∗

ez

� �
, A∗

m ¼ 0, 0,A∗
mz

� �
(11.16)

In accordance with Eq. (11.12), the vertical component of the electric

field is absent in magnetic potential, whereas the vertical component of

the magnetic field is absent in the electric-type potential:

E∗
ez¼ 0 and B∗

mz¼ 0 (11.17)

In the case of a uniform medium the fields of the magnetic dipole are

fully described by a single vector potential of the magnetic type.

Connection between potentialAmz
∗ and corresponding electric and mag-

netic fields follows from Eqs. (11.12), (11.13):

E∗
mr ¼ iω

1

r

@A∗
mz

@ϕ
B∗
mr=μ0¼

@2A∗
mz

@r@z

E∗
mϕ¼�iω

@A∗
mz

@r
B∗
mϕ=μ0 ¼

1

r

@2A∗
mz

@ϕ@z

E∗
mz¼ 0 B∗

mz=μ0 ¼ k2A∗
mz +

@2A∗
mz

@z2

(11.18)
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where potential Amz
∗ satisfies the equation:

@2A∗
mz

@r2
+
1

r

@A∗
mz

@r
+

1

r2
@2A∗

mz

@ϕ2
+
@2A∗

mz

@z2
+ k2A∗

mz¼ 0 (11.19)

Similarly, for potential Aez
∗ and corresponding field components, we

have

E∗
er ¼

1

γ

@2A∗
ez

@r@z
B∗
er=μ0¼

1

r

@A∗
ez

@ϕ

E∗
eϕ¼

1

γr

@2A∗
ez

@ϕ@r
B∗
eϕ=μ0¼�@A∗

ez

@r

E∗
ez¼

1

γ
k2A∗

ez +
@2A∗

ez

@z2

� 	
B∗
ez¼ 0

(11.20)

and

@2A∗
ez

@r2
+
1

r

@A∗
ez

@r
+

1

r2
@2A∗

ez

@ϕ2
+
@2A∗

ez

@z2
+ k2A∗

ez¼ 0 (11.21)

Eqs. (11.19), (11.21) are not independent ones because only by mixing

Aez
∗ and Amz

∗ it is possible to satisfy a continuity of tangential components at

the boundary r ¼ að Þ. The continuity results in the following system of

boundary conditions for potentials Aez
∗ and Amz

∗ :

1

γ1
k21A

∗
e1 +

@2A∗
e1

@z2

� 	
¼ 1

γ2
k22A

∗
e2 +

@2A∗
e2

@z2

� 	

1

γ1

1

a

@2A∗
e1

@ϕ@z
�k21

@A∗
m1

@r

� 	
¼ 1

γ2

1

a

@2A∗
e2

@ϕ@z
�k22

@A∗
m2

@r

� 	

k21A
∗
m1 +

@2A∗
m1

@z2
¼ k22A

∗
m2 +

@2A∗
m2

@z2

�@A∗
e1

@r
+
1

a

@2A∗
m1

@ϕ@z
¼�@A∗

e2

@r
+
1

a

@2A∗
m2

@ϕ@z

(11.22)

where k1, Ae1
∗ , Am1

∗ and k2, Ae2
∗ , Am2

∗ are the wave numbers and the complex

amplitude of the z-component of the vector potentials in the borehole and

formation, respectively.

Let us find expressions for potentials Ae0
∗ and Am0

∗ in a uniform medium

with conductivity γ1. The latter is needed to formulate conditions in the

vicinity of the dipole for Ae1
∗ and Am1

∗ . As mentioned earlier, the field of
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the dipole in a uniform isotropic medium can be described by a single com-

ponent of the magnetic-type potential:

A∗
m ¼ A∗

mx, 0, 0
� �

or

A∗
mx ¼

μ0M0

4πR

exp ik1Rð Þ
R

¼ μ0M0

2π2

ð∞
0

K0 m1rð Þcosmzdm (11.23)

where m1 ¼ m2�k21
� �1=2

, and

E*¼ iωcurlA∗
m, B*¼ k2A∗

m + grad divA∗
m: (11.24)

Therefore, for vertical components of the field, we obtain

E∗
z0¼ iωμ0

M0

2π2
sinϕ

ð∞
0

m1K1 m1rð Þcosmzdm

B∗
z0¼

μ0M0

2π2
cosϕ

ð∞
0

mm1K1 m1rð Þ sinmzdm
(11.25)

where

cosϕ¼ x=r and r¼ x2 + y2
� �1=2

On the other hand, by analogy with Eqs. (11.18), (11.20), we have

E∗
z0¼

1

γ1
k21A

∗
e0 +

@2A∗
e0

@z2

� 	
B∗
z0¼ k21A

∗
m0 +

@2A∗
m0

@z2
: (11.26)

The corresponding potentials for the fields in a uniform medium

Eq. (11.26) are

A∗
e0¼�k21

μ0M0

2π2
sinϕ

ð∞
0

1

m1

K1 m1rð Þcosmzdm

A∗
m0¼�μ0M0

2π2
cosϕ

ð∞
0

m

m1

K1 m1rð Þ sinmzdm
(11.27)

The set of two potentials Ae0
∗ and Am0

∗ in Eq. (11.27) represents an alter-

native form to Eq. (11.23), which describes the field in a uniform medium
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using just one potential Am
∗ . The potentials Ae0

∗ andAm0
∗ are not independent

and the connection is given by the following relationship:

@2A∗
e0

@ϕ@z
¼�k21A

∗
m0

Returning to the original problem, it is natural to assume that while

approaching the dipole, potentials Ae1
∗ and Am1

∗ tend to potentials in the

whole space Ae0
∗ and Am0

∗ , respectively. Taking into account the behavior

of the field near the source and at infinity, we present the potentials inside

and outside of the borehole as:

A∗
e1¼A∗

e0 + k21
μ0M0

2π2
sinϕ

ð∞
0

1

m1

C1I1 m1rð Þcosmzdm

A∗
m1¼A∗

m0 +
μ0M0

2π2
cosϕ

ð∞
0

m

m1

D1I1 m1rð Þ sinmzdm

A∗
e2¼�k22

μ0M0

2π2
sinϕ

ð∞
0

1

m2

C2K1 m2rð Þcosmzdm

A∗
m2¼�μ0M0

2π2
cosϕ

ð∞
0

m

m2

D2K1 m2rð Þ sinmzdm

(11.28)

where m2¼ m2�k22
� �1=2

. From boundary conditions Eq. (11.22), we may

further derive a system of equations for coefficients C, D:

K1 m1að Þ� I1 m1að ÞC1¼ m2

m1

K1 m2að ÞC2

1

m1a
K1 m1að Þ� I1 m1að ÞC1½ �

+ K 0
1 m1að Þ� I 01 m1að ÞD1

� �¼ 1

m2a
K1 m2að ÞC2

+K 0
1 m2að ÞD2K1 m1að Þ� I1 m1að ÞD1

¼m2

m1

K1 m2að ÞD2k
2
1 K 0

1 m1að Þ� I 01 m1að ÞC1

� �
+

m2

m1a
K1 m1að Þ� I1 m1að ÞD1½ �

¼ k22K
0
1 m2að ÞC2 +

m2

m2a
K1 m2að ÞD2

(11.29)
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Solving this system we find

C1¼Δc

Δ
, D1¼Δd

Δ
, C2¼m1

m2

K1 m1ð Þ� I1 m1ð ÞC
K1 m2ð Þ ,D2¼m1

m2

K1 m1ð Þ� I1 m1ð ÞD
K1 m2ð Þ

Δc ¼ I0 m1ð ÞK0 m1ð Þ+ I1 m1ð ÞK1 m1ð ÞP1� I1 m1ð ÞK1 m1ð ÞP2� s
K0 m2ð Þ

m2K1 m2ð Þ

Δd ¼ I0 m1ð ÞK0 m1ð Þ+ I1 m1ð ÞK1 m1ð ÞP1� I1 m1ð ÞK1 m1ð ÞP2� K0 m2ð Þ
m2K1 m2ð Þ

Δ¼�I20 m1ð Þ+ I21 m1ð ÞP1 + I0 m1ð ÞI1 m1ð ÞP2
(11.30)

where

P1¼ 2m2�m2
2

m3
2

1� sð ÞK0 m2ð Þ
K1 m2ð Þ�

m2
1

m2
2

s
K2

0 m2ð Þ
K2

1 m2ð Þ

P2¼ 2m2�m2
1

m1m
2
2

1� sð Þ�m1

m2

1 + sð ÞK0 m2ð Þ
K1 m2ð Þ

(11.31)

In Eqs. (11.30), (11.31) we replaced variables: ma!m, m1a!m1,

m2a!m2, and s¼ γ2=γ1.
The magnetic field on the axis of the borehole has only component Bx,

which is parallel to the dipole moment. Using Eqs. (11.18), (11.20), (11.28),

we obtain expressions for the magnetic field on the axis r¼ 0ð Þ:

B∗
x ¼B∗

0x +
μ0M0

2π2
1

a3

ð∞
0

m2

2
D1 +

k21a
2

2
C1

� 	
cos

L

a
m

� 	
dm (11.32)

where

B∗
0x¼�μ0M0

4πL3
1� ik1L�k21L

2
� �

exp ik1Lð Þ

is the complex amplitude of the field in a uniform medium, and L is the

length of the probe. Correspondingly, the field, in units of the primary

field, is
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b∗x ¼ 1� ik1L�k21L
2

� �
exp ik1Lð Þ

�α3

π

ð∞
0

m2D1 + k21a
2C1

� �
cosαmdm (11.33)

Results of calculations of the secondary amplitude b∗x�1
�� �� and phase ϕ

for different ratios of γ2/γ1 are shown in Figs. 11.4 and 11.5. Along the x-axis
we depict the ratio of the borehole radius a and skin depth δ1 in the homo-

geneous media with conductivity of the borehole γ1. The left-hand side of

the curves corresponds to the low-frequency part of the spectrum where the

amplitude of the secondary field is small and mainly defined by the quadra-

ture component.

The secondary field increases with the frequency and almost compen-

sates for the primary field approaching unity (right-hand asymptote of curves

in Fig. 11.4). The phase of the secondary field in Fig. 11.5 tends to �π=2 in
the range of the small parameter due to the quadrature component being

greater than the in-phase component and the component’s opposite signs.

At the high-frequencies, the secondary field tends to compensate the pri-

mary field, and, correspondingly, the phase approaches π.
0.01 0.1 1 a/d1

0.01

0.1

1

|bx* -1|

128

32

8

2

1/128

1/32

1/16

1/4

1/2

1/8

Fig. 11.4 Frequency responses of the field amplitude, L/a¼10.
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Fig. 11.5 Phase responses of the field.
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11.3 MAGNETIC FIELD IN THE RANGE OF
SMALL PARAMETER
A transversal dipole Mx generates eddy currents located in vertical

planes. These currents intersect the borehole boundary, giving raise to sur-

face charges. In the range of small parameter L/δ the intensity of these sur-
face charges is proportional to the square of the wave numbers, i.e.,

k21¼ iγ1μ0ω and k22 ¼ iγ2μ0ω. Naturally, surface charges affect the magnitude

and direction of induced currents, but in the range of the small parameter,

the phase of the currents is shifted by π/2 with respect to the primary current

in the dipole. Thus both the magnetic field of induced currents and the sec-

ondary field of charges are proportional to ω. The secondary quadrature

component of the electric field is relatively small and, therefore, it is not

taken into account in the small parameter approximation. To obtain an

asymptotic expression of the magnetic field, let us present an integrand of

Eq. (11.33) in the form of a Maclaurin series expansion near k2a2¼ 0.

Restricting the series to its first term, we obtain

b∗x ¼ b∗0x�
2α3

π

ð∞
0

cosαm

Δ 0ð Þ
k21a

2

2
Δc 0ð Þ�m

4
k21a

2@Δd 0ð Þ
@m1

�m

4
k22a

2@Δd 0ð Þ
@m2


 �
dm

(11.34)
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where

Δc 0ð Þ¼ 1� sð Þ K0 mð Þ
mK1 mð Þ

Δ¼� I20 m1ð Þ+ I21 m1ð ÞP1 + I0 m1ð ÞI1 m1ð ÞP2

Δ 0ð Þ¼� 1

mK1 mð Þ I0 mð Þ+ sI1 mð ÞK0 mð Þ
K1 mð Þ� 1� sð Þ I1 mð Þ

m


 �

@Δd 0ð Þ
@m1

¼ 1� sð Þ I1 mð ÞK0 mð Þ 1+
2

m2

� 	
+
I0 mð ÞK0 mð Þ

m
+
I1 mð ÞK1 mð Þ

m




+
I0 mð ÞK2

0 mð Þ
K1 mð Þ � K0 mð Þ

m2K1 mð Þ
�
� 1

m
+ s

K2
0 mð Þ

mK2
1 mð Þ

@Δd 0ð Þ
@m2

¼ 1� sð Þ � 2

m2
+

K0 mð Þ
mK1 mð Þ�1+

K2
0 mð Þ

K2
1 mð Þ


 �
I1 mð ÞK0 mð Þ

� 1� sð Þ I1 mð ÞK1 mð Þ
m

+
1

m
� K2

0 mð Þ
mK2

1 mð Þ

(11.35)

Also

b∗0x¼
k21L

2

2

Thus, for the quadrature component of the field we have

Qb∗x ¼� L

δ1

� 	2

G1 α, sð Þ� L

δ2

� 	2

G2 α, sð Þ (11.36)

where δ1¼ 2=γ1μ0ωð Þ1=2, δ2¼ 2=γ2μ0ωð Þ1=2, and γ1 and γ2 are conductiv-
ities of medium of the borehole and formation. Also,

G1 α, sð Þ¼ 1+
2α

π

ð∞
0

Δc 0ð Þ�m

2

@Δd 0ð Þ
@m1


 �
cosαm

Δ 0ð Þ dm

G2 α, sð Þ¼�2α

π

ð∞
0

m

2

@Δd 0ð Þ
@m2

cosαmdm

Δ 0ð Þ

(11.37)

As follows from Eq. (11.37), in a uniform medium:

G1 α, 1ð Þ+G2 α, 1ð Þ¼ 1 (11.38)
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Note that functionsG1 andG2 are still called geometric factors regardless

of their dependence on the ratio of conductivities. As was shown in

Chapter 7, it is possible to obtain a more accurate expression for the low-

frequency field. For instance, considering two terms of the expansion, we

have

Inb∗x ¼
4

3
L=δ2ð Þ3 and Qb∗x ��a1 L=δ1ð Þ2 + 4

3
L=δ2ð Þ3 (11.39)

where the coefficient a1 is defined by expression Eq. (11.37):

a1¼G1 + sG2

Therefore, in the range of the small parameter, neither the in-phase com-

ponent nor the second term of the quadrature component, Eq. (11.39),

depends on the conductivity of the borehole. Similar behavior was already

observed in the case of vertical magnetic dipole.

Let us consider functions G1 and G2 at the range of small parameter

L/δ1 and L/δ2 at different values of α. If the probe length decreases,

α! 0, then G2 α, sð Þ! 0, and G1 α, sð Þ! 1, approaching the geometric

factor of a uniform medium with conductivity, γ1. For large values of

the parameter α due to rapid oscillations of the function cos(ma), the inte-

gral in Eq. (11.37) is defined by the integrand near m¼0. For small values

of m, we have

Δ 0ð Þ��1+ s

2
Δc 0ð Þ� 1� sð ÞK0 mð Þ

@Δd 0ð Þ
@m1

��@Δd 0ð Þ
@m2

¼ 1� sð ÞK0 mð Þ
m

(11.40)

By using the asymptotic presentation of the Summerfield integral:

ð∞
0

K0 mð Þcosαmdm¼ π

2

1

1+ α2ð Þ1=2
! π

2α
if α!∞

for α≫ 1, we obtain

G1 α, sð Þ! 1�1� s

1+ s
¼ 2s

1+ s
¼ γ2
γav

G2 α, sð Þ¼�1� s

1+ s
¼ γ2� γ1
γ2 + γ1

¼�K12

(11.41)
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where γav is the average value of conductivity and K12 is the contrast

coefficient that characterizes the density of the charges on the surface of

the borehole. Correspondingly, for the quadrature component, we have

Qb∗x ¼� L

δ2

� 	2

if α≫ 1 (11.42)

Thus, at the low-frequency limit with an increase of the length of the

probe, the field tends toward that in a uniform medium with the conduc-

tivity of formation. In general, functionsG1 andG2 depend on the resistivity

of the medium regardless of the length of the probe. Now, let us introduce

functions G1
∗(α, s) and G2

∗(α, s), which approach 0 and 1, respectively, when

α!∞:

G∗
1 α, sð Þ¼G1 α, sð Þ� 2s

1+ s
G∗

2 α, sð Þ¼G2 α, sð Þ+ 2

1+ s
(11.43)

Then, instead of Eq. (11.36), we can write

Qb∗x ¼� L

δ1

� 	2

G∗
1 α, sð Þ+ sG∗

2 α, sð Þ� �
(11.44)

First, consider the asymptotic behavior of functionG1
∗(α, s) at large α. It is

convenient to isolate singularity of the integrand in Eq. (11.37) for small

values of m. For this purpose, we present G1
∗(α, s) as:

G∗
1 α, sð Þ¼ 1� s

1+ s
+
2α

π

ð∞
0

1

Δ 0ð Þ Δc 0ð Þ�m

2

@Δd 0ð Þ
@m1


 �
+
1� s

1+ s
K0 mð Þ

� 

cosαmdm�2α

π

1� s

1+ s

ð∞
0

K0 mð Þcosαmdm

¼ 1� s

1+ s
1� α

1+ α2ð Þ1=2
 !

+
2α

π

ð∞
0

ϕ mð Þcosαmdm

(11.45)

where

ϕ mð Þ¼ 1

Δ 0ð Þ Δc
�kð Þ�m

2

@Δd 0ð Þ
@m1


 �
+
1� s

1+ s
K0 mð Þ
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Integrating Eq. (11.45) by parts and considering that the function ϕ(m)
and its derivatives approach to zero when m!∞ we obtain

ð∞
0

ϕ mð Þcos αmð Þdm¼� 1

α2
ϕ0 0ð Þ� 1

α2

ð∞
0

ϕ
00
mð Þcos αmð Þdm

Using the known expressions for Bessel functions

K0 mð Þ�� 1+
m2

4

� 	
ln
m

2
�C +

m2

4
1�Cð Þ

K1 mð Þ� 1

m
+
m

2
ln
m

2
�m

4
1�2Cð Þ

I0 mð Þ� 1+
m2

4
I1 mð Þ�m

2
1+

m2

8

� 	

we obtain

ϕ mð Þ¼ 2s

1+ sð Þ2m
2 ln2m� 3+ 3s+2s2

2 1+ sð Þ2 +
8s

1+ sð Þ2 ln2�Cð Þ
" #

m2

2
ln m+ const

ϕ0 mð Þ¼ 0 and

ϕ00 mð Þ¼ 4s

1+ sð Þ2 ln2m� 3�21s+2s2

2 1+ sð Þ2 +
8s

1+ sð Þ2 ln �Cð Þ
" #

lnm

HereC is Euler constant. Inasmuch as the field at large distances from the

dipole is defined by low-frequency spatial harmonics we can use an arbitrary

number in the upper limit of the integral in Eq. (11.45). This gives

ð∞
0

ϕ mð Þcosαmdm¼� 1

α2
4s

1+ sð Þ2
ð1
0

ln2mcos αmð Þdm
8<
:

� 3�21s+2s2

2 1 + sð Þ2 +
8s

1+ sð Þ2 ln2�Cð Þ
" #ð1

0

lnmcos αmð Þdm
9=
;

Inasmuch as
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ð1
0

ln2mcos αmð Þdm� 1

α
ln2m sin αmð Þ��1

0
� 2

α

ð∞
0

lnm

m
sin αmð Þdm¼ π

2
lnα+Cð Þ

then

ð∞
0

ϕ mð Þcos αmð Þdm¼� π

α3
4s

1+ sð Þ2 ln2α+
3�21s+2s2

4 1 + sð Þ2
" #

whence

G∗
1 α, sð Þ¼� 1

α2 1 + sð Þ2 8s ln2α+
2�21s+3s2

2

� 	
if α≫ 1 (11.46)

Similar transformations lead to:

G∗
2 α, sð Þ¼ 1+

1

2α2
1 + 5s�22s2 + 16s2 ln2α
� � 1

1+ sð Þ2 , α≫ 1 (11.47)

If the formation resistivity is significantly higher than that of the

borehole, then Eqs. (11.46), (11.47) can be further simplified:

G∗
1 α, sð Þ�� 1

α2
� s

α2
8 ln2α�12:5ð Þ

G∗
2 α, sð Þ� 1+

1

2α2
, if α≫ 1, s< 1ð Þ

(11.48)

Then, using Eq. (11.44), we have the following expression for the

magnetic field:

Qb∗x ¼
L

δ1

� 	2
1

α2 � s 1� 1

α2
8 ln2α�13ð Þ


 �� 
if γ2=γ1≪ 1 and α≫ 1

(11.49)

Table 11.1 contains G∗
1 α, sð Þ, G∗

2 α, sð Þ, and G∗
1 + sG∗

2 for different

values of s and α.
Suppose that the formation resistivity exceeds that of the borehole

(s<1). Then the function G∗
1 α, sð Þ+ sG∗

2 α, sð Þ and, the quadrature compo-

nent, respectively, may change signs twice, because surface charges create a



Table 11.1 Functions G1
∗, G2

∗, G1
∗ + sG2

∗

s 1/128 1/64

α G1* G2* G*
1 + s �G*

2 G1* G2* G*
1 + s �G*

2

2 �0.135 0.1240E+1 �0.1256 �0.1357 0.1204E+1 �0.1169

4 �0.7001E�1 0.1037E+1 �0.6191E�1 �0.7163E�1 0.1038E+1 �0.5540E�1

6 �0.3020E�1 0.1014E+1 �0.2228E�1 �0.3162E�1 0.1014E+1 �0.1577E�1

8 �0.1672E�1 0.1007E+1 �0.8851E�2 �0.1778E�1 0.1008E+1 �0.2039E�2

10 �0.1074E�1 0.1005E+1 �0.2896E�2 �0.1156E�1 0.1005E+1 0.4144E�2

12 �0.7528E�2 0.1003E+1 0.3104E�3 �0.8169E�2 0.1003E+1 0.7511E�2

16 �0.4310E�2 0.1002E+1 0.3518E�2 �0.4739E�2 0.1002E+1 0.1092E�1

20 �0.2798E�2 0.1001E+1 0.5024E�2 �0.3176E�2 0.1001E+1 0.1254E�1

s 1/32 1/16

α G1* G2* G*
1 + s �G*

2 G1* G2* G*
1 + s �G*

2

2 �0.1370E�1 0.124E+1 �0.9942E�1 �0.1395 0.1203E+1 �0.6433E�1

4 �0.7469E�1 0.1040E+1 �0.4220E�1 �0.8024E�1 0.1043E+1 �0.1504E�1

6 �0.3432E�1 0.1015E+1 �0.2600E�2 �0.3924E�1 0.1017E+1 0.2431E�1

8 �0.1982E�1 0.1008E+1 0.1169E�1 �0.2354E�1 0.1009E+1 0.3954E�1

10 �0.1311E�1 0.1005E+1 0.1830E�1 �0.1596E�1 0.1006E+1 0.4692E�1

12 �0.9394E�2 0.1004E+1 0.2197E�1 �0.1164E�1 0.1004E+1 0.5112E�1

16 �0.5559E�2 0.1002E+1 0.2576E�1 �0.7062E�2 0.1002E+1 0.5559E�1

20 �0.3699E�2 0.1001E+1 0.2759E�1 �0.4781E�2 0.1002E+1 0.5782E�1
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s 1/8 1/4

α G1* G2* G*
1 + s �G*

2 G1* G2* G*
1 + s �G*

2

2 �0.1440 0.1201E+1 0.6s155E�2 �0.1516 0.1198E+1 0.1479

4 �0.8936E�1 0.1049E+1 0.4185E�1 �0.1019 0.1064E+1 0.1637

6 �0.4746E�1 0.1021E+1 0.8013E�1 �0.5910E�1 0.1030E+1 0.1983

8 �0.2979E�1 0.1012E+1 0.9669E�1 �0.3874E�1 0.1018E+1 0.2157

10 �0.2076E�1 0.1008E+1 0.1052 �0.2764E�1 0.1012E+1 0.2254

12 �0.1542E�1 0.1006E+1 0.1103 �0.2085E�1 0.1009E+1 0.2313

16 �0.9591E�2 0.1003E+1 0.1158 �0.1322E�1 0.1005E+1 0.2381

20 �0.6600E�2 0.1002E+1 0.1187 �0.9202E�2 0.1004E+1 0.2417

s 1/2 2

α G1* G2* G*
1 + s �G*

2 G1* G2* G*
1 + s �G*

2

2 �0.1630 0.1190E+1 0.4322 �0.1944 0.1162E+1 0.2129

4 �0.1144 0.1086E+1 0.4285 �0.1177 0.1160E+1 0.2203

6 �0.7119E�1 0.1048E+1 0.4526 �0.7506E�1 0.1115E+1 0.2155

8 �0.4820E�1 0.1031E+1 0.4672 �0.5133E�1 0.1083E+1 0.2115

10 �0.3495E�1 0.1022E+1 0.4759 �0.3723E�1 0.1062E+1 0.2087

12 �0.2660E�1 0.1016E+1 0.4815 �0.2827E�1 0.1048E+1 0.2068

16 �0.1704E�1 0.1010E+1 0.4880 �0.1799E�1 0.1031E+1 0.2044

20 �0.1194E�1 0.1007E+1 0.4916 �0.1252E�1 0.1022E+1 0.2032
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Table 11.1 Functions G1
∗, G2

∗, G1
∗ + sG2

∗—cont’d
s 8 16

α G1* G2* G*
1 + s �G*

2 G1* G2* G*
1 + s �G*

2

2 �0.2194 0.1134E+1 0.8855E+1 �0.2259 0.1127E+1 0.1780E+2

4 �0.1020 0.1220E+1 0.9656E+1 �0.9664E�1 0.1235E+1 0.1966E+2

6 �0.5858E�1 0.1176E+1 0.9350E+1 �0.5267E�1 0.1192E+1 0.1902E+2

8 �0.3758E�1 0.1133E+1 0.9026E+1 �0.3256E�1 0.1146E+1 0.1831E+2

10 �0.2606E�1 0.1102E+1 0.8787E+1 �0.2197E�1 0.1112E+1 0.1778E+2

12 �0.1914E�1 0.1080E+1 0.8619E+1 �0.1579E�1 0.1089E+1 0.1740E+2

16 �0.1163E�1 0.1052E+1 0.8409E+1 �0.9305E�2 0.1058E+1 0.1693E+2

20 �0.7854E�2 0.1037E+1 0.8291E+1 �0.6156E�2 0.1041E+1 0.1666E+2

404
Basic

Principles
of

Induction
Logging



405Induction Logging Using Transversal Coils
field in the direction opposite to that of the primary electric field. Near the

source, L=a< 1ð Þ the influence of the charges is small, and the field coin-

cides with that in a uniform medium with the conductivity of the borehole

γ1 :Qbx �� L=δ1ð Þ2.
At the range of large distances, when L=a≫ γ1=γ2ð Þ1=2 as follows from

Eq. (11.49), the effect caused by the charges is also small and

Qbx �� L=δ2ð Þ2. For intermediate values of probe lengths, the field caused

by the charges is comparable with the vortex field, and it is oriented in the

opposite direction, causing a zero crossing of the total field. At the vicinity of

these α and s, the conditions of the small parameter are met only for very low

frequencies, such that we can disregard terms smaller than k2. Table 11.2

shows intervals within which the quadrature component vanishes to zero.

When γ2=γ1≫ 1, the function G∗
1 + sG∗

2 does not change sign, and the

expression for the quadrature component is

Qb∗x ¼� L

δ1

� 	2

G∗
1 α, sð Þ+ sG∗

2 α, sð Þ� �
+
4

3

L

δ2

� 	3

orQb∗x �� L

δ1

� 	2

β+
4

3

L

δ2

� 	3
(11.50)

Returning to Eq. (11.39), we may notice one interesting feature of the

quadrature component. The value

β¼G∗
1 + sG∗

2

is an oscillating function of α and s, hence the magnetic field Qbx
∗ may

increase with frequency faster than linearly when a1≪ 0. This feature is

not observed in the media excited by a vertical magnetic dipole. If α≫ 1

and s≪ 1, we have

Qb∗x �
L

δ1

� 	2
1

α2
� L

δ2

� 	2

+
4

3

L

δ2

� 	3

(11.51)

In Eqs. (11.49), (11.51), the magnetic field is presented as a sum of two

terms, each depending on either the conductivity of the borehole or the
Table 11.2 Intervals Within Which the Quadrature Component Vanishes to Zero
s 1/128 1/64 1/32 1/16 1/8

α 1�2 1�2 1�2 1�2

11�12 8�9 6�7 4�5 1�3
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formation. This feature is favorable for application of the previously described

focusing probes, which permit a significant decrease of the borehole influence.

The simplest of these is a three-coil probe. The signal of the three-coil probe

becomes a borehole insensitive (provided that the electromotive force in each

receiver coil is the same) because one part of the fieldQbx
∗ is proportional to γ1

and does not depend on the probe length, L1
In Table 11.3 we present calculated values ofΔb∗x ¼Qb∗x L1ð Þ�Qb∗x L2ð Þ,

using exact Eq. (11.33),Δbx and approximate Eq. (11.49),Δbapr formulas. In

addition, we present a difference in the magnitudes in the short- and long-

spaced receivers.

These data show that the signal Δbx∗ of the probe does not practically

depend on the resistivity of the borehole even beyond the range of the small

parameter. As in the case of the vertical magnetic dipole, there are conditions

when induced currents in the borehole and surface charges have no influ-

ence on the skin effect in the formation. Rather, the skin effect occurs in

the same manner as in a uniform medium with resistivity of the formation.

For this reason, instead of Eq. (11.51) for the quadrature component of the

field bx
∗, we have

Qb∗x ¼� L

δ1

� 	2

G∗
1 α, sð Þ� L

δ2

� 	2

G∗∗
1 α, sð Þ+Qb∗x0

L

δ2

� 	
, (11.52)

where

G∗∗
2 α, sð Þ¼G∗

2 α, sð Þ�1 (11.53)

The expression for Qbx
∗ is valid in a broad range of α and s. The maxi-

mum values of parameter a/δ1, for which the results of calculations by exact
and approximate formulas Eq. (11.52) do not differ by more than 5%, are

given in Table 11.4.

11.4 MAGNETIC FIELD IN THE FAR ZONE

Now we derive asymptotic formulas for the field B in the far zone,
x

α≫ 1. To proceed, we deform the contour of integration in Eq. (11.33) on

the complex plane of m in the same manner as was done for the case of the

vertical magnetic dipole. However, such a procedure requires either the

proof of the absence of poles of the integrand or evaluation of their contri-

bution to the integral. Complexity of the integrand makes it extremely dif-

ficult determination of poles.



Table 11.3 Calculated Values Δbx∗

L1/a510; L2/a58

s 1/32 1/16 1/8 1/4 1/2

ρ2 ¼ 2:5ohmm;Δbapr ��0:88�10�2 a/δ1 0.1 0.07 0.05 0.035 0.025

Δb*x�102 _ �0.73 �0.73 �0.74 �0.75

A1�A2ð Þ�102 0.76 0.77 0.77 0.79 0.80

ρ2 ¼ 5:0ohmm;Δbapr ��0:44�10�2 a/δ1 0.07 0.05 0.035 0.025 0.018

Δb*x�102 �0.41 �0.41 �0.41 �0.42 �0.43

A1�A2ð Þ�102 0.2 0.43 0.43 0.43 0.44

ρ2 ¼ 2:5ohmm;Δbapr ��0:22�10�2 a/δ1 0.05 0.035 0.025 0.018 0.012

Δb*x�102 �0.22 �0.22 �0.22 �0.23 �0.23

A1�A2ð Þ�102 0.23 0.23 0.23 0.23 0.24

ρ2 ¼ 2:5ohmm;Δbapr ��0:12�10�2 a/δ1 0.035 0.025 0.018 0.012 0.0088

Δb*x�102 �0.12 �0.12 �0.12 �0.12 �0.12

A1�A2ð Þ�102 0.12 0.12 0.12 0.12 0.12
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Table 11.4 The Maximum Values of Parameter a/δ1
s 1/128 1/64 1/32 1/16 1/8 ½ 8

α¼ 4 a/δ1 0.6 0.7 0.8 0.9 0.2 0.2 0.1

α¼ 8 a/δ1 0.15 0.2 0.2 0.2 0.13 0.13 0.05
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At the same time, sufficient agreement between the results of calculations

by asymptotic and exact formulae allows us to think that contribution of

unaccounted poles from the upper half-plane of m in a considered part of

the spectrum is sufficiently small. Let us present the integral in

Eq. (11.33) in the following form:

α3

π

ð∞
0

m2D1 + k21a
2C1

� �
cosαmdm¼ α3

2π

ð∞
�∞

m2D1 + k21a
2C1

� �
exp iαmð Þdm

(11.54)

We suppose that in the upper half-plane of complex variable m, there are

no singularities except the branch points m1¼ k1a and m2 ¼ k2a. Choosing

crosscuts along lines Rem1¼ 0 and Rem2 ¼ 0, it is assumed that the real parts

of radicals m2�k21
� �1=2

and m2�k22
� �1=2

are positive on the complex plane

of m. As follows from the asymptotic behavior of the Bessel functions, the

integrand in Eq. (11.54) increases with m!∞, but not faster than exp

(2jmj). For this reason, convergence of the integral in Eq. (11.54) in the

upper half-plane for α> 2 is provided by themultiplier exp(iαm) irrespective
of the sign of the real part of radicals m1 and m2. We draw crosscuts from

branch points k1a and k2a parallel to the imaginary axis and deform the

contour of integration in Γ (Fig. 11.6).
Re (m)

Γ2

Γ1

Γ

Im(m)

Fig. 11.6 Contour integration in complex plane.
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The integral along arcs with an infinite radius, which is due to the pres-

ence of the term exp(iαm), vanishes owing to Im m> 0, α> 2. For this

reason the integral along the real axis Eq. (11.54) is equal to the sum of

the integrals along the sides of crosscuts Γ1 and Γ2. First, let us evaluate

the integral along crosscut Γ1. In passing from the left side of the crosscut

to the right side, the value of m1 changes sign. Thus the integral along

crosscut Γ1 is equal to:

α3

π

ð
Γ1

m2 D1 m1ð Þ�D1 �m1ð Þ½ �+ k21a
2 C1 m1ð Þ�C1 �m1ð Þ½ �� �

exp iαmð Þdm

(11.55)

Using properties of Bessel functions:

I0 �zð Þ¼ I0 zð Þ K0 �zð Þ¼K0 zð Þ+ iπI0 zð Þ
I1 �zð Þ¼�I1 zð Þ K1 �zð Þ¼�K1 zð Þ+ iπI1 zð Þ (11.56)

it is fairly straightforward to show that for the functions D and C we have

D1 �m1ð Þ¼D1 m1ð Þ� iπ C1 �m1ð Þ¼C1 m1ð Þ� iπ (11.57)

Thus the integral in Eq. (11.55) has the form:

α3

π
i

ð
Γ1

m2 + k21a
2

� �
exp iαmð Þdm (11.58)

Letting m¼ t+ k1a, we obtain

exp ik1Lð Þα
3

2

ð∞
0

ðt2�2itk1a�2k21a
2Þexp �αtð Þdt¼ 1� ik1L�k21L

2
� �

exp ik1Lð Þ¼ b∗x0 L=δ1ð Þ
where bx0

∗ (L/δ1) is the x-component of the magnetic field in a uniform

medium with the resistivity of the borehole. Correspondingly, as follows

from Eq. (11.33), the magnetic field is expressed, as in the case of the vertical

magnetic dipole, only through the integral along the crosscut Γ2:

b∗x ¼�α3

2π

ð
Γ2

m2D1 + k21a
2C1

� �
exp iαmð Þdm (11.59)
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To transform the integrand in Eq. (11.59), we use relationships that fol-

low from Eq. (11.56):

K0 zð Þ
K1 zð Þ +

K0 �zð Þ
K1 �zð Þ¼

iπ

zK1 zð ÞK1 �zð Þ
K2

0 zð Þ
K2

1 zð Þ�
K2

0 �zð Þ
K2

1 �zð Þ¼
iπ

zK1 zð ÞK1 �zð Þ
K0 zð Þ
K1 zð Þ�

K0 �zð Þ
K1 �zð Þ


 �

K2
0 zð ÞK0 �zð Þ

K2
1 zð ÞK1 �zð Þ +

K2
0 �zð ÞK0 zð Þ

K2
1 �zð ÞK1 zð Þ¼

iπ

zK1 zð ÞK1 �zð Þ
K0 zð ÞK0 �zð Þ
K1 zð ÞK1 �zð Þ

After relatively simple transformations, we have the following expression

for the difference between the values of function C in both sides of the

crosscut:

C1 m2ð Þ�C1 �m2ð Þ¼ iπ

m2
2K1 m2ð ÞK1 �m2ð ÞΔ m2ð ÞΔ �m2ð Þ

� I21 m1ð Þ
m1

1� sð Þ2m
2 + k21a

2

m2
2

m2 + k22a
2

m2
2

+ sI20 m1ð Þ� I0 m1ð Þ I1 m1ð Þ
m1

1� sð Þ
�

� s
m2 + k21a

2

m2
2

+
m2 + k22a

2

m2
2


 �
� sm1

m2 + k21a
2

m2
2

I21 m1ð Þ
m2
1

1� sð Þ� I0 mð Þ I1 m1ð Þ
m1


 �

� K0 m2ð Þ
m2K1 m2ð Þ�

K0 �m2ð Þ
m2K1 �m2ð Þ


 �
+s 1+ 2sð ÞI21 m1ð Þm2

1

K0 m2ð ÞK0 �m2ð Þ
m2
2K1 m2ð ÞK1 �m2ð Þ


(11.60)

where

Δ �m2ð Þ¼� I20 m1ð Þ+ I21 m1ð Þ m2 + k22a
2

m2
2

1� sð Þ K0 �m2ð Þ
�m2K1 �m2ð Þ




� sm2
1

K2
0 �m2ð Þ

m2
2K

2
1 �m2ð Þ

�
+ I0 m1ð Þ I1 m1ð Þ

m1

m2 + k21a
2

m2
2

1� sð Þ



� 1+ sð Þm1
2 K0 �m2ð Þ
�m2K1 �m2ð Þ

�

Inasmuch as the function D1 can be presented in the form:

D1¼C1 + s�1ð Þ K0 m2ð Þ
m2K1 m2ð ÞΔ m2ð Þ
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for the discontinuity of the function D1, we have

D1 m2ð Þ�D1 �m2ð Þ¼C1 m2ð Þ�C1 �m2ð Þ+A m2ð Þ
where

A m2ð Þ¼ iπ s�1ð Þ
m2
2K1 m2ð ÞK1 �m2ð ÞΔ m2ð ÞΔ �m2ð Þ

� I0 m1ð Þ I1 m1ð Þ
m1

m2 + k21a
2

m2
2

1� sð Þ� I20 m1ð Þ� sm2
1I

2
1 m1ð Þ K0 m2ð ÞK0 �m2ð Þ

m2
2K1 m2ð ÞK1 �m2ð Þ


 �
(11.61)

Thus, instead of Eq. (11.59), we have

b∗x ¼� α3

2π

ð�∞+ k2a

k2a

fðm2 + k21a
2Þ C1 m2ð Þ�C1 �m2ð Þ½ �

+m2A m2ð Þgexp iαmð Þdm
(11.62)

Now we introduce a new variable, letting m¼ it+ k2a. Along the cross-

cut, the variable t changes from zero to infinity, and

m1¼ �t2 + 2ik2at+ k22�k21
� �

a2
� �1=2

, m2¼ �t2 + 2ik2at
� �1=2

Correspondingly, the expression for the magnetic field has the form:

b∗x ¼ exp �ik2Lð Þ iα
3

2π

ð∞
0

fðm2 + k21a
2Þ C1 m2ð Þ�C1 �m2ð Þ½ �

+m2A m2ð Þgexp �αtð Þdt
(11.63)

In spite of the cumbersome character of the integrand, presentation

Eq. (11.63) turns out to be useful for the calculations when α≫ 1ð Þ, because
unlike Eq. (11.33), the integral in Eq. (11.63) does not contain the oscillating

function cos ma. Moreover, in the wave zone, k2Lj j> 1, when the value of

the field is exponentially small, it is very difficult to provide the smallness of

the integral Eq. (11.33) for α≫ 1ð Þ by summation of large oscillating values

of the integrand. By contrast, the form Eq. (11.63) essentially facilitates the

calculations since the small value of the integral is provided by the multiplier

exp �ik2Lð Þ, which stands in front of the integral of the nonoscillatory func-
tion. Now proceeding from Eq. (11.63), we obtain the asymptotic formula

that describes the field in the far zone α≫ 1ð Þ. In this case the value of the
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integral is defined by the range t	 1=α< 1. Generally, the integrand in

Eq. (11.63) depends on m1 in a rather complicated manner. However, if

conditions

1

α2
≪ k1

2a2
�� �� i:e:, k1Lj j> 1, s< 1

are met, we can approximate m1 as:

m1 � k22a
2�k21a

2
� �1=2

and think of m1 and functions of m1 as being independent of the variable of

integration, t. For the radical m2, we have

m2� � 1

α2
+ 2i

k2a

α

� 	1=2

, i:e:, m2j j≪ 1

By keeping the terms of orders s=m4
2, s

2=m4
2,1=m

2
2, s ln m2ð Þ=m2

2

� �
and

omitting the terms s=m2
2,…, we can present the expression Eq. (11.60) in

the form:

C1 m2ð Þ�C1 �m2ð Þ¼ iπ

m2
2K1 m2ð ÞK1 �m2ð ÞΔ m2ð ÞΔ �m2ð Þ

� I21 m1ð Þ
m2
1

1�2sð Þ m2 + k21a
2

� �
m2
2

m2 + k22a
2

� �
m2
2

�2sI21 m1ð Þm
2 + k21a

2

m2
2

K0 m2ð Þ

 �

:

(11.64)

By analogy, we have

m2
2K1 m2ð ÞK1 �m2ð ÞΔ m2ð ÞΔ �m2ð Þ�� I0 m1ð Þ I1 m1ð Þ

m1

m2 + k21a
2

m2
2

�

+K0 m2ð Þ� I21 m1ð Þm
2 + k22a

2

m2
2

1� sð Þ� I0 m1ð ÞI1 m1ð Þ
m1

3m2�k21a
2

� �
2


 �
(11.65)

Substituting expression Eq. (11.65) into Eq. (11.64) and after simple

algebra, we obtain
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C1 m2ð Þ�C1 �m2ð Þ¼ � iπ

I20 m1ð Þ
m2K0 m2ð ÞK0 m2ð Þ

m2 + k21a
2

� � m2 + k22a
2�2s

� �

� m2
1 + 2m1

I1 m1ð Þ
I0 m1ð Þ


 �
�2m1

I1 m1ð Þ
I0 m1ð Þ

� m2
2�2sm2

m2 + k21a
2
�m2

2

I0 m1ð Þ
I1 m1ð Þm1

3m2�k21a
2

2m2 + k21a
2

" #
m2 + k22a

2
� �

K0 m2ð Þ

(11.66)

For function A(m2) we have

A m2ð Þ� iπ s�1ð Þ
m2
2K1 m2ð ÞK1 �m2ð ÞΔ m2ð ÞΔ �m2ð Þ I0 m1ð Þ I1 m1ð Þ

m1

m2 + k21a
2

m2
2

�� iπ s�1ð Þ m1

I0 m1ð ÞI1 m1ð Þ
m2
2

m2 + k21a
2

1�2m1

I1 m1ð Þ
I0 m1ð Þ

�

� m2 + k22a
2

m2
2

� I0 m1ð Þ
m1I1 m1ð Þ



3m2�k21a

2

2

�
m2
2K0 m2ð Þ

m2 + k21a
2


(11.67)

Substituting expressions Eqs. (11.66), (11.67) into Eq. (11.63) and dis-

carding terms, giving after integration values of the order of 1/α4 we obtain

b∗x �� exp ik2Lð Þ
I20 m1ð Þ

α3

2

ð∞
0

ðm2 + k22a
2Þexp �αtð Þdt

8<
:

�2s m2 + 2m1

I1 m1ð Þ
I0 m1ð Þ


 � ð∞
0

m2
2K0 m2ð Þexp �αtð Þdt

9=
;

(11.68)

where

m2¼�t2 + 2ik2αt+ k22a
2, m2¼ �t2 + 2ik2αt

� �1=2
, and m1

¼ k22a
2�k21a

2
� �1=2

The first integral is expressed in terms of elementary functions:

ð∞
0

m2 + k22a
2

� �
exp �αtð Þdt¼� 2

α3
1� ik2L�k22L

2
� �

:
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The second integral can be presented in the form:

ð∞
0

m2
2K0 m2ð Þexp �αtð Þdt��

ð∞
0

m2
2 lnm2 exp �αtð Þdt

¼ 1

2

@2

@α2
+ 2ik2a

@

@α

� 	
�
ð∞
0

lnð�t2 + 2ik2αtÞexp �αtð Þdt

¼ 1

2

@2

@α2
+ 2ik2a

@

@α

� 	ð∞
0

ln �tð Þ+ ln t�2iak2ð Þ½ �exp �αtð Þdt

(11.69)

We have

ð∞
0

ln �tð Þexp �αtð Þdt¼�1

α
lnα+Cð Þ+ iπ

α
�� lnα

α

The second integral in Eq. (11.69) is expressed through the integral

exponential function:

ð∞
0

ln t�2ik2að Þexp �αtð Þdt¼ 1

α
ln �2ik2að Þ� exp �2ik2Lð ÞEi 2ik2Lð Þ½ �

Correspondingly, for the magnetic field we have

b∗x �
1

I20 m1ð Þb0x L=δ2ð Þ+ exp ik2Lð Þ
I20 m1ð Þ 2s m2

1 + 2m1

I1 m1ð Þ
I0 m1ð Þ


 �
P k2a,αð Þ (11.70)

where b0x
∗ is the complex amplitude of the field in a uniform medium with

resistivity of formation and

P k2a,αð Þ¼α3

4

@2

@α2
+ 2ik2a

@

@α

� 	
� lnα

α
+

ln �2ik2að Þ
α




� exp �2ik2Lð Þ
α

Ei 2ik2Lð Þ
�

Next, we consider several cases. Assuming that k2L≪ 1j j, we have
Ei 2ik2Lð Þ� ln �2ik2að Þ¼ lnα+ ln �2ik2að Þ and P k2, a, αð Þ�� lnα

Therefore, Eq. (11.70) becomes
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b∗x ¼
1

I20 m1ð Þ 1� L

δ2

� 	2
" #

� 2s lnα

I20 m1ð Þ m2
1 + 2m1

I1 m1ð Þ
I0 m1ð Þ


 �
(11.71)

In particular, if the skin depth in the borehole is greater than its radius,

then Bessel’s functions I0(m1) and I1(m1) can be expanded in a series, thus

instead of Eq. (11.71) we obtain

b∗x ¼ 1�m2
1

2
� L

δ2

� 	2

�4sm2
1 lnα

Inasmuch as s≪ 1 and

m2
1��k1

2L2

α2

for the quadrature component of the field, we have

Qb∗x �
1

α2
L

δ1

� 	2

� 1�8 lnα

α2

� 	
L

δ2

� 	2

which up to the term s/α2, coincides with Eq. (11.49), derived for the range
of small parameters. In the wave zone when k2Lj j> 1, by using the follow-

ing asymptotic expression:

Ei 2ik2Lð Þ� exp 2ik2Lð Þ
2ik2L

we obtain

P k2a,αð Þ� α3

4

@2

@α2
+ 2ik2α

@

@α

� 	
� lnα

α
+

ln �2ik2að Þ
α


 �

� ik2L

2
lnα� ln k2aj j½ �

Table 11.5 provides a comparison between A¼ b∗x
�� ��, calculated using

exact solution Eq. (11.33) and the asymptotic expression Eq. (11.70).

It is natural to distinguish three frequency ranges of the amplitude spec-

trum; i.e., the range of small parameters, the intermediate zone, and the

wave zone. As follows from Table 11.5, the asymptotic expression

Eq. (11.70) is sufficiently accurate at the range of the small parameter and

the intermediate zone when a=δ1< 1. If parameter a/δ1 exceeds 1 and



Table 11.5 A Comparison Between Exact and Asymptotic Values of A

a/δ1

s 1/64 1/16 1/4

α A Aapr A Aapr A Aapr

0.1 4 1.00 1.00 1.00 1.00 1.00 1.00

10 1.00 1.00 1.02 1.01 1.09 1.08

12 1.00 1.00 1.03 1.02 1.13 1.12

20 1.01 1.01 1.09 1.09 1.32 1.31

24 1.03 1.03 1.12 1.13 1.39 1.38

30 1.06 1.05 1.21 1.21 1.44 1.44

0.2 4 1.00 1.00 1.00 1.00 1.05 1.03

10 1.01 1.01 1.09 1.08 1.31 1.28

12 1.03 1.02 1.13 1.12 1.38 1.36

20 1.09 1.09 1.32 1.31 1.39 1.39

24 1.14 1.13 1.39 1.38 1.28 1.28

30 1.21 1.21 1.44 1.44 1.05 1.05

0.4 4 1.00 1.00 1.05 1.02 1.21 1.12

10 1.09 1.07 1.30 1.27 1.34 1.34

12 1.13 1.12 1.36 1.34 1.23 1.24

20 1.31 1.30 1.37 1.38 0.62 0.65

24 1.38 1.37 1.26 1.27 0.39 0.41

30 1.43 1.43 1.03 1.04 0.18 0.19

0.8 4 1.99 1.97 1.13 1.05 1.25 1.17

10 1.23 1.21 1.22 1.26 0.51 0.61

12 1.29 1.28 1.11 1.18 0.32 0.39

20 1.30 1.31 0.56 0.60 0.033 0.043

24 1.21 1.22 0.35 0.38 0.0094 0.012

30 0.91 1.00 0.16 0.18 0.0013 0.0017
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s> 1=4, the accuracy of the approximate solution rapidly drops due to the

unaccounted poles in deriving Eq. (11.70).

In the far zone, k1L≫1j j and α≫ 1ð Þ; Eq. (11.70) is reduced to:

b∗x �
1

I20 m1ð Þb
∗
0x

L

δ2

� 	

where m1 ¼ k22a
2�k21a

2
� �1=2

.

The last expression suggests that the ratio of amplitudes or phase difference

of two probes of the length L1 and L2 does not depend on the radius and

conductivity of the borehole, but rather is defined by the formation param-

eters only. This feature of the ratio of amplitudes and phase difference, pre-

viously observed in bz
∗ of a vertical magnetic dipole, is shown in Fig. 11.7,

where we show modeling results of both ratio of amplitudes and phase
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difference for different contrast between resistivity of the formation and the

borehole.

In fact, similar to the case of the vertical magnetic dipole, instead of the

ratio of amplitudes A1 and A2 we use the attenuation At¼ 20log A2=A1j j,
assuming that receiving moments M1=M2¼ L2=L1ð Þ3 are selected to pro-

vide zero attenuation of the field in the air. The calculated attenuation

and phase difference are normalized by the corresponding values in a uni-

form medium with resistivity of the formation:

PA αð Þ¼ At B∗
x

� �
At B∗un

x

� �
�����

����� and PΔϕ αð Þ¼ Δϕ B∗
x

� �
Δϕ B∗un

x

� �
Here, At(Bx

∗un) and Δϕ(Bx
∗un) are attenuation and phase difference in a

uniform medium with resistivity of the formation. Calculations are per-

formed for two three-coil probes with the longest two-coil probes at

L¼ 0:75 and L¼1.5 m, correspondingly. The length’s ratio between the

short- and long-spaced coils is equal to 0.75 for each probe. The frequency

range is between 10 kHz and 10 MHz. The radius of the borehole is 10 cm,

the resistivity of the formation is fixed at ρ2¼ 10ohmm, and the resistivity of

the borehole is equal ρ1¼ 1:0, 0:1, and0:01ohmm. Index of curves is γ2/γ1.
The data (two upper subplots in Fig. 11.7) are in full agreement with the

theoretically predicted behavior: both attenuation and phase difference

are practically insensitive to the properties of the borehole, especially when

the resistivity contrast is less than 100. (The reader should not be confused

with the “horn effect” on the curves caused by zero-crossings of the

corresponding functions.) When the resistivity contrast reaches 1000 (bot-

tom subplots, Fig. 11.7), the short 0.75 m probe fails to remove signal from

the borehole, but the long 1.5 m probe is still practically insensitive to it. We

may notice only a slight advantage of attenuation in removing borehole sig-

nal compared with the phase difference.

11.5 MAGNETIC FIELD IN A MEDIUM WITH TWO
CYLINDRICAL INTERFACES
Let us consider the field of the transversal magnetic dipole in a

medium with two cylindrical interfaces. Analysis of the solution is helpful

in analyzing influence of the invasion zone on the radial response of trans-

versal probes. Using results derived for the case of one cylindrical boundary,

the potentials in the presence of two interfaces might be presented as:
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Fig. 11.7 (A) Normalized attenuations and (B) phase differences for the three-coil probe
at different contrasts between resistivity of the formation and the borehole.
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A∗
e1¼A∗

e0 + k21
M

2π2
sinϕ

ð∞
0

1

m1

C1I1 m1rð Þcosmzdm

A∗
m1¼A∗

m0 +
M

2π2
cosϕ

ð∞
0

m

m1

D1I1 m1rð Þ sinmzdm

A∗
e2¼ k22

M

2π2
sinϕ

ð∞
0

1

m2

�C2K1 m2rð Þ+C3I1 m2rð Þ½ �cosmzdm

A∗
m2¼

M

2π2
cosϕ

ð∞
0

m

m2

�D2K1 m2rð Þ+D3I1 m2rð Þ½ � sinmzdm

A∗
3e ¼�k23

M

2π2
sinϕ

ð∞
0

1

m3

C4K1 m3rð Þcosmzdm

A∗
m3¼� M

2π2
cosϕ

ð∞
0

m

m3

D4K1 m3rð Þ sinmzdm

(11.72)
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Here, A0e
∗ and A0m

∗ are complex amplitudes of vector potentials in a uni-

form medium with resistivity ρ1; and indexes 1, 2, 3 correspond to the

potentials in the borehole, invasion zone, and formation, correspondingly.

Similar to the case of one cylindrical boundary, Eq. (11.72) account for

behavior of the field near the source and at infinity. The continuity of tan-

gential components of the electric and magnetic fields at boundaries r ¼ a

and r ¼ b provides a system of eight equations with respect to eight unknown

coefficients Ci and Di (i¼1, …, 4):

m1 K1 m1að Þ�C1I1 m1að Þ½ � ¼m2 C2K1 m2að Þ�C3I1 m2að Þ½ �
1

m1a
K1 m1að Þ�C1I1 m1að Þ½ �+K 0

1 m1að Þ�D1I
0
1 m1að Þ

¼ 1

m2a
C2K1 m2að Þ�C3I1 m2að Þ½ �+D2K

0
1 m2að Þ�D3I

0
1 m2að Þ

m1 K1 m1að Þ�D1I1 mð Þ½ � ¼m2 D2K1 m2að Þ�D3I1 m2að Þ½ �

k21 K 0
1 m1að Þ�C1I

0
1 m1að Þ� �

+
m2

m1a
K1 m1að Þ�D1I1 m1að Þ½ �

¼ k22 C2K
0
1 m2að Þ�C3I

0
1 m2að Þ� �

+
m2

m2a
D2K1 m2að Þ�D3I1 m2að Þ½ �

m2 C2K1 m2bð Þ�C3I1 m2bð Þ½ � ¼m3C4K1 m3bð Þ
1

m2b
C2K1 m2bð Þ�C3I1 m2bð Þ½ �+D2K

0
1 m2bð Þ�D3I

0
1 m2bð Þ

¼ 1

m3b
C4K1 m3bð Þ+D4K

0
1 m3bð Þ

m2 D2K1 m2bð Þ�D3I1 m2bð Þ½ � ¼m3D4K1 m3bð Þ

k22 C2K
0
1 m2bð Þ�C3I

0
1 m2bð Þ� �

+
m2

m3b
D2K1 m2bð Þ�D3I1 m2bð Þ½ �

¼ k23C4K
0
1 m3bð Þ+ m2

m3b
D4K1 m3bð Þ

By numerically solving this system of linear equations, we find all the

coefficients of integrands in Eq. (11.72) that are needed to calculate poten-

tials and, correspondingly, the complex amplitudes of the field components.

The expression for the magnetic field on the axis of the borehole has the

form:

b∗x ¼ 1� ik1L�k21L
2

� �
exp ik2Lð Þ�α3

π

ð∞
0

m2D1 + k21aC1

� �
cos

L

a1
dm (11.73)
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where a1 is the radius of the borehole. The derived solution can be used to

confirm the efficiency of attenuation and phase difference of the three-coil

probe in reducing the effect of the invasion zone. To proceed, we use the

same parameters for probes, borehole, and formations as in the case of one

cylindrical boundary (Fig. 11.7). In addition, the formation model includes

an invasion zone with the radius b¼ 2a. The calculated attenuation and

phase difference, shown in Fig. 11.8, are normalized by the corresponding

values in a uniform medium with resistivity of the formation.

The data in the left subplots (Fig. 11.8A) indicate the ability of the atten-

uation of the long probe L¼ 1:5mð Þ to remove the influence of both bore-

hole and invasion. The advantage of the long probe over the short one

L¼ 0:75mð Þ is especially pronounced in the case of very conductive inva-

sion with ρ2¼ 0:01ohmm. Also, by comparing attenuation and phase dif-

ference we see that attenuation has clear advantage and enables us to reduce

influence of the borehole at shorter spacings.
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Fig. 11.8 (A) Normalized attenuations and (B) phase differences for the three-coil probe
in the presence of invasion zone.
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11.6 MAGNETIC FIELD IN MEDIUM WITH A THIN
RESISTIVE CYLINDRICAL LAYER
We suppose that a relatively thin and resistive invasion zone is formed

due to penetration of the very resistive oil-based mud in the formation.

Although in the analysis we assume that the conductivity of the borehole

and the formation are equal, generalization for the case of the different con-

ductivities does not require special effort. Thus, in a uniform medium with

conductivity γ1, there is a thin cylindrical layer with radius a and thickness h
that has conductivity γ2. These parameters satisfy conditions: h=a≪ 1,

γ1=γ2≫ 1. The electric properties of the layer are characterized by the trans-

versal resistance, T ¼ h=γ2. At the surface, r ¼ a tangential components of

the magnetic field are continuous:

B1z ¼B2z B1ϕ¼B2ϕ (11.75)

where B1 and B2 are fields in the borehole and the formation, respectively.

The tangential components of the electric field are discontinuous owing to

the presence of the double layer, so we have

E2z ¼E1z +Tγ1
@E1z

@z
and E2ϕ ¼E1ϕ +T

γ1
a

@E1z

@ϕ
(11.76)

Substituting expressions for field components through potentials

Eq. (11.28) into Eqs. (11.75), (11.76), we obtain

K1 m1ð Þ� I1 m1ð ÞD ¼K1 m1ð ÞGa2k21 K 0
1 m1ð Þ� I 01 m1ð ÞC� �

+
m2

m1

K1 m1ð Þ� I1 m1ð ÞD½ � ¼ ak21K
0
1 m1ð ÞE

+
m2

m1

K1 m1ð ÞGK1 m1ð Þ� I1 m1ð ÞC

�τ
m2

m1

I1 m1ð ÞD+
m2

m1

K0 m1ð Þ+ m2

m1

I 01 m1ð ÞC

 �

¼K1 m1ð ÞE�K0 m1ð Þ� I1 m1ð Þ
m1

C� I 01 m1ð ÞD

�τ
I1 m1ð Þ
m1

D+K0 m1ð Þ+ I 01 m1ð ÞC

 �

¼K1 m1ð Þ
m1

E +K 0
1 m1ð ÞG

(11.77)
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where

m1¼ m2�k21a
2

� �1=2
and τ¼Tγ1

a
¼ T

T0

By analogy, T0 can be called the transversal resistance of the borehole.

Solving system Eq. (11.77) gives

C¼ m2K0 m1ð ÞK 0
1 m1ð Þ

1� τ
k21a

2

m2
1

I1 m1ð ÞK1 m1ð Þ+m2I 01 m1ð ÞK 0
1 m1ð Þ


 �τ

D¼
k21a

2

m1

K0 m1ð ÞK1 m1ð Þ

1� τ
k21a

2

m2
1

I1 m1ð ÞK1 m1ð Þ+m2I 01 m1ð ÞK 0
1 m1ð Þ


 �τ
(11.78)

Thus the magnetic field on the z-axis of the borehole is

b∗x ¼ b∗0x γ1ð Þ+ k21a
2α

3

π
τ

ð∞
0

m2K2
0 m1ð Þcosαm

1� τ
k21a

2

m2
1

I1 m1ð ÞK1 m1ð Þ+m2I 01 m1ð ÞK 0
1 m1ð Þ


 �dm
(11.79)

For τ! 0 we obtain b∗x ! b∗0x γ1ð Þ, whereas in the opposite case, as

τ!∞:

b∗x ¼ b∗0x γ1ð Þ�k21a
2α

3

π

ð∞
0

m2K0 m1ð Þcosαmdm
k21a

2

m2
1

I1 m1ð ÞK1 m1ð Þ+m2I 01 m1ð ÞK 0
1 m1ð Þ

(11.80)

The calculations show that Eq. (11.80) describes field bx
∗ with sufficient

accuracy when τ> 10. The amplitudes of the secondary field as a function of

the parameter, L/a, are shown in Fig. 11.9. The index is a/δ1.
In the presence of the thin resistive layer, the primary field is practically

compensated by the secondary field if L=a> 10 and a=δ1> 0:8.
At the range of the small parameter, the quadrature component of the

magnetic field can be presented as:

Qb∗x ¼� L

δ1

� 	2

1 +Gτð Þ
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Fig. 11.9 Frequency responses of the amplitude. The index is a/δ1.
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where

Gτ ¼�2τα

π

ð∞
0

m2K2
0 mð Þcosαm

1� τm2I 01 mð ÞK 0
1 mð Þdm

If the length of the probe is much larger than the radius of the borehole

α≫ 1ð Þ, then, by performing integration by parts in the integral above we

obtain

Gτ �� 2τ

1+ τ=2

α

π

ð∞
0

m2K2
0 mð Þcosαmdm� 4τ

1+ τ=2ð Þ
lnα

α2

Thus

Qb∗x �� L

δ1

� 	2

1 +
4τ

1+ τ=2

lnα

α2

� 	

and for large values of τ, it gives

Qb∗x �� L

δ1

� 	2

1 + 8
lnα

α2

� 	
(11.81)



424 Basic Principles of Induction Logging
Next, we derive an asymptotic expression for the field in the far zone

α≫ 1ð Þ for arbitrary parameter L/δ1. For simplicity, we set parameter τ
to be much greater than unity (i.e., τ≫ 1). The integrand in Eq. (11.80)

has a branch point on the complex plane of the variable of integration m,

when m¼ k1a, and, by deforming the contour of the integration along

the crosscut and expanding the integrand by powers of m1, we obtain

b∗x ¼ b∗0x�k21a
2α

3

π

ði∞+ k1a

k1a

m K2
0 m1ð Þ�K2

0 �m1ð Þ� �
exp iαmð Þdm

If m1j j≪ 1, then

K2
0 m1ð Þ�K2

0 �m1ð Þ¼ 2iπK0 m1ð ÞI0 m1ð Þ+ π2I20 m1ð Þ¼�2iπK0 m1ð Þ

and

b∗x ¼ b0x γ1ð Þ�2ia2k21α
3

ði∞+ k1a

k1a

m2K0 m1ð Þexp iαmð Þdm

Letting m1 ¼ it+ k1a, where variable t changes as

0	 t<∞

we have

b∗x ¼ b∗0x γ1ð Þ+2a2k21α
3 exp ik1Lð Þ

ð∞
0

it+ k1að Þ2K0 m1ð Þexp �αtð Þdt (11.82)

where

m1 ¼ �t2 + 2itk1a
� �1⁄2

For α≫ 1 the integral in Eq. (11.82) is expressed through the integral

exponential function:
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ð∞
0

t+ k1að Þ2K0 m1ð Þexp �αtð Þdt¼ 1

2

@2

@α2
+ 2ik1a

@

@α
�k21a

2

� 	

�
ð∞
0

ln �tð Þ+ ln t�2ik1að Þ½ �exp �αtð Þdt¼ 1

2

@2

@α2
+ 2ik1a

@

@α
�k21a

2

� 	

� � lnα

α
+

ln �2ik1að Þ
α

� exp �2ik1Lð Þ
α

Ei 2ik1Lð Þ

 �

(11.83)

If k1Lj j≪ 1, then

Ei 2ik1Lð Þ� ln �2ik1Lð Þ
and Eq. (11.83) becomes

@2

@α2
+ 2ik1a

@

@α
�k21a

2

� 	 � lnα

α

� 	
�2 lnα

α

Therefore, for the magnetic field we have

b∗x ¼ b∗0x γ1ð Þ�4k21a
2 exp ik1Lð Þ lnα¼�k21L

2

2
1+ 8

lnα

α2

� 	

This expression coincides with Eq. (11.81), which is valid for the range

of small parameters. In the opposite case, i.e., when k1L≫ 1:

Ei 2ik1Lð Þ� exp 2ik1Lð Þ
2ik1L

and, instead of Eq. (11.83), we obtain

1

2

@2

@α2
+ 2ik1a

@

@α
�k21a

2

� 	
� lnα

α
+

ln �2ik1að Þ
α


 �
¼ k21L

2

2

lnα� ln k1aj j
α3

and

b∗x ¼ b∗0x + k21a
2k21L

2 lnα� ln k1aj jð Þexp ik1Lð Þ (11.84)

For the range of large parameters k1Lj j≫ 1, we have

b∗0x γ1ð Þ��k21L
2 exp ik1Lð Þ



426 Basic Principles of Induction Logging
therefore, Eq. (11.84) can be presented in the form:

b∗x ¼ b∗ox γ1ð Þ 1�k21L
2 lnα � ln k1aj j

α2

� 	
(11.85)

11.7 MAGNETIC FIELD IN MEDIUM WITH ONE
HORIZONTAL INTERFACE
Now we begin to study the field of the transversal magnetic dipole in

the presence of horizontal boundaries. Let us place the dipole at the origin of

the coordinates and direct the dipole moment along the x-axis:

M¼ReM0 exp �iωtð Þx0 (11.86)

where M0¼ I0nS.

As before, we proceed from the field equations

curlE¼ iωB curlB¼ γμ0E
divE¼ 0 divB¼ 0

(11.87)

Introduction of the vector potential of the magnetic type

E¼ iωcurlA (11.88)

gives

r2A+ k2A¼ 0 (11.89)

and the relationships between the vector potential and the field are

E¼ iωcurlA and B¼ k2A+ graddivA (11.90)

We look for a solution, assuming that the y-component of the vector

potential is equal to zero:

Ay¼ 0

Then, in accordance with Eq. (11.90), we have

Ex¼ iω
@Az

@y
Ey¼ iω

@Ax

@z
�@Az

@x

� 	
Ez ¼�iω

@Ax

@y

Bx¼ k2Ax +
@

@x
divA By¼ @

@y
divA Bz ¼ k2Az +

@

@z
divA

(11.91)
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As follows from Eqs. (11.90), (11.91), for continuity of the tangential

components of the field at the interface z¼ h it is sufficient to provide

the continuity of values

Az,
@Ax

@z
, k2Ax, divA

Thus, for components of the vector potential we obtain two groups of

conditions, i.e.,

k21A1x¼ k22A2x,
@A1x

@z
¼ @A2x

@z
(11.92)

and

A1z¼A2z, divA1¼ divA2 (11.93)

In a uniformmedium the field is described by one component of the vec-

tor potential, which has the form:

A∗
0x¼

μ0M0

4π

exp ik1Rð Þ
R

or

A∗
0x¼

μ0M0

4π

ð∞
0

m

m1

expm1 � zj jð ÞJ0 mrð Þdm

where

m1¼ m2�k21
� �1=2

By analogy with the case of the vertical magnetic dipole (Chapter 9), we

represent the component Ax
∗ in both parts of the medium as

A∗
1x¼

μ0M0

4π

ð∞
0

m

m1

exp �m1 zj jð Þ+Am exp m1zð Þ

 �

J0 mrð Þdm if z< h

A∗
2x¼

μ0M0

4π

ð∞
0

Bm exp �m2zð ÞJ0 mrð Þdm, if z> h

(11.94)
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where m2 ¼ m2�k22
� �1=2

. The boundary conditions at z¼ h give

m

m1

e�m1h +Ame
m1h¼ sBme

�m2h

�me�m1h +m1Ame
m1h¼�m2Bme

�m2h

Whence

Am¼ m

m1

sm1�m2

sm1 +m2

e�2m1h

and

Bm ¼ 2m

sm1 +m2

e� m1�m2ð Þh (11.95)

where s¼ γ2=γ1.
Thus

A∗
1x¼A∗

0x γ1ð Þ+ μ0M0

4π

ð∞
0

m

m1

sm1�m2

sm1 +m2

em1 z�2hð ÞJ0 mrð Þdm

A∗
2x¼

μ0M0

4π

ð∞
0

2m

sm1 +m2

e� m1�m2ð Þhe�m2zJ0 mrð Þdm
(11.96)

To determine the component Az
∗, we use condition of continuity of

divA∗:

@

@x
A∗
1x�A∗

2x

� �¼ @

@z
A∗
2z�A∗

1z

� �
Inasmuch as

@Ax

@x
¼ @Ax

@r

@r

@x
¼ cosϕ

ð∞
0

F mð Þe�mizJ1 mrð Þdm

To provide continuity of divA∗, it is appropriate to present the solution

for Az
∗ in the following form:



429Induction Logging Using Transversal Coils
A∗
1z ¼

μ0M0

4π
cosϕ

ð∞
0

Cme
m1zJ1 mrð Þdm and A∗

2z

¼ μ0M0

4π
cosϕ

ð∞
0

Dme
�m2zJ1 mrð Þdm

In accordance with Eq. (11.93), we have

Cme
m1h¼Dme

�m2h

s�1ð ÞmBme
�m2h¼m2Dme

m2h +m1Cme
m1h

(11.97)

Solving this system we obtain

Cm¼ s�1ð ÞmBm

m1 +m2

e� m1 +m2ð Þh Dm¼ s�1ð ÞmBm

m1 +m2

(11.98)

Thus

A∗
1z ¼

μ0M0

4π
cosϕ

ð∞
0

s�1ð ÞmBm

m1 +m2

e� m1 +m2ð Þhem1zJ1 mrð Þdm

and

A∗
2z ¼

μ0M0

4π
cosϕ

ð∞
0

s�1ð ÞmBm

m1 +m2

e�m2zJ1 mrð Þdm (11.99)

The magnetic field on the z-axis has component Bx only, and, in accor-

dance with Eqs. (11.91), (11.99), we have

b∗1x¼ b∗0x�L

ð∞
0

ϕ1 mð Þem1Ldm

b∗2x¼�L

ð∞
0

ϕ2 mð Þe�m2Ldm

(11.100)

where bx is the magnetic field expressed in units of the field in free space:

bx ¼Bx

B0

B0¼�μ0M0

4πL3

and L is the length of the probe. Also,
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b∗0x ¼ eik1L 1� ik1L�k21L
2

� �
ϕ1 mð Þ

¼ k21L
2�m2L2

2

� 	
m

m1

sm1�m2

m1 +m2

e�2m1h

+m2L2 m3 s�1ð Þe�2m1h

m1 sm1 +m2ð Þ m1 +m2ð Þϕ2 mð Þ

¼ k22L
2�m2L2

2

m1 + sm1

m1 +m2

� 	
2m

sm1 +m2

e� m1�m2ð Þh

(11.101)

First, consider the field at the low-frequency limit when the skin depth

in both media exceeds the distance from the dipole to the interface as well

as the length of the probe. In deriving the asymptotic formulas, we use the

approach described in Chapter 8, namely the interval of integration is pres-

ented as the sum of two parts, i.e., the internal part where 0<mL<
m0L≪ 1 and the external part where m>m0. Within the external interval,

radicals m1 and m2 can be expanded in a series by powers of k1
2/m2 and

k2
2/m2. For this reason, the integral at the external interval is presented

as a series of terms that have even powers of k. Within the internal interval,

the exponents can be expanded in series mL< 1ð Þ, and the integral is

reduced to the sum of tabular integrals, which in its turn can be presented

as a series with respect to the wave number k. Unlike the integral at the

external interval, these series contain odd powers of k and logarithmic

terms. For example, in a medium, where the dipole is located, at the

low-frequency limit, we have

Inb∗x ¼ 1+ a1
L

δ1

� 	3

and Qb∗x � d
L

δ1

� 	2

+ a1
L

δ1

� 	3

(11.102)

where

a1 ¼ 2

s2�1

4

3
s3=2 s1=2�1
� �

�1

5
s s3=2�1
� �

+
2

15
s7=2�1
� �


+
s2

2 s+1ð Þ1=2
ln

ffiffiffiffiffiffiffiffiffi
s+1

p �1ffiffiffiffiffiffiffiffiffi
s+1

p
+1

ffiffiffiffiffiffiffiffiffi
s+1

p
+

ffiffi
s

pffiffiffiffiffiffiffiffiffi
s+1

p � ffiffi
s

p
#

and

d¼�1�1

4

s+5ð Þ s�1ð Þ
s+1ð Þ

L

2h�L
(11.103)
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where

δ1 ¼ 2

γ1μ0ω

� 	1=2

, δ2 ¼ 2

γ2μ0ω

� 	1=2

, L=δ1≪ 1, L=δ2≪ 1, s¼ γ2=γ1

If the interface is located at a sufficient distance from the source and the

observation point L=h≪ 1ð Þ, coefficient d tends to �1, corresponding to a

uniform medium. At the same time, coefficient a1 does not depend on the

position of the probe with respect to the boundary, and it is a function of the

resistivity of both media. The second terms in Eq. (11.102) are proportional

to ω3/2 and sensitive only to the deepest part of the formation. (In fact, by

measuring these terms we can reach the same depth of investigation as that

achievable at the late stage of the transient field). It is obvious that, as s! 1,

coefficients a1 and d correspond to a uniform medium:

a1¼ 4

3
and d¼�1

Deriving asymptotic expression at the high-frequency limit, we use the

following relationship:

In ¼
ð∞
0

mn exp m2 + k21L
2

� �1=2
dm� an k1Lð Þ n+1ð Þ=2

exp �k1Lð Þ (11.104)

where k1L≫ 1j j and an are functions of the number n. In particular, for the

first three values of n, they are equal to 1, (π/2)1/2, and 2, respectively. Note

that integrals of type Eq. (11.104) for odd values of n are reduced to elemen-

tary functions, but, for even values they are expressed through modified

Bessel functions Kn(k1L). After elementary transformations, by presenting

the field through integrals of type In, and taking into account exponential

decay at k1Lj j≫ 1, we obtain

b∗1x¼ b∗0x γ1ð Þ�k21L
2

ffiffi
s

p �1ffiffi
s

p
+1

exp ik1L 2α�1ð Þ½ �
2α�1

� b∗0x γ1ð Þ (11.105)

where α¼ h=L> 1. The field becomes the same as that in a uniform

medium with conductivity, γ1 due to the skin effect. However, if the dipole

or the observation point is located at the interface α¼ 1, then the field is a

function of the conductivities of both media regardless of the frequency. In

accordance with Eq. (11.105), we have
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b∗1x��k21L
2 2

ffiffi
s

pffiffi
s

p
+1

exp ik1Lð Þ (11.106)

It is proper to note one specific feature of the current distribution when

the conductivity of the medium, surrounding the dipole, is equal to zero

s!∞ð Þ. As seen in Eq. (11.96), the component A2x vanishes. For this rea-

son, in the conducting part of the medium, the electric field and induced

currents do not have a vertical component, and the distribution of currents

is symmetrical with respect to the plane yoz, which is not intersected by

current lines.

11.8 MAGNETIC FIELD OF THE HORIZONTAL DIPOLE IN
THE FORMATION WITH TWO HORIZONTAL

INTERFACES

Suppose that the magnetic dipole is located within the formation.

Then, according to the results obtained in the previous section, the expres-

sions for the vector potential have the following forms:

A∗
1x¼

μ0M0

4π

ð∞
0

D1e
m1zJ0 mrð Þdm

A∗
1z¼

μ0M0

4π
cosϕ

ð∞
0

F1e
m1zJ1 mrð Þdm

8>>>>>>><
>>>>>>>:

if z<�h2

A∗
2x¼

μ0M0

4π

ð∞
0

m

m2

e�m2 zj j +D2e
m2z +D3e

�m2z


 �
J0 mrð Þdm

A∗
2z ¼

μ0M0

4π
cosϕ

ð∞
0

F2e
m2z +F3e

�m2z½ �J1 mrdmð Þ
if �h2< z< h1

8>>>>>><
>>>>>>:

A∗
3x¼

μ0M0

4π

ð∞
0

D4e
�m1zJ0 mrð Þdm

A∗
3z ¼

μ0M0

4π
cosϕ

ð∞
0

F4e
�m1zJ1 mrð Þdm

8>>>>>><
>>>>>>:

if z> h1

(11.107)
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From the system of equations, following from the boundary conditions

at z¼ h1 and z¼�h2, we can determine the coefficientsD1,D2,D3,D4 and

F1, F2, F3, F4. In particular, for the horizontal component of the magnetic

field on the z-axis, when the two-coil probe is located symmetrically with

respect to the horizontal boundaries, we obtain

b∗x ¼ b∗0x γ2ð Þ�
ð∞
0

m

2
�k22L

2

� 	�
2q12 1� q12e

�αm2 coshm2ð Þ+ 1� sð Þ 1� q12ð Þm2m2

m1 +m2ð Þd2
� 1� q12�K12ð Þe�αm2 coshm2�K12q12e

�αm2½ �g m

m2d1
e�αm2dm, if α¼H=L
 1

(11.108)

where

d1¼ 1� q212e
�2m2 , d2¼ 1�K2

12e
�2m2 , q12 ¼ sm1�m2

sm1 +m2

, s¼ γ2
γ1
, K12

¼m1�m2

m1 +m2

,

γ2 and γ1 are the conductivities of the layer and shoulders, respectively, H is

the thickness of the formation, and L is the length of the probe.

By analogy, when the length of the probe exceeds the thickness of the

layer, and the transmitter and receiver coils are located symmetrically with

respect to the layer, an expression for the field is

b∗x ¼
ð∞
0

m2

2
s�k22L

2 +
m2m2

1

2 m1 +m2ð Þ2
s�1ð Þ2
d2

1� e�2αm2
� �" #

�4mm2e
� αm2 + 1�αð Þm1½ �

sm1 +m2ð Þ2d1
dm α< 1

(11.109)

Owing to the symmetrical position of the coils, the field is defined by

three parameters:

p¼L

δ
s¼ γ2

γ1
and α¼H

L

First, consider the field at the low-frequency limit, when parameter

p¼L=δ2 ! 0 and the probe is located within the bed γ2. Proceeding from
the approach, described in Chapter 7, we present Eq. (11.109) as a sum of

two integrals: first integral, corresponding to small values of integration
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variable m and the second integral, representing the residual part. The first

integral gives an asymptotic expression for Inbx
∗:

Inb∗x �
4

3

L

δ1

� 	3

and for the quadrature component, we have

Qb∗x �� L

δ2

� 	2

1�2
s�1

s+1

ð∞
0

1� s�1ð Þ= s+1ð Þe�αm coshαm

s�1ð Þ= s+1ð Þð Þ2e�2αm
dm+

1� s

2αs

2
4

3
5

+
4

3

L

δ1

� 	3

(11.110)

It is essential that the in-phase component of the field at the low-

frequency limit coincides with the in-phase component of the field in a uni-

form medium with conductivity of the shoulders, γ1. A similar result is

obtained when the source is the vertical magnetic dipole. This indicates that

surface charges, occurring at the interfaces between layer and the surround-

ing medium affect only the quadrature component of the magnetic field.

Now we present the quadrature component Qbx
∗ as the sum of two terms:

Qb∗x ¼Qb∗1x +Qb∗2x

where

Qb∗1x¼� L

δ2

� 	2

1� 1

2α

� 	
� L

δ1

� 	2
1

2α

Qb∗2x¼
L

δ2

� 	2

2F β, αð Þ
(11.111)

where

F β, αð Þ¼ β

ð∞
0

1�βe�αm coshm

1�β2 exp �2αmð Þdm (11.112)

and

β¼ s�1

s+1
, �1< β< 1
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At the range of the small parameter, the componentQb1x
∗ coincides with

the vertical componentQbz
∗ of the vertical magnetic dipole and it consists of

two terms, each depending on either conductivity shoulder γ1 or the bed γ2.
Correspondingly, we can introduce a geometric factor for each term. In

accordance with Eq. (11.111), we define

G1 ¼ 1�1=2α, G2¼ 1=2α, G1 +G2¼ 1

and

Qb∗1x¼�μ0ωL
2

2
γ1G1 αð Þ+ γ2G2 αð Þ½ � (11.113)

The expressions for the geometric factors are the same as in the case of the

excitation of the field by a vertical magnetic dipole. The second term Qb2x
∗

includes the function F(β,α), which depends on the ratio of the conductiv-

ities, or more precisely, on parameter β. The appearance of this term can be

explained in the following way. The primary electric field gives rise to the

surface charges, whose density is

σ að Þ¼ 1

2π

s�1

s+1
Eav
n að Þ (11.114)

where En
av(a) is the magnitude of the normal component of the field, created

by the vortex field of currents and all charges, except those, located at the

point a. In this approximation, the field of electric charges and the primary

field are directly proportional to frequency. Let us present Eq. (11.112) as:

Qb∗x ¼�ωμ0L
2

2
γ2G

∗
2 α, sð Þ+ γ1G1 α, sð Þ� �

(11.115)

where

G∗
2 α, sð Þ¼ 1� 1

2α
�2F β, sð Þ

If the layer resistivity exceeds that of the shoulders s< 1ð Þ, then the elec-
tric charges increase the field within the layer, and function G2

∗ becomes

larger. In a more conductive layer the electric field of the charges reduces

the primary field, and, under certain conditions, the functionG2
∗ crosses zero

and changes sign.

Table 11.6 contains the values of the functions G∗
1 + 1=sð Þ �G2 and

F(β,α) for some values of α. It is possible to show that function F(β,α) is
expressed through hypergeometric series 2F1



Table 11.6 Maximum Values of (L/δ1), for Which the Difference Between Exact and
Approximate Values Below 5%

α¼ 4 α¼ 8 α¼ 16

G*
2 +

G*
1

s F(β,α) G*
2 +

G*
1

s F(β,α) G*
2 +

G*
1

s F(β,α)

�1.03 18.9 �0.520 9.998 �0.26 5.49

�0.703 6.28 �0.351 3.64 �0.175 2.32

�0.377 2.63 �0.188 1.81 �0.094 1.41

�0.102 1.33 �0.0507 1.16 �0.0253 1.08

0.0717 0.794 0.0359 0.897 0.018 0.948

0.142 0.606 0.0718 0.802 0.0359 0.901

0.164 0.552 0.0825 0.774 0.0414 0.887

0.169 0.538 0.0854 0.767 0.0428 0.883
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F β, αð Þ¼β

2

1

βα
ln
1 + β

1�β
� β

2α+1
� 2F1 1,1 +

1

2α
,2 +

1

2α
,β2

� 	


� β

2α�1
� 2F1 1,1� 1

2α
,2� 1

2α
,β2

� 	� (11.116)

When the length of the probe is equal to the formation thickness α¼ 1ð Þ,
F(β,α) is expressed through elementary function:

F β, αð Þ¼ 1

2
� 1

s2�1
ln s (11.117)

and for the quadrature component, we have

Qb∗x ¼� L

δ2

� 	2

�1

2
+

2

s2�1
ln s

� 	
�1

2

L

δ1

� 	2

(11.118)

For the large α, function F(β,α) decreases inversely proportional to α:

F β, αð Þ� 1

α
ln

2s

s+1
(11.119)

and the functionG1
∗(α, s) remains positive for all values of s. With increase of

resistivity of the layer (s! 0), the term Qb2x
∗ trends to zero.

The asymptotic presentation for the field, when the formation is located

within the probe, is derived in a similar manner, and we obtain

Inb∗x ¼
4

3

L

δ1

� 	3
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Fig. 11.10 Apparent conductivity curves. Index is γ2/γ1.
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and

Qb∗x ¼� L

δ2

� 	2
4

s+1ð Þ2
ð∞
0

e�mdm

1� s�1ð Þ= s+1ð Þð Þ2 exp �2αmð Þ�
α

2

2
4

3
5

�α

2

L

δ1

� 	3

(11.120)

The integral in this expression can be also presented using a hyperbolic

function. Now consider the responses of a two-coil probe placed in the mid-

dle of the bed at the range of small parameters, if α
 2 (Fig. 11.10). The

apparent conductivity is introduced as:

γa
γ2
¼ Qb∗z
Qb0z γ2ð Þ

where Qbz
∗ is the quadrature component of the vertical component of

the field.

It is natural that the influence of the surrounding medium increases with

an increase of its conductivity γ1 and a decrease of the thickness of the layer.
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Comparison of responses caused by the vertical and horizontal dipoles shows

that the influence of a more conductive surrounding medium on the fields is

practically the same. If the layer is more conductive, the influence of the

shoulder is more pronounced in the case of transversal dipoles and is caused

by the influence of the electrical charges. This can be seen in Fig. 11.10

where apparent conductivity curve does not reach an asymptotic value of

1 even for the thick layers and conductivity contrast γ2=γ1 ¼ 128. As the fre-

quency increases, the skin effect becomes more pronounced, causing

reduced influence of the surrounding medium.

Consider the frequency responses of the field (Fig. 11.11). We can see

that at the low-frequency spectrum in Fig. 11.11A the secondary field is rel-

atively small. Then it increases and in the limit when the skin depth in the

layer is small, the amplitude of the secondary field approaches to that of the

primary field.

Like in the case of the vertical magnetic dipole, the phase shift of the sec-

ondary field at the range of small parameter is �π=2 (Fig. 11.11B).

Now let us consider the influence of relatively thin layers α< 1ð Þ. At
the low-frequency limit we present a field as the sum of two terms: a

field in a uniform medium with the conductivity of the surrounding

medium and the part of the field that takes into account the influence

of the bed:

Qb∗x ¼Qb∗0x
L

δ1

� 	
+

L

δ1

� 	2

G2 α, sð Þ (11.121)

Here

G2 α, sð Þ¼� 4s

1+ sð Þ2
ð∞
0

e�m

1+
s�1

s+1

� 	2

e�2αm

dm+
α s�1ð Þ

2
+ 1

The latter coincides with Eq. (11.120) in the range of small parameters

L=δ< 1ð Þ, and for certain combinations of α and s, it is valid for a wider

range of parameters (L/δ). Table 11.7 provides the maximum values of

(L/δ1), for which the difference of the quadrature components obtained

from the exact solution and the approximate formula Eq. (11.121) does

not exceed 5%.

These data demonstrate how the maximal value of parameter L/δ1
increases as parameter α decreases. If a thin layer has a relatively high resis-

tivity or conductivity, the range of application of Eq. (11.121) is restricted to
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smaller values of L/δ1. When s approaches unity, the maximum value of

parameter L/δ1 increases. Let us analyze the field at the low-frequency limit

when the thickness of the layer is sufficiently small. By expanding the

denominator of the integrand in Eq. (11.121) by powers of α, we obtain



Table 11.7 Maximum of Parameter (L/δ1), for Which the Difference Between Exact and
Approximate Quadrature Components Below 5%

α s¼ 1
128

1
64

1
32

1
16

1
4

1
2 2 8 16 32 64

α¼ 1

16

0.05 0.1 0.15 0.3 0.4 0.6 0.8 0.3 0.2 0.2 0.15

α¼ 1

8

0.03 0.07 0.1 0.2 0.4 0.6 0.6 0.2 0.1 0.1 0.07
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Qb∗x ¼� L

δ2

� 	2
4

s+1ð Þ2
ð∞
0

exp �mð Þdm
1� s�1ð Þ= s+1ð Þð Þ2 1�2αmð Þ

+
L

δ1

� 	2α s�1ð Þ
2

¼ L

δ1

� 	2

t exp t �Ei �tð Þ+ α s�1ð Þ
2


 � (11.122)

where

t¼ 2s

α s�1ð Þ2 , Ei �tð Þ¼�e�t

ð∞
0

exp �xð Þ
x+ t

dx

is the integral exponential function. As is known:

Ei �tð Þ! ln t if t! 0 and Ei �tð Þ!�e�t 1

t
� 1

t2

� 	
if t!∞

For illustration, consider two extreme cases: s≪ 1 and s≫ 1, which cor-

respond to either a very conductive or a very resistive thin layer,

respectively.

Case 1: Very conductive thin layer (s≫ 1)

If parameter s≫ 1, then t� 2=αs. Using the asymptotic value of function

Ei �tð Þ for t≪ 1, provided that s≫ 2=α, instead of Eq. (11.122), we obtain

Qb∗x ¼ � L

δ1

� 	2 αs

2
�α

2
� 2

αs
ln

2

αs

� 	
� α

2

L

δ2

� 	2

, if
αs

2
≪ 1 (11.123)

But, if 1≪ s< 2
α= , then

Qb∗x ¼� L

δ1

� 	2

1�αs+
α

2

� �
¼� L

δ1

� 	
+ α

L

δ2

� 	2

as
αs

2
≪ 1 (11.124)
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Thus the field Qbx
∗ can be presented as the sum of the field in a uniform

medium with conductivity γ1, and the field due to the presence of a thin

conducting layer with conductivity γ2:

Qb∗x ¼Qb∗0x γ1ð Þ+ α
L

δ2

� 	2

(11.125)

Case 2: Very resistive thin layer s≪ 1ð Þ
For the parameter t we have t¼ 2s=α. If s< α=2, then t≪ 1 and

correspondingly:

Qb∗x ¼
L

δ1

� 	2
2s

α
ln
2s

α
+
sα

2
�α

2

� 	
� L

δ

� 	2
2s

α
�α

2

� 	
(11.126)

In the case of (s≫α=2), we have

Qb∗x ¼� L

δ1

� 	2

1� α

2s
+
α

s
�αs

2

� �
�� L

δ1

� 	2

+
α

2s

L

δ1

� 	2

(11.127)

Generalizing this expression for higher frequencies, we obtain

Qb∗x ¼Qb∗0x γ1ð Þ+ α

2s

L

δ1

� 	2

(11.128)

Thus the smaller parameters s and α/s, for higher frequencies,

Eq. (11.121) is applied.

11.9 PROFILING WITH A TWO-COIL INDUCTION PROBE
IN A MEDIUM WITH HORIZONTAL INTERFACES
Considering the profiling curves, it is appropriate to distinguish

four specific positions of the probe with respect to the interfaces

(Fig. 11.12).

Case 1: The probe is located outside the formation (Fig. 11.12A). In

accordance with the results obtained in the previous section, we have

b∗x ¼ b∗0x γ1ð Þ�
ð∞
0

k21L
2�m2

2

� 	
D1e

m1 +
mm1

2
F1e

m1


 �
dm (11.129)
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Fig. 11.12 (A–D) Different positions of two-coil probe.
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where

D1¼ m

m1

q12

d1
1� e�2βm1
� �

F1¼�F 1� e�2αm2
� �

1� q12K12e
�2αm2

� �
e�βm1

F ¼ 2 1� sð Þm2

m1 +m2ð Þ sm1 +m2ð Þd1d2
K12¼m1�m2

m1 +m2

, q12 ¼ sm1�m2

sm1 +m2

, d1¼ 1� q12e
�2αm2 , d2¼ 1�K2

12e
�2αm2

α¼H

L
, 0	 α<∞, β¼ h2

L
, β
 1

Case 2: The coils of the probe are located on both sides of interface.

In this case (Fig. 11.12B), we have

b∗x ¼�
ð∞
0

k21L
2�m2

2

� 	
D4e

�m1 +
mm1

2
F4e

�m1


 �
dm

D4¼ s
m

m2

e α�βð Þ m1�m2ð Þ

d1
1� q12ð Þ 1� q12e

�2βm2
� �

F4¼ Fe α�βð Þ m1�m2ð Þ½ K12� q12ð Þe�2βm2ð 1� e�2 α�βð Þm2

h i
+ 1�K12q12e

�2αm2
� �

1� e�2βm2
� ��

0	 α<∞, 0	 β	 α, β	 1

(11.130)
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Case 3: The probe is located within the layer.

For this probe location, we have (Fig. 11.12C)

b∗x ¼ b∗0x γ2ð Þ�
ð∞
0

k22L
2�m2

2

� 	
D2e

m2 +D3e
�m2ð Þ+ mm2

2
F2e

m2 �F3e
�m2ð Þ


 �
dm

D2� m

m2

q12

d1
e� α�βð Þm2 1� q12e

�2βm2
� �

D3¼� m

m2

q12

d1
e�2βm2 1� q12e

�2 α�βð Þm2

� �

F2¼Fe�2 α�βð Þm2 K12� q12ð Þe�2βm2 + 1�K12q12e
�2αm2

� �
F3¼�Fe�2βm2 K12� q12ð Þe�2 α�βð Þm2 + 1�K12q12e

�2αm2

h i
1	 α	∞, 0	 β	 α�1

(11.131)
In the case of the probe in a symmetrical position with respect to the

boundaries β¼ α�1

2
and Eq. (11.131) coincides with Eq. (11.108).

Case 4: The layer is located between the coils of the probe.

For this location of the probe (Fig. 11.12D), we have

b∗x ¼�
ð∞
0

k21L
2�m2

2

� 	
D4e

�m1 �mm1

2
F4e

�m1


 �
dm (11.132)
where

D4¼ 4smm2

sm1�m2ð Þ2d1
eα m1�m2ð Þ F4¼ 2F 1� sð Þm1m2e

α m1�m2ð Þ 1� e�2αm2ð Þ
m1 +m2ð Þ sm1 +m2ð Þ

The shoulders on both sides of the layer have the same conductivity; thus

the field does not depend on position of the layer with respect to the coils.

Eqs. (11.129)–(11.132) permit calculation of the field along the trajec-

tory, which crosses the layer. Some results corresponding to the case of

the thick bed with α¼H=L¼ 4 are shown in Fig. 11.13. The apparent

conductivity is introduced as

γa
γ2

¼ b∗x�1
�� ��

b∗0x γ2ð Þ�1j j

where b0x

∗ (γ2) is the field amplitude in the whole space with conductivity of

the bed γ2. The profiling curves are plotted for the fixed values of
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α¼H=L¼ 4 and s¼ γ2=γ1¼ 16;4. The index of curves is parameter L/δ1.
The horizontal axis depicts the value of γa/γ2, and the vertical axis indicates
the distance from the center of the bed to the middle of the probe, expressed

in units of the layer thickness. In the middle of the bed, the apparent con-

ductivity is approaching a true conductivity of the bed. When either the

transmitter or the receiver is near the boundary of the layer, surface charges

lead to a rapid change of the field. If the distance between the layer and the

probe, located outside of the bed increases and slightly exceeds the layer

thickness, the value of the apparent conductivity γa/γ2 asymptotically

approaches the following limit:

γa
γ2

¼ b∗ox γ1ð Þ�1
�� ��
b∗0x γ2ð Þ�1j j

In the range of the small parameter, this limit is equal to γ1/γ2. The dis-
tance d between “horns” on the curves of profiling is related to the thickness

of the formation (i.e., d�H +L).

If conductivity of the thick layer is lower than that of the shoulders

γ2< γ1,H 
Lð Þ, profiling curves are still indicative of the layer thickness.

But if thickness of the layer is several times less than the probe length

H≪Lð Þ, the influence of the shoulder makes determining the thickness

H practically impossible, regardless of the conductivity contrast γ1/γ2.
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Detecting and evaluating low-resistivity pay zones using conventional

induction logging tools is a major challenge in hydrocarbon exploration.

Traditional induction tools comprise transmitter and receiver sensors

whose axes are aligned parallel to the borehole. If the formation dip is

small, the induced currents flow mainly parallel to the bedding planes,

thus measuring the horizontal resistivity of the formation. However,

many geological formations exhibit resistivity anisotropy, i.e., the resistiv-

ity varies with direction. For example, in thinly laminated sand/shale

sequences, where the sand is hydrocarbon bearing, the vertical resistivity

measured perpendicular to the bedding is higher than the horizontal resis-

tivity. The low-resistivity shales dominate the horizontal resistivity,

whereas the vertical resistivity is more sensitive to the more resistive sand

layers. Induction tools with vertically oriented coils cannot accurately

detect and delineate this type of low-resistivity reservoir because the

measured resistivity will be biased toward the low-resistivity shales. To

resolve formation parameters in electrically anisotropic reservoirs, trans-

versal coils should be used. Baker Hughes Incorporated was the first ser-

vice company to build such a tool, and successfully used it to resolve an

anisotropic formation and find the relative dip of the tool with respect to

the formation. Today, all major service companies offer similar services.

In this chapter, we consider the electromagnetic field of a magnetic dipole

in the presence of uniform and horizontally layered anisotropic media.
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448 Basic Principles of Induction Logging
12.1 ANISOTROPY OF A LAYERED MEDIUM

First, suppose that a medium is an alternation of elementary isotropic
layers of two types: onehas conductivity γ1 and dielectric constant ε1; the other
has conductivity and dielectric constant γ2 and ε2, respectively (Fig. 12.1).

Let us assume that in such an elementary layer, which is denoted by index

(1), a uniform electric field E�
1 ¼E exp �iωtð Þ is given, and is located at the

xz plane. The current density in this layer is:

j�1 ¼ γ1E
�
1 (12.1)

Thicknesses of the skin depths, δ1 and δ2, are assumed to be sufficiently

large such that they significantly exceed the thickness of an elementary layer

and the skin effect within these layers can be disregarded. Now, we express

E� and j� in every isotropic layer through current j�1. Maxwell’s equations

result in the following conditions at the interface of the first and second

layers:

E�
2x¼E�

1x, ε2E
�
2z�ε1E

�
1z ¼ σ�0 (12.2)

where σ�0 is the complex amplitude of free surface charges. From the prin-

ciple of charge conservation, at the boundary between the first and the sec-

ond layer we have:

j�2z� j�1z ¼ iωσ�0 (12.3)

By eliminating σ�0 from Eqs. (12.2), (12.3) and applying Ohm’s law, we

obtain the following expressions for the current and the field in the second

layer:
z
x

2

1

4

3

g2

g2

g1

g1

Fig. 12.1 Anisotropic layered medium.
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j�2x¼
γ2
γ1
j�1x, j�2z ¼

1� iωε1
γ1

1� iωε2
γ2

j�1z

E�
2x¼

j�2x
γ2

¼ j�1x
γ1
, E�

2z¼
j�2z
γ2

¼
1� iωε1

γ1

1� iωε2
γ2

j�1z
γ2

(12.4)

By analogy, from conditions on the surface between the second and third

layers, we have:

j�3x¼
γ3
γ2
j�2x, j�3z¼

1� iωε2
γ2

1� iωε3
γ3

j�2z (12.5)

Owing to γ3¼ γ1, ε3 ¼ ε1, Eq. (12.5) becomes:

j�3 ¼ j�1, E�
3 ¼E�

1 (12.6)

Thus, in the formation consisting of alternating thin layers of both types,

the field and current density have paired values, that is, E�
1, j

�
1, and E�

2, j
�
2,

corresponding to the first and second layers. Let us consider an arbitrary layer

with the thicknessD, in which the relative contribution into conductivity of

layers with conductivity γ2 is equal to n. Then, for average values of current

and the field, we have:

j�avx

� �¼ 1�n+ n � γ2
γ1

� �
j�1x, j�avz

� �¼ 1�n+ n �
1� iωε1

γ1

1� iωε2
γ2

0
BB@

1
CCAj�1z (12.7)

and

E�av
x

� �¼ j�1x
γ1

, E�av
z

� �¼ 1�n+ n � γ1
γ2

1� iωε1
γ1

1� iωε2
γ2

0
BB@

1
CCA j�1z

γ1

Defining the longitudinal γt and transversal γn conductivities as:
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γt ¼
j�avx

E�av
x

, γn¼
j�avz

E�av
z

we obtain:

γt ¼ γ1 1�n+ n � γ2
γ1

� �
and γn ¼ γ1

1�n 1�p ωð Þ½ �
1�n 1� γ1

γ2
p ωð Þ

� � (12.8)

where

p ωð Þ¼
1� iωε1

γ1

1� iωε2
γ2

(12.9)

In the quasistationary approximation, dependence on the dielectric con-

stant is absent, and, consequently, expressions for transversal conductivity

and coefficient of anisotropy λ have the form:

γn ¼
γ1

1�n+ n � γ1
γ2

(12.10)

and

λ¼ ρn
ρt

� �1=2

¼ 1�n+ n
γ2
γ1

� �
1�n+ n

γ1
γ2

� �� �1=2
(12.11)

Fig. 12.2 illustrates the dependence of anisotropy coefficient λ on param-

eters γ2/γ1 and n.

In general, when the influence of displacement currents is essential,

the transversal resistivity depends on frequency. If the electric field is not

uniform and changes along the layer, we can assume that the longitudinal

conductance also is a function of frequency. Fig. 12.3 shows the influence

of displacement currents on the anisotropy coefficient λ.
If n remains constant within interval D, and the probe length is much

greater than the layer thickness, this part of a medium can be considered

as a uniform anisotropic layer with coefficient of anisotropy λ.
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12.2 ELECTROMAGNETIC FIELD OF MAGNETIC DIPOLE
IN A UNIFORM AND ANISOTROPIC MEDIUM
Let us consider a uniform anisotropic medium with the tensor of

conductivity:

γik¼
γt 0 0

0 γt 0

0 0 γn

0
@

1
A (12.12)
An arbitrarily oriented magnetic dipole can be presented as the sum of

two dipoles, oriented vertically and horizontally. A vertical magnetic dipole

induces currents in horizontal planes, and they do not depend on the trans-

versal conductivity γn. Features of the field in a uniform medium, caused by

the vertical dipole, were discussed in detail earlier.

Now we explore the case when the moment of the dipole is oriented

horizontally. Under such type of excitation, volume charges occur in the

anisotropic medium. In fact, by presenting the equation of the

quasistationary field div j¼0 in the form:

γt divE+ γn� γtð Þ@Ez

@z
¼ 0
and using the equation:

divE¼ δ=ε0

we obtain an expression for the volume density of the charges at an arbitrary

point in a medium:

δ¼ ε0 1� γn
γt

� �
@Ez

@z
or δ¼ ε0 1� 1

λ2

� �
@Ez

@z
(12.13)

To describe the field, we use Maxwell equations in the following form:

curl E¼ iωB, divE¼ δ=ε0

curlxB¼ γtμ0Ex, curlyB¼ γtμ0Ey

curlzB¼ γnμ0Ez, divB¼ 0

(12.14)

Inasmuch as the volume density δ is not zero, it is impossible to introduce

the vector potential of the electric type E¼ curlAm. Thus, we let:

B¼ curlA (12.15)
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Then, from the first equation of the set (12.14), it follows that:

E¼ iωA� grad U (12.16)
Thus, we have for the potential A, the following equations:

@

@x
divA�r2Ax¼ γt iωμ0Ax�@U

@x

� �

@

@y
divA�r2Ay¼ γt iωμ0Ay�@U

@y

� �

@

@z
divA�r2Az ¼ γn iωμ0Az�@U

@z

� �
By choosing the gauge condition in the form:

divA¼�γtU

we have:

r2Ax + k2t Ax¼ 0

r2Ay + k2t Ay¼ 0

r2Az + k2nAz¼ 1� 1

λ2

� �
@

@z
divA

(12.17)
where

k2t ¼ iγtμ0ω, k2n ¼ iγnμ0ω, λ2¼ γt
γn
The behavior of the vector potential of electrical type A near the mag-

netic dipole is not known beforehand; therefore, it is appropriate to present

the magnetic dipole as a sum of two vertical and two horizontal electric

dipoles (Fig. 12.4) and find a solution for each of them.
z

x

y
M

Fig. 12.4 Magnetic dipole as a sum of four electric dipoles.
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The vector potential of the vertical electric dipole can be described by

only one component,Az
v, because, due to axial symmetry, the magnetic field

has only one component Bϕ. In accordance with Eq. (12.17), equations for

component Az
v have the form:

@2Av
z

@x2
+
@2Av

z

@y2
+

1

λ2
@2Av

z

@z2
+ k2nA

v
z ¼ 0 (12.18)

After replacing variable z with z1¼ λz, Eq. (12.18) coincides with the

equation for a uniform isotropic medium, therefore:

Av
z ¼C

exp iknR�ð Þ
R�

(12.19)

where

R� ¼ x2 + y2 + λ2z2
� 	1=2

To determine the constant C, we use the expression for the potential of

the electrode in a uniform anisotropic medium:

ϕ¼ I

4π γtγnð Þ1=2R�
(12.20)

where I is the value of the direct current.

Assuming small size of the electrode and differentiating Eq. (12.20) with

respect to z, we obtain an expression for the potential of the vertical electric

dipole when the distance between the electrodes Δz is equal to a:

U ¼�@ϕ

@z
Δz¼ Ia

4π γtγnð Þ1=2
λ2z

R3�
(12.21)

At the same time, taking into account the gauge condition:

U ¼� 1

γt

@Az

@z

we have:

Az¼C

γt

λ2z

R3�
(12.22)

Comparing Eqs. (12.19), (12.21), (12.22), we obtain the following

expression for the constant C:
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C¼ Ia

4π

γt
γn

� �1=2

¼ Ia

4π
λ

Thus,

Av
z ¼

Ia

4π
λ
exp iknR�ð Þ

R�
(12.23)

Now consider the field of a horizontal electric dipole with the moment

directed along the y-axis. We look for the solution of Eq. (12.17) assuming

that Ah
x ¼ 0. Then, for components Ay

h and Az
h, we have:

r2Ah
y + k2t A

h
y ¼ 0

and

@2Ah
z

@x2
+
@2Ah

z

@y2
+

1

λ2
@2Ah

z

@z2
+ k2nA

h
z ¼ 1� 1

λ2

� �
@2Ah

y

@y@z
(12.24)

Let us present Ay
h as:

Ah
y ¼C1

exp iktRð Þ
R

¼C1

ð∞
0

m

mt

e�mt zj jJ0 mrð Þdm (12.25)

where mt ¼ m2�k2t
� 	1=2

.

It is convenient to present component Az
h as:

Ah
z ¼

y

r

ð∞
0

Fm m, zð ÞJ1 mrð Þdm¼� @

@y

ð∞
0

Fm m, zð Þ
m

J0 mrð Þdm (12.26)

The expression forAz
h is defined by conditions of excitation and the rela-

tionship between the scalar and vector potentials. Substituting Eqs. (12.25),

(12.26) into Eq. (12.24), we obtain an equation for function Fm(m,z)

d2Fm

dz2
� λ2m2

nFm ¼ sign zð ÞC1 λ2�1
� 	

m2e�mt zj j (12.27)

Here,

mn¼ m2�k2n
� 	1=2

The solution of Eq. (12.27) is:

Fm ¼ sign zð ÞC1 e�λmn zj j � e�mt zj j� 	
(12.28)
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For z¼0, function F(m) is continuous together with its first derivative.

Thus,

Ah
z ¼C1 sign zð Þy

r

ð∞
0

e�λmn zj j � e�mt zj j
 �
J0 mrð Þdm (12.29)

or

Ah
z¼C1

y

r2
z

R
eiktR� λz

R�
eiknR�

� �
(12.30)

ConstantC1 is determined from the gauge condition and the behavior of

the field at infinity, and is equal to:

C1¼ Ia

4π

Thus, for a horizontal electric dipole, we have:

Ah¼ 0,Ah
y,A

h
z

� 

Here,

Ah
y ¼

Ia

4π

eiktR

R

Ah
z ¼

Ia

4π

y

r2
z

R
eiktR� λz

R�
eiknR�

� � (12.31)

The components of the magnetic dipole, Ay and Az, are determined by

summation of the corresponding components of the electric dipoles:

A�
y ¼ lim A 1ð Þ

y +A 2ð Þ
y +A 3ð Þ

y +A 4ð Þ
y

h i
¼�M0

4π

@

@z

eiktR

R

A�
z ¼ lim A 1ð Þ

z +A 2ð Þ
z +A 3ð Þ

z +A 4ð Þ
z

h i
¼

M0

4π
λ
@

@y

eiknR�

R�
�M0

4π
sign zð Þ @

@z

y

r2
� z

R
eiktR� λz

R�
eiknRn

� �
, a! 0ð Þ

(12.32)

According to Eqs. (12.15), (12.32), for the magnetic field along the

z-axis, we have:

By¼Bz ¼ 0
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and

b�x ¼
B�
x

B0

¼ 1� iktL��k2t L
2 1 + λ2

2λ2

� �
eiktL (12.33)
where

B0¼�μ0M0=4πL
3

From Eq. (12.33) in the near zone, kL≪ 1j j, we have:

b�x � 1�k2nL
2

2
+

1

2λ2
+
1

6

� �
k3t L

3

or

Inb�x � 1+
1

λ2
+
1

3

� �
L

δt

� �3

andQb�x �� L

δn

� �2

+
1

λ2
+
1

3

� �
L

δt

� �3

(12.34)

where

δt ¼ 2= σtωμð Þ1=2 and δn ¼ 2= σnωμð Þ1=2

Thus, at the range of small parameters L/δ, the quadrature component of

the field is directly proportional to the transversal conductivity γn, and the

ratio of quadrature components, corresponding to the vertical and horizon-

tal dipoles, permits determination of the anisotropy coefficient:

Qb�vz
Qb�hx

� λ2 (12.35)

Inasmuch as λ� 1, the in-phase component in the anisotropic medium

(12.34) is smaller than that in the isotropic medium with conductivity, γt.
For large values of the anisotropy coefficient γn ! 0ð Þ, both components

of the secondary field become the same at the range of small parameter:

Qb�x ¼ Inb�x�1¼ 1

3

L

δt

� �3

if λ≫1 (12.36)

In the wave zone, when kL≫1j j, we have:

b�x ��k2t L
2

2
1+

1

λ2

� �
exp iktLð Þ (12.37)
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�� �� in anisotropic whole space. Index of curves is anisotropy
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and the influence of anisotropy decreases as λ increases. Typical frequency

responses for the function b�x�1
�� ��, are presented in Fig. 12.5.

The curves show increased sensitivity of responses to the anisotropy

coefficient in the range of small parameter low frequency, L=δt < 0:5ð Þ
and λ< 2. Generally, when condition

1

λ2
� 1

3
is met, the anisotropy coeffi-

cient can be reliably determined.

Applying the Fourier transform to Eq. (12.33), we find the transient

response of field bx when the current in the dipole is turned off:

bx tð Þ¼Φ uð Þ� 2

π

� �1=2

1 +
1+ λ2

2λ2
u2

� �
ue�u2=2

where

Φ uð Þ¼ 2

π

� �1=2ðu
0

e�t2=2dt

is the probability integral, and u¼L μ0γt=2tð Þ1=2.
Table 12.1 contains the values of bx as a function of λ and 1/u.

In the limited cases of t! 0 and t!∞, we obtain:



Table 12.1 Dependence of bx on Anisotropy Coefficient λ
u21 λ51 λ51.2 λ51.4 λ51.6 λ51.8 λ52.0

0.1 �1.0000 �1.0000 �1.0000 �1.0000 �1.0000 �1.0000

�1.0000 �1.0000 �1.0000 �1.0000 �1.0000 �1.0000

0.2 �0.9996 �0.9997 �0.9997 �0.9997 �0.9997 �0.9998

�0.99265 �0.9369 �0.9432 �0.9472 �0.9500 �0.9520

0.4 �0.3642 �0.4479 �0.4983 �0.5311 �0.5535 �0.5696

0.2320 0.09083 0.005718 �0.04952 �0.08739 �0.1145

0.8 0.2472 0.01382 0.07247 0.02981 0.00056 �0.02036

0.06129 0.004334 �0.03001 �0.05230 �0.06758 �0.07851

1.6 �0.05280 �0.07728 �0.09204 �0.1016 �0.1082 �0.1129

�0.08575 �0.09530 �0.1010 �0.1048 �0.1073 �0.1092

3.2 �0.08082 �0.08436 �0.08650 �0.08789 �0.08884 �0.08952

�0.06488 �0.06616 �0.06694E �0.06744 �0.06779 �0.06803

6.4 �0.04872 �0.04918 �0.04946 �0.04964 �0.04976 �0.04985

�0.03547 0.03564 �0.03574 �0.0358 �0.03585 �0.03588
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bx tð Þ�� 2

π

� �1=2
1

2
+

1

2λ2

� �
u3e�u2=2 if u!∞ or t! 0

bx�� 2

π

� �1=2
1

6
+

1

2λ2

� �
u3 if u! 0 or t!∞

(12.38)

Therefore, at the late stage and relatively small anisotropy coefficient, the

field is inversely proportional to λ2.
12.3 MAGNETIC FIELD IN AN ANISOTROPIC FORMATION
OF FINITE THICKNESS
Using results obtained in the previous section, we can define the mag-

netic field in a formation with finite thickness when the medium is aniso-

tropic. The main axes of the tensor of conductivity in all three layers

coincide with the coordinate lines. Equation of interfaces: z¼ h1 and

z¼�h2 (Fig. 12.6).

All quantities that characterize the layer are denoted by the index (2) and

quantities characterizing the medium above and beneath, by the index (1).

We assume that γ 1ð Þ
ik ¼ γ 3ð Þ

ik . In medium (2), the magnetic dipole is located at

the origin of the coordinates, and its moment is oriented along the x-axis. In

accordance with Eq. (12.32), near the source, the field can be described by
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g1t

g2n

g2t
M y

x

z Z= h1

Z= –h2

Fig. 12.6 An anisotropic layer model.
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the vector potential of electric type A(0), which has two components: Ay
(0)

and Az
(0).

Here,

A 0ð Þ�
y ¼�μ0M0

4π

@

@z

eik2tR

R
¼�μ0M0

4π

@

@z

ð∞
0

m

m2t

e�m2t zj jJ0 mrð Þdm

A 0ð Þ�
z ¼ μ0M0

4π
λ2

@

@y

eik2nR�

R�
�μ0M0

4π

y

r2
@

@z

z

R
eik2tR�λ2z

R�
eik2nR�

� �

¼�μ0M0

4π

y

r

ð∞
0

k2tk2n

m2n

e�m2nλ2n zj j +m2te
ik2t zj j

� �
J1 mrð Þdm

(12.39)

where

k22t ¼ iωμ0γ2t, k22n ¼ iωμ0γ2n

m2n ¼ m2�k22n
� 	1=2

, m2t ¼ m2�k22t
� 	1=2

λ22¼ γ2t=γ2n, R2
� ¼ x2 + y2 + λ22z

2

Potentials A 0ð Þ�
y and A 0ð Þ�

z satisfy the equations:

r2 + k22t
� 	

A 0ð Þ�
y ¼ 0, r2 + k22n

� 	
A 0ð Þ�
z ¼ 1� 1

λ22

� �
@2A 0ð Þ�

y

@z@y
,

r2¼ @2

@x2
+

@2

@y2
+

1

λ22

@2

@z2

(12.40)

For potentials in a layered medium, we have:

A�
1y¼

μ0M0

4π

ð∞
0

D1J0 mrð Þem1tzdm

A�
2y¼A 0ð Þ�

y +
μ0M0

4π

ð∞
0

D2e
m2tz +D3e

�m2tzð ÞJ0 mrð Þdm

A�
3y¼

μ0M0

4π

ð∞
0

D3e
�m3tzJ0 mrð Þdm

(12.41)
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and

r2 + k2it
� 	

A�
iy¼ 0

Also,

A�
1z¼

y

r

μ0M0

4π

ð∞
0

F1z zð ÞJ1 mrð Þdm

A�
2z¼A 0ð Þ�

z +
y

r

μ0M0

4π

ð∞
0

F2 zð ÞJ1 mrð Þdm

A�
3z¼

y

r

μ0M0

4π

ð∞
0

F3 zð ÞJ1 mrð Þdm

(12.42)

Using Eqs. (12.40)–(12.42), we obtain equations determining functions

Fi(z):

d2F1 zð Þ
dz2

� λ21m
2
1nF1 zð Þ¼�mm1t λ1

2�1
� 	

D1e
m1tz

d2F2 zð Þ
dz2

� λ22m
2
2nF2 zð Þ¼�mm2t λ

2
2�1

� 	
D2e

m2tz�D3e
�m2tzð Þ

d2F3 zð Þ
dz2

� λ21m
2
1nF3 zð Þ¼�mm1t λ1

2�1
� 	

D4e
m1tz

(12.43)

Taking into account the behavior of the field at infinity, we can write the

solution to the Eq. (12.43) as:

F1 zð Þ¼A1e
λ1m1nz +

m1t

m
D1e

m1tz

F2 zð Þ¼A2e
λ2m2nz +B2e

�λ2m2nz +
m2t

m
D2e

m2tz�D3e
�m2tzð Þ

F3 zð Þ¼B3e
�λ2m1nz�m1t

m
D4e

�m1tz

(12.44)

Substituting Eq. (12.44) into Eq. (12.42), we have:

A�
1z¼

μ0M0

4π

y

r

ð∞
0

A1e
λ1m1nz +

m1t

m
D1e

m1tz
� 

J1 mrð Þdm

A�
2z¼A 0ð Þ�

z +
μ0M0

4π

y

r

ð∞
0

h
A2e

λ2m2nz +B2e
�λ2m2nz

+
m2t

m
D2e

m2tz�D3e
�m2tzð Þ

i
J1 mrð Þdm

A�
3z¼

μ0M0

4π

y

r

ð∞
0

B3e
�λ1m1nz�m1t

m
D4e

�m1tz
� 

J1 mrð Þdm

(12.45)
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To determine the coefficients D1,D2,D3,D4,A1,A2,B2,B3, we use the

boundary conditions at z¼ h1 and z¼�h2. The continuity of the tangential

components of the electric and magnetic fields results in the following rela-

tions for A�
y :

A�
1y¼A�

2y,
@A�

1y

@z
¼ @A�

2y

@z
, if z¼�h2

A�
2y¼A�

3y,
@A�

2y

@z
¼ @A�

3y

@z
, if z¼ h1

(12.46)

and more complicated relations for A�
z

A�
1z ¼A�

2z,
1

γ1t
divA�

1 ¼
1

γ2t
divA�

2, if z¼�h2

A�
2z ¼A�

3z,
1

γ2t
divA�

2 ¼
1

γ3t
divA�

3, if z¼ h1

(12.47)
Substituting Eq. (12.41) into Eq. (12.46), we obtain a system of equations

for the coefficients, Di:

D1e
�m1th2 ¼�me�m2th2 +D2e

�m2th2 +D3e
m2th2

m1tD1e
�m1th2 ¼�mm2te

�m2th2 +m2tD2e
�m2th2 �m2tD3e

m2th2

D4e
�m1th1 ¼me�m2th1 +D2e

m2th1 +D3e
�m2th1

m1tD4e
�m1th1 ¼mm2te

�m2th1 �m2tD2e
m2th1 +m2tD3e

�m2th1

(12.48)

Solving the system, we find:

D2¼�ml12e
�2m2th1

1 + l12e
�2m2th2

1� l212e
�2m2tH

and

D3 ¼ml12e
�2m2th2

1 + l12e
�2m2th1

1� l212e
�2m2tH

(12.49)

where

l12¼m1t�m2t

m1t +m2t

Now we define coefficients A and B. At z¼�h2, component A�
y is a

continuous function, and correspondingly

@A�
1y=@y¼ @A�

2y=@y
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and from Eq. (12.47), we have:
A�
1z ¼A�

2z and St
@A�

1z

@z
�@A�

2z

@z
¼ 1�Stð Þ@A

�
2y

@y
, at z¼�h2 (12.50)

where St ¼ γ2t
γ1t

.

By analogy, at z¼ h1, we have:

A�
2z¼A�

3z and St
@A�

3z

@z
�@A�

2z

@z
¼ 1�Stð Þ@A

�
2y

@y
(12.51)

Substituting Eq. (12.45) in Eqs. (12.50), (12.51), we obtain the system of

equations for coefficients A1,A2,B2, and B3:

A1e
�λ1m1nh2 +

m1t

m
D1e

�m1th2 ¼�k2tk2n

m2n
e�λ2m2nh2 �m2te

�m2th2 +A2e
�λ2m2nh2

+B2e
λ2m2nh2 +

m2t

m
D2e

�m2th2 �D3e
m2th2

� 	

St λ1m1nA1e
�λ1m1nh2 +

m2
1t

m
D1e

�m1th2

� �
+ k22te

�m2nλ2h2 +m2
2te

�m2th2 �λ2m2n

A2e
�λ2m2nh2+λ2m2nB2e

λ2m2nh2�m2
2t

m
D2e

�m2th2+D2e
m2th2

� 	¼�m 1�Stð ÞD1e
�m1th2

B3e
�λ1m1nh1 �m1t

m
D4e

�m1th1 ¼ k2tk2n

m2n
e�λ2m2nh1 �m2te

�m2th1 +A2e
λ2m2nh1

+B2e
�λ2m2nh1 +

m2t

m
D2e

m2th1 �D3e
�m2th1

� 	

St �λ1m1nB3e
�λ1m1nh1 +

m2
1t

m
D4e

�m1th1

� �
�k22te

�λ2m2nh1 �m2
2te

�m2th1

�λ2m2nA2e
λ2m2nh1 + λ2m2nB2e

�λ2m2nh1 �m2
2t

m
D2e

m2th1 +D3e
�m2th1

� 	
¼�m 1�Stð ÞD4e

m1th1

(12.52)

Using Eq. (12.48), establishing connections between coefficients Di, the

system (12.52) can be easily reduced to the form:
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e�λ1m1nh2A1� eλ2m2nh2A2� eλ2m2nh2B2¼ k2tk2n

m2n

e�λ2m2nh2 + Stλ1
m1n

m
e�λ1m1nh2A1

�λ2
m2n

m
e�λ2m2nh2A2 +

λ2m2n

m
e�λ2m2nh2¼�k22t

m
e�λ2m2nh2

eλ1m1nh1B3� e�λ2m2nh1A2� e�λ2m2nh1B2¼�k2tk2n

m2n

e�λ2m2nh1

Stλ1
m1n

m
e�λ1m2nh1B3 + λ2

m2n

m
eλ2m2nh1A2� λ2

m2n

m
e�λ2m2h1B2¼�k22t

m
e�λ2m2nh1

(12.53)
From these equations, we derive:

A2 ¼ k2tk2n

m2n

W
e�2λ2m2nh1

1�L2e�2λ2m2nH
1�We�2λ1m2nh2
� 	

B2 ¼ k2tk2n

m2n

W
e�2λ2m2nh2

1�L2e�2λ2m2nH
1�We�2λ1m2nh1
� 	 (12.54)

where:

W ¼ Stλ1m1n� λ2m2n

Stλ1m1n + λ2m2n

The expression for the horizontal component of magnetic field Bx on the

z-axis within the layer has the form:

B�
x ¼

@A�
z

@y
�@A�

y

@z
¼B�

0x +
μ0M0

4π

ð∞
0

m2t

2
D2e

m2tz�D3e
�m2tzð Þ

h
�m

2
A2e

λ2m2nz +B2e
�λ2m2nz

� 	�dm if �h2< z< h1 (12.55)

The derived solution can be used to study all features of the field excited

and measured by transversal dipoles. Let us consider sensitivity of the

low-frequency component Q b�x
� 	

to the anisotropy of the bed, surrounded

by isotropic shoulders. To proceed, we introduce a function rQX
, which

corresponds to the ratio of the quadrature component of the field Q b�x
� 	

in an anisotropic bed to the corresponding component in the isotropic

bed. The ratio is always equal to one when λ2 ¼ γ2t=γ2n ¼ 1, and decreases

with increase of γ2t/γ2n. To illustrate, we consider two scenarios: a conduc-

tive layer with γ2t ¼ 0:2 ohmmð Þ�1
surrounded by less conductive shoulders

with γ1t ¼ 0:1 ohmmð Þ�1
, Fig. 12.7A, and a resistive layer with

γ2t ¼ 0:1 ohmmð Þ�1
surrounded by the more conductive shoulders,
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Fig. 12.7 The ratio of the quadrature component of the fieldQ(bx) in an anisotropic bed
to the corresponding component in the isotropic bed for the case of a conductive
(A) and resistive (B) bed.
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γ1t ¼ 0:2 ohmmð Þ�1
, Fig. 12.7B. The two-coil probe with L¼ 1m is placed

symmetrically with respect to the boundaries and operating frequency is

10 kHz. Modeling results are presented for infinitely thick H=L¼ infð Þ,
thin H=L¼ 0:5ð Þ, and moderately thick H=L¼ 2:0 layers. The x-axis

depicts the ratio λ2¼ γ2t=γ2n.
In the case ofH=L¼ inf orH=L¼ 2:0, there is a region of γ2t=γ2n < 2 in

which the function rQX
, in accordance with Eq. (12.34), practically linearly

drops with γ2t/γ2n. With further increase of the ratio γ2t/γ2n, the function
rQX

changes the sign and reaches an asymptote, exhibiting no sensitivity

to the anisotropy when γ2t=γ2n > 10: Of course, the thicker the layer,

the higher the sensitivity to the ratio γ2t/γ2n. Minimal sensitivity to the

anisotropy is observed in the thin layer,H=L¼ 0:5, surrounded by the more

conductive shoulders, Fig. 12.7B.
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APPENDIX
ELECTROMAGNETIC RESPONSE OF
ECCENTRED MAGNETIC DIPOLE IN
CYLINDRICALLY LAYERED MEDIA

M. Nikitenko, G.B. Itskovich

A.1 INTRODUCTION

Electromagnetic induction logging with coaxially oriented coils is
the primary method for evaluating water and hydrocarbon saturation in res-

ervoirs. Standard array-induction tools have dramatically improved induc-

tion logging by increasing the depth of investigation up to several feet

while still maintaining high vertical resolutions down to 1 ft in smooth

wellbores [1,2].

In addition, newly developed multifrequency dielectric array tools per-

mit valuable information about formation petro-physical properties by

applying assumed mixing lows to derive water saturation, water salinity,

and hydrocarbon volume. Interpretation of induction and dielectric logs rely

on sophisticated processing techniques [3], which require a tool eccentricity

[4] and radial distribution of the near-borehole geo-electrical properties of

the media to be taken into account [5,6]. This requirement motivated us to

develop a fast modeling algorithm capable of simulating tool response in

cylindrically layered media excited by an eccentred magnetic dipole.

The corresponding code must be fast enough to serve the needs of the

on-site radial inversion and permit modeling in the presence of several

radial zones with piecewise changing conductivity and dielectric constant.

In general, for this type of boundary value problems with no symmetry,

either finite difference [7–9] or a finite element method [10,11] is

employed. In [4] the integral equation and finite difference methods were

combined to find amplitudes of the azimuthal Fourier harmonics of

the quasistationary field resulting from an off-axis source exciting the

2D axially symmetric media. In Nam et al.[12] the authors introduced

an algorithm to simulate triaxial induction measurements that combines
467
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a Fourier series expansion in nonorthogonal system of coordinates with a

2D goal-oriented finite element method. In Wang et al. [13] Fourier series

expansion was used to reduce the original 3D problem to a series of inde-

pendent 2D problems that were solved semianalytically using normalized

Bessel and Hankel functions. In addition, an analytical low-frequency for-

mulation based on the generalized reflection and transmission coefficient

matrices was used to simulate and study the effect of eccentricity on induc-

tion tool responses [14].

The potential of analytical approaches is not exhausted yet. In particular,

a semianalytical treatment, presented below, leads to the ultra-fast and accu-

rate simulation of electromagnetic responses in a wide frequency range,

thereby serving the needs of induction and dielectric logging.
A.2 SOLUTION TO THE BOUNDARY VALUE PROBLEM

A.2.1 Problem Definition
Fig. A.
scribed
These
format
dipole
Let us consider a boundary value problem of an electromagnetic field excited

by a vertical magnetic dipole in cylindrically layered medium (Fig. A.1). The

dipole is located in the first cylindrical layer (borehole) and its current is a

simple harmonic function of time I tð Þ¼ I0e
�iωt.
Mz
σ1

ε1

μ1

σN+1

εN+1

μN+1

r0 r1 rN

Hz

1 The formation is modeled by an arbitrary number of cylindrical layers with pre-
radii rj, conductivity σj, dielectric permittivity εj, and magnetic permeability μj.

layers may describe the borehole, mud cake, invasion zone, and the uninvaded
ion. The tool is comprised of the eccentric magnetic dipole Mz and the eccentric
receivers Hz located in the borehole.



469Electromagnetic Response of Eccentred Magnetic Dipole
A separation of variables method is used to solve the assigned problem

[15,16]. We present electric and magnetic fields in the first layer as a sum

of a normal and anomalous field:

E
!¼E

!
1 +E

!
0

H
! ¼H

!
1 +H

!
0

8<
: (A.1)

The fields E
!
1, H

!
1,E

!
0, H

!
0 as well as fields in the jth layer E

!
j, H

!
j satisfy

Maxwell equations:

rot H
!

0¼ γ1 E
!
0

rot E
!
0¼ iωμ1 H

!
0� j

!μ

8<
: (A.2)

rot H
!

j ¼ γj E
!
j

rot E
!
j ¼ iωμj H

!
j

8<
: (A.3)

Here γj ¼ σj� iωεj is the complex conductivity; j
!μ ¼ 0, 0, jμz

� �
is the

magnetic current; jμz ¼�iωμ1 �Mz �U P, P0ð Þ, Mz ¼ I0 � S � nt are the dipole
moment; S is the coil square; nt is the number of turns;U(P,P0) is the source

function; P0 is the coordinates of the source (transmitter); and P is the coor-

dinates of the observation point (receiver).

At the boundaries, tangential components of the electric and magnetic

fields are continuous and satisfy the following conditions:

E�
t1

� �
r¼r1

¼�Et0 r1ð Þ

Ht1½ �r¼r1
¼�Ht0 r1ð Þ

E�
tj

h i
r¼rj

¼ 0

Htj

� �
r¼rj

¼ 0, j¼ 2,N

8>>>>>>>>><
>>>>>>>>>:

(A.4)

where the subscript “t” refers to the ϕ- or z-component of electromagnetic

field. Square brackets in Eq. (A.4) denote the jump in a quantity across the

boundary. Eqs. (A.2)–(A.4) uniquely determine an electromagnetic field at

any point of the medium.
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A.2.2 Fourier Transform

Let us find fields E
!
j, H

!
j, assuming that normal fields E

!
0, H

!
0 are known.

Forward and inverse Fourier transform are determined as:

A� r, ϕ, λð Þ¼
ð∞
�∞

A r, ϕ, zð Þe�iλzdz

A r, ϕ, zð Þ¼ 1

2π

ð∞
�∞

A� r, ϕ, λð Þeiλzdλ:

8>>>>>><
>>>>>>:

(A.5)

Then, by using Eqs. (A.3)–(A.5) Fourier transforms of tangential

components can be expressed through Fourier transforms of vertical com-

ponents as:

E�
rj ¼

1

p2j
�iλ

dE�
zj

dr
� iωμj

r

dH�
zj

dϕ

� �

E�
ϕj ¼

1

p2j
iωμj

dH�
zj

dr
� iλ

r

dE�
zj

dϕ

� �

H�
rj ¼

1

p2j
�iλ

dH�
zj

dr
� γj

r

dE�
zj

dϕ

� �

H�
ϕj ¼

1

p2j
γj
dE�

zj

dr
� iλ

r

dH�
zj

dϕ

� �

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

(A.6)

p2j ¼ λ2 + k2j , k
2
j ¼�iωμjγj. Fourier transforms of vertical components of

electric and magnetic fields follow equations:

1

r

d

dr
r
dE�

zj

dr

� �
+

1

r2

d2E�
zj

dϕ2
� p2j E

�
zj ¼ 0

1

r

d

dr
r
dH�

zj

dr

� �
+

1

r2

d2H�
zj

dϕ2
�p2j H

�
zj ¼ 0

8>>>><
>>>>:

(A.7)

By applying Fourier transform (A.5) to the boundary conditions (A.4),

we receive the following conditions for tangential components at the first

boundary r ¼ r1:
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E�
zj

h i
r¼r1

¼�E�
z0

H�
zj

h i
r¼r1

¼�H�
z0

1

p2j
iωμj

dH�
zj

dr
� iλ

r

dE�
zj

dϕ

� �" #
r¼r1

¼� 1

p21
iωμ1

dH�
z0

dr
� iλ

r

dE�
z0

dϕ

� �

1

p2j
γj
dE�

zj

dr
� iλ

r

dH�
zj

dϕ

� �" #
r¼r1

¼� 1

p21
γ1
dE�

z0

dr
� iλ

r

dH�
z0

dϕ

� �

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

(A.8)

At the boundaries r ¼ rj, j¼ 2,N we have

E�
zj

h i
r¼rj

¼ 0

H�
zj

h i
r¼rj

¼ 0

1

p2j
iωμj

dH�
zj

dr
� iλ

r

dE�
zj

dϕ

� �" #
r¼rj

¼ 0

1

p2j
γj
dE�

zj

dr
� iλ

r

dH�
zj

dϕ

� �" #
r¼rj

¼ 0

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

(A.9)
A.2.3 Expansion in Series
Let us expand E�

zj, E�
zj and E�

z0, E�
z0 into a series:

E�
zj ¼

X∞
n¼0

ecnj cos nϕ+ esnj sin nϕ
� 	

H�
zj ¼

X∞
n¼0

hcnj cos nϕ+ hsnj sin nϕ
� 	

E�
z0¼

X∞
n¼0

ecn0 cos nϕ+ esn0 sin nϕ
� �

H�
z0¼

X∞
n¼0

hcn0 cos nϕ+ hsn0 sin nϕ
� �

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

(A.10)

Here ϕ¼ϕ�ϕ0 is the difference between receiver and transmitter

angular coordinates (Fig. A.2).
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Fig. A.2 The polar coordinate system.
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Substituting Eq. (A.10) into Eqs. (A.7)–(A.9), we obtain Eqs. (A.11)–
(A.13) determining unknown functions enj

c,s, hnj
c,s:

1

r

d

dr
r
dec, snj

dr

� �
� n2

r2
+ p2j

� �
ec, snj ¼ 0

1

r

d

dr
r
dhc, snj

dr

� �
� n2

r2
+ p2j

� �
hc, snj ¼ 0

8>>><
>>>:

(A.11)

ec, snj

h i
r¼r1

¼�ec, sn0

hc, snj

h i
r¼r1

¼�hc, sn0

1

p2j
iωμj

dhc, snj

dr
� iλn

r
es, cnj

� �" #
r¼r1

¼� 1

p21
iωμ1

dhc, sn0
dr

� iλn

r
es, cn0

� �

1

p2j
γj
dec, snj

dr
� iλn

r
hs, cnj

� �" #
r¼r1

¼� 1

p21
γ1
dec, sn0
dr

� iλn

r
hs, cn0

� �

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

(A.12)

ec, snj

h i
r¼rj

¼ 0

hc, snj

h i
r¼rj

¼ 0

1

p2j
iωμj

dhc, snj

dr
� iλn

r
es, cnj

� �" #
r¼rj

¼ 0

1

p2j
γj
dec, snj

dr
� iλn

r
hs, cnj

� �" #
r¼rj

¼ 0, j¼ 2,N

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

(A.13)
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A.2.4 Solution for Angular Harmonics
Solution to Eq. (A.11) is a linear combination of modified Bessel

functions[17]:

ec, snj ¼Cc, s
nj In pjr
� �

+Pc, s
nj Kn pjr

� �
hc, snj ¼Dc, s

nj In pjr
� �

+Qc, s
nj Kn pjr

� �
, Repj > 0

(
(A.14)

Applying boundary conditions E�
z1, H

�
z1




r!0

! 0 and

E�
zN +1, H

�
zN +1




r!∞! 0, we find Pc, s

1 ¼Qc, s
1 ¼Cc, s

N +1¼Dc, s
N +1¼ 0. The

remaining unknown coefficients Cc, s
nj , D

c, s
nj , j¼ 1,N and

Pc, s
nj , Q

c, s
nj , j¼ 2,N +1 can be determined through boundary conditions

(A.12), (A.13). For this purpose it is necessary to define harmonics of the

normal fields en0
c,s , hn0

c,s .
A.2.5 Determination of the Normal Field
To simplify derivation of harmonics of the normal field, the Cartesian

coordinate system is used. The point source function U(P,P0) (Eq. A.2) is

presented as U P, P0ð Þ¼ δ x�x0ð Þ δ y� y0ð Þ δ z�z0ð Þ, P0¼ x0,y0, z0ð Þ,
P¼ x,y, zð Þ. The Fourier transform with respect to all coordinates (x,y, z)

is determined as:

A+ ξ, η, λð Þ¼
ð∞

�∞

ð∞
�∞

ð∞
�∞

A x, y, zð Þe�iξxe�iηye�iλzdxdydz,

A x, y, zð Þ¼ 1

2πð Þ3
ð∞

�∞

A+ ξ, η, λð Þeiξxeiηyeiλzdξdηdλ

8>>>>>><
>>>>>>:

(A.15)

Applying transformation Eq. (A.15) to Eq. (A.2) and using properties

of Fourier transform and delta-function [18,19], we derive simple algebraic

expression determining the normal field:

H +
z0¼�e�iξx0e�iηy0e�iλz0

ξ2 + η2 + p21
� p21 �Mz (A.16)

while the z-component of the electrical normal field is equal to zero:

E +
z0¼ 0
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Applying inverse Fourier transform with respect to coordinates (x,y)

we obtain Fourier transformants of magnetic field with respect to the

coordinate z:

H�
z0¼�e�iλz0

2π
� p21 �Mz �K0 p1Rð Þ (A.17)

R¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x�x0ð Þ2 + y� y0ð Þ2

q
In cylindrical coordinate system (Fig. A.2)

x¼ r cosϕ, y¼ r sinϕ, x0¼ r0 cosϕ0, y0¼ r0 sinϕ0,

R¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 + r02�2rr0 cosϕ

q
Applying an addition theorem for Bessel functions [20]:

K0 p1Rð Þ¼ I0 p1r0ð ÞK0 p1rð Þ+2
X∞
n¼1

In p1r0ð ÞKn p1rð Þcos nϕ, r0< r (A.18)

we derive the following expressions for the Fourier harmonics of the

normal fields:

hcn0¼�e�iλz0

2π
� l � p21 �Mz � In p1r0ð ÞKn p1rð Þ

hsn0¼ 0

ec, sn0 ¼ 0

8>>>><
>>>>:

(A.19)

where

l¼ 2, n 6¼ 0

1, n¼ 0

�

A.2.6 Final Representation of the Magnetic Field
After taking into account Eq. (A.19), we determineCc

nj ¼ Ds
nj ¼ 0, j¼ 1,N

and Pc
nj ¼ Qs

nj ¼ 0, j¼ 2,N +1. To find nonzero coefficients we use

Eq. (A.14) and rewrite Eqs. (A.12), (A.13) in the matrix form:

Ŵ 1 3, 4½ � r1ð Þψ!1 + Ŵ 1 1, 2½ � r1ð ÞΠ!¼ Ŵ 2 r1ð Þ ψ!2

Ŵ j rj
� �

ψ
!
j ¼ Ŵ j+1 rj

� �
ψ
!
j+1, j¼ 2, N �1

ŴN rNð Þψ!N ¼ ŴN +1 1, 2½ � rNð Þψ!N +1

8>><
>>: (A.20)
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The matrix Ŵ j rð Þ is defined as:

Ŵ j rð Þ¼
Kn pjr
� �

0 In pjr
� �

0

0 Kn pjr
� �

0 In pjr
� �

�αj Kn pjr
� �

βj K
0
n pjr
� � �αj In pjr

� �
βj I

0
n pjr
� �

ςj K
0
n pjr
� �

αj Kn pjr
� �

ςj I
0
n pjr
� �

αj In pjr
� �

2
664

3
775 (A.21)

αj ¼ iλn

p2j r
, βj ¼

iωμj
pj

, ςj ¼
γj
pj
.

The following notations for the matrixes Ŵ and vectors ψ
!

and Π
!

are

introduced:
Ŵ 1[3,4]: 3rd and 4th columns of Ŵ 1;

Ŵ 1[1,2]: 1st and 2nd columns of Ŵ 1; and

ŴN +1 1, 2½ �: 1st and 2nd columns of ŴN +1.
ψ
!
j ¼

Ps
nj

Qc
nj

Cs
nj

Dc
nj

2
6664

3
7775, j¼ 2,N , ψ

!
1¼

Cs
n1

Dc
n1

 �
, ψ

!
N +1¼

Ps
nN +1

Qc
nN +1

 �
,

Π
!¼

0

�Mz

p21
π
In p1r0ð Þ

2
4

3
5

(A.22)

In the expression for the right part Π
!

the factor e�iλz0 is intentionally

omitted and is taken into account later in the inverse Fourier transform

(A.5). After introducing vector X
!¼

0

Π2

Cs
n1

Dc
n1

2
664

3
775, Eq. (A.20) can be rewritten as:

Ŵ 1 r1ð ÞX!¼ Ŵ 2 r1ð Þ ψ!2

Ŵ j rj
� �

ψ
!
j ¼ Ŵ j+1 rj

� �
ψ
!
j+1, j¼ 2,N �1

ŴN rNð Þψ!N ¼ ŴN +1 1, 2½ � rNð Þψ!N +1

8><
>: (A.23)

From Eq. (A.23) we obtain

X
!¼ V̂ψ

!
N +1

V̂ ¼ Ŵ
�1

1 r1ð ÞŴ 2 r1ð ÞŴ�1

2 r2ð ÞŴ 3 r2ð Þ⋯Ŵ
�1

N rNð ÞŴN +1 1, 2½ � rNð Þ
(A.24)
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Using equation for the Wronskian, the inverse matrix Ŵ
�1

j rð Þ is

expressed explicitly:

Ŵ
�1

j rð Þ¼ pjr �

I 0n pjr
� � αj

ςj
In pjr
� �

0 � 1

ςj
In pjr
� �

�αj
βj
In pjr
� �

I 0n pjr
� � � 1

βj
In pjr
� �

0

�K 0
n pjr
� � �αj

ςj
Kn pjr
� �

0
1

ςj
Kn pjr
� �

αj
βj
Kn pjr
� � �K 0

n pjr
� � 1

βj
Kn pjr
� �

0

2
6666666666664

3
7777777777775
(A.25)

From Eqs. (A.24), (A.21), (A.25) all the unknown coefficients Dn1
c are

determined and Eqs. (A.10), (A.14) permit the Fourier transform of the

magnetic field in the 1st layer (borehole):

H�
z1¼

X∞
n¼0

Dc
n1In p1rð Þcos nϕ (A.26)

Finally, we apply the inverse Fourier transform (A.5) to Eqs. (A.26),

(A.17) to derive the total Hz and normal field Hz0, correspondingly:

Hz¼Hz0 +
Mz

π

ð∞
0

X∞
n¼0

Dc
n1In p1rð Þcosnϕ

 !
cos λ z�z0ð Þdλ

Hz0¼Mze
�k1R

2π R
3

1 + k1R�R2

R
2

3 + 3k1R+ k1Rð Þ2
� 	 �

, R
2¼R2 + z�z0ð Þ2, Rekj > 0:

(A.27)

Here we used the evenness of the integrand to reduce an integration pass

from �∞, +∞ð Þ to 0, +∞ð Þ:

ð∞
�∞

F λð Þ � eiλ z�z0ð Þdλ¼ 2

ð∞
0

F λð Þcosλ z�z0ð Þdλ
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A.3 NUMERICAL IMPLEMENTATION

A.3.1 Normalization

To prevent the exponential growth of modified Bessel functions In(z),

Kn(z) and thereby improve numerical stability at large arguments, we use

the following normalization:

In zð Þ¼ In zð Þ � ez
Kn zð Þ¼Kn zð Þ � e�z

(
(A.28)

Matrixes from Eq. (A.24) are presented in the normalized form:

Ŵ
�1

j rj
� � ¼

epjrj 0 0 0

0 epjrj 0 0

0 0 e�pjrj 0

0 0 0 e�pjrj

2
6664

3
7775 � Ŵ�1

j rj
� �

, j¼ 1,N

Ŵ j rj�1

� � ¼ Ŵ j rj�1

� � �
e�pjrj�1 0 0 0

0 e�pjrj�1 0 0

0 0 epjrj�1 0

0 0 0 epjrj�1

2
6664

3
7775, j¼ 2,N +1

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

(A.29)

Matrixes Ŵ j, Ŵ
�1

j contain normalized functions In zð Þ, Kn zð Þ instead
of In(z), Kn(z). Then, for the product Ŵ j rj�1

� � � Ŵ�1

j rj
� �

and matrix D̂j

we get

Ŵ j rj�1

� � � Ŵ�1

j rj
� �¼ Ŵ j rj�1

� � � D̂j � Ŵ
�1

j rj
� � � epj rj�rj�1ð Þ

D̂j ¼
1 0 0 0

0 1 0 0

0 0 e�2pj rj�rj�1ð Þ 0

0 0 0 e�2pj rj�rj�1ð Þ

2
664

3
775, j¼ 2,N

Denoting:

D̂1¼
ep1r1 0 0 0

0 ep1r1 0 0

0 0 e�p1r1 0

0 0 0 e�p1r1

2
664

3
775, D̂N +1¼

e�2pN +1rN 0 0 0

0 e�2pN +1rN 0 0

0 0 1 0

0 0 0 1

2
664

3
775
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we rewrite Eq. (A.24) as:

X
!
¼ V̂ � ψ!N +1 (A.30)

where

X
!
¼ D̂

�1

1 � X!

V̂ ¼ Ŵ
�1

1 r1ð Þ � Ŵ 2 r1ð Þ � D̂2 � Ŵ
�1

2 r2ð Þ � Ŵ 3 r2ð Þ � D̂3⋯Ŵ
�1

N rNð Þ � Ŵ N +1 rNð Þ � D̂N +1

ψ
!
N +1¼ ep2 r2�r1ð Þ⋯epN rN�rN�1ð ÞepN +1rN �ψ!N +1

8>><
>>:

(A.31)

Similarly, presenting vector ψ
!
N +1 as ψ

!
N +1¼ y1

y2

 �
, we derive the

following system of linear equations:

0 ¼V 11y1 +V 12y2

A ¼V 21y1 +V 22y2

ep1r1Cs
n1¼V 31y1 +V 32y2

ep1r1Dc
n1¼V 41y1 +V 42y2

8>>>>><
>>>>>:

(A.32)

where

A¼ e�p1r1Πn2 ¼�Mz

p21
π
In p1r0ð Þe�p1 r1�r0ð Þ

From the 1st and 2nd equations of the system (A.23) we find y1, y2:

y1¼�A
V 12

V 11V 22�V 12V 21

y2¼A
V 11

V 11V 22�V 12V 21

8>><
>>:

and the coefficient Dn1
c is determined from the 4th equation as

Dc
n1¼ ep1r1A

V 42V 11�V 41V 12

V 11V 22�V 12V 21

. Now, in Eq. (A.27) the factor Dn1
c In(p1r)

is of the form:

Dc
n1In p1rð Þ¼A

V 42V 11�V 41V 12

V 11V 22�V 12V 21

In p1rð Þe�p1 r1�r0ð Þ (A.33)
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Derived presentations for thematrix V̂ , factorDn1
c In(p1r), and coefficientA

areveryconvenient because theydonot containexponentially growing factors,

which represent a significant obstacle for the numerical implementation.
A.3.2 Convergence of Series
Convergence is reached when each of the following terms in the expansion

changes the sum by less than some predefined small number. The number of

terms varies from 1, when eccentricity is equal to zero, to a large number,

when the eccentricity approaches the borehole radius. When the transmitter

and receiver radii approach the borehole radius, convergence of the series is

very slow. In that case it is advisable to transpose integration and summation.
A.3.3 Integration
To ensure fast decay of the integrand, it is necessary to transform oscillating

factor cos λ z�z0ð Þ into a decaying factor. This can be accomplished

by integration in the plane of complex numbers λ [16]. Integrand Dn1
c In(p1r)

depends on the radicals pj (p2j ¼ λ2 + k2j , k
2
j ¼�iωμjγj ¼

�iωμjσj�ω2μjεj, Repj > 0, Rekj > 0), which have branch points pj ¼ 0 in

the complex plane of λ. The branch points λj ¼ λxj, λyj
� �

are determined by

the following relationships:

λxj ¼Reλj ¼�Imkj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2μjεj +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2μjεj
� 	2

+ ωμjσj
� 	2r

2

vuuut

λyj ¼ Imλj ¼Rekj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ω2μjεj +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2μjεj
� 	2

+ ωμjσj
� 	2r

2

vuuut

8>>>>>>>><
>>>>>>>>:

(A.34)

The cut, which separates Riemann surface sheets, is a part of the hyper-

bola in the complex plane λ with the origin in the branch point:

2λxjλyj ¼ωμjσj

λxj �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2yj +ω2μjεj

q(
(A.35)

The larger dielectric permittivity εj the closer branch point to the real axis
of integration λx. For illustration purpose, the branch points and cuts are

shown in Fig. A.3.
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Fig. A.3 Plane of complex numbers λ. Branch points λj, cuts on a Riemann surface for
two branch points, and the integration path.
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The appropriate path of integration in the complex plane λ avoids an

intersection with the cuts. Because the integrand in the vicinity of the

branch points is irregular, it also must avoid approaching the branch points

closely. Having that in mind, we set the following integration path.

The first part is parabola from the point λ¼ 0, 0ð Þ to the point

λ0¼ λx0, λy0
� �

, having zero derivative at λ0. The path then falls into

the two rays along the angles �α with respect to the axis λx (Fig. A.3).

The coordinate λy0¼ d0 is set to be a fixed small number, while λx0 is deter-
mined by the minimal distance from the branch points to the upper ray.

Let dj be the distances from the branch points to the upper ray, λj
n is the

projections of the branch points to the ray, and dm is the minimal distance

for which the corresponding projection λj
n is higher than λ0:

dm¼ min djjλnyj > λy0
n o

. Then λx0 is chosen such that dm¼ d0m, where

d0m is fixed small number. The constructed integration path neither

intersects the cuts nor closely approaches the branch points.

Let us present the integral in Eq. (A.27) as a sum:

I ¼
ð∞
0

F λð Þcos λ z�z0ð Þdλ¼ I1 + I2 + I3 (A.36)
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For the terms earlier we have

I1¼
ðλ0
0

F λð Þcos λ z�z0ð Þdλ

¼
ðλx0
0

F λ+ iλy0 1� λ

λx0
�1

� �2
 !" #

1� iλy0
2

λx0

λ

λx0
�1

� �� �
cos λ z�z0ð Þdλ

(A.37)

I2 + I3¼
ð∞+ λ0

λ0

F λð Þe
iλ z�z0ð Þ + e�iλ z�z0ð Þ

2
dλ

I2¼ 1

2

ð∞+ λ0

λ0

F λð Þeiλ z�z0ð Þdλ

I3¼ 1

2

ð∞+ λ0

λ0

F λð Þe�iλ z�z0ð Þdλ

(A.38)

Integration in I2 is performed along the upper ray, while in I3 it is

performed along the lower ray. In that case the oscillating factor

cos λ z�z0ð Þ becomes decaying one e�tgα λ�λx0ð Þ:

I2 ¼ 1+ i � tgα
2

e�λy0 z�z0ð Þ
ð∞
λx0

F λ+ i tgα λ�λx0
� �

+ λy0
� �� �

eiλ z�z0ð Þe�tgα λ�λx0ð Þdλ,

I3 ¼ 1� i � tgα
2

eλy0 z�z0ð Þ
ð∞
λx0

F λ+ i �tgα λ�λx0
� �

+ λy0
� �� �

e�iλ z�z0ð Þe�tgα λ�λx0ð Þdλ

8>>>>>>>><
>>>>>>>>:

(A.39)

Eqs. (A.36), (A.37), (A.39) determine advanced integration in the com-

plex plane λwith a rapidly decaying integrand. In the case of low frequencies

when σ≫ωε, the branch points are close to the ray λy¼ λx, and positioned
far from the real axis λx. In that case the integration in I1 (Eq. A.37) may be

simplified and performed along the real axis λx:
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I1¼
ðλ0
0

F λð Þcos λ z�z0ð Þdλ (A.40)

where λ0 is a prescribed small real number or zero. Correspondingly, the

integrals I2, I3 (Eq. A.39) are transformed into

I2¼ 1

2

ð∞
λ0

F λð Þeiλ z�z0ð Þdλ¼ 1+ i � tgα
2

ð∞
λ0

F λ+ i � tgα λ�λ0
� �� �

eiλ z�z0ð Þe�tgα λ�λ0ð Þdλ

I3¼ 1

2

ð∞
λ0

F λð Þe�iλ z�z0ð Þdλ¼ 1� i � tgα
2

ð∞
λ0

F λ� i � tgα λ�λ0
� �� �

e�iλ z�z0ð Þe�tgα λ�λ0ð Þdλ

8>>>>>>><
>>>>>>>:

(A.41)
A.3.4 Code Performance
Based on the described algorithm a computer 1.5D code for numerical cal-

culations was developed. The program permits arbitrary number of layers

with prescribed conductivity and dielectric constant in each layer. The per-

formance strongly depends on the value of eccentricity and the number of

cylindrical layers in the model—the greater the eccentricity and the number

of layers the more processing time is required. For the majority of practical

cases with several boundaries and dipole in the middle of the borehole, the

processing time on a 3.2-GHz processor is less than 0.1 c, providing results

with an error less than 0.01%. This kind of performance is essential while

solving an inversion problem, where a large number of repetitive modeling

calls are required before matching synthetic and measured data.

We verified our code versus 2.5D finite element (FE) code developed

by [10] and Commercial CST FE 3D code. A comparison example is shown

in Fig. A.4, where the green line corresponds to the 2.5D, the blue line

to the CST, and the red line to our code. For the calculations we used

Model 3 (Table A.1) and selected the following arrangements:

transmitter-receivers spacings 0.2 and 0.14 m, frequency 100 MHz. The

mismatch between 1.5D and 2.5D codes is less than 2%, while our code

is, at least, 1000 times faster. Commercial CSTFE 3D code requires about

10 min per frequency, and the mismatch with 1.5D grows up to 4% at the

extreme eccentricity value.
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Fig. A.4 Comparison between 1.5D, 2.5D, and CST codes.

Table A.1 Parameters of the Models
Model Mud Formation Borehole Radius

1 ρ1¼0.02 ohm m

ε∗1¼50

ρ2¼10 ohm m

ε∗2¼40

r1¼0.108 m

2 ρ1¼2 ohm m

ε∗1¼70

3 ρ1¼200 ohm m

ε∗1¼10
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A.4 EFFECT OF ECCENTRICITY

In this section we present numerical results showing the usefulness of
the algorithm for studying the influence of eccentricity on the induction

responses. Eccentricity is defined as a displacement of the tool from the bore-

hole axis, and it is equal to the transmitter/receiver radius r¼ r0. While

induction well logging operates in the frequency range from tens of KHz

to tens of MHz, the frequency of the dielectric logging varies between tens

and hundreds of MHz.

Following we show how the eccentricity and the dielectric permittivity

affect the responses at different frequencies and conductivities of the

borehole mud.

Three benchmarks of the borehole are considered:

1. high-conductivity mud (salty or biopolymer);

2. medium-conductivity mud (fresh); and

3. low-conductivity mud (oil-based).

The selected parameters of the models are presented in Table A.1: resistiv-

ities ρj ¼
1

σj
, relative dielectric permittivities ε∗j , and borehole radius r1.
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Relative dielectric permittivity is determined by the relationship: εj ¼ ε0ε�j ,

where ε0 ¼ 10�9

36π
F/m is the permittivity of free space. Magnetic permeabil-

ity is equal to the permeability of free space: μj ¼ μ0 ¼ 4π10�7H/m.

Following we present the dependence of the signals on the eccentricity

to determine cases when it significantly affects the measurements and cannot

be ignored in the processing. Variation of the signals is presented in the nor-

malized form as a ratio between signals of the eccentred and noneccentred

probes.

A.4.1 Low-Frequency Induction Logging
The measured signal is the imaginary part of magnetic field in a three-coil

array:

S¼ Im Hz L2ð Þ� L1

L2

� �3

Hz L1ð Þ
 !

, where L¼ z�z0, L1 is the distance

between transmitter and short-spaced coil (bucking coil) and L2 is the dis-

tance between transmitter and long-spaced coil (main coil); L2 ¼ 0.25, 0.5,

and 1 m, L1¼ 0:8 L2, frequencies 10 and 200 kHz. At these frequencies,

even for the case of low-conductive mud (Model 3) σ≫ωε, the influence
of the dielectric permittivity is small and the field is mainly defined by the

conductivity of the media. For example, for ρ1¼200 ohm m, ε∗j ¼10, and at

200 kHz, the estimate for ωε¼0.0001 S/m (σ¼0.005 S/m) and the condi-

tion σ≫ωε is held.
The eccentricity must be taken into account when mud is highly con-

ductive (Fig. A.5) or when subarrays are short (Figs. A.6 and A.7). In those

cases the eccentricity should become a subject of inversion.

When the influence of the eccentricity is relatively small (10% and less),

well-known correction algorithms can be used. For example, a specific

combination of responses at two [21] or more [22] different frequencies is

less sensitive to the near-borehole zone and, in particularly, to the eccentric-

ity of the probe.

This is shown in A.8, where dual-frequency responses

ΔS¼ S ω1ð Þ�ω1

ω2

S ω2ð Þ for the Model 1 and different arrangements are

presented. The combination diminishes the influence of the eccentricity.

In Table A.2 we present the signal dynamic range, corresponding to the

single-frequency (third column) and dual-frequency responses (fourth col-

umn). The dynamic range is defined as a ratio of the signals at 0.09 m and
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Table A.2 Dynamic Range of Single-frequency and Dual-frequency Signals
Frequencies
(kHz)

Spacing
(m)

Single-Frequency
Range

Dual-Frequency
Range

Range
Decrease

10

15

0.25 22 5.2 4.2

0.5 2.3 1.1 2.1

1.0 1.6 1.1 1.5

150

200

0.25 – – –
0.5 3.2 1.8 1.8

1.0 2.2 1.6 1.4
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Fig. A.8 Conductive mud, Model 1. Eccentricity correction by the dual-frequency com-
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0 value of eccentricity. In the last column the ratio between the third and

fourth columns demonstrates the benefit of the dual frequency.

Dual frequency effectively reduces sensitivity to the eccentricity in all

cases, except the case of a large eccentricity when the signal rapidly changes

due to zero crossing (combination of 150 and 200 kHz, 0.25-m spacing).
A.4.2 High-Frequency Induction Logging
In high-frequency induction logging, the measured values are phase differ-

ence Δϕ and attenuation dA in three-coil array:

Δϕ¼ arctg
ImS

ReS
� 180°

π

dA¼�20lg Sj j

8<
:

where S¼Hz L2ð Þ
Hz L1ð Þ

.Hair
z L2ð Þ

Hair
z L1ð Þ, and Hair

z k1¼�iω
ffiffiffiffiffiffiffiffiffi
μ0ε0

p� �
is the magnetic

field in the air used for the calibration. It is calculated using expression
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for the normal field Hz0 (Eq. A.27). At the low-frequency limit the calibra-

tion factor is defined only by the spacings L1 and L2:
Hair

z L2ð Þ
Hair

z L1ð Þ¼
L1

L2

� �3

. We

use the following arrangements: L2¼0.5, 1, and 2 m; L1¼ 0:8 L2; frequen-

cies 1 and 15 MHz. At the frequency of 15 MHz the parameter of formation

ωε¼0.03 S/m is comparable with σ¼0.1 S/m and the permittivity has to

be taken into account. For the low-conductive mud (Model 3) when

σ¼0.005 S/m and the parameter ωε¼0.0075 S/m, the influence of the

dielectric term is even more pronounced. This is especially true for shallow

subarrays, which are severally affected by the conductivity of the mud. At

the frequency of 1 MHz the influence of permittivity is negligible.

The effect of the eccentricity on the high-frequency logging responses is

demonstrated in Figs. A.9–A.11. The long 2 m subarray is practically

unsusceptible to the eccentricity. It is interesting to see how a very conduc-

tive mud hugely attenuates the signal at the frequency of 15 MHz (Fig. A.9,

subplots on the right), making the response insensitive to all other parame-

ters including standoff. At the same time the eccentricity has to be taken into

account in the processing of the short- and medium-spacing responses

(<1 m) at relatively low frequencies (Fig. A.9, subplots on the left). When
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the mud is medium or low conductive, the eccentricity can be neglected

regardless of the spacing (Figs. A.10 and A.11). This conclusion is in agree-

ment with observationmade by [23] about the negligible effect of the eccen-

tricity in the analyzed range of resistivity contrasts. They also pointed out

that the effect increases dramatically when the contrast between mud and

formation approaches values of 10,000 and above.
A.5 CONCLUSIONS

We believe that the potential of analytical approaches is not yet
exhausted; in this study a semianalytical approach enabled us to develop very

fast code for simulation of electromagnetic responses of eccentred dipole

located in cylindrically layered media. The code permits calculations in a

wide range of frequencies, serving the needs of induction and dielectric log-

ging. For effective implementation of the algorithmwe stress the importance

of a proper normalization of the integrands and the means increasing con-

vergence of the infinite series. Also, when performing integration in the
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complex plane, cautions are needed in order to avoid intersection with the

cuts located on Riemann surface.

Validation of our 1.5D code against two finite element codes, applicable

for more complex formation structures, showed superior performance of the

code in a simple cylindrically layered media.

In most cases of the low-frequency induction measurements, the influ-

ence eccentricity either can be neglected or corrected. In case of high-

frequency logging the eccentricity is the most pronounced when a short

probe is placed in a salty mud.
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Ampere’s law, 4–5, 6f
Anisotropy

coefficient, 451f, 458f

conductivity, 448–449, 452, 459
electromagnetic field of magnetic dipole,

452–459
formation with finite thickness, 459–465
Fourier transform, 458

gauge condition, 453–454, 456
horizontal electric dipole, 456

in-phase component, 457

of layered medium, 448–451
Maxwell equations, 452

Ohm’s law, 448–449
quadrature component of field, 465f

quasistationary approximation, 450

Apparent conductivity, 181–182, 229
corrections
borehole, 225–226
skin effect, 222–225, 223–224f

curves, 301–305, 305f
electromotive force, 181

elementary geometric factor, 181–182
in finite thickness bed, 188–194, 189f,

192f

horizontal magnetic dipole, 437, 437f

for 6FF40 probe, 222–223, 224f
for two-coil probe, 222–223, 223f

Apparent resistivity curves, 181, 202f

behavior of function, 336f

on borehole axis, 334f

invasion zone, 335–337, 336f
of transient signals, 333–337

Attenuation, 275–277, 276f
displacement effects, 287–288, 288f

B
Bessel functions, 254–256, 258, 289–295

borehole, 195–196
boundary value problem, 254

in internal integral, 265–266
known expressions for, 400

properties of, 409

Biot–Savart law, 21, 36, 59, 67, 164–166,
169, 239

charge conservation principle, 62–63
for direct currents, 19

induction current in conducting ring,

105, 112–113
magnetic field and, 5–9, 13, 22, 30–31
Maxwell’s equations, 67, 69

quadrature and in-phase components, 122

sinusoidal plane wave, 136

Borehole

corrections, 225–226
electrical methods, 8

geophysics, 20–21
Green’s formula, 243

in-phase component, 233

integral equations, 233

quadrature component, 233

Borehole axis

apparent resistivity curves on, 334f

approximate solution validity, 274–277,
276f

Cauchy’s formula, 267–274
eccentricity, 483

horizontal magnetic dipole, 389f

integration contour, deformation of,

267–274, 268f
magnetic field, 266–284, 325–333
probe displacement, 284–288, 286–288f
three-coil probe, 277–279, 277–278f
two-coil probe, 279–284, 280f

Born approximation, 246–247
Boundary value problem, 136

angular harmonics, 473

Bessel functions, 254
493
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Boundary value problem (Continued )

cylindrical boundaries, 250–251, 251f
deep-reading measurements while

drilling, 347–354
expansion in series, 471–472
final representation of magnetic field,

474–476
formulation, 89–90, 249–250
Fourier transform, 470–471
Helmholtz’s equation, 252–254
for horizontal magnetic dipole, 388–395
Maxwell’s equations, 251–252
normal field, determination, 473–474
polar coordinate system, 472f

problem definition, 468–469
vector potential, 250

vertical magnetic dipole, 250, 251f

C
Cauchy formula, 267

Charge conservation principle, 46–48
displacement currents, 61–63
quasi-stationary electromagnetic field, 48

stationary field, 48

Charge density, 53–54
Code performance, 482

Conductivity distribution, 179–180, 180f
Conservation of energy. See Energy

conservation

Convergence, 479

Coulomb’s law, 4, 9–10, 42, 64, 67
distribution of electric charges, 48

Maxwell’s equations, 48, 67–69
Current density, 8, 14, 21, 32–33

distribution, 170f

flux of, 40f, 46–48, 58
magnetic field, 169

quadrature component, 170–171
uniform medium, 168–169

Cylindrical conductor, magnetic field due to

current in, 30–32, 31f

D
D’Alembert’s method, 92–93, 134
Delta function, 125–126
Differential equation

for current, 113
first order, 50–51, 55–56, 73–74
for volume density, 49

Diffusion equations, 137–138, 148, 160
Diffusion process, 75, 171–172
Dipole moment, 141

magnitude of, 109

time-variable, 106f

varies with time, 110

Dirac delta function, 150

Displacement currents, 8, 61f, 62, 69,

104–105
behavior, 96–97
charge conservation principle, 61–63
in circuit with capacitor, 63–67, 64f
density, 60, 63

flux of, 99, 102

magnetic field, second source of, 59–61
total current, 61–63

Divergence of vector potential, 16–18
Doll’s range, 281

Doll’s theory, 173–174, 300. See alsoHybrid

method

apparent conductivity curves, 301–305,
305f

profiling curves, 306

quadrature component, 299

Duhamel’s integral, 153–156
E
Eccentricity

borehole, 483

conductive mud, 485–487f
effect of, 483–489
high-frequency induction logging,

486–489
low-frequency induction logging,

484–486
moderately conductive mud, 485f, 488f

resistive mud, 485f, 489f

single-frequency and dual-frequency

signals, 486t

Electric charges, 48

charge density δ02, behavior of, 53–54
nonuniform medium, 50–52
quasi-stationary field, 52–53
slowly varying field, 57–58
surface distribution, 54–56
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voltage of, 65
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Electric current circuit, 4–5, 85–86, 85f
Electric field

along receiving loop, 129f

complex amplitude, 144
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2–4
induced measurements, 128–131
on plane wave (see Plane wave)

surface integral equation for
Born approximation, 246–247
cylindrically layered formation,

238–244
horizontally layered formation,

244–246
transient responses of, 158–159, 159f

Electromagnetic field, 25

anisotropic medium, 452–459
expressions for, 109, 149–153
of plane wave, 99

propagation, 63

quasi-stationary, 48

scalar potentials, 76

sources, 67–68, 67t
theory of, 72
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452–459

Electromagnetic induction, 41, 43–44, 63
Electromagnetic potentials, 75–78
Electromagnetic wave, propagation, 69,

96–97, 148
Electromotive force, 40–41, 101, 129–130,

176–177, 272–274
on moving circuit, 9–13

Elementary ring, 174–175, 175–176f
Energy conservation, 81–83, 87
Energy density, 83–85
Energy field

charges and change of, 41f

near an interface, 40f

Euler’s formula, 78–79
F
Faraday’s law, 13, 40–46, 40f, 68, 101, 130

induction current in conducting ring, 111
Focusing probes, 205–206
Fourier’s transform, 81
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Frequency asymptotics, 166–168
Frequency domain, 52, 141–148, 312, 318,

349–350

G
Gauss–Newton method, 376–377
Gauss’s theorem, 17–18, 46–47, 61–62
Geometrical factors

of borehole, 195–199, 199f
of elementary layer, 182–184, 185f
of elementary ring, 174–178, 175–176f
of layer with finite thickness, 184–188
magnetic dipole, 398

Geo-steering, transient field inversion

elements of, 367–368
Gauss–Newton method, 376–377
inverse problem solution, 370–375
iterative and table-based inversion

algorithms, 379–380
Levenberg–Marquardt method, 377–378
multiparametric inversion, 375–380
parameter uncertainties, estimation,

380–383
statistical inversion for case of vertical

well, 371–373
table-based inversion, 368–370
well-and ill-posed problems, 366–367

Green’s formula, 238, 240

H
Heaviside step-function, 153–154
Helmholtz equation, 238, 289–291

one-dimensional, 135

solution, 141–145
Hessian matrix, 377

High-frequency induction logging,

486–489
Hybrid method, 227–228

I
Induced currents, 173–175

expression for, 168–172
Induction current in conducting ring

equation of, 111–113, 111f
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Induction current in conducting ring
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expressions, 114–115
harmonic excitation, 122–125
in-phase and quadrature component, 118,

119f, 120

measurements of, 128–131
sinusoidal primary magnetic field,

117–122
step-function excitation, 125–128
step-function varying primary magnetic

field, 115–117
strong interaction, 127, 128f

transient responses, 113–115
weak interaction, 126, 127f

Induction logging

apparent conductivity corrections
borehole, 225–226
skin effect, 222–225, 223–224f

electromagnetic, 467

high-frequency, 486–489
low-frequency, 484–486
multicoil/focusing induction probe

application, 205–206
evolution, 221–222
6FF40 probe, 215–221, 215f,

218f

three coil, 208–215, 210f, 212f
standard array-induction tools, 467

two-coil probe

apparent conductivity, 181–182
elementary ring, geometrical factor of,

174–178, 175–176f
forward problem solutions, 179–181
radial characteristics of, 195–204
vertical responses of, 182–194

In-phase components, 165, 167–168, 168f,
171–172, 228–229, 231

amplitude of, 165–166
Biot–Savart law, 122
of field approach zero, 167

Helmholtz’s equation, 145

horizontal bed with invasion, 233–234
induction current in conducting ring,

118, 119f, 120–121
magnetic field, 260–265
vertical magnetic dipole, 297–298, 298f,

301
Integral equations

for electric field
Born approximation, 246–247
cylindrically layered formation,

238–244
horizontally layered formation,

244–246
hybrid method, 227–228
linear approximation, 235–238
for magnetic field

borehole and layer of finite

thickness, 233

cylindrical boundaries, 231–233, 232f
horizontal bed with invasion, 233–235

Integration, 479–482
Integration contour, 268

Invasion zone, 233–234

J
Jacobian matrix, 376–377
Joule’s law, 81–83

K
Kirchhoff law, 122–123

L
Laplace’s equation, 16–18, 33
Leontovich boundary condition, 352–353
Levenberg–Marquardt method, 377–378
Linear approximation

electric field, 235–236
Faradey’s law, 235–236
Fredholm integral equation, 236–237
Ohm’s law, 236

Logging-while-drilling (LWD)

measurements, 344

Lorentz force, 9–10
on moving circuit, 9–13

Low-frequency induction logging, 484–486

M
Magnetic dipole

in anisotropic formation of finite

thickness, 459–465
in anisotropic medium, 452–459
asymptotic expression, 396–397,

415–416, 424, 431–432
Bessel functions, 400
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borehole and formation, 421–422
contour integration, 408f

electromagnetic field in uniform isotropic

medium, 385–388
in far zone, 406–417
frequency responses of amplitude, 423f

geometric factors, 398

horizontal boundaries, 290f

horizontal magnetic dipole

amplitude, 389f

apparent conductivity curves, 437, 437f

borehole axis, 389f

boundary value problem, 388–395
conductive thin layer, 440

formation with two horizontal

interfaces, 432–441
frequency responses of amplitude/

phase, 438, 439f

frequency responses of field amplitude,

395f

phase of secondary field, 389f

phase responses of field, 396f

probe between the coils, 443

probe on both sides of interface, 442

probe on outside the formation,

441–442
probe within the layer, 443

resistive thin layer, 441

two-coil induction probe, profiling

with, 441–444, 442f
in-phase and quadrature components,

387, 388f

integral exponential function, 414

magnetic field, 27–30
in medium with one horizontal interface,

426–432
in medium with thin layer, 290f

in medium with thin resistive cylindrical

layer, 421–426
in medium with two cylindrical

interfaces, 417–420
nonconducting medium, 106f, 108–109
normalized attenuations for three-coil

probe, 418f, 420

phase differences for three-coil probe,

418f, 420

in range of small parameter, 396–406
with sinusoidal current, 163–164
Summerfield integral, 398–399
transient field in medium with cylindrical

interfaces

apparent resistivity curves, 333–337
borehole axis, early and late stage,

325–333
Fourier integral and calculation,

321–324
harmonic amplitudes, 322

transient field in uniform medium,

312–321
Biot–Savart’s law, 318
electromotive force, 321t

expressions for field, 313–314
Faraday’s law, 314

features, 314–321
field components, 317f

graphs of function, 318

in-phase component, 318

transmitter-receiver moment, 321

transient field in vertical magnetic dipole

Fourier integral, 341

layer thickness, 340–343
medium with one horizontal

boundary, 337–340
transversal dipole moment, 385–386
transversal induction probe, 386f

two-coil induction probe, 297

apparent conductivity curves,

301–305, 305f
conductive bed, 306

dependence of field on parameter

p¼L/δ1, 297–301
in-phase and quadrature component,

298f

profiling curves for, 306–310, 307f
thick resistive bed, 308, 309f

thin conductive bed, 308, 309f

thin resistive bed, 308, 310f

in uniform medium, 141–153, 163–172,
452–459

vertical component

in the bed, 294

Bessel functions, 289–295
Helmholtz equation, 291

magnetic field, 289–295
outside the bed, 292

thin conducting plane, 295–297
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Magnetic field, 228–229
Biot–Savart law, 5–9
on borehole axis, 266–284
change with time, 42–43
circulation, 20

complex amplitude, 144

current-carrying objects, 21–37
current filament, 22–23, 22f
due to current in cylindrical conductor,

30–32, 31f
features of, 171

induced measurements, 128–131
of infinitely long solenoid, 32–35, 32f
in-phase components, 168f

intensity, 25

in linear magnetic moment, 156f

magnetic dipole, 27–30
quadrature component of, 168f, 194

second source, 59–61
in small induction number, 257–266
surface current, 7f

system of equations, 18–21, 37
tangential component, 61

toroid, 32–33, 35–37
vector potential, 13–16, 24–27

Magnetic flux, 41–42, 105, 112, 116–117
Magnetic moment of loop, 25

Maxwell’s equation, 19–21, 67–70, 135
electromagnetic potentials, 75–78
fields E and B, 73–75
inductive electric field, 108

in integral form, 43

magnetic field, 151–152
in piecewise uniform medium, 72–73
plane wave, 95, 101

second form, 70–72, 102
sinusoidal fields, 78–81
stationary electric field, 2

third of, 4

Maxwell’s equations, piecewise uniform

medium, 72–73
Multicoil induction probes, 204–206
application, 205–206
evolution, 221–222
geometric factor of, 206–207
nonsymmetrical, 207

6FF40 probe, 215–221, 215f, 218f
symmetrical, 207, 207f

three coil, 208–215, 210f, 212f
N
Neumann series, 246

Nonconducting medium

field in, 153–156
magnetic dipole, 106f, 108–109
quasistationary field in, 104–110

Nonuniform medium, electric charges,

50–52
Normalization, 477–479
Numerical implementation

code performance, 482

convergence of series, 479

integration, 479–482
normalization, 477–479

O
Ohm’s law, 2, 49, 86, 175

induction current in conducting ring,

111–112, 121
Ordinary differential equation, 113

P
Phase difference, 275–277, 276f

displacement effects, 287–288, 288f
Plane wave, 94

as function of time and distance, 136–138
models, 97–104, 98f
phase of, 100

propagation, 95–97
sinusoidal (see Sinusoidal waves)

in uniform medium, 91–104
velocity of propagation, 93–94, 94f

Poisson’s equation

vector potential, 17–18, 33
Poynting vector, 83–85, 85f

directional energy flux density, 96

Primary magnetic field, 110, 112

sinusoidal, 117–122
step-function varying, 115–117
varies with time, 113

Probe position, 185, 186–187f, 187, 190
Propagation of plane wave, 93–97, 94f

Q
Quadrature components, 165, 167–168,

168f, 171–172, 228–230
amplitude of, 165–166
Biot–Savart law, 122
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of field approach zero, 167

Helmholtz’s equation, 145

horizontal bed with invasion, 233–234
induction current in conducting ring,

118, 119f, 120–121
magnetic field, 258–259
vertical magnetic dipole, 297, 298f, 299,

301

Quasistationary approximation, 45–46, 105,
107, 109, 111, 130, 160

Quasistationary fields, 3–4, 137–138,
164–165

amplitudes, 163–164
electric charges, 52–53
magnetic dipole, 106f, 108–109
in nonconducting medium, 104–110
slowly varying, 57–58
in uniform medium, 163–172

R
Radius of convergence, 120

Ramp time, 114–116
Resistivity

horizontal resistivity, 447

low-resistivity pay zones, 447

Ring inductance, 112

Runge–Kutta method, 125–126

S
Self-inductance, 112–113
Sinusoidal fields, Maxwell’s equations,

78–81
Sinusoidal primary magnetic field, 117–122
Sinusoidal waves, 103, 165

as function of time and distance, 136–138,
137f

high frequency limit, 138–141
low frequency limit, 138–141, 141f
in uniform medium, 133–141

6FF40 focusing probe, 215–221,
218–220f

apparent conductivity, 218, 219f

borehole geometrical factor, 218, 218f

configuration, 215–216, 215f
dual induction probe, 221, 221f

electromotive force, 216

elementary layer for, 219, 220f

parameters, 216, 216t

profiling curves, 219–221, 220f
Skin effect, 228, 281

corrections, 222–225, 223–224f
Solenoids

inductive electric field of, 105–107
magnetic field, 32–35, 32f
vortex field of, 106f

Sommerfeld integral, 292

Step-functions

arbitrary and, 154f

excitation, 125–128, 160
Heaviside step-function, 153–154
spectrum of, 149

of time, 149

varying primary magnetic field, 115–117
Stoke’s theorem, 20, 43, 60–61
Superposition of waves, 147–148
Superposition principle, 5, 7, 22

T
Taylor’s expansion, 258

Three-coil probe, 203–204, 203f, 208
amplitude ratio, 277, 277f

approximate vs. exact solution, 275–276,
276f

attenuation, 275–277, 276f, 278f
borehole geometrical factor for, 210–211,

210f

displacement effect, 286–287, 286f
elementary layer for, 212–213, 212f
normalized apparent conductivity,

211–212, 211f
phase difference, 275–277, 276–278f
wave path, 272, 273f

Toroid, magnetic field, 32–33, 35–37
Transient field

in conducting medium, 157–160, 159f
deep-reading measurements while drilling
boundary condition, 352–353
boundary value problem, 347–354
finite conductivity of cylinder,

352–356
formation/pipe signals ratio using

magnetic shielding, improving,

364–365
high-frequency and early transient

stage asymptote, 355–356
homogeneous formations, 359–360,
360f

modified Bessel functions, 346
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Transient field (Continued )
pipe conductivity, increasing, 359–361
pipe signal reduction using finite size

copper shield and bucking, 361–364
spacing effect on pipe signal,

356–359
two-coil probe, 358f

uniform conducting medium, 344–347
inversion in task of geo-steering

elements of, 367–368
Gauss–Newton method, 376–377
inverse problem solution, 370–375
iterative and table-based inversion

algorithms, 379–380
Levenberg–Marquardt method,

377–378
multiparametric inversion, 375–380
parameter uncertainties, estimation,

380–383
statistical inversion for case of vertical

well, 371–373
table-based inversion, 368–370
well-and ill-posed problems, 366–367

magnetic dipole in medium with

cylindrical interfaces

apparent resistivity curves, 333–337
borehole axis, early and late stage,

325–333
Fourier integral and calculation,

321–324
harmonic amplitudes, 322

magnetic dipole in uniform medium

Biot–Savart’s law, 318
electromotive force, 321t

expressions for field, 313–314
Faraday’s law, 314

features, 314–321
field components, 317f

graphs of function, 318

in-phase component, 318

transmitter-receiver moment, 321

vertical magnetic dipole

Fourier integral, 341

layer thickness, 340–343
medium with one horizontal

boundary, 337–340
Transmission line, 85–86, 85f
Transverse plane wave, 96
Trial and error method, 92

Two-coil probe

apparent conductivity, 181–182, 211f
Biot–Savart law, 279
displacement effect, 286–287, 286–287f
elementary layer for, 212–213, 213f
forward problem solutions, 179–181
frequency responses
in three-layered formation, 279, 280f

in two-layered formation, 279, 280f

geometrical factor

borehole, 195–199, 199f
elementary layer, 182–184, 185f
of elementary ring, 174–178, 175–176f
layer with finite thickness, 184–188

induced currents density, 279

in-phase component, 279

with one interface, 188–189, 189f
quadrature component, 279

radial characteristics, 199–204
vertical magnetic dipole, 279

wave path, 272, 273f

U
Uniform medium

anisotropic medium, 452–459
electric charges, 49–50
magnetic dipole in, 141–153, 163–172,

452–459
plane wave in, 91–104
sinusoidal plane wave in, 133–141

Uniqueness theorem, 86–89

V
Vector potential

within borehole, 254–255
boundary value problem, 250

complex amplitude, 144

components of, 15

divergence and Laplacian of, 16–18
expression for, 149–153
Laplace’s equation, 16–18, 33
magnetic field, 13–16, 24–27
z-component of, 142–143

Velocity of propagation, 134, 140

frequency range, 139

plane wave, 93–94, 94f
sinusoidal wave, 136
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Vertical magnetic dipole

borehole axis
approximate solution validity,

274–277, 276f
Cauchy’s formula, 267–274
integration contour, deformation of,

267–274, 268f
probe displacement, 284–288,

286–288f
three-coil probe, 277–279, 277–278f
two-coil probe, 279–284, 280f

boundary value problem, 249–254, 251f
field components, 254–257
small induction number

asymptotic expressions, of field,

265–266
in-phase component, 260–265
quadrature component, 258–259

Volume electric charges, 49

W
Wave equation, 94

solution to, 92–93
Wave path

in three-coil probe, 272, 273f

in two-coil probe, 272, 273f
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