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INTRODUCTION

Electromagnetic induction logging is the main method of evaluating water
and hydrocarbon saturation in shaly sand and other formations, and has been
successfully applied for more than 70 years by oil service companies around
the world.

During the last two decades, this technology has undergone significant
progress with respect to development of wireline array induction tools:
the Schlumberger AIT' and the Baker Hughes HDIL™" systems, for exam-
ple, permit increased depth of investigation of up to several feet while
maintaining high vertical resolution down to 1 ft. These systems, comprised
of coils, whose axes are aligned parallel to the borehole axis, became the
standard tools for detecting and evaluating low-resistivity pay zones. If
the formation dip is small, the induced currents flow mainly parallel to
the bedding planes, thus enabling measurements that are sensitive to the hor-
izontal resistivity of the formation. However, many geologic formations
exhibit resistivity anisotropy (i.e., the resistivity varies with direction).
For example, in thinly laminated sand/shale sequences, where the sand is
hydrocarbon-bearing, the resistivity in the direction perpendicular to the
bedding is larger than the horizontal resistivity. The conductive shales dom-
inate the horizontal resistivity whereas the vertical resistivity is affected more
by the low-conductivity sand layers. Induction tools with vertically oriented
coils cannot accurately detect and delineate this type of reservoir because the
measured resistivity will be biased toward the low-resistive shales. To resolve
formation parameters in an electrically anisotropic formation and find the
relative dip, all major service companies employ tools with transversal coils,
e.g., the Baker Hughes 3DeX™ and the Schlumberger Rt Scanner.

Also in recent decades, exciting developments occurred in logging-
while-drilling (LWD), in which resistivity logging (e.g., the Baker Hughes
VisiTrak™, the Schlumberger PeriScope, the Halliburton ADRT™ ? and the
Weatherford GuideWave®") became part of the bottom hole assembly.
LWD is now successfully used for geo-steering and formation evaluation

VAIT, Rt Scanner, and PeriScope are marks of Schlumberger Limited.
2HDIL, 3DeX, and VisiTrak are trademarks of Baker Hughes Incorporated.
3ADR is a trademark of Halliburton.

*GuideWave is a registered trademark of Weatherford.

xi



Xii Introduction

(especially for real-time and high-angle wells). Advances in resistivity log-
ging were accompanied by numerous publications describing modeling
and interpretation. Although these publications focus on application of
sophisticated numerical techniques, including integral equations, finite dif-
ference, and finite elements, we believe that the potential of classical
approaches has not been exhausted yet. To a large degree, this book is ded-
icated to a semianalytical and asymptotic treatment of the corresponding
boundary value problems of induction logging, leading to the ultra-fast
and sufficiently accurate simulation of electromagnetic responses.

To some extent, our monograph can be considered as the second edition
of the book by A. Kaufman and G. Keller, Induction Logging, published
25 years ago by Elsevier. The current edition includes numerous updates
to the first edition, and new results describing the theory of induction
logging.

The theory is governed by Maxwell equations, which include terms rep-
resenting the conductivity of the medium. These terms lead to decay of the
wave amplitude as the wave propagates through the medium. The rate of
decay is characterized by skin depth, which depends on the conductivity
of the medium. Understanding relationships between measured fields and
properties of the medium plays a key role in research and development of
induction logging. For this reason, the purpose of the first four chapters is
to acquaint the reader with basic equations of field theory. The behavior
of the field of magnetic dipole in a uniform conducting medium is discussed
in Chapter 5. In spite of the simplicity of the medium, the study of the field
leads to an understanding of such important concepts as quadrature and
in-phase components and their fundamentally different dependence on
conductivity.

Chapter 6 consists of two parts. The first describes Doll’s theory of induc-
tion logging, including basic concepts of geometrical factor, radial and vertical
responses of the probes, and the apparent resistivity concept. In the second
part, we discuss the so-called focusing probes, their parameters, and radial
and vertical responses. In particular, we give special attention to three-coil
probes, which allow us to compensate for the primary electromotive force
and reduce an influence of the borehole and an invasion zone.

Chapter 7 describes an approximate technique, or so-called hybrid
method, for solving forward problems. We show that although the hybrid
method might be quite useful for quick calculations, it is not as powerful as
the Born approximation. In fact, we show that Doll’s theory of induction
logging and the hybrid method follow from the Born approximation.
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The frequency responses of the vertical magnetic dipole in a medium
with cylindrical boundaries are the subject of Chapter 8. The components,
as well as their depth of investigation, are described in detail. We give special
attention to the behavior of the amplitude and phase at the far zone by deriv-
ing asymptotic formulas and showing that the ratio of amplitudes and phase
difference enables us in many cases to greatly reduce the influence of the
borehole and invasion. Also in this chapter, we investigate the effect of
the displacement of the two- and three-coil probes in the borehole, and
show that the position of the probe has a different influence on the quadra-
ture and in-phase components, as well as the ratio of amplitudes and phase
difference.

In Chapter 9, we study the vertical responses of the induction probes in a
medium with horizontal boundaries. We use a derived expression for the
vertical component of the magnetic field, excited by the vertical magnetic
dipole, to study the vertical responses of probes, located symmetrically with
respect to boundaries. We give special attention to asymptotic behavior of
the field at different frequency ranges.

The subject of Chapter 10 is the possibility of application of the transient
field in borehole geophysics. First, we obtain expressions for the late stage in
a medium with cylindrical boundaries and demonstrate how the depth of
investigation increases with time in the case of wireline measurements—
at the late stage, sensitivity of this field to the formation resistivity can be
even higher than that of the quadrature component in the frequency
domain. In the second part of the chapter, we discuss the potential of the
transient measurements in while-drilling applications. Inasmuch as such
measurements have to be performed in the presence of highly conductive
pipe, we pay special attention to means of reducing the eftect from the pipe.
We first analyze behavior of the field in the case of an ideally conductive
pipe, and then by making use of Leontovich conditions, proceed to the case
of the pipe with the finite conductivity. We show how spacing, observation
time, and different shields may help in addressing undesirable effects of
the pipe.

In the last part of the chapter, some aspects of inversion of LWD tran-
sient data are discussed. Emphasis is placed on means of improving stability
of the inversion.

Chapters 11 and 12 describe basic aspects of induction logging with
transversal coils. Analysis of the field in the range of a small parameter leads
to the important observation that the magnetic field is represented as a sum
of two terms, each depending either on the conductivity of the borehole or
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the formation. This feature is favorable for application of the focusing pro-
bes, which permit a significant decrease of the influence of the borehole and
invasion zone. Numerical examples are presented to confirm the expecta-
tions. In Chapter 12, we demonstrate sensitivity of the measurements to
an anisotropy coefficient under a different scenario: an anisotropic layer sur-
rounded by more conductive and less conductive shoulders. Presented data
help identify the range in which the anisotropy coefficient can be reliably
resolved.
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Before describing time-varying electromagnetic fields we focus our
attention first on stationary electric magnetic fields that do not vary in time.
Coulomb’s and Biot-Savart laws governing these fields, also play fundamen-
tal roles in the understanding of the quasistationary fields used in most
electromagnetic methods of borehole geophysics. We begin with studying
the main features of the stationary electric field.

Basic Principles of Induction Logging © 2017 Elsevier Inc. 1
http://dx.doi.org/10.1016/B978-0-12-802583-3.00001-0 All rights reserved.
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2 Basic Principles of Induction Logging

1.1 EQUATIONS OF THE STATIONARY ELECTRIC FIELD IN
A CONDUCTING AND POLARIZABLE MEDIUM

As shown in Ref. [2], Maxwell’s equations have three forms for the
stationary electric field at regular points:

arlE=0, divE=35/¢ (1.1)

or
anrlE=0, divD =9, (1.2)

or
arlE=0, divj=0 (1.3)

Here E is the electric field, D is the vector of electric induction, D = ¢E,
and ¢ is the dielectric constant of a medium. In accordance with Ohm’s law,

j=1E (1.4)

where j is the vector of current density characterizing an ordered movement
of free charges in space and y is a conductivity. The vector E is

E=E +E"

where E‘ and E“" are Coulomb and external (nonCoulomb) electric fields,
respectively. The total charge density 0 is a sum of the densities of free &, and
bound 8, charges:

5§=26y+5, (1.5)

Eqgs. (1.1)—(1.3) are written at regular points where the field’s derivatives
exist. By definition of divergence for any vector M we have

bl

fi;M ds
divM = lim NG as AV —0 (1.6)

which is the divergence of the field that characterizes the flux of the field
through a closed surface, surrounding an elementary volume. This equation
is valid everywhere, although it is not convenient for calculations because it
requires computation of a surface integral. Taking into account that the sur-
face S and distance between opposite sides are small, it is possible to replace
integration by differentiation, which is much simpler to perform. Because
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this form of divergence contains derivatives, it is valid only at regular points.
Also the curl of a field M can be defined as

ﬁ;M.dl

L
n

s

Here AS is the elementary area, and L is a closed path surrounding the

canrlM =

as AS—0 (1.7)

area. If'n is the unit vector perpendicular to ASand dl is the linear element of
L, vectors dl and n obey the right-hand thumb rule. It is essential that an area
ASin Eq. (1.7) 1s oriented in such a way that the numerator has a maximal
value. Again, similar to Eq. (1.6), as the contour L becomes small, it is pos-
sible to replace integration by differentiation. The replacement can be per-
formed only at regular points where derivatives exist. At interfaces between
media with different electric parameters in place of Egs. (1.1)—(1.3), we have
the surface analog of the equations:

Ey—E;,=0, E,—E;,=0c/¢
or

Ey —Ey, =0, Dy, — Dy, = 0y (1.8)
or

Ey—E; =0, yyE—y1E1, =0

where Ej,, Eq, and E,,, E>, are tangential and normal components of the elec-
tric field at the back and front sides of an interface, respectively, and the normal
n is directed toward the front side into the medium with index “2.” The
conductivity of a medium can be expressed as

y=38gu"+|8, [u (1.9)

Here u™ and u~ are the mobility of the positive and negative charges,
respectively, which are extremely small numbers in a medium. Thus, the
velocity of free charges engaged in an orderly motion in a conductor is usu-
ally very small and does not exceed 10-°m/s. Nevertheless, these barely
moving charges may create a strong magnetic field. Free charge in a medium
is a charge that can move through distances exceeding the molecule size;
bound charges move only within a fixed molecule.

As follows from Eq. (1.3), the stationary electric field in a conducting and
polarizable medium is independent of the dielectric constant, and
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distribution of bound charges does not influence the electric field. Such a
remarkable feature of the field is also observed in quasistationary fields:
the density of the total charge coincides with that of free charges d, in a non-
polarizable medium where & =¢.

The volume and surface densities of charge are related to the field and
conductivity by [2]

E - orad
8(p) = —e0—2  6(p) = 260 Kip E” (1.10)
y
Here
Kis :Pz —P1
P2t Py

and E}” is the mean value of the normal component of electric field at point p
located at the boundary between media with resistivity p; and p5; the normal
n is directed from medium 1 to medium 2. Besides, it is assumed that an
external force is absent in the vicinity of point p. The physical meaning
of E;(p) is simple: it is the normal component of the field caused by all char-
ges in the medium except those at the point p. These charges, placed at the
boundary between p; and p,, do not participate in the current flow. The
second equation of the system for the electric field at regular points is

divE=35/¢y or divD =35,

and, along with its surface analog, remains valid for the time-varying fields.
Either one represents the third of Maxwell’s equation.

Note that this equation can be derived from Coulomb’s law by taking
into account polarization and bound charges.

1.2 INTERACTION OF CURRENTS, BIOT-SAVART LAW,
AND MAGNETIC FIELD

1.2.1 Ampere’s Law and Interaction of Currents

Numerous experiments performed two centuries ago demonstrated that
currents in two circuits interact with each other; that is, mechanical forces
act at every element of a current circuit. This force depends on the magni-
tude of the current, the direction of charge movement, the shape and
dimension of the current circuit, as well as the distance and mutual orien-
tation of the circuits with respect to each other. This list of factors indicates
that the mathematical formulation of this phenomenon should be a much
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more complicated task than that for the stationary electric field. Neverthe-
less, Ampere was able to find an expression for the force of interaction
between two elementary currents in a relatively simple form:

dlz (q) X Lqp]
L,

dF(p):@Mzdll(p) x| (1.11)
4n

where I} and I are magnitudes of currents in the linear elements dl; and dl,,

respectively, and their direction coincides with that of the current density;

L,, is the distance between these elements; and L, is directed from point q to

point p, which are located at the center of the current elements. Finally, p is

a constant equal to

po=4mx 107" H/m

which is called the magnetic permeability of free space, despite the fact that
the term “free space” implies medium without physical properties. The
distance between current elements L, is much greater than their lengths:

Ly, > dly, Ly > db

Examples, illustrating an interaction of elementary currents, are given in
Fig. 1.1.

Making use of the superposition principle, the force of interaction
between two arbitrary closed current circuits is defined as

dly X (dl x L
F:”—OIJZ M (1.12)
4r L3
Lila P
where integration is performed along current lines L; and L, p#q. The
resultant force F is a sum of forces acting on difterent elements of the contour
and is measured in the SI newtons (N) if the lengths are in meters (m) and the
currents are in units of amperes (A).

1.2.2 Magnetic Field and Biot-Savart Law

The interaction between currents suggests that current in a contour creates a
field, and the existence of this field causes other currents to experience the
action of the force F. This field is called the magnetic field, and it is
introduced from Ampere’s law as

dF(p) = I(p)dl(p) x dB(p) (1.13)
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dl(q)

(A)q

(B)q
oF(p)
di(q)
I Lo di(p)
(C)q P
Ly 3
I

(D) I q LQP1

P

Fig. 1.1 (A) Interaction of currents having the same direction; (B) interaction of currents
having opposite directions; (C) interaction of current elements perpendicular to each
other; and (D) interaction of two current loops.

where
(q) XL,

(1.14)
3
L‘ZP

Ho
dB(p) =—1I
() ="21(q)
and I (q) is the current of the element dl(q). Eq. (1.14), called the Biot-Savart
law, describes the relationship between the elementary linear current and the
magnetic field dB. By definition the magnitude of the magnetic field caused
by the elementary current is

Ho dl .
dB(p) zal(q)%sm (L. dl) (1.15)
Here (L, dl) is the angle between the vectors L., and the element dl; the

vector dB is perpendicular to these vectors, as shown in Fig. 1.2A, and
these three vectors obey the right-hand thumb rule. The unit vector b,
characterizing the direction of the field, is defined as
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Id1 \
V

(A) (B)

Fig. 1.2 (A) Magnetic field of a current element. (B) Magnetic field of the surface current.

dl X Ly,

"L,

In SI units, the magnetic field is measured in tesla (T) and is related to
other common units, such as the gauss and the gamma as

Ttesla= 10" gauss = 10’ gamma

A nanotesla (nT) is equivalent to one gamma. Now we generalize
Eq. (1.14), assuming that, along with linear currents, there are also the
volume and surface currents. First let us represent the product Idl as

Idl= jdSdl =jdSdl =jdV (1.16)

where dS is the cross section of the elementary current tube, dl is oriented
along this tube, and j is the volume current density. If the current is concen-
trated in a relatively thin layer with thickness dh, which is small enough with
respect to the distance to an observation point, it is convenient to replace
this layer by a surface current. As seen in Fig. 1.2B, the product Idl can
be modified as follows:

Idl=jdV =jdhdS =1idS (1.17)
Here dS is the surface element, and
i=jdh
is the density of the surface current. The resultant force F is a sum of forces
caused by different elementary currents. Applying the principle of superpo-
sition for all three types of currents (volume, surface, and linear) and making

use of Egs. (1.14), (1.16), (1.17), we obtain the generalized form of the
Biot-Savart law:

j XL, ixL dl XL
B(p) =0 JJ ‘ﬂ’dV+J‘ s+ jznﬂ; » (1.18)
L [ L3
v ap S qap n qap
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Eq. (1.18) allows us to calculate the magnetic field everywhere inside and
outside of volume currents. In general, the currents arise from the motion of
free charges and magnetization of a magnetic medium, which can be related
to magnetization currents. Correspondingly, the current density is a sum

=it

where j andj,, are the volume density of the conduction and magnetization
currents, respectively. The corresponding magnetic fields of these currents
obey the Biot-Savart law. In most applications of borehole electrical
methods, it is assumed that magnetization is absent. According to
Eq. (1.18), the magnetic field caused by a given distribution of currents
depends on location of observation point p only and is independent of
the presence of other currents. The right-hand side of Eq. (1.18) does not
contain any terms characterizing physical properties of a medium. There-
tore, the field B at point p, generated by a specific distribution of currents,
remains the same if free space is replaced by a nonuniform conducting and
polarizable medium. For instance, if the current circuit is placed in a mag-
netic medium, the field B caused by this current is the same as if it were in
free space. Of course, the presence of such magnetic medium results in a
change of the magnetic field B, indicating the presence inside a medium
of some other currents (magnetization currents) and producing a magnetic
field. This observation directly follows from Eq. (1.18), which states that any
change of the field B is caused by a change in distribution of current. Unlike
the volume density currents, their linear and surface analogies are mathemat-
ical idealizations of the real current distributions. Normally, they are intro-
duced to simplify calculations of the field and study its behavior. For this
reason, the equation

B(p) :@JJL) L gy (1.19)
4r ) L,

is applicable for calculation of a magnetic field for all possible distributions of

the current.

As will be shown later, the Biot-Savart law (Eq. 1.18) is also valid for a
time-varying magnetic field when it is possible to neglect by so-called
displacement currents.

The experiments, which allowed Ampere to derive Eq. (1.11), were
carried out with closed circuits. At the same time Eq. (1.11), as well as
Eq. (1.14), is written for the element dl, where a current cannot exist if this
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element does not constitute a part of the closed circuit. In other words,
Eqgs. (1.11), (1.14) cannot be proved experimentally, but the interaction
between closed current circuits takes place in such manner, as if the magnetic
field B, caused by the current element Idl, were described by Eq. (1.14). In
accordance with the Biot-Savart law, current is the sole source of a stationary
magnetic field, and the distribution of this source is characterized by the
magnitude and direction of the current density vector j whose vector lines
are always closed. Magnetic field B is also, unlike the Coulomb’s electric
field, of the vortex type.

1.2.3 Lorentz Force and Electromotive Force Acting
on the Moving Circuit

As follows from Egs. (1.13), (1.16) the current in the elementary volume,
placed in the magnetic field B, is subjected to the action of a force:

F=(jxB)dV (1.20)

The latter allows us to find force acting on a single electron or ion mov-
ing with velocity v. By definition, the current density j can be represented as

j=mnev

where 1 is the number of particles in the unit volume, and e is the charge of
electron or ion. Therefore, the force of the magnetic field B acting on all
particles is

Fp=ne(vxB)dlV/

and, correspondingly, every moving particle, for example, the electron, is
subjected to a force equal to

Fz=¢(vxB) (1.21)
Thus, this elementary charge is subjected to the total force equal to
F=F,+F, =cE+e(vxB) (1.22)
which is called the Lorentz force. Here
F,=¢E, and F, =¢(vxB)

are forces caused by the electric and magnetic fields, respectively. By analogy
with Coulomb’s law, let us introduce this nonCoulomb electric field as

E,=vxB (1.23)
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which, in the presence of the magnetic field, acts on moving charge. By def-
inition, this field is perpendicular to the velocity and the magnetic field, and
it reaches a maximum when the angle between these two vectors is equal to
/2. As in the case of Coulomb’s electric field, the voltage of this electric
field along an elementary and arbitrary path is

AV =E, -dl=(vxB)dl and V:J(VXB)dl. (1.24)
In particular, the electromotive force caused by field E,, is
5 J (v x B)dl

Unlike the voltage of the Coulomb’s electric field, the second equation
in the set (1.24) is path dependent; in general, the electromotive force due to
this field does not vanish.

The existence of this non-Coulomb electric field directly follows from
Ampere’s law, originally derived for the direct current. Let us consider
several examples.

Example One

Suppose that the current circuit does not move and is placed in a magnetic
field B (Fig. 1.3A). The moving electrons along the circuit are subjected to
the action of the field E,,, which is usually very small, because the electron

d c
F
B a s b
(A) (B)
d c d *v c
a /B b a /B b
(C) (D)

Fig. 1.3 (A) Magnetic force acting on a charge, moving with velocity v; (B) rectangular
circuit moving with velocity v in the magnetic field; (C) movement of one side of the
circuit with velocity v; and (D) movement and deformation of a contour in the
magnetic field.
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velocity is of the order of 10~ ®m/s. By definition, this field is perpendicular
to the Coulomb’s field and may cause only an insignificant shift of charges
toward the surface of the circuit, where the positive and negative charges
would tend to appear. But their electric field prevents further movement
of charges; eventually, there is no current flow caused by E,, field.

Example Two

Consider the rectangular and conducting circuit abed (Fig. 1.3B), which
moves at the constant velocity v along the x axis. The uniform magnetic field
B is perpendicular to the circuit. Taking into account that direction of
currents along paths ad and b are opposite to each other, the voltages

AV, AV,

differ only by sign. The voltages along lines ab and ¢d are equal to zero.
Indeed, accordingto vector algebra for the voltage along an arbitrary element
dl of the line, we have

(vxB)-dl=(dlxv)-B (1.25)

Because in case of lines ab and ¢d vectors dl and v have the same or oppo-
site direction, we conclude that the voltage along these elements is zero;
therefore, the electromotive force is also zero. As is seen in Fig. 1.3B, the
flux of the magnetic field @ through the area, surrounded by the path,
remains constant. Thus, we have

Example Three

Now suppose that only the side ad slides at velocity v, while the other part of
the circuit is at rest (Fig. 1.3C). Then, the electromotive force coincides
with the voltage AT/,

E=+4v,B.ad (1.26)

where the sign depends on the orientation of the current in this line.
The product v,ad represents the rate of a change of the area, enclosed by
the circuit; therefore Eq. (1.26) can be rewritten as

@
dt

[1]

==
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that is, the electromotive force arising in the circuit is defined by the rate of a
change of the flux of the magnetic field through the area surrounded by the
circuit. By definition, the flux is equal to

D= JB -dS
s
If the direction along the circuit and the vector dS obey the right-hand
thumb rule, we have

d®
dt

[1]

(1.27)

Example Four

In this case, the magnetic field is aligned in the plane of a circuit that moves
with velocity v. Then, the voltage along an arbitrary element of the circuit is
equal to

(vxB)-dl=0

therefore, the electromotive force is absent despite a motion of the circuit
and the presence of the magnetic field. Inasmuch as the field B is tangential
to the circuit, its flux is also equal to zero, and the electromotive force is

Thus, only the normal component of the magnetic field has an influence
on the moving charge.

Example Five

Suppose that an arbitrary conducting circuit is located in some plane, and
each element moves with velocity v, which may vary from point to point
(Fig. 1.3D). In this case, the circuit experiences a motion and deformation.
The component of the magnetic field normal to this plane also may vary
from point to point. Consider again the elementary voltage along the
element dl:

AV =(vxB)-dl=(dlxv)-B

The magnitude of the vector product dl X v is equal to the area covered
by the element dl during the unit of time; correspondingly, A1 is equal to
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the rate of a change of the elementary flux of the field B. Integrating
along the circuit and using the right-hand thumb rule, we obtain the
electromotive force:

E=— (1.28)

Later we will describe Faraday’s law, which has exactly the same form.
However, it has one fundamental difference: it shows that an electromotive
force may arise not only because of a movement and deformation of the cir-
cuit but also due to a rate of change of the magnetic field with time when the
circuit does not move. Moreover, Faraday’s law is applied to any closed path,
which can be, for example, an insulator.

1.3 VECTOR POTENTIAL OF THE MAGNETIC FIELD

1.3.1 Relation Between Magnetic Field
and Vector Potential

Although calculation of the magnetic field using the Biot-Savart law is not a
complicated procedure, it is still useful to find a more convenient way of
determining the field. To proceed, by analogy with the scalar potential of
the electric field, we introduce a new function. In addition, this function
allows one to derive a system of equations for the magnetic field. Let us start
from the Biot-Savart law:

j(q) xL
B(p) =20 i9) XLy, (1.29)
Ar L3
0 ap
Taking into account that
L 1 r 1
L=V —=-V_— (1.30)
L3 L, L,
and substituting Eq. (1.30) into Eq. (1.29), we obtain
Ho |. 71 Mo [& 1 .
B(p) =— XV—dlV =— | V—xj(q)dV 1.31
R O L K SO EY
v v

Here g and p indicate that derivatives are taken with respect to coordi-
nates of the point g and p. For instance, in the Cartesian system of coordi-
nates, we have:
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91 9 1 o1, 0 1, o 1,
VL—:gmd—: it IY+an

qp Ly 8qu{1pk OyqLyy

where i,i,, and i. are orthogonal unit vectors. Now we make use of the

equality

»
poj o1 j
VXJ—:V—ijr VS
Ly P qp
which follows from the vector identity:
VX (pa)=Vpxa+tpV xa (1.32)
From Egs. (1.31), (1.32), we have
V X
B(p) = ”“JVx—dV J VX, (1.33)
4 L, dr) Ly
v

The current density is a function of the coordinates of ¢ and does not
depend on the location of the observation point p. Therefore, the integrand
of the second integral is zero and

__Ho J( )
B(p)—4ﬂ_J p LquV (1.34)

Inasmuch as the integration and differentiation in Eq. (1.34) are carried
out with respect to different points g and p, we can interchange the order of
operations that gives

B(p) = cur o in )dV

T

)
B(p) =l A (1.35)
where
Alp) = ”OJ i) (1.36)
47zV g

Thus, the magnetic field B caused by direct currents can be expressed
through the vector potential A defined by Eq. (1.36). Comparing
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Egs. (1.29) and (1.36), we see that function A is related to the distribution of
currents in a much simpler way than the magnetic field. One reason for
introducing this function is thus already demonstrated. According to
Eq. (1.36), A, unlike the potential of an electric field, 1s a vector, and its mag-
nitude and direction depend essentially on the current distribution. Now let
us derive expressions for the vector potential A, caused by surface and linear
currents. Making use of Eq. (1.17):

jdV =1dS
and we have
idS I(dl
—”—”J‘— and A:”Lﬁ;— (1.37)

v Ly 4
S L

In the general case when we have the volume, surface, and linear

currents, we obtain

jd1 - [idS dl
A= ”—OJJ—+J—+ZL{>— (1.38)
4z ) Ly, Ly, = JL,
Vv S L
The components of the vector potential can be derived directly from this
equation. For instance, in the Cartesian coordinates, we obtain

A=t ]de+ ldeJr If%%
4r Ly Ly I p
% S
,dV ,dS dl,
Py i LGS +ZL§ ) (1.39)
4r p Ly = Lygp
LV S
4n A Lgp < Ly ‘I @

Similar expressions can be written for the vector potential components in
other systems of coordinates. Eq. (1.38) implies that, if a current flows along
a single straight line, the vector potential has only one component parallel to
this line. Similarly, if currents are situated in a single plane, then the vector
potential A at every point is parallel to this plane. Later we consider several
examples illustrating the behavior of the vector potential and magnetic field.
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Let us derive two useful relations for the function A, which simplify to a
great extent the derivation of magnetic field equations.

1.3.2 Divergence and Laplacian of Vector Potential

First, we determine the divergence of the vector potential A. As follows
from Eq. (1.36), we have

P p 1
div A = div™> Jj(—q)dr/
4 Lqp
V

Inasmuch as differentiation and integration in this expression are
performed with respect to different points, we can change the order of
operations, which gives

P I
divA:@de@dV (1.40)
4r Ly
v
The volume of integration includes all currents; therefore, outside a
surface S currents are absent. Correspondingly, the normal component of

the current density at this surface equals zero:
Jn=0 (1.41)
The integrand in Eq. (1.40) can be represented as
P
e Vigl gt

Ly Ly Ly Ly

because the current density does not depend on the observation point and

p
dinj(q) =0
Then, we have
| | vj
P q q
jV—=—j.V—=—vd 4+ 1
Lygp Ly Lyp Ly

As follows from the principle of charge conservation for direct currents

q
divj=0

therefore,
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¢
= —div3-
ap

P
j-V—
Ly
Correspondingly, Eq. (1.40) can be written as

L
divA = —@Jdivj—dv
45 Lqp

Unlike Eq. (1.40) on the right-hand side of this equation, both integra-
tion and differentiation are performed with respect to the same point g. By
applying Gauss’s theorem, we have

JdiuMdV: ng -dS

Thus,

9 1 i.dS 'nds
diVA:—”—OJdiVLdV:—@ﬁ;']—:—@%J '
L, 4r L

v S S

qp

Taking into account that the normal component of the current den-
sity j, vanishes at the surface S, surrounding all currents (Eq. 1.41), we
obtain

divA =0 (1.42)

This is the first relation that is useful for deriving the system of field equa-
tions. Let us note that, in accordance with Eq. (1.42), the vector lines of the
field A are always closed. Next we obtain one more equation describing this
function. As is well known [1], the potential of the electric field U satisfies
Poisson’s equation

1)
VU=——
=00}
and its solution is
1 JédV
U= —_—
47[80 Lqp

|4

As follows from Eq. (1.36), every component of the vector potential has
the same form as the potential U; therefore, by analogy it also satisfies
Poisson’s equation:
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VzIélx = _)u()jx, Vz14)/ = _/’lujy, VZA: = _/'tu]z

Multiplying each of these equations by the corresponding unit vector

i,,i),i.and performing the summation, we arrive at the Poisson’s equation
for the vector potential:

V2A = —ugj (1.43)

1.4 SYSTEM OF EQUATIONS OF THE STATIONARY
MAGNETIC FIELD

Now we are ready to derive the system of equations of the stationary
magnetic field. First, making use of Eq. (1.35), we discover that divergence
of the field B vanishes. In fact, we have

divB = div(curl A) (1.44)

From vector analysis, the right-hand term of Eq. (1.44) is identically
zero. Therefore,

divB =0 (1.45)

This means that the magnetic field does not have sources, like charges,
and, correspondingly, the vector lines of the magnetic field B are always
closed. Applying Gauss’s theorem, we obtain the integral form of this
equation:

%B-dSZO (1.46)
S
that is, the total flux of the field B through any closed surface is always equal
to zero. Next we derive the surface analogy of Eq. (1.45) and, with this pur-

pose in mind, consider the flux through an elementary cylindrical surface
(Fig. 1.4A). It is equal to

B? .48, + B . 4S; +B - dS« =0 (1.47)

Here dS; = dSn, dS; = —dSn, and dS* is the lateral surface of the cylin-
der. Then, reducing the height of the cylinder to zero in place of Eq. (1.47),
we obtain

BYds—BVds=0 or B? =B (1.48)

n
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Q
Sl
3
5
,

(A) (B) B (C)

Fig. 1.4 (A) Surface analogy of Eq. (1.45); (B) illustration of Eq. (1.52); and (C) surface anal-
ogy of Eq. (1.50).

Thus, the normal component of the magnetic field B is always a contin-
uous function of the spatial variables. We have three forms of the equation
that describe the magnetic field caused by direct currents:

%B -dS=0, divB=0, B? —B=0 (1.49)
S

Each of them expresses the same fact, namely, the absence of magnetic
charges. Eq. (1.49) have been derived assuming that the field B is caused by
conduction currents. However, they remain valid in the presence of the
magnetic medium when the field also is generated by magnetization cur-
rents. The equations were obtained from the Biot-Savart law for direct
currents, but actually they are still valid for the time-varying magnetic fields
and, in effect, represent Maxwell’s fourth equation.

Next we derive the second equation for the magnetic field. Making use
of Eq. (1.35) and the identity

curl curlM = grad divM — V>M
we have:
curl B = grad divA — V>A
Considering
divA=0
and taking into account Eq. (1.43), we obtain
il B=—V?A =y j
Thus, the second equation for the magnetic field at regular points is

curl B = pigj (1.50)
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Consequently, outside of currents we have
cairlB =0 (1.51)

Eq. (1.50) states that currents are vortex-type sources, capable of gener-
ating a magnetic field. Applying Stokes theorem,

%M -dl= JCW’IM -dS
L S

where S is the surface bounded by the contour L, we obtain the integral
form of the second equation:

ﬁ;B ~dl= Jcm’lB -dS :,quj -dS
L S S

or
ﬂEB cdl= I (1.52)
L

Here Iis the current flowing through the surface S bounded by the path L
(Fig. 1.4B). It is proper to notice that the mutual orientation of vectors dl and
dS is not arbitrary but obeys the right-hand thumb rule. Thus, the circulation
of the magnetic field is defined by the value of current I piercing the surface
surrounded by the contour L, and it does not depend on currents located out-
side the perimeter of this area. Of course, this path L can go through media
with different physical properties. To derive the surface analogy of Eq. (1.52),
consider a closed contour surrounding an element of surface current with
density i(p) (Fig. 1.4C). Applying Eq. (1.52) to such a path and neglecting
contribution from elements perpendicular to the surface current, we obtain

2)

B® —B" =p i) or nx (B(2>—B<1)) = pyi (1.53)

where ¢ and I represent two mutually perpendicular directions tangential to
the surface. Thus, the tangential component of the magnetic field is a discon-
tinuous function at points where the density of surface current differs from
zero. We have derived three forms of the second equation of the field B:

{>B~dlz,uol, aurl B = pj, nx(B(z)—B(l)) = poi (1.54)
L

Here 1 is the vector of density of surface currents. It is interesting to note
that the last of these equations is valid for any time-varying magnetic field,
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and it is usually regarded as the surface analogy of Maxwell’s second equa-

tion. In addition, as pointed out earlier, the first two equations of the set

(1.54) remain valid for quasistationary fields, which are widely used in the

most electromagnetic methods of the borehole geophysics. Now let us sum-

marize these results and present the system of equations of the magnetic field
caused by conduction currents in diftferential form:

1. The system, shown below, has been derived from the Biot-Savart law in
the same way that the system of equations for the electric field was
derived from Coulomb’s law.

2. The Biot-Savart law and Eq. (1.55) contain the same information about
the magnetic field. This field is a classical example of the vortex field,
which is caused by current density vector j.

Biot-Savart law

| curB=pyj Il gvB=0

(1.55)

nx(B®@ - BM) = i n.(B@-BM=0

3. Atsurfaces where the current density i equals zero, both the normal and
tangential components of the magnetic field are continuous functions.
4. The system (1.55) describes the field in free space as well as in any non-
magnetic conducting medium. Moreover, it turns out that Eq. (1.55) are
still valid in the presence of a medium that has an influence on the field
(magnetic material), provided that the right-hand side of the first equation

il B = puj

includes also the magnetization currents.
5. As will be shown later, this system correctly defines the time-varying
magnetic field, assuming that propagation effect is disregarded.

1.5 EXAMPLES OF MAGNETIC FIELD OF CURRENT-
CARRYING OBJECTS

Now we consider several examples illustrating the behavior of both
magnetic field and vector potential.
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1.5.1 Example One: Magnetic Field of the Current Filament

Consider the case of current flowing along a straight current filament. Taking
into account the axial symmetry of the problem (Fig. 1.5A), let us choose a
cylindrical system of coordinates (r,d,z) with its origin situated on the
current-carrying line. Starting from the Biot-Savart law, one can see that the
magnetic field has only the component By, which is independent of the coor-
dinate ¢. From the principle of superposition, it follows that the total field is the
sum of fields contributed by the current elements Idz. Then we have

n

2

uol [dz XLy,
ap

N

1

where Ly, = (r + 22)1/ ? and z is the coordinate of the element dz. The
coordinates of the observation point are rand z =0, while z{, 2, are terminal
points of the current line. It is clear that the absolute value of the cross
product is

‘dz X Lqp} =dzL,,sin (dz,L,lp) =dzLysinff=dzL, cosa

r %
// a
(A)
A
p
: <
R x—¢ >
r ¢ X
dl q
(®) (D)

Fig. 1.5 (A) Magnetic field of a current line; (B) magnetic field at the axis of a current
loop; (C) magnetic field of the current loop at an arbitrary point; and (D) magnetic field
of magnetic dipole in spherical and cylindrical coordinate systems.
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Thus

d
—5-cosa. (1.57)

ol
B¢:4—
qp

n %u

Inasmuch as z =rtan a, we have
dz=rsec’ada  and Ljp = 72(1 + tanza) =r’sec’a
Substituting these expressions into Eq. (1.57), we obtain
[2%]
1
By = ol cosada
4rr

(241

Thus, the expression for the magnetic field caused by the current flowing
along a straight line is

By(p) = (sma2 —sinay) (1.58)

Here a, and a; are the angles, as shown in Fig. 1.5A. First, suppose that
the current-carrying line is infinitely long so that the two angles a, and o are
7/2 and —x/2, respectively. Then

I
By(p) = ;‘jw (1.59)

In the case of a semiinfinite line, a; =0 and a, =7/2, we have

1
By(p) = ﬂo (1.60)
Now we assume that ap =a and ay = —a. Then, in accordance with
Eq. (1.58), we obtain
. MOI [
B  — 1.61
#() = 27rr 2m(12 +r2)1/2 (1.61)

where 2/ is the length of the current-carrying line. If [ is much greater than
the distance r, the right-hand side of Eq. (1.61) can be expanded in a series in
terms of parameter (r/)%. This gives

Hol \=1/2 Mol 12 3
B 1+7°/1 S e I
1=y L ETIE) 27rr< 20 8P

Iflength of the current line 2/1s a few times greater than the separation r,
the field is practically the same as in the case of an infinitely long current line.
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1.5.2 Example Two: The Vector Potential A and the Magnetic
Field B of a Current in a Circular Loop

Consider next a circular loop of current. First, assume that the observation
point is situated on the axis of a loop with radius g, as is shown in Fig. 1.5B.
Then, in accordance with Eq. (1.37), we have

A:”(_)I%ﬂ
dr J Ly
L

Because the distance L, is the same for all points of the loop, we have

A— Mol #d]
471'Lqp

L

By definition, the sum of the elementary vectors dl along any closed
path is zero. Therefore, the vector potential A at the z-axis of a circular
current loop vanishes. Now we calculate the magnetic field on the z-axis.
Because we do not know derivatives of the vector potential on the axis, we
cannot use Eq. (1.35) and have to proceed from the Biot-Savartlaw. As can
be seen from Eq. (1.14), in a cylindrical system of coordinates, each current
element Idl creates two field components dB. and dB,. However, it is
always possible to find two current elements Idl that contribute at any point
of the z-axis the same horizontal components of opposite signs. Therefore,
the magnetic field along the z-axis has only a vertical component, which is
(Fig. 1.5B)
pol dloa pgla dl

a
B =Bl = L, T ar I
qp qp P qp

because ‘dl X Lqp‘ = Ly,dl. After integration along the loop, we obtain

_ pola2ma o la? _ noM
: 4r(a® + 22)3/2 2(a® + 22)3/2 2n(a® + 22)3/2

(1.62)

where
M =Irxd® =1S

and S being the area of the loop. When the distance z is much greater than
the radius of the loop a, we arrive at the following expression for the mag-
netic field:
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_ MM

© a2

if z>a (1.63)

The last expression plays an important role in electromagnetic fields
applied in the induction logging. The intensity of the field is defined by
the product M = IS, which is called the magnetic moment of the loop.
Thus, a small current loop with radius a creates the same magnetic field
as a magnetic dipole having the magnitude of the moment equal to
M = a®I. When the distance z in Eq. (1.62) is at least four times greater
than the radius g, the treatment of the loop as the magnetic dipole sit-
uated at the center of the loop results in an error of no more than 10%.
Thus far the vector potential and the magnetic field were considered
only along the z-axis. Now we study a general case and first calculate
the vector potential at the arbitrary point p. Due to symmetry, the vector
potential does not depend on coordinate ¢. For simplicity let us choose
the point p in the x-z plane, where ¢ =0. Every pair of current elements
(Fig. 1.5C), equally distant from the point p and having coordinates ¢
and —¢, creates a vector potential dA perpendicular to the x-z plane
because each element Idl causes potential of the same orientation as
dl. Inasmuch as the whole loop can be represented as the sum of such
pairs, we conclude that the vector potential A caused by the current-
carrying loop has only the component Ay. Therefore, from Eq. (1.36)
it follows that

A‘”:M(_)Ii;%:w_ﬂj acos di (1.64)
4r ) R 2m 0(a2+r2—2arcos¢+zz)1/2

where dly is the component of dl along coordinate line ¢.

dly =dl cos ¢ and L= (a2 +r> —2arcos ¢ + 22) 172

Letting ¢ =z + 2a, we have
dp =2da, cos¢p=2sina—1

and, therefore,

/2
A(/):al,uo J (2sin’a—1)da
T [(a+r)2+22—4arsin2(x]1/2
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Introducing new variable

2 4ar

(a+r)+22

and carrying out some algebraic operations, we obtain
Ay

/2 /2

:—Mﬂo(f)l/z E—1 J—da —EJ(l—kQSinza)uzda
2z \r k2 (1—K2sin2a)/? K2

0 0
kI 1/2 2
SLLTG [(1_k_>K_E}
2w \r 2

where K and E are complete elliptical integrals of the first and second kind:

(1.65)

7/2 /2

B da _ .2 \1)2
K(k)= J e E(k) = J (1—FKsin*a) “da  (1.66)

0

The functions K(k) and E(k) can be estimated using widely available
computer subroutines.

Using the relationship (1.35) between the vector potential and magnetic
field, we have, in cylindrical coordinates,

04, 19

B, = o B, =0, BZZ;E(VAq;) (1.67)

For elliptical integrals, we have
K E K dE_E
dk  k(1—k2) k k

and

Ok = Ok kK K

E_ 4ar’ E_Zr 4r  4a

Therefore, for the magnetic field, we derive
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P+ ]

' 2 2 1/2 2 4+ 2
”r[(a-i-r) +2'2] (“_”) <
(1.68)

ol 1 @ —r—z
T or 7 | Kt —=F
2 [(a+r)2+2'2} (a—r)"+2
Thus, the magnetic field caused by a circular current loop is expressed in

terms of elliptical integrals.

1.5.3 Example Three: Magnetic Fields of the Magnetic Dipole

Suppose that the distance from the center of the current-carrying loop to the
observation point R is considerably greater than the loop radius, that is

R:(r2+22)1/2 >a

Then Eq. (1.64) can be simplified to

T T

_Hola cos pdeg _ Hola cospdg
Ao J (R J 1

2z ) 2—2arcos¢)1/2_2”R 2ar/R2)cos¢]1/2
/2 T 5 2
I I I
%/;Ot; J(l + % cos d)) cospdep = gior; [cos Qdp + Zoﬂ;}yjcosz¢d¢
0

0 0

(1.69)
where approximation
(1+x)"=~1—nx

has been used assuming nx << 1. The first integral in Eq. (1.69) vanishes, and
we obtain

_ Hola’r HoISr,

A¢ = 4R3 or A¢ = A¢i¢ = mllﬁ (1.70)

where Sis the area of the loop. Now we make use of the spherical system of
coordinates, (R, 6, @) with the origin at the center of the loop (Fig. 1.5D).
Then, Eq. (1.70) can be written as

IS
A:i(ﬁf0 sin0 (1.71)

TR2



28 Basic Principles of Induction Logging

Next we introduce the moment of the small loop as a vector directed
along the z-axis, whose magnitude is equal to the product of the current
and area of the loop:

M = ISi. = Mi. (1.72)

where M=1S. The moment M and direction of the current form the right-
hand side system. Thus, instead of Eq. (1.71) we have:

M xR
AR

1.73
47 R3 ( )

since
M xR =iyMRsin 6
Now proceeding from Egs. (1.35), (1.73), and taking into account that
Ap=Ag=0

we obtain the following expressions for the magnetic field in a spherical sys-
tem of coordinates:

1 9(sin6Ay) 19(RAy)
Br=— , Bp=———-—>, By=0
Rsin@ 00 R OR
Whence
2poM HoM
Br = 1nRE < 0, By = ey 0, By=0 (1.74)

These equations describe the magnetic field of a small current loop,
assuming that its radius is much smaller than the distance between the center
of the loop and the observation point. This is the most important condition
for use of Eq. (1.74), while the values of the loop radius and the distance
R are not essential. Eq. (1.74) describes the magnetic field of magnetic
dipole with the moment M.

Some Comments

1. In the case of the electric field, a “dipole” means a combination of equal
charges having opposite signs when the separation of the charges is much
smaller than the distance to the point at which the field is determined.
The notion “magnetic dipole” is the limit of a closed loop of electric
current, as the radius of the loop is reduced to zero while keeping the
magnetic moment constant.
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2. The magnetic field of any current system, regardless of the shape and
dimensions, is equivalent to that of the magnetic dipole at distances
much greater than the size of this system. For instance, a distribution
of conduction currents within the upper part of the earth’s core is com-
plicated and changes with time. However, at the earth’s surface, rela-
tively far away from the core, the magnetic field of these currents is
close to that of the magnetic dipole.

3. Inmost cases of induction logging, current-carrying coils within the logging
tool can be treated as magnetic dipoles. Expressions (1.74), derived for the
direct current, are also valid for the case of quasistationary fields, which is
the main reason why we considered this example in detail. The main features
of the field of the magnetic dipole follow directly from Eq. (1.74):

(a) At the z-axis the field of the magnetic dipole has only one compo-
nent B. directed along this z-axis, and it drops with z as

. oM
- 3

2 (1.75)

(b) At the equatorial plane 8 = 7/2, the radial component By, vanishes,
and the field has the direction opposite to that of the magnetic
moment M:

_ﬂoM
3

B.= (1.76)
here r is the distance from the dipole to an observation point.

(c) Along any radius(d =constant) both components, Br and By,
decrease inversely proportional to R?. At the same time, their ratio,
as well as an orientation of the total vector B with respect to R, does
not change. In fact, in accordance with Eq. (1.74), we have

By 1
20— tan@ (1.77)
Br 2
It is also useful to consider the components of the field in the
cylindrical system. As follows from Fig. 1.5D, for components B,
and B., we have

B,(r,z) =Brsin@+ Bycos@ and B.(r,z) = Bg cosd— Bysinf

where

R=(P+2)"?
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Taking into account (1.74), we obtain

3ugM M
B/(r,z)= 4”0 sinfcos6, B.(r,z)= ZO (2 cos®0 — sin*6)
n

TR3 R3
or
3o M M
B My WM s )
4z (r? + 22) 4r(r> + 22)

Behavior of B, and B. components along vertical line parallel to the z-axis at
fixed ris presented in (Fig. 1.6). It is clear that the radial component B, is an
odd function of z changing sign in the equatorial plane of the dipole. At the
same time, the vertical component is an even function of z changing sign at
points

z::I:L.

V2

1.5.4 Example Four: Magnetic Field Due to a Current in a
Cylindrical Conductor

Consider an infinitely long and homogeneous cylindrical conductor
(Fig. 1.7A) with the radius a and current I In this case, the current density
j 1s uniformly distributed over the cross section S and has only z component:

j=j» = constant (1.79)

In the cylindrical system of coordinates r, ¢p, z where the z-axis is directed
along the conductor, the magnetic field can be characterized by three com-
ponents: B, By, B.. However, two of these components are equal to zero.

V4 V4

%

B, N B,

Fig. 1.6 Components B, and B, as functions of z.
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Fig. 1.7 (A) Cylindrical conductor with current; (B) summation of radial components
of the magnetic field of cylindrical conductor; (C) behavior of the magnetic field; and
(D) infinitely long solenoid.

As follows from the Biot-Savart law, the magnetic field caused by the current
element is perpendicular to the current density j; therefore B, =0. Next
consider two current elements located symmetrically with respect to the
half-plane ¢ = constant (Fig. 1.7B).

Obviously, the sum of radial components of the field is equal to zero.
Because the entire conductor can be presented as a combination of such pairs
of current elements, the total magnetic field does not have the radial com-
ponent, B, either. Thus, we demonstrated that B = (0, By, 0). Taking into
account the symmetry in distribution of the currents, the vector lines of the
magnetic field are circles located in horizontal planes with centers on the
z-axis. In order to determine the component By, we apply the first equation
of the system (1.54):

%B -dl= %Bd,dl = B¢§dl = ZJTVB(/, :/40[5
L L L

Here Igis the current passing through any area bounded by the magnetic
line. In the derivation, we take advantage of the axial symmetry of the field
and parallel character of vectors B and dl. Thus, the field outside and inside
the current is
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e _.UOI -
B¢—2—m if r>a (1.80)
and
Bf/):'l%r, if r<a (1.81)

because Is = zr%j. In accordance with Eqgs. (1.80), (1.81), the magnetic field
is equal to zero at the z-axis and increases linearly inside. At the surface of the
conductor, it reaches maximum, equal to

2
=—a
2

and then the field decreases inversely proportional to the distance r

By(a) (1.82)

(Fig. 1.7C). Considering the magnetic field of the linear current
(Eq. 1.58), we have shown that the field tends to infinity when an observa-
tion point approaches the surface of the current line (r — 0). Obviously, this
is a result of replacement of real distribution of currents by its fictitious
model. At the surface of the conductor, the field has a finite value defined
by Eq. (1.82).

1.5.5 Example Five: Magnetic Field of Infinitely Long Solenoid

Suppose that, at each point of the cylindrical surface S, the current density
has only one component iy (Fig. 1.7D). In this case, we have By =0. The
radial component also vanishes. Indeed, consider two elementary current
circuits located symmetrically with respect to the plane which includes an
observation point (Fig. 1.8A). It is seen that the sum of radial components

1 Q B® B0

(A) (B)

Fig. 1.8 (A) Summation of radial components; (B) magnetic field of a toroid.
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is equal to zero. Taking into account the fact that the solenoid is infinitely
long, one can always find such a pair of current loops that provide the resul-
tant radial component equal to zero. Thus, the total field has only a z
component:

B=(0,0, B.) (1.83)

In general, the field can be evaluated by the Biot-Savart law and integra-
tion of the fields caused by elementary currents with the same radius a. But
we can simplify calculations by using Poisson’s equation for the vector
potential

AA = —pj (1.84)

Taking into account the symmetry of the problem and the fact that the
vector potential has the same component as the current density, we have

A = Ayiy (1.85)
Outside the currents, the vector potential satisfies Laplace’s equation:
AA = A(Agig) =0
According to vector calculus, we have
ip=—i,sing +i,cos¢

Here i, and i, are independent of the coordinate unit vectors of the
Cartesian system. Thus

AA =—i,A(Agcos ) +i,A(Aysin )
For two arbitrary scalar functions u# and v, we have
A(uww) =vAu+ ulv + 2(gradu - gradv)

In our case, Ay depends only on r, while the second function is either
cos@ or sing.

The term 2(gradu - gradv) vanishes because gradients are orthogonal to
each other, and we obtain

AA=—i,[cosp- AAy+AgAcos| +i)[sing- AAy + AyAsin ]

By definition in the cylindrical system of coordinates

1 1
Acos¢p=——cos¢p and Asingg=——sing
r r
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Whence
. 1 . . 1
AA =—i,cos¢ [AA¢ — —2A4 +i,sin ¢ [AA,;, — —2A4 =0
r r

which holds when

1
AAy——Ap=0 (1.86)
P
The operator A is
10 [ 0Ay
AAy=—— 1.87
? T or (r or ) (1.87)

Substitution of the latter into Eq. (1.86) gives Laplace’s equation for a
scalar component A:

d [ dA¢(r)] _ A _ (1.88)

—|r
dr dr r
The solution to this ordinary differential equation of the second order is

Ay(r)=Cr+Dr! (1.89)

Because magnetic field has a finite value everywhere and tends to zero
at infinity, we represent the vector potential inside and outside of the
solenoid as

Ay =cr, AY = py! (1.90)

where C and D are unknown coeflicients. By definition

1, M, 1.
1

B=urlA=- Q i g (1.91)

r|Or O¢ 0z

0 rdAp O

Whence
B,=0, B,=0 B—18(A) (1.92)
r — Y ¢_ H Z_ray r. ¢ N

Substitution of A% into Eq. (1.92) yields

BY=0, ifr>a
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proving that the surface currents of the solenoid do not create a magnetic
field outside the solenoid. In the same manner for the field inside of the
solenoid, we obtain

BY=2C, ifr<a (1.93)

In order to determine C, we recall that the difference of tangential
components at both sides of the solenoid is

2C=pyiy  or BY=pi
Thus, for the field B, we have

BY =pjiy, if r<a and BY=0, ifr>a (1.94)

z

Such behavior of the field is not obvious. First, because the field caused
by a single current loop varies greatly along the radius it is difficult to predict
that the field inside, Bg), is uniform over the cross section. Also, it is not
obvious that the field outside a solenoid is zero; that is, the elementary fields
caused by all current loops compensate each other. However, imagine a
plane z = const where an observation point outside a solenoid is situated.
Current circuits located relatively close to this plane generate a negative
component along the z-axis, while current loops situated far away provide
at the same observation point a positive contribution, r>a. Correspond-
ingly, the field outside solenoid is an algebraic sum of elementary fields,
and it turns out that, in the case of infinitely long solenoid, this sum is equal
to zero. Note that inside the solenoid all elementary fields are positive. Of
course, if a solenoid has a finite length along the z-axis, the field outside is
not zero and has two components B,,B..

1.5.6 Example Six: Magnetic Field of a Current Toroid

Let us introduce a cylindrical system of coordinates with the z-axis perpen-
dicular to the toroid, having radius R (Fig. 1.8B). The current density in
toroid is 1. Due to axial symmetry, the magnetic field and vector potential
are independent of the coordinate ¢.

Also imagine two current loops of the toroid located symmetrically with
respect to the vertical plane, where a point of observation is located. As can
be seen, the sum of vector potentials due to these elementary currents does
not have the ¢-component. Thus, for the vector potential, we have

A=(4,0,4,)
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Taking into account that

= | -
Flor
-
<=
:';%3| QI

n

=
O%|Q§

we obtain

B _04,_04. B.=0 (1.95)
(P or”’ = '

Thus, the magnetic field has only one component By but cannot be cal-

culated from Eq. (1.95) unless the vector potential is known. The problem
can be solved by using the Biot-Savart law in the integral form Eq. (1.52):

L

where L is a circular path of radius rlocated in the horizontal plane with the
center situated at the toroid axis, and I is the current passing through a sur-
face Ssurrounded by this path L. Taking into account an axial symmetry and
the same directionality of B and dl, we have

By2mr = pyls (1.97)

First, consider a point p, located outside the toroid. In such a case
the current either does not intersect the surface S, or its net value pass-
ing through the surface is equal to zero (equal current is passing in
opposite directions through the surface). This means that By =0; there-
fore, the magnetic field is zero outside the toroid, as in the case of the
solenoid:

BY =0 (1.98)

Next consider the magnetic field inside of the toroid. As follows from
Eq. (1.97) the field Bf/? is not uniform and equals
‘ :ﬂols

B(’)

1.99
¢ 21y ( )

In this case, the path of integration is inside the toroid. Suppose that it is
located in the plane z=0; then, a change of its radius does not change the
flux of the current density. Therefore, within the range,



Stationary Electric and Magnetic Fields 37

Ry—rn<r<Ry+rn

an increase of rresults in a decrease of the field inversely proportional to r. If
we consider circular paths in planes with z # 0, then the current I becomes
smaller as z increases. Thus, we observe a nonuniform magnetic field inside
the toroid. It is natural to expect that, with an increase of the ratio of the
radius R, to the radius of its cross section r, the field inside becomes more
uniform. Note that if the toroid has an arbitrary but constant cross section
and current density is independent on the coordinate ¢, we can still apply
Eq. (1.99) and conclude that the field B is equal to zero outside the toroid.
Of course, if the current density is not constant in the last two examples, the

magnetic field appears outside, too, B(¥) 0.

1.6 SYSTEM OF EQUATIONS FOR THE STATIONARY
FIELDS

Let us summarize the results that follow from Coulomb’s law, the
Biot-Savart law, Ohm’s law, and the principle of charge conservation. As
shown above, we have the following equations at regular points:

airl E=0, divD = §,

il B = pgj,., divB=0 (1.100)
and boundary conditions at interfaces:
nx(Ez—El):(.), n-(D,—D;)=o0 (1.101)
nx (B, —B;) =i, n-(B,—B;)=0
Here
D=¢E and j,=7yE
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Proceeding from Faraday’s, Coulomb’s, Biot-Savart’s, and Ohm’s laws,
governing static and time-varying electric and magnetic fields, we arrive
at Maxwell’s equations. From a historical perspective, such approach is nat-
ural because most of these laws, as well as Faraday’s field concept, were
known before Maxwell derived his system.

2.1 FARADAY'’S LAW

Experiments performed by Faraday demonstrated that time-varying
flux @ of the magnetic field B through any surface S, bounded by a closed
contour L (Fig. 2.1A), creates an electromotive force 2 along this contour:

oD
[ 2.1
i 2.1)
where
(D:JB s

(D)

Fig. 2.1 (A) Flux of the field B'. (B) Electric field near an interface. (C) Faraday’s law.
(D) Flux of the current density.
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is the flux of the magnetic field and O® /0t is its derivative with respect to
time. The contour L is a closed path that can have any form and can pass in
general through media with difterent electric properties, including insula-
tors. Of course, such a path L usually does not coincide with the actual
current lines. By definition, the electromotive force is

E= %E ~dl (2.2)
L

where E is the electric field at each point of the contour L. Thus an
electromotive force may exist only if there is an electric field. Consequently,
in place of Eq. (2.1) we have

E - dl o0 2.3
ﬂ; = (2.3)
L

A change of the magnetic flux ® with time gives rise to an electric field.
In other words, a time-varying magnetic field B is a source of an electric field
in the same sense that electric charges are the source of a stationary electric
field. This phenomenon, first observed by Faraday, is called electromagnetic
induction. The relationship between the electric field and the rate of the
change of the magnetic flux, as described by Eq. (2.3), is one of the most
fundamental laws of nature. By convention, the electric field that appears

due to the electromagnetic induction is called the inductive electric field E™
to emphasize its origin. Thus we can rewrite Eq. (2.3) in the form
- od
EM. dl=——— 2.4
1; By 2.4)

L

Because electric field E™ appears in the integrand, its determination
from Eq. (2.3) requires additional information, even for known function
O®/0t. In general, there are two sources of the electric field, namely,
charges and a change of the magnetic field with time, as shown later.

Source: Vortex:
Electric charges Change of the field
B with time

\/

Electric field
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At the same time, we can readily think of particular cases in which only

one of these sources exists, such as:

1.

2.

A static field in which the derivative with respect to time is zero, and the
electric field arises only due to the presence of the electric charges.
An alternating electromagnetic field in which the electric field has only
tangential component at interfaces between media with difterent electri-
cal conductivities. In such a case charges are absent, and the electric field
has an inductive origin only:

E=E +E" (2.5)

where E‘ is the electric field generated by charges and at every instant
obeys Coulomb’s law, while E™ is the part of the electric field, which
arises due to a change of the magnetic field with time. Combining
Egs. (2.4), (2.5), we have

\CFE dl EI%E‘ dl= o0
ot
L L
Because the circulation of the Coulomb’s electric field is equal to

zero, we have

ind _ _ oo
%E -dl-#Ewﬂ——E (2.6)
L L

This result may lead to confusion about the role played by charges in
creating an electromagnetic field. Eq. (2.6) shows that the electromotive
force caused by the Coulomb electric field vanishes. But this conclusion,
as in the case of a stationary field, does not mean that the Coulomb field
plays no role in the distribution of currents and electromagnetic fields. In
fact, the Coulomb field does influence the distribution of currents in a
conducting medium, and these currents in turn can create an alternating
ind

>

magnetic field. Therefore, in general, both parts of the field, E“and E
are closely related to each other. Next, we describe different forms of
Faraday’s law. First, using the definition of the magnetic flux we have

0
%E-dl——aJB-dS

L S

As previously mentioned, a change of the flux may happen due to a
change of the magnetic field with time, as well as a change of a position of
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the path L. The influence of the last factor was studied earlier (Lorenz
force), but from now we assume that the path L along which the
electromotive force is calculated does not move. Then, the last equation
can be rewritten as

1;13 dl= —JB -dS (2.7)
L S
where
. OB
ot

Eq. (2.7) is a formulation of Faraday’s law, and, as will be seen later, it
is the first of Maxwell’s equations in integral form. In this equation dl is
elementary displacement along the contour and indicates the direction in
which integration is carried along the contour L, while the vector dS has
the direction of the unit vector n normal to the surface S, bounded by
the contour L (Fig. 2.1A). To retain the physical meaning of Faraday’s
law, the vectors dl and dS are chosen according to the right-hand rule.
This means that an observer facing in the direction of the vector —dS sees
that dl indicates a direction along the path L, which is counterclockwise.
Only in this case Eq. (2.7) correctly describes the phenomenon of elec-
tromagnetic induction. Now, making use of Stokes theorem,

ﬂEM . dIZchlM-dS

we obtain the differential form of Eq. (2.7)

0B
f’;E-dl:JcmlE-dS: —J—-dS
ot
L S s
Because this equation is valid for any surface S, it follows that the
integrands on either side are equal:
0B

caurl E = 5 (2.8)

where E and B are considered in the same point. Both Egs. (2.7), (2.8)
describe the same physical phenomenon, but the differential form
Eq. (2.8) applies only at regular points in which all components of the
electric field are continuous functions of the spatial variables.
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Considering that in most problems we must examine electromagnetic
fields in media with discontinuous changes in physical properties (inter-
faces), it is useful to derive a surface analog of Eq. (2.8). For example, it is
clear that Eq. (2.8) cannot be used for points of the interface between
media having difterent values of dielectric permittivity and conductivity
because the normal component of the electric field is a discontinuous
function at such interfaces. For this reason, we proceed with Eq. (2.7)
performing integration along the elementary path, as shown in
Fig. 2.1B. Taking into account that the flux through the area surrounded
by this contour tends to zero, we obtain

E>—E;;=0 (2.9)

where ¢ indicates an arbitrary direction tangential to the interface. The
vector form of this equation is

nX(Ez—El):O

Here E; and E, are electric fields at the back and front sides of the
surface, respectively.

In accordance with this equation, the tangential component of the
time-varying field is a continuous function at the interface, as it would
be in the case of the field caused by static electric charges. Thus we have
derived three forms of Faraday’s law:

. OB
%Emﬂz—JB-dS, cm’lE:—E, nXx (E;—E;)=0 (2.10)
L S
and each of them describes the first Maxwell’s equation. Later we con-

sider numerous examples illustrating electromagnetic induction and

application of Eq. (2.10).

Several comments:

1.

Suppose that a change of magnetic field with time occurs within some
volume TV, but outside of I the field B is absent. As follows from
Eq. (2.3), the electromotive force along the contour L, surrounding this
volume (Fig. 2.1C), is nonzero, regardless of location of the volume I
inside L;. In other words, the time-varying field B in some region results
in an appearance of the electric field E™ everywhere in space. Here we
see the direct analogy with Coulomb’s electric field caused by charges.
But neither Coulomb’s law nor Faraday’s law can explain how the field
reaches an observation point. Later we will discuss this subject in detail.
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2. Consider an arbitrary closed path L, that does not enclose a volume
where vortices 0B/0t are located. In general, an electric field caused
by the sources may exist at each point of this contour and vary in both
magnitude and direction (Fig. 2.1C). However, the electromotive force
in this case is equal to zero.

3. This analysis shows that, at every point of a closed contour, the inductive
electric field can be presented as the sum of two fields. The first is caused
by vortices intersecting the area surrounded by the loop, while the sec-
ond field is generated by vortices that do not cross the area of the loop. In
accordance with Faraday’s law, the electromotive force = is given by
only the first part of the electric field.

This fact allows us to measure the rate of change, 9B /3¢, at any point
in space with a relatively small loop around this point.

4. Itis well known that the voltage of a Coulomb electric field between two
points is path independent. In general, taking into account (2.4), the
voltage of the inductive electric field

b
JEirzd .dl

depends on the path of integration. Taking into account Faraday’s law
and modifying the system of equations, derived for the static field, we
obtain
0B ,
CMVZE:—E, divD = 9, 2.11)
ail B=pyj,, divB=0

At first glance, this set of equations fully describes the time-varying
electromagnetic field because it takes into account electromagnetic induc-
tion as well as the Coulomb’s and Biot-Savart’s laws. In fact, as we will see
later, it characterizes fields in the so-called quasi-stationary approximation,
which plays a dominant role in the induction logging. However, the set in
Eq. (2.11) also suggests that the field instantly appears at any point of space
regardless of distance from the source. Suppose that the conduction current
has changed at some instant . Then, in accordance with the equation

L
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the magnetic field synchronously changes at any observation point. The
same is true for the electric field. There is another fact, which implies that
there 1s a problem with Eq. (2.11). Indeed, from the equation

curl B = pij,
we have
divj.=0 (2.12)

because from vector calculus diveurlB = 0. Eq. (2.12) describes charge con-
servation law for the static electric field (Chapter 1). But we will see it later
that it contradicts the principle of charge conservation law for time-varying
fields. Understanding this discrepancy leads to the discovery of electromag-
netic field propagation and formulation of complete system of Maxwell’s
equations. For this reason, it is proper to describe in detail the principle
of charge conservation.

2.2 PRINCIPLE OF CHARGE CONSERVATION

In general, the principle of charge conservation is written in the form

ae()
jrdS=—— 2.13
%J B (2.13)
s
where S is an arbitrary closed surface, ¢ is a free charge in the volume V)
surrounded by the surface S, and dS is directed outside the volume

(Fig. 2.1D). Here
=i

is the conduction current only. In accordance with Eq. (2.13), a flux of the
current density through S defines the rate of a change of charge over time
inside the volume. If, for instance, the flux is positive, the charge ¢
decreases; by contrast, when the flux is negative more charges arrive
than leave the volume. At the same time, experiments show that, in the
absence of electrical current, it is impossible to have the appearance or dis-
appearance of charges from any volume. Thus any change of the charge
inside the volume 7 may occur only due to the flux of free charges through

the surface S. Now, applying Gauss’s theorem for regular points of a
medium, we obtain
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%de:JdiujdV:—gJéodV (2.14)
S |4 14

where J is the volume density of free charges. Assuming that the volume
does not change with time, we have

] 06 . 06 .
JdiUJdV:—Ja—todV or leJ:—FtO:—(S() (2.15)

V |14

Next, consider the surface analogy of Eq. (2.15). With this purpose in
mind, let us determine the flux of the current density through the surface
of an elementary cylinder. Making use of Eq. (2.14), we have

N

where j, and j; are the current density at the front and back sides of the
surface, respectively, and S; is the lateral surface of the cylinder,

dSz == ndS, dS1 = —ndS
In the limit when the cylinder height tends to zero, we have
Jon = jin = —60 (2.16)

that is, the difference of normal components of the current density defines
the rate at which a surface density of charges, oy, changes. Thus we have
derived three forms of equations describing the principle of charge
conservation:

€0

) 0

S

, diVj:—S(), jZn_jln:_d() (2-17)

These equations are always valid for any electromagnetic field, and they
show that a change of a charge in one place is always accompanied by such a
change of charge in other places so that the total charge remains the same.
This is the reason why the phenomenon is called the principle of charge con-
servation. At the same time, one can imagine at least two cases when it is
possible to neglect a change of the charge with time.
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Case One: The Stationary Field

By definition, the right-hand side of Eq. (2.13) vanishes, and the flux of the
current density is equal to zero through any closed surface. This means that
charges may exist, but they do not change with time.

Case Two: Quasi-Stationary Electromagnetic Field

Suppose that a medium is conductive and a time-varying field changes rel-
atively slowly. Then, it turns out that, under certain conditions, the right-
hand side of Eq. (2.17) can be neglected. In these cases, at each instant of
time the amount of charge entering any volume is equal to the amount
leaving the volume. As will be shown later, such an approximation gives
a sufficiently correct result when displacement currents are much smaller
than the conduction ones. As mentioned earlier, this scenario is of great
importance for the induction logging. Thus in these special cases in place
of Eq. (2.17) we have

ﬂﬁj-dSzo, divy =0, jou = j1u (2.18)
S

Returning back to the principle of charge conservation for the time-
varying field, it is natural to expect that the set (2.17) should follow from
the system of equations (2.11). However, it turns out that, in general, these
equations do not follow from the set (2.11) because the third equation of this
set does not take into account one more sources of the magnetic field.

2.3 DISTRIBUTION OF ELECTRIC CHARGES

Now proceeding from Eq. (2.17) and the second equation of the set
(2.11):

\ni;sE-dS:e() or diveE=2¥§ (2.19)
S

we study a distribution of charges in a conducting and polarizable medium
with conductivity y and dielectric permittivity €. In this light it is proper to
note that Eq. (2.19) was derived from Coulomb’s law. This may create
impression that our results are applied only for the static field. However,
as will be shown later, these equations are applied for the time-varying
electromagnetic fields, too.
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2.3.1 Equation for the Volume Charge Density

First consider some points of a medium where equations

a5
divj = —8—: and diveE = 3§, (2.20)

are valid. Taking into account Ohm’s law, we have

.. . .Y V. 14 06
divj = divyB = div-eE =~diveE + €¢E - grad == ———
ivj ivy wge - ive €E - gra - B
or
Y Y 85()
260+ €E-gradt=— "~
g0 T ER Ay ot

Thus we have arrived at the following differential equation for the
volume density of free charges:

06y 1 1
2+ —8y=—¢E-grad— 2.21)
ot 1 70
where
€
To=—=¢p (2.22)
14

is often called the time constant of the medium.

2.3.2 Uniform Medium

Suppose that, in the vicinity of some point, the parameter 7, does not change
or the field E and grad(1/7) are perpendicular to each other:

1
E-V—=0 (2.23)
7o
Then, Eq. (2.21) is simplified, and we have
85() 1
0y 5,=0 2.24
o T (2.24)

The solution of this equation is
5()(t): Cexp(—t/r()) (225)

where Cis the density of the free charge at the initial instant. In a conducting
and polarizable medium, the parameter 7, is usually small. For example,
if p=1000hmm and € =10¢; then



50 Basic Principles of Induction Logging

7o=100-10-(367) 105 < 1075

Thus a free charge placed inside a conducting medium quickly disap-
pears. If we are concerned only with charges that exist at times greater than
7o(t>>17() and described by Eq. (2.24), we can assume that they are, in prac-
tice, absent. In addition, the initial volume charge is usually equal to zero
inside the conducting medium, that is C=0. Therefore, we conclude that
at points where the medium is uniform with respect to 7, or condition (2.23)
is met, there are no electric charges and

diveE =0 (2.26)

Earlier (Chapter 1) it was mentioned that free charges are accompanied
by bound ones:
5() + 5;, 5()

and divE—=—
1<) £

divE =

because in our case grade =0. Whence

So+8, &
0D and 8= (eo/e—1)d, (2.27)
&

0]

Therefore, both the bound and free charges, located in the vicinity of
some point where V7, =0, decay in the same manner and

divE=0 if t>1 (2.28)

Similarly, with the case of the static field, the total density of the decaying
charge is smaller than the free charge by the factor ¢,.

_ 50([)

&

1)

(2.29)

where €, =¢/¢.

2.3.3 Nonuniform Medium

Thus far we have studied the behavior of the charge in the vicinity of points
where either the medium is uniform or the condition (2.23) is met. It was
established that charge decays rapidly, and such behavior is observed regard-
less of the presence of the electromagnetic field caused by the source located
at some place of the medium. A different situation occurs when the medium
is not uniform and either E-Vy#0 or E-Ve#0. In this case the
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right-hand side of Eq. (2.21) does not vanish, and we have an inhomoge-
neous differential equation of the first order:

dy 1
d_f oy =1(1) (2.30)

1

where y=35(f) and f(f) = —€E - V—. The general solution of Eq. (2.30)
70

has the form

t

y() = yoexp (=t/70) + exp(—t/70) J exp (/70 )f (x)dx (2.31)

where y, 1s the value of the function y(f) at the instant r=0. In accordance
with Eq. (2.31),

6o(t) = Cexp(—t/7y) — exp(—t/ro)ej exp <%>E . V:—de (2.32)
0

If the direction of the electric field does not change with time, the last
equation can be rewritten as

5()(0 =C exp (—I/T())

t

~exp (—t/To)e‘J exp <ﬁ> E(x)dx <e0 - vl> (2.33)

70 70
0

Here
E(t) =E(t)e

‘We can recognize two types of charges whose behavior is quite different
as a function of time:

8o(t) = o1 (¢) + 802(1) (2.34)

where

601(t) = Cexp(—t/ro)

and
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t

Sop(£) = — exp (—t/fo)ej exp (x/20) E(x)dx(es - V(1 /7). (2.35)
0

The behavior of the function 8y (f) is the same as in the case of a uniform
medium. According to Eq. (2.35), a free charge dg(f) arises in the neighbor-
hood of any point where a medium is not uniform, provided that the field
E(f) 1s not perpendicular to the direction of the gradient of 7y. In general, the
density dq»(f) depends on the resistivity and dielectric permittivity of the

medium as well as on the magnitude and direction of the electric field.

2.3.4 Quasi-Stationary Field

Now we consider a special case, which is of practical interest for induction
logging. Suppose the following inequality holds:

06 I}
P

o< (2.36)

Then, instead of Eq. (2.21), we obtain an approximate equation

y(so—(t) +eE(t)-Vl:O (2.37)
& 70

Correspondingly, the density of free charge is

50 (1) = —&pE(1) - V—

70
or (2.38)
5o(1) = £E(1) - L + (1) - Ve
p
since
1 1 Vel 1
vl_glt__Vel Vol
7o ep ep ple

Therefore, free charges arise in the vicinity of points where either con-
ductivity or dielectric permittivity changes. Of course, this happens only if
the electric field is not perpendicular to the direction of the maximal rate of
change of these parameters. Note that, in the frequency domain, the
inequality (2.36) is equivalent to the following:

we
— <1
4
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As we already know, the free charges are usually accompanied by bound
charges, and their density is

5;, =0— 5() = diU[(E‘() - €)E] = diu[(&) - E)jp]
Making use of Eq. (2.38) and equation
Oo + 6y

£

divE =

it can be shown that

\Y
5,(1) = —E(¢) - Ve + (g0 — e)E(1) - -2 (2.39)
p
From Egs. (2.38), (2.39) it follows that the total charge is
\Y
8() = eoE(f) - 2 (2.40)
p

This means that, at points where only € varies, the total charge is equal to
zero. In such places the free and bound charges compensate each other. At
the same time at points where both parameters change, the total charge is the
same as if polarization were absent.

2.3.5 Behavior of Charge Density 6o,

Now we return to the general case (Eq. 2.35) and consider two examples
that illustrate the behavior of the charge d¢,(f) when variation in time is taken
into account (2.21).

Example One
Let us assume that the electric field varies with time as

E(t) = Epexp(—t/7)eg (2.41)

and 7 is the parameter characterizing the rate of the field decay. Correspond-
ingly, Eq. (2.35) becomes

t

S () = —e exp <—£) <e() : V%) J exp K% —%) x} dxEo

0

Carrying out integration, we obtain

etoEyexp (1 —1t/79)
1 —T()/T

S (1) = {expli(1 /70— 1/7)] — 1} ey - v; (2.42)
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As follows from this equation, the charge is absent at the instant ¢ = 0.
Then it increases, reaches a maximum and, afterward, decays exponentially.
Thus, in general, the dependence of this charge density and the electric field
E(f) on time differs from each other. Assuming that the electric field decays
relatively slowly (7>>7,) and measurements are performed at sufficiently
large times (#>>17)), in place of Eq. (2.42) we obtain

50> (1) = ez exp (—t/7) Eo <e0 . v%) (2.43)
0

Thus the volume density of free charge and the electric field decay in the
same manner. For instance, when the time constant of the field 7 is 1 s, the
function 9y (f) also decreases with a time constant 1s regardless of the
conductivity and dielectric permittivity of the medium.

Example Two
Now suppose that the electric field varies as a sinusoidal function:

E(t) = Epepsinwt.

Substituting this expression into Eq. (2.35) and integrating, we have

ek, 1
S () = _ﬁ [w7) exp (—t/70) + (sin ot — @7) cos wt)] (eo . V%>
(2.44)
In particular, assuming that
t>1y and T>1 (2.45)
where T'1s the period of oscillations, we have

_ 1
502(t) =—¢etgEpsinwt| e - V— (246)

7o

Notice that conditions Egs. (2.36), (2.45) have the same meaning.

2.3.6 Surface Distribution of Charges

So far we have studied the distribution of volume charge density. Now con-
sider time-varying free charges that arise at interfaces between media with
different electric properties. Applying equations
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, . 860
Jon=Jn = =50 Dy, — Dy, =0y
where
Dm eiEim 1_152
we have
1 19
y_zDZ”_ﬁDl":_ y_2+ﬁ (D2pz_D1n)+ LN (D2n+D1n) :_ﬂ
& €1 21\&e2 & & £ ot
or
80()
a"op+ (ay—a;) DY = ———
0+ (o 1)D! o
Whence
800(t) 1
+ —oy(t) =(a; —ar) DY 2.47
AT o(t) = (a1 — ) D (2.47)
where
1 2
Tos =

a1/t +1/70
is the relaxation time for surface charges, and

1 1 e E, +ekE
o —=———, Dy =——,
o1 T2 2
1 1

To1 =€1P1, T2 =&202, 1 =—, A =—"

To1 To2
Thus the equation for the surface density of free charges is a differential
equation of the first order similar to that for the volume density. In accor-

dance with Eq. (2.35), the solution of Eq. (2.47) is

t

oo(t) = Cexp(—t/70,) + exp (—t/70;) (1 — x2) JDZ”(x) exp (x/70,)dx
(2.48)

that 1s

0) =001 T 02
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where

Gol(t): CGXP(—I/TQS), (%) t
— (o — o) exp(—t/70,) JDgV(x) exp(x/m)dy  (2.49)

0

Respectively, there are two types of surface charges. The first type 6,
corresponds to the case of free charge with density C placed at the interface.
As follows from Eq. (2.49), it decays exponentially with time constant 7.
The decay is controlled by the conductivity and dielectric permittivity of the
media on both sides of the interface, and it is independent of the electric field
caused by other sources. Inasmuch as the relaxation time 7y, is usually small
and measurements are performed at times much greater than 7, in most
cases one can ignore the presence of this charge. Correspondingly, let us
concentrate on the charges of the second type arising on a boundary. Of
course, as in the case of volume density, the surface charges consist of the
free and bound charges, and they are related to each other. In fact, from
the equations

c
E,,—E,=— and &k, —é& E, =0y

=00}
we have
1
70 :é[(gz * 81)(E2” B E1”) + (82 - 81)(E2n + Elﬂ)]
or
av
60:—0‘+(€2_81)EZV
=)
Here
e1te Eoy+E
o=0t0y =" Ey=-2_—"
2 2
Hence
8 _8av 8 —8
0y =———00 ————— &y}’ (2.50)
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2.3.7 Slowly Varying (Quasi-Stationary) Field

Now let us assume again that the time constant 7, is small with respect to
time of measurements,

12> 7

or the period of sinusoidal oscillations of the field T is much greater
that zo,: T>>1(,. Then it is appropriate to replace the right-hand side
of Eq. (2.49) by a series in the parameter 7o, Carrying out this expansion
using integration by parts and discarding all terms except the first one, we
obtain

o02(t) = (a1 — az) 70, D} (1) (2.51)

[t is obvious that the same result follows from Eq. (2.47) if we neglect by
the derivative do,(t)/0t in comparison with the term 64,/70,:
G0z S0 (2.52)
ot Tos
The free charges are accompanied by bound ones; however, it turns
out that the density of the total charge o does not depend on the dielectric
permittivity. In other words, the total charge ¢ coincides with that of free
charges, if the medium is not polarizable, provided that the condition
(Eq. 2.52) is met. Correspondingly, letting &; =&, =&y, Eq. (2.51) can be
written as

6 av
(r1+72)5— T (ra—7r)E =0 (2.53)
260

where E,;” is the average magnitude of the normal component of the electric
field at point p, located at the interface. Therefore, we arrive at the following
expression for the surface density of the total charge:

O'(p, t) = 280K12E:le(p, t) (254)
Here
K, =22 #1 (2.55)
P2t py

As we already know from (1.10), the same equation describes the density
of charges when the field is time invariant. Thus Eq. (2.54) shows that, if the
condition (Eq. 2.52) holds, the density of time-varying charges is related to
the electric field and resistivity of the medium as the density of stationary
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charges. Eq. (2.54) plays a fundamental role for understanding the so-called
galvanic part of the field. It is useful to represent the normal component of
the field E on two sides of the interface as follows:

Ep(p, t) =E,(p. 1) _olp.1)

28()

and (2.56)

Ea(p. ) = By (p. ) + 221

28()

Here E, (p, f) is the normal component of the field at the point p contrib-
uted by all sources except the charge at this point. As is shown Ref. [1], this
surface charge creates in its vicinity the field

Lol

28()

and, in accordance with Eq. (2.56), we have to conclude that

E)'(p,t) = E.(p. 1) (2.57)

where the normal n is directed from the back side “1” to the front side, “2”
of the interface. Therefore, the function E;’(p, f) describes the normal com-
ponent of the field caused by all sources except the field produced by the
charge in the vicinity of point p. For this reason, the second term of
Eq. (2.53) can be interpreted as the flux of the current density j through a
closed surface of an elementary cylinder with a unit cross-section and an infi-
nitely small height caused by all sources, located outside this surface. In other
words, this flux characterizes the difference between the amount of charge
that arrives and leaves this volume during each time interval, and this motion
of charges is caused by external sources only. The term

(4]

J,— -
(7’1 72) 2¢,

defines the flux of the current density through the same closed surface caused
by the electric field of the charge inside the elementary cylinder. Thus,
under the approximation (Eq. 2.52) the flux of the current density due to
the external sources, such as charges and a change of the magnetic field with
time, is compensated by the flux caused by the charge in the vicinity of the
point p.
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2.4 DISPLACEMENT CURRENTS
2.4.1 Second Source of the Magnetic Field

Next we demonstrate that the system (2.11) is not in agreement with the
principle of charge conservation for time-varying fields. To proceed, let
us demonstrate that the second equation of this system derived from the
Biot-Savart’s law

curl B = puj, (2.58)

in general, contradicts the principle of charge conservation when an electro-
magnetic field changes with time. In fact, taking the divergence of both sides
of Eq. (2.58), we have

div curl B =y divj, or divj.=0

while, as follows from Eq. (2.15), j, should be equal to the rate of decrease
with time of the charge density. To remove this contradiction, we first
assume that, on the right-hand side of Eq. (2.58), there is an additional term
X, which disappears in the case of a stationary field. Then Eq. (2.58)
becomes

arrl B = p,(j, + X) (2.59)

Now we choose the vector X in such a way that the principle of charge
conservation is satisfied. Forming the divergence on both sides of Eq. (2.59),
we obtain

0 =divj, + divX
or, in accordance with Eq. (2.15),
divX =35, (2.60)

[t is a partial differential equation with respect to unknown vector X, and
it is not clear how to solve it. However, the problem is greatly simplified if
we take into account the third equation of the set (Eq. 2.11):

divD = 60

Assuming that this equation is valid for time-varying fields and taking the
derivative with respect to time, we have

divD = §,, (2.61)
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Comparison of Egs. (2.60) and (2.61) gives
divD = divX or div(D —X) =0.

An infinite number of vectors X satisfy this last equation, and they may
differ from each other by curlM, where M is an arbitrary vector because

diveurl M =0

However, Maxwell assumed the simplest solution of this equation
and let
x—p_2%E (2.62)
o '
Numerous experimental studies performed during almost two centuries
have shown the validity of this assumption, and the vector dD/0r is called
the density of displacement current:

. oD

Ji=—5; (2.63)
or

i _OE (2.64)

Ji= Ot .

if we assume that the dielectric permittivity does not change with time.
Consequently, instead of Eq. (2.59), we have

. OE
il B=py|j, +e—— (2.65)
ot
Thus the time-varying magnetic field is caused by two types of sources in
a nonmagnetic medium, namely, the conduction and displacement currents
as illustrated later.

- Vortex:
Vortex: Displacement
Conduction currents:
currents OE
J o7
¢ ot
Magnetic
field, B

Applying Stoke’s theorem, we obtain the integral form of Eq. (2.65):
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A ®

Fig. 2.2 (A) Flux of conduction and displacement currents. (B) Field B near interface.
(C) Continuity of normal component of the total current near interface.

. 0OE
1;1341:;4 <JC+SE> -dS (2.66)
L S

which shows that the circulation of the magnetic field along any contour Lis

determined by the total current passing through any surface S bound by this
contour (Fig. 2.2A). Now suppose that the path of integration L is an
elementary contour, as shown in Fig. 2.2B. Then, taking into account the fact
that in the limit when the area surrounded by the path L tends to zero, the flux
of both the conduction and displacement currents vanishes, we obtain

n X (Bz—B1):O (267)

Therefore, the tangential component of the magnetic field, as in the case
of the static field, is a continuous function at the interface, if the surface den-
sity of conduction currents i, is absent. However, sometimes it is convenient
to assume that i, 7 0; then, in place of Eq. (2.67), we have

n x (B> —By) = g, (2.69)

2.4.2 Total Current and the Charge Conservation Principle

Having introduced the displacement currents let us represent the charge
conservation principle in a different form. Because

divj, = —50 and divD =9,
we have
divj, + divD =0 or divj=0 (2.69)

where

j=j te— (2.70)
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is the density of the total current. In accordance with Eq. (2.69), the current
lines of the field j are always closed; therefore, j is the vortex field. Applying
Gauss’s theorem, we obtain the integral form of Eq. (2.69):

%j dS=0 2.71)
S

which is the flux of the vector of the total current density through any closed
surface and is always equal to zero. Considering again an elementary cylinder
(Fig. 2.2C) and calculating the flux of j through this closed surface, we have

S aDln . + 81)211 (2 72)
Jine 8t = J2nc 8t -

Thus the normal component of the vector j is a continuous function
at an interface. Let us write down equations for the total current density,
describing the principle of charge conservation:

F’;j-dS:O, divj=0, ji,=jon (2.73)
S

Comments:
1. Eq. (2.65) can be rewritten as

airl B=pj (2.74)

where j is the vector of the total current density. The similarity of
Egs. (2.58), (2.74) is obvious. However, it does not mean that, in gen-
eral, a time-varying magnetic field obeys the Biot-Savart’s law. Never-
theless, if the influence of displacement currents is negligible, the
magnetic field B(f) behaves practically in accordance with this law,
and the field is a quasi-stationary one.

2. Displacement currents depend on the dielectric permittivity and
electric field. In particular, in a nonpolarizable medium (e =¢;) dis-
placement current is caused only by the rate of change of the electric field
with time.

3. Inan isolative medium there are only displacement currents, while in a
conducting medium conduction currents usually prevail. Of course,
with an increase of the frequency, the field is varying faster and the
relative contribution of displacement currents becomes stronger.
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4. Unlike electromagnetic induction, the introduction of displacement
currents, which was discovered experimentally, was a bold assumption
made by Maxwell and only later confirmed by experiments.

OE
5. The quantity e— is called the displacement currents density, though it is

ot

not related to a motion of free charges as in the case of conduction cur-
rents. In spite of this fundamental difference between the conduction
and displacement currents, the latter is also called the current in order
to emphasize that both can generate a magnetic field.

6. The charge conservation principle has two forms:

a5,
divj, + 7: =0 and divj=0

06,
In the case of the quasi-stationary field, we disregard with “ term

ot

assuming that an influence of displacement currents is negligible.
7. Among numerous phenomena based on the existence of displacement

currents, we note only two:

a. Propagation of electromagnetic waves with a finite velocity.

b. Presence of the alternating current in a circuit with a capacitor.
In fact, Eq. (2.58) was derived from the Biot-Savart’s law, which implies that
the magnetic field B instantly appears at any point regardless of its distance
from conduction currents. In other words, the velocity of propagation of the
field is infinitely high. However, this conclusion contradicts all experimental
observations that show that the field propagates with a finite velocity. For
instance, in a nonpolarizable and nonmagnetic medium this velocity is equal
to the speed of light:

c=3x10°m/s

Later we demonstrate that propagation of the electromagnetic field at a
finite speed 1s impossible without displacement currents. Now consider the
first example, illustrating the effect of displacement currents.

2.4.3 Currents in the Circuit With a Capacitor

Suppose that the circuit consists of a conducting part (wire) and an insulator
bounded by two conducting plates, parallel to each other (Fig. 2.3), com-
prising a capacitor. At the beginning suppose that there is only a conducting
current I, in the wire, while displacement currents are absent. In accordance
with such assumption there is a magnetic field around this circuit. Applying
the equation
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Fig. 2.3 Distribution of displacement and conduction currents in a circuit.

L

to the closed contour L (Fig. 2.3), we discover a paradox. Indeed, if the surface
S; bounding the contour L intersects the conducting part of the circuit,
the circulation of the magnetic field remains the same, and it is equal to
Hol. However, if the surface S; passes through the capacitor, this circulation
becomes equal to zero because there is no conduction current inside the
capacitor. This ambiguity indicates that our assumption was incorrect; in real-
ity, there is a displacement current inside the capacitor. Moreover, this current
has to be equal to the conduction current: I; = I.. Then, applying Eq. (2.66),
we see that the circulation of the magnetic field is independent of the place
where the surface S;intersects the circuit. Later, we consider several examples
illustrating the role of displacement currents, but now let us study the currentin
the circuit with a capacitor (Fig. 2.3). First, assume that, at some instant, two
charges with equal magnitude and opposite sign are placed on the capacitor
plates. To facilitate this analysis, we make several assumptions:

1. The inductive electric field, caused by a change of the magnetic field
with time, can be disregarded. Therefore, the electric field E(¥) is caused
by charges only, and it obeys Coulomb’s law. In particular, the field E(¢)
inside the capacitor is mainly caused by surface charges located on the
conducting plates.

2. The distance between capacitor plates is small compared with their
dimensions.

3. Atany given instant of time, the current density has the same value at all
points of the circuit.
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Charges, located on plates, create an electric field everywhere including in
the conducting part of the circuit. As a result, charges appear on the lateral
surface of the wire. Due to the electric field of these charges, a conduction
current with density j arises, and, correspondingly, a decrease of the plate
charges is observed. Note that inside the capacitor there can be bound char-
ges. The electric field E(f) in the capacitor is directed from the positive to
negative charges, as shown in Fig. 2.3. Taking into account the fact that
the field E(f) decreases, the displacement current has a direction that is oppo-
site that of the electric field. Thus the conduction current in the wire and the
displacement current in the capacitor have the same direction. Displacement
currents appear inside the conducting part of the circuit, but they are rela-
tively small (j,>>j,). In addition, displacement currents exist around the
circuit, but we assume that their influence is negligible. In this approxima-
tion Eq. (2.72) can be rewritten as

. OE

J[ZSE:J (2.75)
and under our approximation charges on the plates are located only at
points where wire is connected to the capacitor. Thus we demonstrated
that the displacement current in the capacitor represents a continuation
of the conduction current in the wire, and, in accordance with the
charge conservation principle, the vector lines of the current density j
are closed. Now we consider both types of currents in some detail. Sup-
pose that at some instant ¢ charges with density o((f) and —o((t) are
located on the capacitor plates. Then, as follows from Eq. (2.16), the
normal component of density of conduction current is related to the free
charge on the plate as

86()
== 2.76
Je==>, (2.76)
Respectively, the current in the wire is equal to
8Q0(t)
I=——+7—+> 2.77
5 (2.77)

where Qu(f) is the amount of free charge at each plate. By definition the
voltage of the electric field caused by charges is

JE-d1:U+—U_:IR (2.78)
)
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Here U4 and U_ are potentials of the plates with positive and negative
charges, respectively, and R is the resistance of the wire. The usage of the
potential U(r) is justified because the vortex part of the electric field is
neglected. Next we find an expression for the same potential difference
in terms of capacitor parameters. The electric field between plates is directly
proportional to density ¢, and

E(f)= (2.79)

At the same time, the free charges on the plate and difference of poten-
tials are related as

Qu(1) = C[U (1) = U_(1)] (2.80)

where Cis called the capacitance and is equal to amount of the charge on the
plate when the difference of potentials equals unity. In particular in the [SI]
units the capacitance is measured in farads:

1F = 1Coulomb/1V =10’ pF

Assuming that the influence of plate edges is small and the medium
between plates is uniform, it is easy to determine the capacitance C. In fact,
from Eq. (2.79) we have

o d
U, U =20y
€ eS C
where Sis the plate area and d is the distance between plates. Thus the capac-
itance in this case is

_ES
d

Now we derive the differential equation describing the behavior of the
charge Q and currents. From Egs. (2.77), (2.78), (2.80), we have

dQo(1) + %_
dt CR

C (2.81)

0 (2.82)

Therefore, the charge decays exponentially with time:

Qu(t) = Qyexp(—1/CR) (2.83)
Correspondingly, for the conduction and displacement currents, we have
0

Ie(t) = (1) :% exp (—t/CR) (2.84)
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With an increase of the resistance and capacitance the currents decay
slower. This example illustrates how a displacement current passes through
the capacitor.

2.5 MAXWELL'’S EQUATIONS
2.5.1 Introduction

In the previous sections we have introduced two sources of the electromag-
netic field, namely, the rate of a change of the electric and magnetic fields
with time:

OE OB
N and En
Together with charges and conduction currents, they form the complete

set of sources of the electromagnetic field, as shown in Table 2.1.

Let us point out several facts concerning the relationship between the
electromagnetic field and its sources:

1. In general, the electric field is caused by both charges ¢ and vortices
0B/ 0t.

However, the magnetic field does not have sources; it is generated in
a nonmagnetic medium by two types of vortices: conduction and
displacement currents.

2. Asisseen from Table 2.1, generators of the magnetic field are defined by
the electric field, while one of generators of the electric field is caused by
a change of the magnetic field B with time. Usually, electric and mag-
netic fields depend on each other, and it is impossible to determine them
separately.

3. Behavior of the static electric and magnetic fields is governed by
Coulomb’s and Biot-Savart’s laws. These laws require knowledge about
distribution of charges and currents, causing the fields. But in the pres-
ence of conductive media, there are some additional secondary sources
that affect the fields as well. In order to quantify these secondary sources,

Table 2.1 Sources and Vortexes of the Electromagnetic Field

Generators Electric Field Magnetic Field
Sources 1 _
Vortexes 0B . OE

el 3¢
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we will derive system of Maxwell’s equations that, along with the
boundary conditions, uniquely defines these sources and permits quan-
titative description of the fields in space and time.

4. In the case of the time-varying fields, we also have to proceed from the
system of field equations because (a) the medium affects the field; and
(b) existence of interaction between electric and magnetic fields.

In the case of the static field Coulomb’s law:

1 J 8(q)Ly

= | 2wy
47[80

E(p) -

|4

allows one to determine the field E(p) at any point if the charge distribution
is known. The same is valid for the Biot-Savart’s law, and the magnetic field
can be calculated as soon as the conduction current j, is fully specified. At the

jEE.dl_—JB-ds

establishes only the linkage between the flux of the vector B and the circu-

same time Faraday’s law

lation of the electric field along some line L, where E(f) usually changes from
point to point. This implies that, even for the known magnetic field, the field
E(f) cannot be determined at a specific location without additional informa-
tion. Of course, this statement is also applied to the relationship between
magnetic field and conduction and displacement currents. Therefore, in
order to determine the electromagnetic field, we have to proceed from a
system of field equations.

As is well known, the system of equations for any vector field M(p) at
regular points consists of two equations:

arl M(p) = W(p), divM(p) = a(p)

where functions W(p) and @(p) describe the distribution of vortices and
sources, respectively. Thus existence of interconnected electric and
magnetic fields leads to the system of four equations.

2.5.2 Maxwell’s Equations

Before presenting this system, it is appropriate to remind readers that we
restrict ourselves to the study of fields in a piecewise uniform and non-
magnetic medium because, in most cases, this model properly describes a
distribution of conductivity and dielectric permittivity of geologic media.
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This model is widely used in the theory of the induction logging. Taking
into account (2.8), (2.65) and assuming that equations

diveE=0,, divB=0

remain valid for time-varying fields, we obtain the following system of

equations:
0B
I curl E= o III diveE =6,
OE (2.85)
II curl B=p, <_][ + 85) IV divB=0
and their surface analogs:
I nx(Ez—E1):O I1I n'(82E2—£1E1):G()
(2.86)

II nX(Bg—B1):,M0iE IV n-(BZ—B1):O

In Eq. (2.86) E{,B; and E,, B, are the electric and magnetic fields at the
back and front sides of the interface, respectively. Eqgs. (2.85), (2.86) are
Maxwell’s equations in differential form. The first Maxwell’s equation
describes Faraday’s law, while the second equation is the result of general-
ization of the Biot-Savart’s law, which takes into account the conduction
and displacement current. The third equation was derived from Coulomb’s
law, and it is based on the assumption that it is valid for the time-varying
fields. Finally, the last equation follows from the Biot-Savart’s law, and it
implies the magnetic field does not have sources in a form of magnetic char-
ges. Maxwell derived the system by proceeding from the experimental laws,
and his main assumption was that the magnetic field is also caused by
displacement currents. Each equation of this system describes some specific
features of the field. However, only a combination of all four equations
describes such fundamental phenomenon as the propagation of electromag-
netic waves. It is useful to represent Maxwell’s equations in integral form,
which are valid everywhere in space, including regular points and interfaces.
Applying Stokes and Gauss’s theorems, we have from Eq. (2.85)

0B
E-dl=— —dS, €E'dS:€(),
ot

> > (2.87)

jﬁB-dlzﬂ()J(jﬁeaa—f)-ds, 1>B~dS:()

L S N
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As tollows from Eq. (2.86) tangential components of the electric field are
continuous functions. At the same time, there are cases when it is convenient
to introduce the presence of a double layer. Then, the tangential component
of the electric field E(f) might have a discontinuity at the layer surface. The
tangential component of the magnetic field also has a discontinuity in cases
when the actual distribution of currents near interfaces is replaced by that of a
surface current. Finally, due to the absence of magnetic charges, the normal
component of the field B(f) is always a continuous function, while the dis-
continuity of the normal component of the electric field is defined by the
density of surface charges.

2.5.3 Second Form of Maxwell’s Equations

The equations of the set (Eq. 2.85), which characterize the divergence of the
fields E and B, can be derived from the first two equations of this system and
the charge conservation principle. In fact, taking the divergence of both sides
of the equations:

OB . OE

mrlE:—E, caurl B =py _](+£‘E , (2.88)
we obtain

0 0

5divB =0 and E(—éo +edivE) =0
because

06
dl'VjC = _71‘0
Therefore,

divB=C; and divD=6y+ C,

where C; and C; are independent of time. It is natural to assume that, at
some time in the past, the fields E and B, as well as charges, were absent;
therefore, constants C; and C, should be equal to zero. Thus we again
obtain the second pair of Maxwell’s equations at regular points:

diveE = 5(), divB=0 (289)

Next, let us show that the surface analog of Eq. (2.89) also follows from
the first two equations of the set (Eq. 2.87). For simplicity assume that the
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(B)
Fig. 2.4 (A) lllustration of the proof of the continuity of tangential components of the

electric and magnetic fields across the interface. (B) lllustration of the continuity of the
normal components of the magnetic field and current density across the interface.

surface density of currents is equal to zero. Then, applying these equations to
any elementary contour (Fig. 2.4A) intersecting an interface, we can see that
tangential components of the electric and magnetic fields are continuous
functions. Next, we apply the following equation

#E cdl= —JB -dS = —JB,ldS

L N S

to both sides around elementary closed paths of the interface (Fig. 2.4B).
Because the tangential component of the electric field is continuous across
the interface, the left-hand side of this equation has the same value for both
elementary paths. Therefore, we have

By,dS — B2, dS=0
from which follows continuity of the normal components of the field B.

Finally, applying the equation

3EB.d1:ﬂOJ(j[+gE).ds

L S

to the same closed paths, we find that the normal component of the total
current density consists of continuous functions:

jln( + 81E1n :j2nf + 82E2n
where

jlnc =71 Elm j2nc - }/2E2n
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Integrating both sides of the last equality over time and taking into
account that

j2n( _jlnf = —0)

we again obtain the third equation of the set (Eq. 2.86). In other words,
equations (2.89) and their integral form are valid for any time-varying
electromagnetic field. This analysis allows us to represent the system of
Maxwell’s equations in a different form:

|E = OB B = i+ OE
curl E = o airt B=pg\ J, eat

and
nx(E,—E)=0, nx (B,—B,)=0, ifi,=0 (2.90)

Also we can write down the integral form of these equations:

OB ) OE
ﬁ;E Cdl= —JEdS, %B : dl:J <Jf + SE> -dS (2.91)
L S L S

where j, =yE.
Let us emphasize again that, in deriving Maxwell’s equations, we
proceeded from the following physical laws:
Coulomb’s law;
Biot-Savart’s law;
Faraday’s law;
Charge conservation principle;
Ohm’s law; and

SoHrEbr

Maxwell’s concept of displacement currents.

2.5.4 Maxwell’s Equations in a Piecewise Uniform Medium

The theory of electromagnetic methods in geophysics is mainly based on the
assumption that the Earth is a piecewise uniform medium. Then, as previ-
ously shown, the density of volume charges is equal to zero and in place of
Eq. (2.85), we have at regular points

0B

I awlE=—— III divE=0
ot

., OE ,
Il B=p,|j, + eE IV divB=0

(2.92)



Physical Laws and Maxwell's Equations 73

Here, let us make several comments:

1. As follows from the third equation of this set, the volume charges are
absent, but they can be present at interfaces between media with
different electric properties.

2. By definition, Eq. (2.92) represents the system of eight scalar partial
differential equations of the first order with six unknown compo-
nents of the electric and magnetic fields. In general, it is a compli-
cated system, and it is difficult to identify important features of the
field directly using this set. In fact, it is possible to reduce the system
(Eq. 2.92) to a simpler system, which is the subject of the next
section.

2.6 EQUATIONS FOR THE FIELDS E AND B

Now we replace Maxwell’s equations by two equations that contain
either the field E or the field B. Taking the curl of both sides of the first
equation of the set (Eq. 2.92), we have

cd curl E= —curl B

or

0
grad divE —V?E=— acwl B

Making use of the second and third equations of the same set:
airl B =y, (jc + EE) and divE=0

we obtain

0 OE
~V’E= o <}’M0E T Epy E)
or
OE O°E
2 — _— _—
v E THo 8t 8:”0 8t2 0

By analogy, taking the curl of the second of Maxwell’s equations
and using the first and fourth equations of the system (Eq. 2.92),
we have
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OE
curl curl B = curl | yu E + e,uoa

or
, OB 0°B
grad divB — V*B = —7//405 — gﬂ()ﬁ
and
OB OB

V2B — g — ety — =0
YHo 8t Ho atz

Thus, instead of the system of differential equations of the first order with
respect to two fields, we have derived one differential equation of the second
order for fields E and B. These equations are valid at regular points of the
conducting and polarizable medium:

OE O’E
V2E —yuy——epy—5 =0
7//’[0 at MO 8t2

OB 0’B
2 —
v B_}//"l() 8t — &y atz -

(2.93)

Then, the electromagnetic fields can be described at regular points and at
interfaces by groups of equations. For the electric field, we have

2
V2E—yﬂo%—wo%—tf=0
and (2.94)
nx (E;—E)=0, y,Ey,+ 51@ =y,E, + & 9Es,
ot ot
while for the magnetic field
OB OB

V’B - THo 5, TG =
and (2.95)
nX(B2—B1>:O, n'(Bz—Bl):O

Here, let us observe the following:

1. The electric and magnetic fields, defined from these equations, are
interconnected because they obey the set (Eq. 2.92).

2. The differential equations for the fields E and B have a remarkable
feature that is not obvious from the original set of Maxwell’s equations:
the individual equations for E and B discover two fundamental features
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of all electromagnetic fields. Suppose that the last term in Eq. (2.93) is
much greater than the second one; that is,

O’E > OE OE - E
EUN——= - r EUy—
Ho atz YHo at o Ho at YHo

and displacement currents greatly exceed the conduction currents:

O°E 0°B
V’E = eHo 5T and V’B = ety (2.96)

These equations describe an important class of fields that propagate
through a medium with the finite velocity
~1/2
c=(eny) /
Next, consider the opposite case when the conduction currents
prevail; then, in place of Eq. (2.93), we obtain

OE 0B
V’E= 7’/405’ V’B= 7’/105 (2.97)

These two equations describe a process called “diffusion.” Thus, in
accordance with Eq. (2.93), the electromagnetic fields always display
two fundamental features: propagation and diffusion. For instance, in
a resistive medium the influence of diffusion may be insignificant, and
mainly propagation is observed. By contrast, in a relatively conductive
medium, the diffusion usually prevails, but propagation is always present.
Later we will discuss this subject in detail.

2.7 ELECTROMAGNETIC POTENTIALS

Another useful approach in solving Maxwell’s equations is based on
the concept of vector potentials. In many cases, it is possible to describe
the fields E and B with only two or even one component of the vector
potential and, thus, greatly simplify the boundary value problem. To intro-
duce potentials, we make use of two of Maxwell’s equations:

divE=0 and divB=0. (2.98)

When the divergence of a vector field is zero at regular points, the field
can be represented as the curl of an auxiliary function. Thus,

E=cwrlA, and B=curlA, (2.99)
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where A,, and A, are called the vector potentials of the magnetic and electric
types, respectively. It is clear that an infinite number of vector potentials
describe the same electromagnetic field. For instance, adding functions
grad ¢, and grad ¢, to the vector potentials A,, and A,, new vector potentials

Ap,=A, +tgrad@p, and A, =A,, +grad P,
also describe the same field because

curl (grad ¢p,,,) = curl (grad ¢p,) =0

Eq. (2.99) defines the vector potentials up to the gradient of some func-
tions ¢,, and ¢,, which are called scalar potentials of the electromagnetic
field. This ambiguity in A,, and A, can be used to our advantage in simpli-
fying the equations. Let us start with the function A,,. Substituting

E=anlA,
into the second equation of Eq. (2.92), we have
curl B =yuqcurl A, + epgeurl A,
or
curl (B —VHoA, — E,MOAW) =0
Whence
B — yu A — A, =gradg,,. (2.100)

Here ¢,, is the scalar potential of the magnetic type and, as in the case of
the vector potential, an infinite number of these functions describe the same
electromagnetic field. Substituting expressions for the fields E and B in terms
of potentials into the first Maxwell’s equation, we obtain

curl curl A, = —y,qum — g,qu,,, — grad qu
or (2.101)

grad divA,, — VzAm = _J/M()Am - 8#0Am —grad (]'5,”,
where

o 8lam F azAm

A a¢1n
Am_w, Am 812 >

ot

and ¢ m =
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In Eq. (2.101) we can select the pair A,, and ¢,,, which simplifies the
system to the greatest extent, namely,

_ 9,

ot
and we obtain for the vector potential A,, exactly the same equation as for
the electromagnetic field:

divA,, = (2.102)

OA,, A,
——8 —_—
or Mo
Again, using the gage condition (Eq. 2.102), both fields E and B can

be expressed in terms of the vector potential A, only. In fact, from
Egs. (2.99)—(2.100) we have

vam —7THo =0 (2103)

E=aunl A,
and (2.104)
B= ]/,u()A + eﬂ()A,,, + grad divA,,

Taking the divergence of both sides of Eq. (2.103) and integrating
over time, we find that the scalar potential ¢,, also satisfies the same equation
as A,

ad)m 82¢rn 0
—_— —_ 6' =
m — THo ot Ho Or2

Next we derive an equation for the vector potential of the electric type.

Vi

(2.105)

Substituting the equation
B=cwrlA,

into the first of Maxwell’s equation, we obtain
0A, 0A,
curl E = —curl 5 E= —Tt' + grad @, (2.106)

where ¢, is the scalar potential of the electric type. This equation suggests
that the electric field is caused by a change of the magnetic field with time
and electric charges. In other words, there are two parts of this field: the vor-
tex and galvanic one. Replacing the fields E and B in the second equation of
the set (Eq. 2.92), we have
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OA, DA, 0
curl curl A, = (—7/— +ygrad p, — e—— + egrad ¢6>

ot or Ot
or
, OA, A, o,

grad divA, — VA, = o T e +grad (7/40% teno, )
(2.107)
Assuming that a pair of the vector and scalar potentials obeys the

condition
0

divA, =ypp, + ep a(]ig (2.108)

we obtain for the vector potential A, the same equation as that for the
function A,,;:

5 0A, O’A,

In this case, the electromagnetic field cannot be expressed in terms of the
vector potential only; thus, we have

0A,
B=wrlA, E=— % + grad @, (2.110)
At the same time, in the absence of electric charges the latter is greatly
simplified:
0A,
E=—
ot

One should not be confused that equations for A,, (Eq. 2.103) and A,
(Eq. 2.109) are exactly the same. These equations do not describe the same
fields because the corresponding boundary value problems apply difterent
boundary (and initial) conditions leading to difterent solutions.

2.8 MAXWELL’S EQUATIONS FOR SINUSOIDAL FIELDS

Until now we have not made any assumptions about the dependence
of the electromagnetic field on time. Let us examine important case of sinu-
soidal with time fields. This leads to significant simplifications. First, consider
the scalar function

M = My sin (@t + ¢) 2.111)
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where M, is the amplitude of the oscillation, ¢ is the initial phase, and @
is the angular frequency (w=2zf =2x/T) with T being the period of
oscillation. Making use of Euler’s formula,

i@t d) — o (ot + ¢) —isin (wt + )

we can present the right-hand side of Eq. (2.111) as the imaginary part of the
exponential function:

Mysin (ot + ¢p) = —ImM* e (2.112)
Here M™ is the complex amplitude given by
M* = Mye (2.113)
Therefore, we have
M*e @ = Mye e = Mye (@ ¢)
and

—ImM*e™ ™" = —Im[M, cos (wt + ¢) — iMy sin (ot + ¢)] = My sin (ot + )

Similarly, a cosine function can be presented by the real part of the
complex function:

M cos (wt + ) =ReM*e ™"

where, as before, M* = Mye™ . It is essential that the complex amplitude M*
is defined by the amplitude of oscillation M, and the initial phase ¢:

|M*| =M, and AgM"=¢

In other words, the complex amplitude contains all information
about the corresponding sinusoidal function. Suppose that functions
Mysin (wt +¢) and M,cos(wt+ ¢), describing any component of the
electromagnetic field, are solutions of Maxwell’s equations. Then, taking
into account that these equations are linear, the sum of functions

M*e™ " = M cos (wt + ¢) — iMysin (wt + )

is also a solution of this system. Therefore, we can represent any component
of the electric and magnetic fields as a complex quantity:

* —iwt
M7 e,
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but, after solving the equations, only the imaginary or the real part of the solu-
tion should be considered. This form of a solution, M* exp (—iwt), has one
remarkable feature: namely, it is a product of two functions. One is the com-
plex amplitude M™, which depends on the geometry and the physical param-
eters of the medium, the position of an observation point and frequency. The
second part, the function exp (—iwt), has a simple time dependence; after
differentiation, it still remains an exponential function. This fact permits us
to write equations in a form that does not contain the argument ¢. Because
sinusoidal functions have infinite duration in time, there is no need to study
the field at the initial moment when the electromagnetic fields arise. Now we
generalize this result for the vector function. Suppose that

M = My, sin (@t + ¢y )1, + Moz sin (@t + )1, + Moz sin (@t + ¢3) 1.

where 1,, 1,, and 1. are unit vectors along the coordinate axes. The latter
can be rewritten as

M = —Im[Myje” 1, + Mype™ 21, + Moze 1] e "
or (2.114)
M= —ImM*¢ "
Here
M* = Myje 11, + Mype 21, + Myse 51, (2.115)

is the complex amplitude of the sinusoidal vector function M, which is
described by the complex vector. Then, representing the field in the form

E=—Im(E‘¢ ™), B=—Im(B*¢ ")

and substituting these expressions into the first two Maxwell’s equations, we

obtain
il E* = iwB*, curl B* = p(y — iwe)E” (2.116)
because
g —iot _ _iwe—iwt

The conditions at the interfaces for the complex amplitudes are the same
as those for the field and

nx (E5—Ej)=0, nx (B;—B])=0 (2.117)
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Correspondingly, instead of Eq. (2.93) we have
V2E* +KE* =0, V’B*+,kB*=0 (2.118)
where
k= iy, + o ep, (2.119)

The quantity k is called the wavenumber. It is obvious that complex
amplitudes of potentials of the electromagnetic field also satisfy the same
equations:

V2A! +KPAL =0, VA + AT =0 (2.120)

The earlier equations allow us to determine only the complex ampli-
tudes; to find vector potentials, we have to multiply these amplitudes by
exp (—iwt) and take either the imaginary or real part of this product.
This consideration shows at least two important merits of sinusoidal
oscillations:

1. The system of Maxwell’s equations for the complex amplitudes of the
field, as well as Eqs. (2.118), (2.120), does not contain functions of time.
2. If parameters of medium are independent of time and the external field
is a sinusoidal one, the electromagnetic field still remains a sinusoidal
function of time of the same frequency.
This is an important feature of the sinusoidal field. In general, the primary
and total fields might have been different on the sinusoidal dependence on
time. Using Fourier’s transform, the primary field (input) with arbitrary
dependence on time can be represented as a combination of sinusoidal oscil-
lations and, then, the field (output) is also described as a combination of sinu-
soids having different amplitudes and phases. Sinusoidal fields are of a great
practical interest because they are used in induction logging.

2.9 ELECTROMAGNETIC ENERGY AND
POYNTING VECTOR

2.9.1 Principle of Energy Conservation and Joule’s Law

Until now we have focused on equations, describing the electric and mag-
netic fields as a function of space coordinates and time. It is also useful to
describe the fields in terms of their energy. Suppose that a distribution of
energy of an electromagnetic field is characterized by an energy density
u(p,?). Then the amount of energy inside some volume Vis
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W—Ju(p, dv (2.121)

14

The change of this energy is caused by several reasons. First is the presence
of electromagnetic energy sources with density P(p, f). Here, p is a point inside
the volume. Second is a motion of charges (current) through a medium. To
create the current, the electromagnetic field performs work on the charges;
correspondingly, the electromagnetic energy decreases by some amount
Q(p, 1), converting into heat. We already emphasized that the electromagnetic
field could display propagation and diffusion phenomena.

The energy also moves through space, and there is the corresponding
electromagnetic flux, causing the energy change. It is defined as

{>Y -dS (2.122)
S

Here, S is the surface surrounding the volume 1. The scalar product
Y - dS characterizes the flux of energy passing the surface dS during the unit
of time. By definition, Y shows a direction of movement, and its magnitude
is equal to the amount of energy passing during units of time through a unit
area oriented perpendicular to the flux. From the principle of conservation
of energy, we have

%szp(p, t)dV—JQ(p, t)dV—%Y(p, ) - dS (2.123)

|14 |14 S

or, making use of Gauss formula,

%Y-dS: JdideV
S v

we obtain

o Jp(p, t)dV—JQ(p, OV — JdiquV. 2.124)
vV

V V

The last two terms have a negative sign because transformation into
heat and the positive flux of energy cause a decrease of the energy in the
volume V.

Next, using Ohm’s law and Maxwell’s equations, we express both sides
of Eq. (2.124) in terms of the electromagnetic field. As pointed out earlier,



Physical Laws and Maxwell's Equations 83

the electromagnetic field causes a motion of charges (current), and the force
acting on the moving charge ¢ in the unit volume is

F=6(E, +vxB) (2.125)
so the work performed by this force per unit of time (the power) in a unit
volume is

A=6E,+vxB)-v=0E,-v (2.1206)
because
(vxB)-v=0

Here v is charge velocity, E, is the total electric field, comprised of fields
caused by charges, a change of the magnetic field with time and field caused
by external forces. By definition, § is the charge density. Inasmuch as the
product év is equal to the current density j, we have

A=E, -j
or (2.127)
A=j-E+j-E¥=j-E+P

Here E® is the external field caused by sources inside the elementary
volume, and

j-E=Q (2.128)

is the work performed by the electromagnetic field in a conducting medium
and converted into heat (Joule’s law).

2.9.2 Energy Density and Poynting Vector
Taking into account (2.121) and (2.128), we have from Eq. (2.124)

E-jzp—@—v-Y (2.129)
ot

The latter describes a distribution of energy in the unit volume of a
medium in the presence of external source and allows us to find formulas
for the energy density # and vector Y in terms of the electric and magnetic
fields. To proceed, we express the left-hand side in terms of the fields E and
B only and at the beginning assume that an external source is absent. From

the second Maxwell’s equation, we have
E.j= L E.(VxB)—E. 2L (2.130)

Ho o
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As follows from vector analysis:
V- (ExB)=B:-(VXE)—E-(V xB)
From Eq. (2.130), we have

1 1 OE

E-j=——V - (ExB)+—B:-(VXE)—¢E-—

Ho Ho ot

Applying the first Maxwell’s equation, we obtain
1 1. 0B OE
Ej=——V-(ExB)——B:-——¢E- —
Ho Mo Ot ot
or (2.131)

1 01/1
Ej=——V-(EXB)——- (—B2 +£E2>
Ho 012 \ py

Introducing notations for the energy (#) and flux density Y,

1 1
u=— (8]52 + —B2> and (2.132)
2 Ho
1
Y=—(ExB) (2.133)
Ho

we arrive at the conservation energy principle for the unit volume

0
5”;: —Q—divY (2.134)
or in more general case (P #0):
@—P—Q—d'Y 2.135
5 iv (2.135)

Performing integration over an arbitrary volume and using Gauss’s
formula, we obtain Eq. (2.123), which shows that the flux of energy through
a closed surface is equal to

%Y -dS (2.136)

where Y is called the Poynting vector, describing the rate at which energy
flows through a unit surface area perpendicular to the direction of wave

propagation. The SI unit of the Poynting vector is the watt per square meter
(W/m?).
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As tollows from Eq. (2.123) when the energy does not change with time,
we have

JPdV:JQdV+f£Y-ds (2.137)

14 v S

One part of the energy, created by the generators inside the volume, is
transformed into heat, while the other part forms the flux, intersecting the
surface S surrounding this volume. If the external force is absent, we have

EFY-dS:—Q (2.138)

S

and electromagnetic energy arrives at the volume (the flux is negative), then
it is converted into heat. Inasmuch as conversion of energy cannot take place
without a propagation, even a static field is based on the propagation. To
illustrate a movement of the energy and the usage of the Poynting vector,
we consider two examples.

2.9.3 Current Circuit and Transmission Line

As shown in Fig. 2.5A, inside the internal part of the circuit, the electric field
of the Coulomb’s origin and current has opposite directions, while in the
external part both vectors have the same direction. By definition, the
Poynting vector is directed outside and inside within the internal and exter-
nal parts of the circuit, respectively. Electromagnetic energy travels away
from the internal part into the surrounding medium and then returns back
into the circuit of the external part.

This description is rather approximate because the surface charges arise at
the lateral surface of the contour and create the normal component of the

Y
& B F NS N Load
Y
Y- j4JE =Y YooY el v+
B Generator
N
(A) (B)

Fig. 2.5 (A) Flux energy around a current circuit. (B) Poynting vector in the vicinity of
transmission line.
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electric field. As a result, at these points of the surface the Poynting vector has
both the tangential and normal components.

Suppose we have the system (Fig. 2.5B) consisting of three parts: the
internal part where external forces produce the work that results in electro-
magnetic energy; the long transmission line; and the relatively resistive load.

As previously demonstrated, the electromagnetic energy leaves the inter-
nal part of the circuit and travels through the surrounding medium. Now we
consider the field and Poynting vector in the vicinity of the transmission line
and the load. Inasmuch as the line has low resistivity, the tangential compo-
nent of the electric field E is small inside the line. In fact, from Ohm’s law
we have

E=pj

Due to continuity of the tangential component, the field E is also small
on the external side of the conductor. At the same time surface charges create
outside the line a normal component of the field E,, which is much greater
than the tangential component E:E,, > E,. Then, as shown in Fig. 2.5B, the
Poynting vector is practically tangential to the transmission line, and elec-
tromagnetic energy travels along this line, which plays the role of a guide,
determining direction of movement of the energy toward the load; other-
wise, the energy would travel in all directions from the external source. Due
to the presence of the tangential component of the electric field, a small
amount of the electromagnetic energy moves into the transmission line
and converts into a heat. This is a pure loss, which reduces the amount of
energy arriving to the load. Unlike the transmission line, the load is relatively
resistive; correspondingly, the tangential component of the electric field pre-
vails over the normal component, E, > E,. Therefore, the Poynting vector
is mainly directed inward.

2.10 UNIQUENESS OF THE FORWARD
PROBLEM SOLUTION

2.10.1 Uniqueness Theorem

The theory of induction logging is based on an analysis of the forward prob-
lems that allow one to establish a relationship between the field and the elec-
tric and geometric parameters of a medium. In general, Maxwell’s equations
have an infinite number of solutions. To determine the field uniquely, it is
necessary to impose additional conditions. Unlike the static field, these
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conditions consist of two groups: the initial and boundary ones. It is conve-
nient to consider separately two cases and begin from the simplest one.

Case One

Suppose that at the instant t =ty the field is considered in some volume 7/,
where all points are regular, and this volume is surrounded by the surface S.
At each point, the fields obey the equations

VB =i, ~ ety =0 and VB =gy e =0

Also, at the initial instant (t=1fy) the electric and magnetic fields are
known at every point of the volume:

E(p. 1) =N(p). B(p. t0) =M(p) (2.139)

In addition, we have to formulate boundary conditions at the surface S.
In the static case, Gauss’s formula serves as the “bridge” between values of
the field inside of the volume and the surface S. In our case, the conservation
energy principle (Eq. 2.123) plays a similar role. In the beginning, it is
assumed that the external sources of the field are absent: P(p,t)=0.
Consider two solutions of equations for both fields

E,Bi, E;,B;

which, at the initial moment, have the same values inside the volume.
Taking into account linearity, the differences of these solutions

E3 :Eg—El and B3 :Bz—Bl (2140)
also obey the same equations, while the initial condition has the form
Eg,(p, t()) =0 and Bg,(p, t()) =0 (2141)

To establish the boundary conditions, we apply the principle of energy
conservation in the following form:

o((e_, B3 1
— | (ZE3+ =2 ) dV =— | pjodV ——(E; x B3) - dS 2.142
8J <2 T JPJO /4()#( 2 Bs) ( )
Vv 4 S
Suppose that either tangential components of E; and E, or tangential
components of By and B, coincide with each other at points of the surface
S for t > ty. For instance, in the case of the electric field, this corresponds to

the tangential component of Ej3 equal to zero:
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nxE;=0 (2.143)

where n is the unit vector normal to the surface S. Because

\(l;(E3 X Bj) - dS :\QF(E3 X B3)nd5:$(n x E3) - B3dS

S S S

the surface integral in Eq. (2.142) vanishes, and we have

0 ) 1> 2
— || =B+ —B3 | dV = —| pj3dV/ 2.144
at[ <2 3 2/4() 3) JpJS ( )

V 14

Here js is the vector of current density caused by the field Ez. The right-
hand side of Eq. (2.144) can be either negative or equal to zero. At the same
time, the left-hand side is either equal to zero or positive. In general, the deriv-
ative of energy with respect to time can be either positive or negative. How-
ever, in our case, when at the initial moment the energy is zero (Eq. 2.141), the
amount of energy must either remain zero or become positive when ¢ > fy; oth-
erwise, the energy would be negative. Thus the equality (2.144) holds only
when both right and left sides are equal to zero, and for ¢ > £, we have

E;=E,—E =0, B;=B,—B,; =0

Therefore, electromagnetic field within the volume V7 is uniquely
defined for ¢ > ¢, by the initial values of the electric and magnetic fields inside
the volume I7and by the tangential component of either the electric or mag-
netic field at the surface S, surrounding V.

1. Proof of the uniqueness theorem remains the same if the volume 17 1is
surrounded by several surfaces.

2. Ifthe surface S tends to infinity, we can assume that a medium has a finite
conductivity; due to conversion of energy into heat, the surface integral
in Eq. (2.142) still tends to zero.

3. We have assumed that external forces are absent inside the volume 1. At
the same time, if fields E{, B, and E,, B, are caused by the same sources,
the initial and boundary conditions remain sufficient to provide unique-
ness of the solution.

Case Two

Consider a more complicated case when inside the volume there is an inter-
face Sy, separating media with difterent electrical properties. Inasmuch as the
differential equations for the field do not apply at the interface, we surround
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S5 by the surface S™. Correspondingly, at the right-hand side of Eq. (2.142),
we have an additional integral:

1
Ho 2

In approaching S™ to S;» we integrate at both sides of the interfaces:

106 ) — (6 80 2149
(

12

where E3', B3’ and E;”,B;” are the electric and magnetic fields at the back
and front sides of the interface, respectively. In accordance with Maxwell’s
equations, the tangential components of the electric field E and magnetic
field B are continuous functions at the interface. Thus the integrand in
Eq. (2.145) can be represented as

[(E} —E}) xBs] -dS=(E}, — E},) (n x B3) -ndS

_ <Eg —E )(n x 11)B3dS =0

Therefore, the integral over the interface vanishes if the solutions at the
back and front sides of the interface satisty Maxwell’s equations.

2.10.2 Formulation of the Boundary Value Problem

Let us summarize conditions that uniquely define the electromagnetic field
in a general boundary value problem:
1. At regular points of the volume V, the field should obey equations

OE O°E
[ — 6 —_—
o Mg
2. At the initial moment t = f, the field

E(p, t()) and B(p, I(j))

should be given at each regular point of the volume.

OB O’E

=0, V’B— THo 5~ EHo g r =

V’E — YHo

3. At the surface S, surrounding the volume V either the tangential com-
ponent of the electric or magnetic field

nXE or nxB

should be given at all instances ¢ > f.
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4. Atinterfaces inside the volume, a solution should obey the surface analog
of Maxwell’s equations.

As we have shown, these conditions uniquely define electromagnetic
fields. Because the field also might be expressed in terms of the vector
potentials, the corresponding boundary value problem can be formu-
lated in terms of these functions as well.
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CHAPTER THREE

Propagation of Electromagnetic
Field in a Nonconducting Medium
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Proceeding from Maxwell equations, we study the main features of propa-
gating electromagnetic fields by considering several simple and educational
examples. Special attention is paid to the quasistationary approximation,
describing fields of conductive objects in nonconductive environment.

3.1 PLANE WAVE IN A UNIFORM MEDIUM

Suppose that a nonconducting medium with parameters € and py is
uniform and that the electric and magnetic fields depend on the z coordinate
only; that is, the field is constant on any plane perpendicular to the z axis.
Also assume that the electric field has a single vector component along the x
axis:

E = Eye(z, t)i, (3.1)
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where Ey, is a constant, e(z, f) is a function that depends on the coordinate z
and time f, and i, is the unit vector directed along the x axis. Because the field
is independent of the x and y coordinates, the first equation of the set
(Eq. 2.93) in a noncoducting medium is greatly simplified, and we have

e e 0 (3.2)
02 Mg~ '
3.1.1 Solution to the Wave Equation

Eq. (3.2) is the well-known partial differential equation of the second order
describing wave propagation. Applying the trial and error method,
D’Alembert found its solution in the following form:

e(z, t) = Af [a(t— \/euyz) | + Be[a(t + /epo?)] (3.3)

Here A and Bare some constants, and fand g are functions having the first

and second derivatives. The constant a must have dimensions s~!, because

the argument of any function should be dimensionless. It is a simple matter

to show that function e(z, f) obeys (Eq. 3.2). In fact, introducing the variable
u= a(t — e,u()z)

we have for derivatives of the function f(z, f):

o fou )
D: Oupa Vet

where f; is the first derivative with respect to the argument u. Therefore,

82 1
6—;; = depyf! (3.4)
Also,
o _0f ou s

agon_ o T _ 20
o owor Yo d Gz = (3-3)

The last two equations show that the function
Flale- )]

satisfies Eq. (3.2). Of course, this is also true for the function

g[a(t + 8/402)]
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This clearly indicates that any function can be a solution of Eq. (3.2),
provided the arguments z and ¢ are comprised in the following
combination u:

u:a(t:I: e,uoz) (3.6)

It is useful to recognize that, if the argument of a function has the slightly
different form

b1/ VETT)

then it is also a solution of Eq. (3.2). D’Alembert found such a relationship
between arguments z and f that a corresponding function obeys Eq. (3.2),
and this is the essence of his solution.

Next let us assume that the electric field is described by only the function

fla(e=vens)2]
Thus

E— E()J{a[t _ (8/1)1/22’} }ix (3.7)

and consider its physical meaning.

3.1.2 Velocity of Propagation of Plane Wave

Analyzing the argument u (Eq. 3.6), we may notice that:

1. Atany point with coordinate z the field E, in general, changes with time,
while at any given instant ¢, it can have different values at different
coordinates z.

2. The electric field E has the same value at difterent points and different
time if the argument

U= a(t - 8;402)

remains the same. As follows from the definition of this argument, with an
increase of the distance z, the same value of the field is observed at greater
times. Imagine a system of parallel planes, z = const, which are perpendic-
ular to the z axis and think of these planes as the surfaces where the field E has
the same value as the time changes (Fig. 3.1A). Each of these planes corre-
sponds to some instant of time, and the relationship between z and ¢ 1s

th—H = \/8//[0(22 —21), 3 — 1t = \/8//!0(23 —21)
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Fig. 3.1 (A) Motion of wave. (B) Wave at different distances. (C) Change of wave
with time.

and

t,—ti = \/8/10(2,1 — Zl')
because

u;=t; — \/EUyz; = constant

We can interpret this infinite series of parallel planes as a movement of only
one plane, characterized by the same argument, with velocity

1 c
p=—-=x= (3.8)

vV EHo 83/2

where ¢ is the speed of light
c=3x10° m/s
In particular, in a free space v=g¢, but, for example, in water
va20.33x 10° m/s

In other words, we observe a motion of the field E along the z axis, and
this phenomenon is called propagation or wave motion or, even simpler, a
wave. For this reason, Eq. (3.2) is called the wave equation. It is proper to
remind that, at all points of each plane z = const, the electric field has the
same value independent of coordinates x and y, and it is natural that such
motion of the field is called the plane wave. For illustration, the distribution
of the wave as a function of f and z is given in Fig. 3.1, which represents the
wave distribution along the z axis, Fig. 3.1, and the change of the field with
time, Fig. 3.1C, respectively.
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3.1.3 Propagation of the Plane Wave

Now consider the magnetic field that accompanies the field E. To proceed
we represent Maxwell’s equations (assuming that conduction currents are
absent) in Cartesian coordinates. Then, using the expression for curl, we
obtain

i, i, i.
00 0| 9B |00 0 0B
Ox dy 0z ot |ox dy 0z e
E. 0 0 B, B, B

Equating corresponding components of the fields from both sides of
these equations, we have

OB, 0B, OB 0B.
o ot 9z ot

(3.9)
OB, 0L OB

9= Mo Tax
In deriving these equations, we used the fact that the electric field has
only the component E,, and both the electric and magnetic fields are
independent of the x and y coordinates.
The equation for the magnetic field component B, derived in Chapter 2
directly follows from Eq. (3.9), which gives

9°B, 9’B,
92 Hope

Substituting Eq. (3.7) into Eq. (3.9) and taking into account Eq. (3.8), we
obtain

=0 (3.10)

9B, 1 B,

o e sla(t=2/v)] and 9 —epyEnaf,la(t—2/V)]
It is obvious that the function
B,(z, t) = By,fla(t — z/v)] (3.11)
satisfies both equations of the set (Eq. 3.9), provided that
Boy = \/epoEox or Eox =vBy, (3.12)

Thus, we have demonstrated that the electromagnetic field propagates
along the z axis with the velocity v, and it is described by two vectors:
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Ex(Z, I) = E()xe(z, l)ix, By = B()yb(Z, If)iy (313)
where the coefficients E, and By, are related to each other by Eq. (3.12) and

e=b=fla(t—z/v)] (3.14)

From Eq. (3.13), we may note that the electric and magnetic fields are
perpendicular to each other and the direction of propagation. Such an elec-
tromagnetic field is called the transverse plane wave. By definition, the
Poynting vector, representing the directional energy flux density, is

1
Y=—(ExB)
Ho
Taking into account (Eqs. 3.12-3.14), we have

e 1/2
Y(z, 1) = (—) E; i (3.15)
Ho

which shows the direction of the wave motion. As follows from Eq. (3.9),
the electric and magnetic fields support each other at every point of space. In
fact, when the magnetic field changes with time it generates an electric field
(Faraday’s law),

8Exi_%
dz Ot

while a variation of the field E with time (displacement currents) creates a

magnetic field:

L
o= My

Supporting each other, the magnetic and electric fields form an electro-

magnetic wave that propagates through a nonconducting medium with
velocity v. Note that these two generators of the field,

are vital in forming electromagnetic waves: if one of them is disregarded
the effect of propagation disappears. For instance, suppose that displace-
ment currents do not have any influence on the field. From the math-
ematical point of view, this corresponds to the case of the dielectric
permittivity & equal to zero. Therefore, in accordance with Eq. (3.8),
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the velocity of propagation becomes infinitely large, and, respectively,
the fields E and B arrive instantly at all points of a medium. This con-
tradicts the concept of propagation of the field with a finite velocity.
Also, in Chapter 2 we described the behavior of displacement currents
inside a capacitor, assuming that the change of the magnetic fields of
these currents with time is negligible. In other words, the analysis did
not take into account the inductive electric field. Correspondingly,
the inductive effect vanishes and the field E between the capacitor plates
behaves as a Coulomb’s field.

3.1.4 Note on the Plane Wave Model

In many cases, it is convenient to use a model of a plane wave; however,
this model is not quite realistic, because existence of plane wave requires an
infinitely large energy. We may think of such source as two plates of infi-
nite dimension, located at the plane XOY, with charges of equal magnitude
but opposite sign uniformly distributed over the plates. At some instant
t=0 one of the plates starts to move in the x direction, forming a current
with the surface density i,, which is independent of the x and y coordinates
(Fig. 3.2A):

. 0 t<0
1x_{1()w(at) =0 (3.16)

Here y(af) is an arbitrary function of time. The current Eq. (3.16) causes
a magnetic field, arising in the vicinity of the plane z=0. Applying the inte-
gral form of the second Maxwell’s equation to the elementary path around
this surface current and located in the plane perpendicular to the x axis, we
obtain

Bzy — Bly == —ﬂoix, if z=0

where B, and B;, are components of the magnetic field at the front and back
sides of the plate, respectively. Because the magnetic field B, is an odd func-
tion with respect to the coordinate z, we have

B2),:—B1y:—”;’x, if =0 (3.17)

Thus, in accordance with Eq. (3.16), the magnetic field at the front side
of the current plate behaves as
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Fig. 3.2 (A) Moving plate with surface current density i,. (B) Propagation of impulse. (C) Illustration of relation between fields E and B.
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0 1<0
B,(0,1) = _ﬂoTIoT(at) >0 (3.18)

At the same time, as follows from Eq. (3.11), the dependence of the field
on the coordinate z and time f has to be defined by the same function for all
points. It is also essential (Eq. 3.18) that this function is equal to zero if the
argument is negative. Therefore, we can represent the magnetic field regard-
less of the distance from the current plate, in the form

0 z>Ut
By(z,1)= —”OTIO‘P[a(t—z/U)] > <ur (3.19)

Thus, in the vicinity of the plate the magnetic field varies almost syn-
chronously with the current density of the source, but at some distance z
the field is observed with time delay z/v.

In accordance with Eq. (3.12), the electric field is

0 . 12 z>ut
Exlz.1) = { —50 ('%) Wla(t—z/v)] z<ut (3.20)

Let us notice that the coefficient (uy/€)'’? can be presented as

12
S 1207 (3.21)
12
€ (&)

It is an appropriate to notice:

1. Inderiving Eq. (3.17) we took into account that the flux of displacement
currents through an infinitely small area surrounded by the elementary
path is equal to zero. This fact allowed us to establish a relation between
the magnetic field in the vicinity of the source and its current.

2. In essence, Eq. (3.17) is a boundary condition near the source; later, it
will be derived in a similar manner for more complicated cases.

3. The electric and magnetic fields of a plane wave have the same depen-
dence on distance and time. Such behavior is an idealization, which is
not observed in the case of real sources.

4. Electromagnetic field of the plane wave is described by the same function,
regardless of the distance from the current source. This is another ideal-
ization, which does not take place in a realistic electromagnetic field.
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5. Theargument a(t — z/v) is called the phase of the wave, while the planes
on which the phase has a constant value are called phase surfaces. Thus,
the propagation of the plane wave can be treated as a movement of the
phase surface with the velocity », and the Poynting vector being perpen-
dicular to this plane. To illustrate the eftect of propagation we consider
several examples.

Example One
Suppose that the current in the plate differs from zero only during some time
interval T:

LL¥(at) 0<t<T

Iy =
0 1<0, t>T
Then at the point of observation, located at the distance z, the field exists
when
z z
-<t<—-+T
v v

Hence if the distance z is such that
z
T<-
v

the field will be observed at times after the conduction current on the
plate has stopped. This fact vividly demonstrates that the electromagnetic field
propagates due to the interaction of the electric and magnetic fields; in this
sense, the wave does not require the current source to remain active.

Example Two
Now consider propagation of a square waveform shown in Fig. 3.2B. In
accordance with (3.19), we have

<

0 t<-

I 12

Holo < z
By(zt)={ "5 ;§t§;+ T (3.22)
<
0 t>—+T

14

and
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Taking into account the simplicity of the form (Eq. 3.22), let us study the
relationship between the electric and magnetic fields proceeding directly
from the integral form of Maxwell’s equations. We can imagine a closed
rectangular contour L, situated in any plane that is parallel to the plane
XOZ (Fig. 3.2C) and assume that the wave front is located somewhere
inside the contour, while the back side of the plane wave has not yet reached
its side ¢d = Ax. Then, at any moment, f, the flux of the magnetic field @,
intersecting the contour is equal to

d(1) =z*AxB,

where z*Ax = vtAx characterizes the area of the loop where the field B is
not zero. Inasmuch as the electromagnetic field moves along the z axis, this
area as well as the flux increases. In particular, at the instant ¢ + Af the flux is

D(t+ A1) = Ax(z* +vAr)B,
Therefore,
do
dt
and, in accordance with Faraday’s law

dd
E-dl=——
4; dt

= B,vAx (3.23)

L

an electromotive force appears in the contour. Integrals along paths, which
are parallel to the z axis, vanish because the dot product of two perpendicular
vectors

E=Edi, dl=di.

is zero. At the same time, the integral along the path ab is also zero because
the field has not yet arrived at this side of the contour. Respectively, the
electromotive force is defined by the voltage along the path ¢d and is equal
to —E.Ax; that is,

EIQE - dl= —E,Ax (3.24)

L

Therefore, due to a movement of the magnetic field an inductive electric
field arises and, as follows from Eqgs. (3.23), (3.24)
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E.=vB,

Next we apply the second of Maxwell’s equation,

ng : dl:%JE -dS

to the rectangular contour L; located in the plane YOZ. The same approach
as before shows that the rate of change of the flux of displacement currents
through an area enclosed by the contour L; is

epoExvAy
At the same time, the circulation of the magnetic field along L; is
B,Ay

Thus, displacement currents generate a field B, which is equal to
1
B, = epyvE, = ;Ex

that, of course, coincides with the relationship between the vectors E and B
derived before.

Example Three

Now consider a more general case when the current in the source Ioy (af) is
an arbitrary function of time. This function can be represented as a system of
rectangular pulses with different magnitudes arising at different times
(Fig. 3.2D). With decrease of the width of each pulse, this approximation
becomes more accurate. Therefore, at the instant ¢, the observed field is cau-
sed by the current impulse, which appears earlier at the instant

t1:t—z/1/

For example, if the current in the source I remains constant when ¢ >0,
then the time-invariant field is observed at any point with coordinate z, pro-
vided z <wt. This occurs because the current pulses are identical, and they
follow each other continuously. In other words, the front and back of neigh-
bor pulses arise at the same time. Because they are characterized by opposite
directions, we observe the constant field. Thus, the time-invariant electric
and magnetic fields arise due to wave propagation.
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Example Four
Another example of the function y(z,f) is a sinusoidal oscillation that also

can be treated as a system of pulses with different magnitudes and signs.
In accordance with Egs. (3.19), (3.20), if

i.=Isinwt, if t>0

Then
I
o sino(t—z/v) z<ut
By(z,t)= 2
0 >t
. (3.25)
I
-2 <@) sinw(t—z/v) z<ut
Ex(Z’ l‘) = 2 £
0 z>ut
Taking into account that @ =27 /T, we can rewrite Eq. (3.25):
I
B, = —l% sin(wt—¢) and E,=vB,
Here,
2n
¢:72 and A=vT (3.26)

The parameter A is called the wavelength, and it characterizes the dis-
tance passed by every elementary pulse during one period. The quantity
¢ is the phase shift between the electromagnetic field and function describ-
ing the current source i,(0, ), and it is defined by the distance from this
source expressed in units of the wavelength A. It is not easy to visualize
the propagation of sinusoidal waves, or any periodical function, because
there is no front or back of the wave. At the same time, the wave nature
of the field can be established considering the behavior of the phase at dif-
ferent times and distances from the source. In a nonconducting medium the
field is generated by two types of vortices at regular points:

0B OE
_, 8_
ot Ot
However, when the field has a discontinuity, there is also a surface

distribution of vortices. For instance, if the wave is represented by the
rectangular pulse, the vortices are located at the front and back sides of
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the pulse. The simplest example of a plane wave in a uniform and non-
conducting medium can be treated as an introduction to the propagation
of a wave through a conducting medium. Now we describe one impor-
tant approximation for the field that is widely used in the induction

logging.

3.2 QUASISTATIONARY FIELD IN A NONCONDUCTING
MEDIUM

An electromagnetic field arising somewhere in a space cannot reach
any place instantly but rather always requires some time that is defined by
two parameters, namely, the distance between the two points and the veloc-
ity of propagation. This phenomenon occurs in any medium, regardless of its
conductivity and dielectric permittivity, and both electromagnetic induc-
tion and displacement currents are vital for field propagation. For instance,
letting the parameter € equal zero, that is, neglecting the displacement
currents,

. OE 0

Ji= &5

we arrive at an infinite velocity of propagation of the electromagnetic field.
Of course, in reality, there is no propagation at an infinite velocity. Quite
opposite, it always has a finite value even though it is very large; that is,
the propagation effect without exception takes place. However, there are
conditions when, with a given accuracy of measurements, it is practically
impossible to observe the wave phenomenon. In such cases, the field is called
the quasistationary one. We first study quasistationary fields in a non-
conducting medium; later, the influence of conductivity will be investigated
in detail. Suppose that the field is caused by conduction currents, and they
are distributed uniformly in the plane as shown in Fig. 3.2A. Then we have
for the magnetic field,

By(z,t) = Byyla(t — z/v)] (3.27)

where w (0, 1) is defined by conduction currents of the source, and the ratio
z/v characterizes the time needed for the field to travel from the source to an
observation point. Disregarding displacement currents and assuming that

z/v=0
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we come to conclusion that at every point the magnetic field and the current
in the source vary synchronously. From a mathematical point of view, this
corresponds to the propagation with infinite velocity, and this fact can be
interpreted in the following way. Suppose that in some area the field is
observed at an instant ¢, which is much greater than the delay time z/v:

t>z/v (3.28)

Thus, we can say that both the current in the source and the
quasistationary field B are practically described by the same argument of
the function y(af). From the physical point of view, this is an indication that
the magnetic field is, in fact, a quasistationary one, and it obeys the Biot-
Savart law. It is also useful to represent the inequality (Eq. 3.28) in a form
that corresponds to a sinusoidal electromagnetic field. Multiplying both sides
of this relationship by the frequency w, we obtain

wz 2nz
ot>—=—" (3.29)
v A

Thus, the field caused by the sinusoidal current source is quasistationary if
the distance between this source and the observation point is much smaller
than the wavelength A:

z/Ak1 (3.30)

Now we consider several examples that illustrate the behavior of the
quasistationary field in a nonconducting medium.

Example One: Inductive Electric Field of the Solenoid
Suppose that a magnetic field arises due to an alternating current flowing
in an infinitely long cylindrical solenoid, as shown in Fig. 3.3A. In the
quasistationary approximation the magnetic field satisfies Biot-Savart
law and coincides in phase with the current flowing in the solenoid.
Using results of the Chapter 2, we can say that, inside the solenoid,
the field is uniform and directed along its axis, while outside the field
B vanishes. Because the magnetic field changes with time, an inductive
electric field arises. Taking into account that both vectors B and OB/ 0t
have the vertical component only, the electrical field is tangential to the
horizontal planes (Fig. 3.3A). Moreover, due to axial symmetry the vec-
tor lines of E are circles with centers located on the solenoid axis.



106

Basic Principles of Induction Logging

N £
\__,,/
Jp
(A) W,
A Z
E, Br

(©)

(D)

M 4
Mo
0 t t
(B) V
Brt !
|
1
1
1
1
|
0 i t
1
B, |
|
1
1
1
1
1
: >
0 i t
1
E, 4 !
1
0 t, Tt

Fig. 3.3 (A) Vortex field of solenoid. (B) Quasistationary field of magnetic dipole in a
nonconducting medium. (C) Time-variable dipole moment. (D) Time-variable magnetic

and electric field.

Therefore, the electric field has only component Eg, which is a function

of distance r. Making use of Faraday’s law,

as well as the axial symmetry, for any circle located in a horizontal plane,

we obtain

or

%E'dIZZﬂ'I’E,ﬁ:—

0P

ot
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Ey= 1 00 (3.31)

? 7 2 O '
where O® /0t is the rate of change of the magnetic flux within the area
bounded by the circle with radius r. Bearing in mind that the magnetic

field inside the solenoid is uniform:

B=Bf(t)

we have for the electric field inside the solenoid

—%f’(t) ifr<a (3.32)

2
E,= _%Bof’(t) =
where a is the radius of the solenoid. Thus, the electric field inside the
solenoid increases linearly with the distance from solenoid axis. For all
horizontal circles with radii r exceeding the solenoid radius a the flux
®, as well as the derivative 9D /0t, remains the same at any given instant
of time, and it is equal to

® =7a®Byf(t) and @ = Byza’f'(1)

Theretore, the voltage (electromotive force) along any of these cir-
cles does not change with further increase of their radius and, in accor-
dance with Eq. (3.31), we have

By
B =——"
¢ 2rr

B 2
- ;af’(t), ifr>a (3.33)
r

ma*f'(t) =

As follows from this equation, the vortex electric field outside the
solenoid is inversely proportional to the radius r. This example viv-
idly demonstrates a case when a vortex electric field in the
quasistationary approximation is nonzero at points where the mag-
netic field is absent. In reality, due to a change of the electric field
with time, displacement currents arise everywhere, and they also
generate the magnetic field. In our approximation, this effect is neg-
ligible, but it provides a propagation of the field no matter how small
the rate of a change of the current in the solenoid is. Taking into
account that, outside the solenoid,

arl E=0

the inductive electric field can be expressed in terms of the potential.
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Example Two: The Quasistationary Field of a Magnetic Dipole

in a Nonconducting Medium
Consider a magnetic dipole with the moment M(f) directed along the
z axis and situated at the origin of a spherical system of coordinates
(Fig. 3.3B). We again assume that, regardless of the distance, the mag-
netic field at any instant ¢ is defined by the magnitude of the dipole cur-
rent at the same moment (quasistationary approximation). Then, making
use of the expressions for the magnetic dipole with steady current
(chapter one), we obtain

:ﬂoM(t)

2, M(t
:L()cosﬁ, By(1) 23

47R3 4

Bg(t)

sinf, By=0 (3.34)

The magnetic field is located in longitudinal planes of the spherical
system of coordinates, and it possesses the axial symmetry. In this case,
as follows from Maxwell’s equations, the inductive electric field arising
due to a change of the field B with time has only a single component
E,(f). Therefore, vector lines of the electric field are circles, and their
centers are located at the z axis. We can write

1

Ej=———
¢ 2xr

(3.35)

where @ is the flux piercing the area bounded by a circle with radius r
(Fig. 3.3B). Taking into account that vector dS is parallel to the z axis,
we have the following expression for the flux ®:

CD:JB-dS:ZﬂJrBZdr (3.36)
S 0

where dS = 2zrdr and B. is the vertical component of the magnetic field.
As is shown in Fig. 3.3B,

B.(t) = Br cos@ — Bysinf

and, considering Eq. (3.34), we obtain

3cos’0—1) (3.37)

Substituting this expression into Eq. (3.36) and integrating, we have
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d)_dd)_@%' )

= =R (3.38)
where
R=(+2)"" and M =dM/dr
Therefore, the vortex electric field is
Ep=— i\:[zgz sin@ (3.39)

Thus, in the quasistationary approximation, when the instantaneous
magnitude of the dipole moment defines the magnetic field at the same
instant, the expressions for the electromagnetic fields are

M1 M(i
:”2 R(3) )in  (3.40)
JT

os6, By(r) “iaR2

sinfl, Ey=

It should be expected that the electric field is zero on the z axis
(6 =0,7), because the flux through a surface bounded by a circle of radius
r tends to zero when the radius decreases. At the same time, as the radius
increases, the magnetic vector lines begin to intersect the surface twice.
In other words, the component B. could have an opposite sign at different
points of the surface. For this reason, if ris sufficiently large, the flux @ grad-
ually decreases in spite of the unlimited increase of the surface. Thus, the flux
@ as a function of r has a maximum whose position depends on the coor-
dinate z and with its increase, the maximum is observed at greater distances
from the z axis. As follows from Eq. (3.40), at every point of a medium, the
magnetic field is accompanied by an inductive electric field. If a medium is
conductive, this electric field gives rise to a current. The field described by
Eq. (3.40) is generated by the current of the magnetic dipole only, and is
called the primary electromagnetic field. Now let us consider this field when
the dipole moment varies with time in a relatively simple manner.

Case One
Suppose that the current in the dipole changes as a sinusoidal function,
that is,

M = Msinwt (3.41)

where M, is the moment amplitude and @ = 2z is the angular frequency
with T=1/fbeing the period of oscillations.
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Then, in accordance with Egs. (3.40), (3.41), for the quasistationary
field, we have

0 _ HoMo

Br(f) = AR} cos@sinwt, By(t) R sin@sin wt,
¥ (3.42)
o
Ey(t) = 4”0RZO sin@sin (ot — 7/2)
74

Thus, one can say that the primary electric field exhibits a phase shift of
90 degrees with respect to the current flowing in the dipole or to the pri-
mary magnetic field. Eq. (3.42) is useful for understanding of induction
logging utilizing a magnetic dipole as the primary source.

Case Two

Next assume that the dipole moment varies with time, as shown in
Fig. 3.3C:

M, if <0
M(t)=4 My—at, if 0<t<y, (3.43)
0 if >4,

where a= M, /t,. As follows from Eq. (3.40), the primary magnetic field
is constant if t < 0, then it decreases linearly within the interval 0 <t <t,
and equals zero when ¢ > f,. Respectively, the primary electric field of
vortex origin exists only within the time interval where the magnetic
field changes (0 <t <t,), and in view of its linear dependence on time,
the electric field is constant. Thus, we have

240 My HoMo .
Br 2R’ cosf, Byp= 1aR> sinfl, Ep=0, if <0

2p0 M (1) HoM(1) . oMo . :
BR(t):WCOSH, By(t) = R sin6, E¢(t):4ﬂR2t, sin€, if 0<t<t,

Br=Bg=0, E=0, if t>¢
(3.44)

The curves shown in Fig. 3.3D illustrate the behavior of the magnetic
and electric fields as functions of time. Of course, per our considerations
we do not take into account the propagation of the field, and in this
approximation the electric field exists only within the time interval
where the dipole moment changes with time.



Propagation of Electromagnetic Field 1

3.3 INDUCTION CURRENT IN A THIN CONDUCTING RING
PLACED IN A TIME-VARYING FIELD

3.3.1 Equation of Induced Current in the Conductive Ring

Consider an example that will be later used for explanation of the skin eftect
in a conducting medium. Assume that the quasistationary approximation is
accurate enough and that a thin conducting ring with a radius r is placed into
the primary field B, (Fig. 3.4A). The appearance of currents in a conducting
ring can be described as follows. The time-varying primary magnetic field is
accompanied by the inductive electric field. For simplicity, we assume that
this electric field has a simple component E only, which is tangential to
the ring surface. This field is the primary cause of the conduction current
in the ring. In turn, these currents generate a secondary electromagnetic
field. The induced current in the ring depends on both the primary and sec-
ondary electric fields. According to Ohm’s law, we have

jo =7 (Eop + Eyp) (3.45)

where ji is the current density, y is the ring conductivity, and E,4 and E, are
the primary and secondary electric fields, respectively. To determine the
current in the ring, we use Faraday’s law

B (3.46)

0 1 2 3 4 5 6 %

(A) (B)

Fig. 3.4 (A) Conducting ring in magnetic field. (B) Transient responses of the current.
Index of curves is t,/z.
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The flux ® through the area bounded by the ring is
=0, + D, (3.47)

Here @ is the flux of the primary magnetic field caused by a current
source, while @, is the flux of the magnetic field generated by the induction
current in the ring. Correspondingly, Eq. (3.46) can be written as

dd, dP,

dt dt -

[1]

= (3.48)

In this equation, only the term d®,/dt is known, whereas the
electromotive force 2 and the rate of a change of the secondary flux d®/dt
are unknown. Our objective is to determine the current I flowing in the ring
and express both unknowns in terms of this function. Applying Ohm’s law
we have

[1]

=IR (3.49)

where R is the ring resistance given by
[
R:pg, if r>>ag (350)

Here, p is the resistivity of the ring, /1s its circumference, and the area of
the ring cross-section is S = za3, where ay is the radius of the ring cross-
section. As follows from the Biot-Savart law, the magnetic flux @,
caused by the ring’s current is directly proportional to I, and it can be
represented as

®,=LI (3.51)

Here, L is a coefficient of proportionality known as the inductance of
the ring. According to Eq. (3.51), the ring inductance is the ratio of the
secondary magnetic flux through the ring and the current creating the flux:

®5
L=—2
1

In other words, numerically the inductance is the flux caused by the unit
current. It is defined only by the geometrical parameters of the ring. In gen-
eral, determination of inductance involves rather complicated calculations
based on the Biot-Savart law. But, in a special case of a thin circular ring,
the self-inductance is defined by the well-known formula:
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ao

8
L:W( 1nl—1.75> (3.52)

Inductance is measured in henrys in ST units. If we have a coil (solenoid)
with # rings per unit length, the inductance increases as the square of number
of turns n of the solenoid:

5 8r
L=pyn r(lna—0—1.75> (3.53)

Thus, the simple form of the conductor and the assumption about uni-
form distribution of the current density over the cross-section of the ring,
have allowed us to find the coefficient of proportionality between the sec-
ondary flux @, and the induced current in the ring. Substituting Eqgs. (3.49),
(3.51) into Eq. (3.48), we arrive at a differential equation for the current I

Uy S L R S (t) (3.54)
dt T '
here,
L _ 1dd,
70 —E and f(t) = —ZW (355)

are given. The solution to this ordinary differential equation of the first
order is

t

d(I)() (X)
dx

dx  (3.56)

0

where I is the current at the instant t=0. Now we study the behavior of
induced currents in two cases.

3.3.2 Transient Responses of Induced Current

First, suppose that the primary magnetic field varies with time in a similar
way, as shown in Fig. 3.3B:

0 if 1<0
@

?: ——L i <0<y, (3.57)
t r

0 if t>1¢
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During the time interval (f <0), there are no induced currents in the
ring; that is,

I(r)=0, if <0

Within the ramp time, the primary flux @, varies linearly with time;
therefore, an induced current arises. Its magnitude is defined by the rate
of change of the primary magnetic field as well as two parameters of the ring
R and L. When the primary field disappears (t > t,), the behavior of the
induced current is controlled by the time constant 7, only. In fact, in this
time range Eq. (3.54) is simplified, and we have

a1 .
C oy r=0, ifr>r, (3.58)
dt 19

and its solution is
I(t)=Cexp(—t/1y), if t>71,. (3.59)

In order to determine the constant C, we look at the behavior of the
induced currents during the ramp time. In accordance with Egs. (3.56),
(3.57), we obtain

()
(1) = Iyexp (—t/70) + :—Ofon —exp(—t/n)], f0<t<t,  (3.60)
Because the induced current is absent at the instant t=0, that is I, =0,
we have

TO(DO
t, L

I(t)=——[1—exp(—t/70)], If 0<t<y, (3.61)
The constant C is readily found from Egs. (3.59), (3.61). In fact, letting

t=t, in both equations, we obtain

D
I(t) = Cexp(=1,/7) =—[1 = exp (~1,/70)]
Thus
-2 qu (exp (1 /70) — 1] (3.62)

Correspondingly, the expressions describing the induced current in the
ring are
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0 t<0
70Dy
271 — —t t<0<t,
1= {5 ¢ - epr/m)] = (3.63)
)
?fo[exp(fr/fo) —1Jexp(—t/z0) t=t

As follows from Eq. (3.63), the induced current gradually increases dur-
ing the ramp time, reaches a maximum at the moment ¢t =t,, and then
decreases exponentially. Suppose that the ramp time ¢, is much less than
the time constant 7y : f, K7y. Then, expanding the exponential terms in
Eq. (3.63) in power series and discarding all terms but those of the first
and second order, we obtain

0 <0
£ o (<0<t
(=<1 L - 7 (3.64)

o
Toexp(—t/fo) t>t,

In this case the induced current increases linearly during the ramp time,
and outside this range (f > t,) the current magnitude is independent on the
parameter f,. It is obvious that the magnetic field caused by this current has
the same features. As will be shown later, a similar behavior is observed in a
more general case of induced currents in volume conductors. In the opposite
case of t,>> 7y, the current [ increases linearly at the beginning (< f,) and
then slowly approaches a maximum equal to

P Lo t=t,
t, L L

Of course, at late time the current decays exponentially. Curves, illustrat-
ing the behavior of induced current at different parameters f,/ 7, are shown
in Fig. 3.4B.

3.3.3 A Step-Function Varying Primary Magnetic Field

‘When the primary magnetic flux changes as a step function the current in the
ring I is described by the last equation of the set (Eq. 3.64) when the ramp
time approaches zero. Thus, we have

0]
(1) :Toexp(—t/ro), if t>0and t,—0 (3.65)
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and the initial value of the induced current does not depend on the ring resis-
tance but rather is determined by the primary flux @ and the inductance L.
Inasmuch as under real conditions there is always a nonzero ramp time, the
initial value of the current ®y/L is the value at the instant f =t,, provided
that ¢, is much less than 7. At the same time, the current at the initial
moment (f = 0) is equal to zero. For better understanding of the skin effect,
it is useful to derive the same result directly from Eq. (3.54). Integrating both
parts of this equation within the ramp time interval, we have

; ; [
RJI(t)dt + LJdId—(tt)dt =— J%dt
0 0 0
Whence
Iy
RJI(t)dt + L[I(6) — 1(0)] = @y (0) — Do (1) (3.66)
0

Inasmuch as at the initial moment
(D()(O) == (D(), I(O) =0

and at the instant f = ¢, the primary flux disappears, Eq. (3.66) can be written as
f,

RJI(t)dt-i—LI(tr):(I)O (3.67)
0

By definition, the integrand I(f)dt indicates the amount of charge passing
through the ring cross-section during the time interval df. With decrease of
the ramp time, the total amount of charge tends to zero. Therefore, in the
limit when the primary flux varies as a step function, we have

LI(0)=®,, if t,=0 (3.68)
that 1s, the initial current is

1(0) =— (3.69)

[t is natural that Egs. (3.65), (3.68) give the same magnitude for the
initial current. As follows from Egs. (3.63), errors caused by discarding
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the integral in Eq. (3.67) become smaller as the ratio f,/7, decreases. In
other words, with an increase of the inductance L or a decrease of the
resistance R, Eq. (3.68) defines the initial current more accurately.
Eq. (3.68), characterizing initial distribution of the current, constitutes
the essential feature of the electromagnetic induction and later will be
generalized and applied to more complicated medium. In fact, the
left-hand side of Eq. (3.68) defines the magnetic flux through the area
of the ring caused by induced current at the instant =0 when the pri-
mary flux disappears. Thus, the induced current arises at the ring of such
magnitude I(0) that, at the first instant magnetic flux, LI(0) is exactly
equal to the primary flux ®@,. This induced current is trying to preserve
the flux due to the primary field. If, for example, the primary magnetic
field instantly arises at the moment =0, then the induced current has
such direction and magnitude that the total flux @ through the area,
bounded by the ring, is equal to zero at t=0. In essence we observe
the fundamental phenomenon of the inertia of magnetic flux. This study
clearly shows that there are two factors governing the behavior of
induced current. One is the inertia of the magnetic flux @, which tends
to keep the current unchanged. The second is a conversion of the elec-
tromagnetic energy into heat, which results in a decrease of the current
with time. The larger the resistivity R the faster is the decay.

3.3.4 Sinusoidal Primary Magnetic Field

Suppose that the primary magnetic field varies as a sinusoidal function
A sin wt. To determine the induced current, we use Eq. (3.56). Because
the primary flux is presented as @ sin wt, for the current I(f), we have

t

% exp (—t/17)) J exp <ﬁ> coswxdx

7o
0

1(t) = Lyexp (—t/70) — 2%

Taking into account that

exp ax

J exp (ax) cos fxdx = m(a cosfx + fsin fx)

for the induced current in the ring, we have
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@) wrycoswt Py (wry) sinwt
I(t)ZIoexp(—t/To)—_O 0 2__0( 0) -
L1+ (wT()) L 1+ (an-())

(I)o n)

i3 mexp(—t/ro)

Inasmuch as the initial value of the current is equal to zero (Iy =0), for
the sinusoidal currents at (t>> 1), we have

2 .
D) wrycoswt D (G)T()) sin wt

1) = L1+ (w1 L1+ (w70) (370)
Let us introduce notations
2
o) =~ P ) P
This gives
I(t) = asinwt + bcoswt (3.72)

and the induced current is presented as a sum of two oscillations. One is
asin wt, which changes synchronously with the primary magnetic field
and is called the in-phase component:

Inl = asin ot

The second oscillation b cos @t is shifted in phase by 90 degrees with
respect to the primary magnetic field and is called the quadrature
component:

QI = bcoswt

There is another interpretation of Eq. (3.72). In fact, let us represent
magnitudes of these components in the form

a=Acos¢p, b=Asing (3.73)
Then the induced current is written as
I(t) = A(cospsinwt + sin¢ coswt) = Asin (wt + ¢) (3.74)

Therefore, we can say that induced current I(f) is the single sinusoidal
oscillations with the same frequency w as the primary field Bo(f) and phase
shift ¢. As follows from Egs. (3.71), (3.73), for the amplitude and phase of
the current, we have
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® 1
12_Zo_ 9% $=tan ' — (3.75)

(2.2
A= (a +b ) L [1 N (a)TQ)Z]l/Z, 07T

Frequency responses of the quadrature and in-phase components, as well
as the amplitude and phase, are shown in Fig. 3.5. Again, we can interpret
Eq. (3.73) as two currents shifted by phase in 90 degrees with respect to each
other or a single current with an amplitude and phase defined by Eq. (3.75).
Both interpretations are equivalent and widely used by engineers. In spite
of the apparent simplicity of the analyzed thin ring object, the considered
frequency responses contain general features typical for much more compli-
cated conducting objects.

The Range of Small and Large Parameters of wt,
Assuming w7ty < 1, we can expand the right hand side of Eq. (3.71) in a
series. This gives

a(w) :% [—(an'o)z + (070)" = (w070)° + (@70)° — o]
(3.76)
b(w) _ D [—wr) + (w10)” — (w70)° + (0)10)7—]
Qr, In
(A) “ (B oo
A, 0,
n
2
(C) “% (D) 2]

Fig. 3.5 (A) Quadrature component of the current. (B) In-phase component of the
current. (C) Amplitude of the current. (D) Phase of the current.
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Thus in the low-frequency limit the quadrature and in-phase compo-
nents of the induced current can be represented as a series containing either
odd or even powers of w. It is interesting that this feature remains valid for
induced currents arising in any confined conductor surrounded by an insu-
lator and even in some special cases of a medium unbounded dimension.
Both series converge if:

oty <1 (377)

In other words, the radius of convergence of these series is
w=— (3.78)

As follows from the theory of complex variables, the radius of conver-
gence of the power series is the distance from the origin (@ =0) to the
nearest singularity of the functions a(®) and b(w). To determine the location
of this singularity, we have to treat these functions as functions of complex
variable @ and consider the denominator in Eq. (3.71). It becomes equal to
zero when @ = :I:Ti. That is, the spectrum has two poles located on the

0

imaginary axis of @. It is essential that the radius of convergence of the series,
describing the low-frequency part of the spectrum, is expressed in terms of
the time constant of the ring. This fact reflects an important relationship
between the low-frequency part of the spectrum and the late stage of the
transient response observed in confined conductors. Now suppose that
the frequency is so low that we can consider only the first term in series.
Then, we have

o o
a(w) ~ —— (w7)* and b(w) = —— o1,
LCD O
Ql(w) ~ — TO (w7)) coswt, Inl(w)~ _TO (wz0)sinwt, if wry<1

(3.79)

In this frequency range, the quadrature component is dominant and
directly proportional to the conductivity of the ring and frequency. Also,
it does not depend on the inductance L because 7o = L/R. Such behavior
can be explained as follows. If we disregard the flux caused by induced
current, @, K @, then the total flux is practically equal to the primary one:

b ~ D sinwt
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Respectively, the electromotive force in the ring is

dd
=——=—wdjcoswt
dt

[1]

Applying Ohm’s law, we obtain for the quadrature component of
induced current

o, D,
- coswt = —T(a)ro) coswt

Ql(w) =

Thus, the first term of the series of the quadrature component describes
the current that arises due to the primary flux only. This feature is essential
for understanding the signals that are recorded in induction logging. In con-
trast, the in-phase component is caused by a secondary flux. In our approx-
imation, @7ty < 1, the flux generated by the quadrature component of the
current is

oD
@ =LQI(w)= —TOLcosa)t = —wto P, coswt

Therefore,

dd, 5 .
—=w"10D) sinwt

dt

and for the in-phase component of the current induced in the ring, we have

a)z’l'oq)() . (I)o 2.
—7s1na)t:—f(wro) sinwt

Inl(w) =
which is identical to the first term of the series of the in-phase component
(Eq. 3.76). Applying the same approach, we can obtain subsequent terms of
the series. Note that the term “the low frequency part of the spectrum” is
sometimes confusing. In fact, it does not mean that the equations are valid
only when frequencies are small. In fact, validity of equations and frequency
is also defined by resistivity and geometry of the object. For instance, if the
parameter 7, is small, the upper limit of “the low frequency spectrum” can
be large and increase with reduction of the parameter 7o = L/R.

In the high frequency limit, we have

wty>1. (380)

As follows from Eq. (3.71), in this range the in-phase component dom-
inates, and, with an increase of the frequency, it approaches a constant value
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determined by the primary magnetic flux and geometric parameters of
the ring:

D
b(w) — 0, a(a))—>—fo if wr)— o0 (3.81)

Comparing Eqs. (3.69), (3.81), we see that the magnitude of the induced
current at the early stage of the transient response (f < 7) coincides with that
at the high frequency part of the spectrum. This is not accidental and is valid
for an arbitrary conductive medium. The behavior of the frequency and
transient responses, given by Eqs. (3.81), (3.69), is analogous to induced cur-
rents in confined conductors with an arbitrary shape of cross-section.

As follows from the Biot-Savart law, the quadrature and in-phase com-
ponents of the secondary magnetic field are generated by the corresponding
components of the induced current. Therefore, the frequency and transient
responses of magnetic field and induced currents are similar.

3.3.5 Two Inductively Connected Rings Excited by an
External Source

This example illustrates how inductive coupling affects induced currents in
the neighboring object. The objects are circular rings with Ry, L; and R,, L,
that are the resistor and inductance of the first ring and the second ring, cor-
respondingly. Mutual inductance between rings is M. The rings are excited
by another source-ring carrying current I and having the radius r,. Induced
currents in the rings are denoted as I; and I,. The centers of the rings are
placed on the z axis, as in Fig. 3.6.

We analyze two regimes of excitation: the harmonic excitation when
current source is sinusoidal function of time and transient regime when
current is abruptly changing from finite value to zero.

Harmonic Excitation

Variable with time current source Iy(f) induces current I;(¢) in the first and
L(f) in the second ring. According to Kirchhoft law, the sum of all the volt-
ages around the ring is equal to zero. This leads to the following system of
equations with respect to I;(f) and L(f):

dI (t) n Mdlz(t)

dt dt
db(6) . dn(o) (3-82)
EZ()(I) = Ig(t)Rz + L, 7 + MT

Em(t) = I1(t)R1 + 1,
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4y

—

2

Fig. 3.6 Two inductively connected rings excited by an external source.

where E;((f) and Ex((f) are external electromotive forces induced by the
current ring in the first and the second ring, M and My, are the mutual
inductances between current ring ry and ring r; and 1, correspondingly.
In the case of harmonic excitation

I(t) = Ipsinwt, Em(t) = —Mplyw coswt, EQO(t) = — My lyw coswt

and we have the following system with respect to the complex amplitudes
I," and L,":

E> — IT]C()M + I;RZ — 12* iwl, = —Il*JCUM + I;Zz '
where Z; and Z, are the impedances of the rings:
Z1 = R1 —_]CUL1
Z2 = R2 —j(l)Lz
Solving Eq. (3.83), we receive
Zp — joM
ﬁ:Em( 2= L
217> + (oM)
PR (3.84)
—jw
L—E (% —joM)

* 2. 7 + (M)
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Equating the denominator in Eq. (3.84) to zero, we find poles that are
related to characteristic decay 74,7, of the rings:

(1112 —12)w2 +i(ty +)w—1=0

where T = L1/R1 and Ty = L2/R2, T2 :MZ/Rle.
The latter gives

it [=(n 0 +H(mn—2)] " (3.85)
2(1172 — 12)

or introducing @ = jo*, we find two poles:

—(71+1) £ [(11 +1-2)2 (012 _72)}1/2

2(ty70 — 72)

W=

(3.86)

Let us consider several scenarios corresponding to the different couplings
between rings.
a. Case one: No interaction between rings, M = 0.
When mutual inductance M =0, we receive well-known expres-
sions for characteristic decays of two independent circuits:
(T1+12):|Z(T1—T2) 1 1

o= and W] =——, w;=——
2’[1’[2 T (%)

b. Case two: Weak interaction, M> << L L,.
In this case 7,7, > 172, (11 #12), and we have

. —(t1+ 1) £ (71 — 1) + 27 (4 —12)_1
2717,

For the poles ;" and @,", we obtain

—+ 2t — 1) 1 72
NS 2 (11 —72) S — (3.87)
7172 71 T1T2(T1 —Tz)
472 (t — 1) ! 1 72
Wl ~— m-m) _ 1, T (3.88)
7172 () 7172(71—72)

If interaction is small, the position of poles is close to the limiting case
of M =0, but the presence of the second term of an opposite sign in
Egs. (3.87), (3.88) indicates the shift of the poles toward a smaller value
of 1/7y and 1/7,. The consequence of this shift has important physical
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implications that will be better understood when we analyze transient
regime.
c. Case three: Strong interaction, M?/LiL, ~ 1.
This scenario takes place when the distance between rings (22 — 21)
is smaller than the radius of rings. For simplicity, we assume that
T1 =T, =7( ~ 7. In this case, two rings behave as one ring with charac-
teristic decay 27, and pole, located at

- 2 (2 o\11/2
Bl G G Tk ) R NS BRI
2(z2 —172) (70 +7) 279

Step-Function (Transient) Excitation
Now assume that, at t =0, the current in the source is abruptly changing
from I, to 0.

d
Taking into account that E(l(t)) =6(t), the transient process in the

rings is described by the following system:

dly(t dI(t dbL(t
Ejo(t) = —M;y ;E ) =—I\M;o8(t) =1 (t)Ry + Ly 1) +M ZE )
dly(t dL(t dr (¢
Ego(t) = —Mby 0( ) = —IoMzo(S(t) = Iz(t)R2 + L2£ + Mﬁ
dt dt dt
(3.90)
The matrix form of the system (Eq. 3.90) is
dI
E _ LH M _I1R1 _IOMO15(t) (391)
@ M Ly —L Ry — I)M»6(t)
dt

where the inverse matrix L is calculated as

o {L1 M]l_i[ L —M]
M L, det | —M Ly
and det =L,L, — M?. This system of two ordinary differential equa-
tions (3.91) along with initial conditions I;(0) = L(0) =0 can be solved
numerically using the Runge-Kutta method. The delta function can be
approximated as a rectangular pulse with the height 1/h, and width h,.
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(In the numerical implementation, it is important to maintain an integra-
tion time step several times smaller than k). Resistor R and inductance
are defined by Egs. (3.50), (3.52). The mutual inductance between two
rings, having radius r; and 7, and separated vertically by the distance z,
is calculated as

Iﬁzmmmgﬁi_k>Kuo—%E@ﬂ
where

2= it

(r+5) +22

and K(k), E(k) are full elliptic integrals of the first and second kind,
correspondingly.

In the following example, we select the radius of the source ring
to =1 m, while 4 =r» =0.1 m and a=0.01 m. Resistivity of the first ring
p1 1s fixed and equal to 1 ohm, resistivity of the second ring p» is varying.
a. Case one: Weak interaction, M> < LiL,.

To simulate weak interaction, we separate rings vertically by
z=21—2,=0.75 m>0.1 m, where z; and 2z, are distances between
source ring and two other rings, correspondingly. The solutions of
the system (3.91), I;(f) and L(f), are presented in Fig. 3.7.

The transient decay in the first ring (Fig. 3.7A) is solely defined by the
time decay 71, and only at the very late stage, /7y > 10, the second ring
manifests itself: the smaller the resistivity of the second ring the earlier it
manifests itself by slowing down the time decay. At the same time, when
resistivity approaches p, =1 ohmm or above, the effect of the second
ring becomes negligible. In other words, in the case of weak interaction,
only the more conductive second ring, p,/p; < 1, may slow down the
time decay in the first ring.

The transient currents in the second ring, I>(f), are presented in
Fig. 3.7B (solid lines). Also, there is the set of curves (dashed lines),
corresponding to the case when interaction is absent (M =0). When
resistivity is relatively small (p,/p; < 1), the dashed and solid lines coin-
cide, demonstrating no effect of the first ring on the transient current
L(f): the transient process takes place with characteristic decay 7,. At
the same time when p,/p; > 1.5 the current L(¥) is affected by the tran-
sient process in the first ring. This is especially pronounced at
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Fig. 3.7 Weak interaction. Transient current in the (A) first and (B) second ring. Code is
the resistivity of the second ring.

p,/p1 =10, when only an initial stage, /7 < 1, is defined by the char-
acteristic decay 7. At t/71 > 1, the transient process is in the second ring
1s driven by the characteristic time 7; of the first ring. The time range
At/t; when decay of L(f) is defined by 7, is expanded with increase
of the conductivity of the second ring 1/p,. For example, at
p,/py =2 it is about At/7y ~5 (Fig. 3.7B).
b. Case two: Strong interaction, M?> < LL,.
Strong interaction is simulated by reducing the distance between
rings to Az =2z, —z; =0.03 m (Fig 3.8).
Again, the left subplot (Fig. 3.8A) corresponds to the transient process I;(f) in
the first ring, and the subplot on the right (Fig. 3.8B) depicts Ix(f). Due to the
closeness of the rings, the mutual coupling is much more pronounced com-
pared with that in the previous case. Particularly, when conductivity of the
second ring is high (p, = 0.25 ohmm), the transient decay in the first ring is
driven by parameter 7, if t/7; > 3. When p, = p; =1 ohmm, in accordance
with (3.89), the characteristic decay is equal to 27;. The influence of the sec-
ond ring practically disappears if p,/p; > 4. Similarly, a strong influence of
the first ring is observed on L(¥), (Fig. 3.8B). Although at p, = 0.25 ohmm,
the presence of the first ring with p; =1 ohmm is practically negligible
(compare solid and dashed lines), it becomes significant at all resistivity values
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Fig. 3.8 Strong interaction. Transient current in the (A) first and (B) second ring. Code is
the resistivity of the second ring.

above 0.5 ohm. (In the case of the weak interaction, the influence of the first
ring was not visible at p,/p; < 1.0). Thus, we see that a better conductor
may affect a transient process in the second object. When coupling is strong,
the influence is observed at earlier times and at smaller conductivity contrast
compared with the case of the weak interaction. Moreover, when coupling
is strong, even less conductive object slows down a transient process in the
more conductive one.

3.3.6 Notes on Measurements of Induced Electric and
Magnetic Fields

Coils are often used for measuring time-varying magnetic fields. Suppose

that a conducting loop, as shown in Fig. 3.9, is placed in the magnetic field

B(f). In general, the field E is arbitrary oriented with respect to the loop, and

the voltmeter connected in series with the receiver measures the voltage

along the path L between terminal points, b and ¢

b b
V= JE A= JE,dl (3.92)
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E

Fig. 3.9 Electric field along receiving loop.

where E; is the tangential to the loop component dl. When the radius of the
loop cross-section is much smaller than its length, the voltage is practically
independent of the position of the path Linside the loop. If the receiver con-
sists of n loops, then the voltage is
b
V=n J Eldl

c

When the circuit intervals ab and ¢d are close to each other, we can write

b d b d
JE-dlz—JE-dl or JE.dHJE-dl:o (3.93)

Taking into account Eq. (3.93) and almost coincident positions of points
a and d, Eq. (3.92) can be rewritten as

V= [E-dl:%E-dlzﬂ;Eldl:
d

L L

[

(3.94)

Thus, the voltmeter measures, in essence, the electromotive force along
the receiver loop. As a rule, the internal resistance of the voltmeter is high;
therefore, the current in the loop is extremely small. For this reason, we can
disregard the influence of its magnetic field; correspondingly, the
electromotive force is defined by only the external electric field E(f).
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Inasmuch as the voltage is path dependent, a change of the position, size, and
shape of the loop results in a change of the electromotive force, even though
terminal points of the voltmeter remain in the same place. As is seen in
Fig. 3.9, in general, regardless of how small the loop is, it is impossible to
determine the electric field from the electromotive force E. However, there
is one exception in which measurements with the loop allow us to calculate
E(f). In fact, suppose that this field is tangential to the loop surface, and its
magnitude is constant. Then, in accordance with Eq. (3.94), we have

E =

~—| [

where /s the loop length. A Coulomb electric field E® caused by charges has
no influence on the electromotive force because

ii;EC‘dlzo

In particularly, these charges are often located on the surface of the loop.
Moreover, in the quasistationary approximation the field of charges is
described by Coulomb’s law, and, due to the electrostatic induction, the
Coulomb’s electric field is equal to zero inside the receiver loop.

By measuring electromotive force E, we also can estimate the rate of
change of the magnetic flux through the loop. Indeed, according to
Faraday’s law, we have

d®

=|B-dS=|B,dS=—-E 3.95
dt J J ( )

S S

If the size of the loop is small enough, the normal component of the field

B, is uniform within the loop and equal to

where S is the area of the loop.
The magnetic field also can be determined:

1
Bn(t) :Bn(t*)—ng(x)dx (396)
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Here, t. is the time at which the field is known. In particular, if # — oo
and B,(t) =0, then
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Before we describe the theory of induction logging, it is useful to study the
propagation of electromagnetic fields in a conducting and polarizable
medium and formulate conditions when quasi-stationary approximation is
valid. We start from the simplest case of a plane wave whose surfaces of con-
stant phase form a plane surface normal to the direction of propagation.

4.1 SINUSOIDAL PLANE WAVE IN A UNIFORM MEDIUM
4.1.1 Expressions for the Field

Suppose that in the plane XOY there is a current source with the density

i, = l'Qf(dt)

that is independent of the coordinate y. As in the case of a nonconducting
medium, we assume that the electromagnetic field is independent of
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coordinates x and y and has only two nonzero components: E, and B,. From
Eq. (2.93) it follows that

O’E, OE, O’E,
92 }’ﬂog_ Eﬂowz
9’B, OB, 0’B,

92 }’ﬂog— €Ho o2 =0

(4.1)

When the second term is zero (y =0), we arrive at the wave equation
derived earlier. Applying d’Alembert’s method, the wave equation can be
solved for the arbitrary function f(af), characterizing the primary source.

The essential feature of this method is that an argument of the solution
must have the form ¢+ z/v or z = vt, where v is the velocity of propagation.
But this approach cannot be applied to Eq. (4.1) due to the presence of the
term, proportional to the conductivity. As a result, in general, there is no
closed-form solution of Eq. (4.1), except for a special case of a sinusoidal
time-varying source. In this case, the field is also a sinusoidal function of
the same frequency. This an important fact allows one to apply a Fourier
integral and obtain a general solution when the primary current is an arbi-
trary function of time. Suppose that the current i, and electromagnetic field
vary with time as

iy =1 sin wt Ao
E\(z, t) =Ey(2)cos(wt—¢), B,(z, 1) =By, (z)cos(wt—y) (4.2

As shown in Chapter 2, the last expressions can also be presented as
E(z,t) =ReEj exp(—iwt), B,(z,t)=ReB; exp(—iot) (4.3)
through the complex amplitudes
E; = Epcexp (i), Bgy = By, exp (iy) (4.4)

containing information about the amplitude and phase of the field. As was
demonstrated earlier, the form Eq. (4.3) greatly simplifies a solution of
Eq. (4.1). Substituting Eq. (4.3) into Eq. (4.1), we obtain equations for
the complex amplitudes:

O’L;,
R Ox 4 E* + 2 E* 70
Y 5= WHoW L, T W EU) L, ¢ =
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O*B};
0 . * *
Re 822y +iypowBy, + a)ze,u()B()y =0

These equations are satisfied if the complex amplitudes are solutions of
the one-dimensional Helmholtz equation:

OPE;

azg" +kE; =0 (4.5)
2 1k

3,2;)/ + KB =0 (4.6)

where k* = iyp, + w’ep,, is the square of the wavenumber k. The solutions
of Egs. (4.5), (4.6) are well known:

E} = Cjexp (ikz) + Cy exp (—ikz)

Bj, = Dy exp (ikz) + D; exp (—ikz) *-7)
where C and D are constants. The wavenumber is a complex value
k=a+ib (4.8)
and, correspondingly, in place of Eq. (4.7) we have
E' = Cj exp(—bz) exp (iaz) + Cy exp (bz) exp (—iaz) 49)

Bj, = Dj exp (—bz) exp (iaz) + D, exp (bz) exp (—iaz)

In addition, it is assumed that a>0 and b > 0. A plane wave has to decay
with the distance, because its amplitude is attenuated by conducting
medium. The second terms in Eq. (4.9) do not satisfy this requirement
and have to be discarded. This gives

Ej, = Ciexp(—bz) exp(iaz), Bj = Dy exp(—bz)exp (iaz) (4.10)

Next, we find relationship between constants C; and D;. We can sub-
stitute Eq. (4.3) into the first of Maxwell’s equations

OB
crlE= ——

ot

Taking into account independence of the field from coordinates x and y,
we obtain:

OE;,

4

— 7 k
= l“)B()y
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This gives

¢ =2p, @.11)
k

Since k is a complex number, we conclude that there is a phase shift
between the electric and magnetic fields, which depends on conductivity,
dielectric constant, and frequency. In particular, in a nonconducting
medium the phase shift is zero. In contrast, when conduction currents
are dominant, the phase shift is equal to —z/4. Applying Biot-Savart’s
law near the source, as in the case of a nonconducting medium, it is easy
to express the real constant Dy in terms of the current source i,. As long as
the electric and magnetic fields satisty all conditions of the theorem of
uniqueness, the expressions in Eq. (4.10) are the solution of the boundary

value problem.

4.1.2 The Plane Wave as a Function of Time and Distance

To analyze the behavior of the plane wave consider the function B(z, )

B, = Dy exp (—bz) cos [m(r—%z)} (4.12)

At each observation point the magnetic field is a sinusoidal function of

time, but the spatial dependence on the distance z is described by the prod-

uct of sinusoidal and exponential functions. Of course, the electric field has a

similar form. From Eq. (4.12) it follows that the velocity of propagation of
the sinusoidal wave is

v="= (4.13)

By definition, during the period T, the phase plane moves a distance
equal to the wavelength A:

v
A=vT or A==
S
Thus,
A=— (4.14)
a

and the wavelength is inversely proportional to the real part of the
wavenumber. Let us introduce a parameter
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b
bA =27~ (4.15)
a

which determines the attenuation of the wave within the distance equal to
the wavelength. If this parameter is large, the field strongly decays over the
distance of one wavelength, and the sinusoidal character is hardly observable.
For instance, when a=b the field decays by a factor of exp (—27) over every
following wavelength. It would require a great deal of imagination to see a
propagation of such wave.

bA>1 (4.16)

If we observe diffusion rather than propagation (Fig. 4.1A, solid line).
Correspondingly, in place of Eq. (4.1) we have the following diffusion

equations:
O’E, OE, 0 9’B, OB, 0
—VHo— =Y |5 “THo—5, —
0z> ot 022 ot
Ibrl el
B, 10% 1 2
6
102 4
10
11
\ 14
| SN 102 18
z 101 22
= 1076 1
D
1078 T T T T T T T T
(A) (C) 10 102 102 107" 1 10 102 10° 10*B
2
. 6
z Ibol
108 10
14
10% A 18
102 1 22
1,
102 4
1074 A
1076 T T T T T T T T
(B) (D) 10 10 102 107" 1 10 102 10% 1048

Fig. 4.1 (A) Sinusoidal wave, bA > 1 (solid line) and bA <1 (dotted line); (B) magnetic
dipole and vector potential in spherical coordinates; (C) frequency responses of the field
amplitudes bg" and e,"; (D) by" curve index is the parameter X =R/R;.
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which describe the quasi-stationary fields. In contrast, when the product is
small

bl 1 (4.17)

propagation becomes visible, and we can observe the sinusoidal character of
the field. It propagates over several wavelengths before attenuation becomes
noticeable (Fig. 4.1A, dotted line). This consideration allows us to qualita-
tively distinguish three possible scenarios where the field exhibits either
features of propagation, diffusion, or both. Regardless of how small the fre-
quency o is, the field reaches any observation point by propagation as a
wave. Indeed, a sinusoidal source current can always be presented as a system
of pulses following one after another. Due to conversion of electromagnetic
energy into heat in a conducting medium, there is always attenuation, which
becomes stronger with an increase of a distance from the primary source.

Now we can study the dependence of attenuation, velocity, and wave-
length of a plane wave in a uniform medium on the frequency and electric
parameters of the medium. Let us determine the real and imaginary parts of
the wavenumber:

1/2

k=a+ib= (i}/,uoa) + 0)28/10) (4.18)

As follows from Eq. (4.12), the imaginary part of k defines the decrease of
the field amplitude, while the real part affects the phase. Taking the square of
both sides of Eq. (4.18), we obtain the system of equations with respect to a
and b:

w’epy=a* —b* and yu,m = 2ab (4.19)

After solving a system (4.19) we get:

o\ 1/2 1/2 v 1)2 1/2
a=ko [%] . b=k [%] (4.20)

Here leozw(e,uo)l/z and f=we/y is the ratio of the real and

imaginary parts of the wavenumber.

4.1.3 The High and Low Frequency Limits

Suppose that parameter f§ is large; that is, displacement currents prevail.
Expanding the right side of Eq. (4.20) in a series, we obtain expressions
for the real and imaginary parts of the wavenumber:
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1 1
a%a5<l+§ﬂ_2> and b%bg<l—§ﬂ_2> (4.21)
where
1/2
ag:a)(s,uo)l/Z, bszg<@) . (4.22)
€

Therefore, at the high frequency limit, f>1, the real part of the
wavenumber is practically independent of conductivity and is directly
proportional to the frequency.

As follows from Eq. (4.13), in this frequency range the velocity of
propagation is defined mainly by the dielectric constant that is, almost
independent of frequency and conductivity. It is nearly the same as in a non-
conducting medium:

1
(emo)

v= it f>1 (4.23)

o c
1/2 7 (8,’)1/2’

where ¢ =3 x 10® m/s. The imaginary part of the wavenumber b, charac-
terizing decrease of the field with distance, is governed by the term b, which
is directly proportional to conductivity and practically independent of the
frequency. As follows from Eq. (4.22),

T
bgﬂzﬁ«l

Correspondingly, with an increase of the frequency the eftect of the field
decay over one wavelength decreases, and the wave phenomena becomes
noticeable. At the same time, the field does not propagate far away from
the source because of attenuation. The ratio of a, and b, is

be _ 1 <1 (4.24)
a 2B '

As is seen from Eq. (4.21), even at f being close to unity, the real and
imaginary parts of the wavenumber k differ only slightly from the limiting
values g, and b,.. Thus, at the high frequency limit sinusoidal waves decay

almost at the same rate, and have practically equal velocity (8;40)71/ ?, which
slightly increases with the frequency.

In contrast, when the conduction current prevails and # < 1, Eq. (4.20)
gives
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aza},<l+§> and b:b},<1—§> it f<1 (4.25)
Here
Yo\ /2 1
”y:b}':( 20 ) =5 (4.26)

The parameter 6 is called the skin depth and is expressed as:

5:< 2 >1/2 4.27)

YHow

Thus, within the range of <1 the attenuation is described by
Eq. (4.26), and becomes smaller with a decrease of conductivity and fre-
quency. As follows from Eq. (4.12) the skin depth is equal to the distance
where the magnitude of the sinusoidal plane wave decreases by a factor
e~ 2.718. It should be noted that under real conditions, when the field is
generated by a finite size source and depends on coordinates y and z, the
field decay is even stronger. The velocity of propagation is given by

5 1/2
@ (ﬂ> or v=(10pf)"* ks (4.28)
a Ho

and it becomes smaller with a decrease of the frequency and resistivity. Also,
the latter can be presented as

v=(2p)"?
e

The wavelength is determined from Eq. (4.28):
A=2r5 or A=(10pT)"? km (4.29)

and increases as the frequency decreases. As follows from Egs. (4.26),
(4.29), if

b,A=2r

the decay over a distance of one wavelength is extremely strong. Within this
frequency range the wave phenomena is practically invisible. Functions a(f)
and b(f), normalized by their limiting values, as well as the product b4, are
shown in Fig. 4.2.
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Fig. 4.2 Functions b/b.(p), a/a.(p), bA(p), b/b,(p).

In the analysis we assumed that conductivity y and dielectric permittivity
€ are independent of frequency. In fact, some rocks exhibit dispersive behav-
1or, thus parameters y and € do depend on the frequency. The dispersive
behavior of the formation is utilized in the dielectric logging, where mul-
tifrequency measurements in combination with an advanced petrophysical
interpretation permit a unique information on rock properties and fluid dis-
tribution. Also note that regardless of how low the frequency is, there is
always propagation of waves through a conducting medium. Otherwise,
the field would instantly appear at any point of a medium regardless of
the distance between the source and observation point. The influence of
conductivity is expressed in two ways. First, the field decays with distance
from the source due to attenuation of the field by conducting media. Sec-
ond, there is, in general, a frequency dispersion of the velocity caused by the
dispersive conductivity.

4.2 FIELD OF THE MAGNETIC DIPOLE IN A UNIFORM
MEDIUM (FREQUENCY DOMAIN)

4.2.1 Solution of Helmholtz Equation

Next we study the frequency responses of the magnetic and electric fields
caused by the magnetic dipole (a small currentloop) in a uniform conducting
medium. The dipole moment is

M =ReMjexp (—iwt)i. (4.30)

Here My = IynS is the magnitude of the moment, I, is the amplitude of
the sinusoidal current, n is the number of turns in the loop, and S is the area
enclosed by a single turn of the loop. The dipole moment M is directed
along the z-axis (Fig. 4.1C) and i. is the corresponding unit vector. Before
we formulate the boundary value problem, it is useful to recall the behavior
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of the quasi-stationary electric field of the magnetic dipole in a non-
conducting medium (Chapter 3). In the spherical system of coordinates
(Fig. 4.1C) this field has only one component Ey. For M = M, cos wt from
Eq. (3.40) we obtain:

_ HowM, sin wt
~ 4zR?

iwpy M
cos@ or E;(a)):la:;izzo cos 6 (4.31)

Ey(1)

Here E," is the complex amplitude of the electric field caused by the
primary time-variable magnetic dipole. Inasmuch as the electric field has
only one component confined to horizontal planes, arising conduction
and displacement currents also have only an azimuthal component j;".
An inductive electric field can be presented as

E*=curl A* or E¥=V x A* (4.32)

where A" is the complex amplitude of the vector potential of the magnetic
type. As was demonstrated in Chapter 2, the function A" satisfies the
Helmholtz equation and fully describes electromagnetic field components
E" and B".

We assume that the vector potential has a single z-component, which in
the spherical coordinates depends on the coordinate R:

A* =A% (k, R)i- (4.33)

Then, Helmholtz’s equation is simplified to:
1 d dA*
— (R2 —) +E2AT=0 (4.34)

Introducing a new function
W =AR

and performing differentiation, we obtain:

dA* 5 AW ,dA” daw

f=—R “W+R — and RF—==—-W+R——

dR dR dR dR
Whence

d [ ,dA* 2w
- R — =~ | = R_
dR dR dR?

Therefore, Eq. (4.34) becomes
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&Pw
dR?

+EW =0

whose solutions are exponential functions exp (£ikR). Thus, the expression
for the z-component of the vector potential is
. exp (ikR) exp (—ikR)

A =C +D (4.35)
: R R

Inasmuch as
—ikR = —i(a+ ib)R = —iaR + bR

an increase of R leads to an unlimited increase of the second term of
Eq. (4.35), To meet conditions at infinity, we have to discard this term
and thus reduce Eq. (4.35) to

(4.36)

To satisfy the condition near the source, we have to determine the
unknown C. Since the electric field has only the ¢-component,
Eq. (4.32) gives

L1190 o 04y
E‘f’_R[aR(RA@) 89]

As is seen from Fig. 4.1C,

(4.37)

Ap=Alcosf and Ay=—Alsinf

Substituting these expressions into Eq. (4.37) and performing simple
algebraic operations, we obtain

E*

C , . .
=R (1 —ikR)exp (ikR) sin @ (4.38)

Near the dipole, the electric field is approaching the value
. O
Eqszﬁ sin 6 (4.39)
which tends to that caused by the dipole source only (Eq. 4.31). In essence,

the boundary condition near the source allows us to determine unknown
constant C. Comparing Egs. (4.31) and (4.39), we obtain
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i, M,
C— HoiVio

- (4.40)

Finally, the solution for the complex amplitude of the vector potential is

% iy Mo

4R

From Egs. (4.38), (4.40) for the complex amplitude of the electric field
we have:

exp (ikR)i. (4.41)

* iwlu()]\/[()
¢ 4zR2

(1 —ikR)exp (ikR)sin @ (4.42)

To determine the complex amplitudes of the magnetic field we use the
equation derived in Chapter 2 (Eq. 2.104):

ioB* = > A* + graddivA*. (4.43)

Inasmuch as the vector potential is directed along the z-axis there
are only Br and By nonzero components of magnetic field. First, let us
calculate divA*. Taking into account that divergence is independent of
the system of coordinates, it is convenient to perform derivation in Cartesian
coordinates:

dA?

4

divA* =

Carrying out differentiation, we obtain

1 M,
div A% = — ’“A)r”;  exp (ikR)(1 — ikR) cos 0 (4.44)
4
since
dR
I = cos @
z

Expressing grad in spherical coordinates, we have

0 10
iwBjy = k> A} + SR vA* and iwB)= KA+ =g A
Differentiating and bearing in mind that

AR =Alcos® and Ay=—A>sinf

we obtain
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240 M,
By = fOR;) exp (ikR)(1 —ikR) cos @
y e (4.45)
. = 40 Rg exp (1 —ikR — kZRZ) sin@
n

Thus, Eqs. (4.42), (4.45) describe the complex amplitudes of the field of
the magnetic dipole at any point in a uniform medium. The field is com-
prised of the primary dipole source, as well as the field caused by conduction
and displacement currents arising in a medium. Correspondingly, it depends
on several factors, such as the dipole moment, the frequency, the product
kR, and the coordinates of the observation point. It is convenient to normal-
ize the field by the primary field of the dipole in free space. Then, we have:

B . . . _ B . .
G= = (1 —ikR)exp (ikR), by =—"=(1—ikR)exp (ikR)
¢0 RO (4.46)
B*
by=—2=(1—ikR — k’R*) exp (ikR)
BGO

These expressions depend only on the parameter kR, which simplifies
the field analysis. The primary field components E¢O*, Bro", and By," are
described by simple formulas given earlier. For the amplitude and phase,
as well as the quadrature and in-phase components we have:

/2 1

— exp(=bR)[(1+bR)*+aR?]'*,  y,=aR—tan~ (4.47)

a
1+ bR
siny, (4.48)

p

Iney = Inbg = ‘e:;’ cosy, and Qep= Qbr = ‘e:;

Similarly, for the azimuthal component of the magnetic field we obtain

1/2
b5 = exp (<bR)[ (1 + bR + PR = 2R?)” + (aR + 2abR)’|
(4.49)
R aR + 2abR>
Vo TR T PRI — 2R
For the in-phase and quadrature components we have:
Inbg = ‘b;l cosyy, Inbg= }b;‘ siny, (4.50)

In Eqs. (4.47), (4.49) a and b are the real and imaginary parts of the com-
plex number k.
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4.2.2 Dependence of the Field on the Frequency and
Observation Point

To study the frequency responses of the field amplitudes it is convenient

to introduce two parameters, namely a characteristic length R, and char-

acteristic frequency @q. The parameter Ry is defined from the relation

beRoy=1 or

) _p(gy)l/Z
/27

y(uofe)'? 1885

Ry= (4.51)

The characteristic frequency is the frequency at which the displacement
and conduction currents are equal

—=1 (4.52)

The complex amplitudes br”", by", and e," can be treated as functions of
the dimensionless parameters f = @/@, and X = R/R,, where R is the dis-
tance from the dipole to the observation point. A set of typical curves illus-
trating the dependence of the functions |br"| and |by*| on the parameter 3 is
given in Fig. 4.1C and D, correspondingly. With an increase of frequency
the electromagnetic field first decreases; near the characteristic frequency the
amplitude of the field passes through a minimum and then grows. With a

ple)'”?

188.5
smaller and shifts toward higher frequencies. If the frequencies are lower

decrease of the characteristic length Ry = , the minimum becomes

than g, the field is practically independent of dielectric permittivity
(Eq. 4.25) and becomes quasi-stationary. For frequencies higher than the
characteristic frequency, the field is greater and might be orders of magni-
tude larger than the primary field. In this part of the spectrum the field
depends on both conductivity and dielectric permittivity, but the imaginary
part of the wavenumber b is independent of the frequency. Measuring the
field magnitude and phase we may obtain information about both conduc-
tivity and dielectric permittivity. Consider a field behavior as a function of
the separation between dipole and observation point R. As follows from
Eq. (4.46), and, taking into account that

k=a+ib=|k|exp (if) and Br=Re[Byexp(—iot)]

we obtain
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2u, M t—aR k
Bp = Ho Y exp (—bR) %—L—lsin(wt—aK—f) cos @
or
200 M
Br = fz;)R;) exp (—bR)[cos (wt — aR) — |k|Rsin (@t — aR — £)] cos O
Also,
M
9 :'Z;Rg exp (—bR)[cos (wt — aR) — |k|Rsin (wt — aR — &) (453
_’lez’Rz cos (wt —aR —2¢)] sin O
and
M in(wt—aR) |k
E¢:ﬂ()z)ﬂ 0 exp (—bR) %_%Cos(wtﬂm—@ sin @
or
M
E¢:ZORga)exp(—bR)[sin(a}t—aR)—\k]Rcos(a)t—aR—f)]sinﬁ
V3

As we see, the field is presented as a combination of sinusoidal waves
decaying with the distance from the dipole. There are two factors which
result in a decrease of the field: one is attenuation caused by conversion
of electromagnetic energy into heat; the term exp (—bR) appears due to this
factor. The second factor is geometry of the dipole source: the wave moves
in all directions and the energy density decreases with the distance even in a
nonconducting medium. As follows from Eq. (4.53) at relatively small sep-
arations, when |k|R <1, the magnetic field almost synchronously varies
with the dipole current and rapidly decreases with distance as 1/R>. This
range, |k|R <1, is called the near zone. For instance, if conduction currents
prevail (@ < @), we have:

1/2_(21)1/2_1"1‘1

k(iop,y) s 5

2\ /2 103 /10p\ /2
5= s=—17 -2
(7#(@) N 27 (f) "

Correspondingly, the near zone is defined by the condition

(4.54)

R/A<1 (4.55)



148 Basic Principles of Induction Logging

where A =27d. For illustration, consider two examples. First, suppose that
p=10ohmm and f=10kHz. Then 6=16m and this distance defines,
approximately, the boundary of the near zone. If the frequency is increased
to f =10°Hz, the first term of Eq. (4.53) describes the field at distances
which are smaller than 1 m. In general, when terms aR and £ are disregarded,
the quasi-stationary field is observed; that is, both the current and magnetic
field change synchronously. In the beginning of the intermediate zone the field
decays as in the near zone and then starts to decrease slower. The phase shift
between the field and the dipole current also changes with distance
(Eq. 4.53). This change is caused by superposition of waves, which differ-
ently depend on distance R (Eq. 4.53). Finally, when R > A we observe the
wave zone where

20 M k
Br = _ oo exp (_bR)Ll sin (@t —aR — &) cos 6
M, k?
By =100 exp (—bR)|—R| cos (wt—aR —2&)sin 6 (4.56)
M, k
E,= _’[% exp (—bR)% cos (@t —aR — &) sin

In the wave zone the field decays relatively slower and By > Bg, pro-
vided that the observation point is not placed in the vicinity of the z-axis.
In summary, we may note:

1. Regardless of the frequency, there are always three zones of the different
field behavior.

2. In each zone there is propagation of sinusoidal waves.

3. Theirattenuation is caused by the geometric spreading and conversion of
electromagnetic energy into heat.

4. At high frequency, @ > w,, the electromagnetic wave propagates with
almost the same velocity as in a nonconducting medium and attenuation
is directly proportional to the conductivity and, practically, independent
of frequency. In contrast, at low frequency @ < @y, the velocity is mainly
defined by conductivity and frequency:

0} <2w>1/2
p=—=| —
a THo

and the field is governed by the diffusion equation. The latter is equiv-
alent to the assumption that displacement currents are disregarded and
the field instantly appears at all points of a medium regardless of distance
from the source.
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4.3 TRANSIENT FIELD OF THE MAGNETIC DIPOLE
IN A UNIFORM MEDIUM

4.3.1 Expression for the Vector Potential and Field
Components
For better understanding of propagation and diffusion, we also consider a
transient field caused by the magnetic dipole in a uniform medium. Suppose
that the dipole current arises instantaneously, so that its magnetic moment
M, 1s described as a step-function of time:

0 t<0
M, = {Mo >0 (4.57)

To derive the transient field we proceed from the Fourier integrals:
1
F(t)=— J S(w) exp (—iwt)dw and S(w)= J F(t) exp (iwt)dt (4.58)

The first equation shows that the function F(f) can be presented as a sum
of an infinite number of sinusoids (harmonics), and their amplitudes and
phases are characterized by the spectrum (complex amplitude) S(w), given
by the second equation. In accordance with Eq. (4.58) the spectrum of the
step-function is

S(@) = M, J exp (ia)de
0

because the current is zero when t < 0. To calculate this integral, we start
from a slightly different convergent integral:

J exp (i — p)ldr

where p is a small positive number and then find the limit when p — 0. Per-
forming integration, we obtain the spectrum of the step function:

_M

Thus, the step-function is a sum of sinusoids of the same phase, but their
amplitudes decrease with an increase of frequency. In other words, the
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maximum energy of the dipole is concentrated at the low frequencies. The
field generated at these frequencies decays relatively slowly with the
distance from the source and, correspondingly, has greater depth of pen-
etration. As we already know, the vertical component of the complex
amplitude AZ is

4t iwp, My exp (ikR)
T dx R

If the moment is described as —M, /i, then for the vector potential at
each frequency we have:

_ MMy exp (ikR)
4r R

Applying Fourier’s integral to the last expression, we obtain the formula
for the vector potential in the time domain

M,
A(t) = _g;)ﬂz; J expi(kR—wt)dw (4.60)

Here k= (iyop,+ sy0w2)1/2

magnetic type. Integration in Eq. (4.60), using a table of integrals, gives

, and A.(f) is the vector potential of

the following expression for A_.(f):

0 t <70
A = 2 2
N HoMo h [q(t To)]
- exp (—q70)8(t —70) + qroexp (—qt) —————75= ¢ 1>1o
47R { (tzir(z))l/Z
(4.61)
Here
ly
1=5, 0= (euy)"*R (4.62)

L [(q(tz — TS) 1/2} is a modified Bessel’s function of the first order, and
6(t—10) is the Dirac delta function defined as

by
—1)"f"(x) if by <x<b

Jf(x/)é(;z) (x,—x)dx/: ( )f (X) I o=x>02 (463)
; 0 if x<by;x> 0
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As follows from Eq. (4.61), the field at some point of a medium can be
observed only after the instant

7= (epy)'*R (4.64)

With increase of the distance R, the signal appears at later times. Thus,
the wave front propagates with velocity defined by high frequency
harmonics:

1 <
(eﬂo)l/z (

(4.65)
8r)1/2
Using Eq. (4.61), it is easy to derive expressions for the components of

the electromagnetic field. By analogy with the frequency domain, we have:

0A,

3R sin 6

Ej=—
and, omitting some simple algebraic operations, we obtain

Ey=0 if 1<z

(4.66)
E¢:E;1)+Efj) if t>1,
where
) B[ T + 708 ing i >
b = a2 970+ (t—70) + 7068 (t—170) | exp (—qr0) sin @ if t>1g

blq -7 1/2
E(Z) __/'{OMO 2.3 (—qt) 2{ ( 0) }

b = mq 7o exp t2_1(2) sin @ if t>170
(4.67)
because
211 X
b(x)=I(x) — x( )

To determine the magnetic field we use the first Maxwell equation

OB
curl E= ——

ot

which gives
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1 0 . . 10
Br = Rend90 (E¢ sin 0) and By = ROR (RE¢)

The expression for the By turns out to be fairly complicated, so in the
subsequent analysis we consider By and E4 components only. For the time
derivative of the radial component of the magnetic field we have:

s p(), p?)
Br =By + By
where each term is equal to zero if t < 7y. Taking into account (4.67), we
have:

: M °g

Bg) :/SSZ-R;) |:(1 +qt0 t %%) 5(t—’l'()) + T()5/(l‘— T()):| exp (—q’l'())] cos @
I r —12)1/2}

. M, 2 [‘1( 0

B(z) :ﬂo 0223 (—qt)

70 ex
R 27:R3q 0XP 2—12

cos@

(4.68)

Integration of the last expressions with respect to time gives the magnetic

fields:

(1) _ HoMo
Bp' = 2R3 [(1+ qzo)h(t—170) +706(t —70)| exp (—qz0) cos & (4.70)
! 2 2\1/2
L q(x —1) ]
) _ HoMo 3J { 0 _
By = - dxcos®, if t1>1, (4.71
R 27rR3q 7y exp (—gx) xz—rﬁ X cOS if t>7, ( )

70

where I, is the modified Bessel functions of the second order, while h(t — 7))
is the step function

0 <1y
h(t—To):{1 t>TL

As follows from Eqs. (4.69)—(4.71), the electromagnetic field
depends on:
1. Time ¢, distance from the dipole R and angle 6.
2. The velocity of the high frequency propagating waves is defined as
1 R

V==

(epe)? 70
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3. The parameter ¢ is equal to y/2e, which has dimension of ¢~! and
characterizes the decay of high frequency waves in a medium.

Similar to the frequency domain, we present the magnetic fields in units of

field of the static dipole and functions bg, be:

_ 240 M,
47 R3

HoM

0, .
Bgr br cos@, By= 12R> by sin O

4.4 THE FIELD IN A NONCONDUCTING MEDIUM
4.4.1 Expressions for the Field

First, we look at the field in a nonconducting medium. In accordance with
Eq. (4.70) when ¢=0 and ¢ > 7y we have:

bg) = h(l‘ — To) + To(s(lf — T())

W (4.72)
ey = —5(I — To) — 105,(t — To)
Also from Eq. (4.67)
M
E, :ZO Rg ¢psin 0 (4.73)
T

At the observation point R it is natural to distinguish three successive
stages. If t < 7y the field is absent. Then at the instant t =7, the wave front
arrives and after it, > 7, the magnetic field instantly becomes a constant
while the electric field vanishes. The sensor measures the mean value of
the electric field within some small time interval:

70+ At/2
1
— E(t)dt 4.74
< | 0 (4.74)
0—At)2

E(z) =

Taking into account (4.72)—(4.73), we obtain

_ HoMy

E(0) = 47 R>

sin @ (4.75)

4.4.2 Duhamel’s Integral

Prior to this we have considered fields produced by a step-function source.
To handle sources of an arbitrary shape
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0 t<0
M(t):{M(t) t>0

it is convenient to use Duhamel’s integral. The idea of the method is as fol-
lows. The input signal M(f) is represented as the sum of standard signals for
which the system response H(f), called the response function is known. Nor-
mally, the Heaviside step-function h(f) serves as the standard signal. This is
illustrated in Fig. 4.3, where the dipole moment M(f) is represented as a
sum of subsequent elementary step-functions h(t —7) with the amplitudes
M (t)dr. At the limit of A7 — 0 the sum is presented as the integral
t d
M
M() = M(0) + Jd—h
T

0

(t—1)dz

The output response of the system is expressed as the integral of the prod-
uct of the delayed H(t—7) and derivative of the input signal M (£). Thus,
knowing the response of the system to the impact of the Heaviside Function,
it is possible to predict the system response to an arbitrary input M(f). In the
case of magnetic field, assuming that the response function H(t) = Ap is
known, the magnetic field B(f), corresponding to the M(f) pulse excitation
is calculated as

dM
B(t) = M(0)Ap(t) + J d(T)AB(z—r)dr (4.76)
T
0
— 1
M(t) —
AM AM,
- M(0)

0 7 (7] 3

Fig. 4.3 Representation of an arbitrary function as a sum of step-functions.
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For instance, in accordance with Eq. (4.72),

t

dM
bg) - Jd_[h(t —790—1) +706(t — 70 — 7)]d7
T
0

Taking into account that the step-function is equal to unity for positive
values of argument (0 <7 <t—1(), we have
t d t—1
M
[—h(t—’l’o —1)dr= J M'(t—10—1)dr=M(t—10)

dr
0 0

Also, applying Eq. (4.63), we obtain

bg)(t) =M(t—17) + oM (t —170) (4.77)
By analogy,
eg)(t):—M/(t—T())—TQM”([—T()) (4.78)

Thus, the time domain electromagnetic field in a nonconducting
medium is expressed in terms of the moment M(f) and its first and second
derivatives.

For illustration, consider two examples.

Example One
Suppose that

0 <0 |
M(t)=X kt 0<t<T, k:? (4.79)
1 t>T

Applying Eq. (4.77), we have for the radial component of the field
(Fig. 4.4)

0 <1
bg)(t): kt 70<t<zo+T
1 t>t0+ T

The azimuthal component behaves similarly. When the moment is a lin-
ear function of time, the magnetic field changes in a similar way, except at
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M(t)

~

14
kTO

0

Fig. 4.4 Magnetic field bg(t) in the case of linear magnetic moment.

the instants t =17, and t =177+ T, where it changes abruptly. At the same
time, the electric field is given by

0 t <7
$=01T w<i<en+T
0 t>10+ T

which is zero except over the interval T where it is a constant.

Example Two
Consider the case when the moment varies as

0 t<0
M(t)=( sinwt 0<T<C
0 t>C

Then, applying again Egs. (4.77), (4.78), we present the field as a sum of
two sinusoidal functions, having different amplitudes and 90 degrees phase
shift. The radial component is

0 t<17p
br(t) =1 sin(w(t—1))) +wrocos(w(t—70)) 70<t<7+C
0 t>10+C

Of course, if T>> 71 and ¢>> 7)), the field becomes a quasi-stationary and
changes almost synchronously with the dipole moment.
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4.5 THE TRANSIENT FIELD IN A CONDUCTING MEDIUM

Next we return to study the dependence of the electric field on time in
the case of a conducting medium. The expressions for the field are given by
Eqgs. (4.67), (4.73). As in the case of a nonconducting medium, the wave

front travels with velocity v=¢/ (8,)1/
magnitude of the field is zero. The intensity eE; ) of the signal at =7, essen-

% and until the moment ¢ = 7 the
tially depends on the parameter q7:
1 ﬂo) 1/2 R
=—y7|—) R=boR=—= 4.80
q7o0 5 I4 ( e o0 R, m ( )
where R( = 1/by, is the characteristic length, introduced in the previous sec-

tion, and by coincides with the high frequency limit for the imaginary part
of the wavenumber k. Taking into account (4.51), we have:

188.5

——F—R
p(gr)l/Z

m=

(4.81)

For the most practical cases of borehole geophysics this quantity is a very
large number, and one can assume that the amplitude of the first arrival is
practically zero due to the very small values of the exponential term. It is
convenient to represent the function Efi,z ) as

M,
EY) = -5 }é’ 7 sing (4.82)
Here
1/2

o L [m(nz—l) /] -
ey =m’ exp(—mn) R (4.83)

t

and n=—2>1.
7o

First, consider the field at the moment when it arrives, n=1. Applying
the expansion of the function I,(z) in series and using only the leading term

Z2

I_’Z(Z) ~ §

we obtain
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1
eg) ~ gms exp (—m) (4.84)

Function egf ) has a maximum when m =5. If the distance from the dipole
R does not exceed 5Ry, the field increases with conductivity. It also increases
with distance if observed at R < 5Ry. Large values of m correspond to the
extremely small fields of almost zero value. Thus, in most cases the field
is equal to zero at the first arrival, t=17y,. Now, suppose that the
argument of the function L in Eq. (4.83) is large:

m(n2 — 1) >1

Replacing I(z) by its asymptotic expression

L(z)~ eXP(T/)Z at 2> 1
(27z)
we obtain
5/2
2) 1 m [ 5 1/2 ]
epe, & expm|(n”—1 —n (4.85)
4 ¢ (27[)1/2(’12_1)5/4 ( )

This equation 1s applicable when the field is observed at times
t>15 (n>1).
Then we can write

e z(znlv (%)5/2 exp (—2—”;) (4.86)

which describes an independent on dielectric permittivity the quasi-
stationary field. Curves of the function ey(n) are shown in Fig. 4.5. The
index of curves is parameter m = R /R,. If the distance from the dipole does
not exceed 5R the electric field decreases monotonically with time. How-
ever, with an increase of the parameter m (an increase of conductivity or dis-
tance, or a decrease of dielectric permittivity), the maximum of e, shifts to a
later time. Therefore, observing the field in a conducting medium we can
distinguish the following stages of the transient response:

R
1. The field is equal to zero until the moment 7p =— <€r)1/2_ For example,
c

if observations are performed at distances from the dipole around 1 m,
the arrival time 7 is of the order of nanoseconds.
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0 107" 1 10’ n-1

Fig. 4.5 Transient responses of the electric field e,(n). Index of curves is m.

2. At the instant 7, the field intensity is a function of the distance from the
dipole and electrical parameters of the medium. After the initial wave front
passes the observation point, the electric field does not disappear instanta-
neously. At the beginning, when the time of observation is close to 7y, both
the conduction and displacement currents generate the magnetic field. In
otherwords, the change of the electric field with time cannotbe disregarded
at the early stage of the transient response when it is only several times
greater than 7. With an increase of resistivity, the time interval, where
displacement currents play an essential role, becomes wider.

3. Inthe last stage when the electric field varies with time relatively slowly,
displacement currents can be disregarded. In this final stage, the field
becomes a quasi-stationary and demonstrates features typical for diffu-
sion phenomena. The larger the conductivity is, the earlier the time
moment when transition to a quasi-stationary regime occurs.

Next, consider the electric field as a function of the distance from the dipole.

Using Eq. (4.67), we have

(2) M()ﬂ(qt)3
E) =-—"2
27 (vt)

Fgsin@

where

b [qt(l—xz)l/z} .
1—x2 an X—Z

Fr=xexp(—qt)



160 Basic Principles of Induction Logging

107 T T T
0 1073 1072 107" 100

Fig. 4.6 Function F¢ at different values of parameter qt.

Graphs, of the electric field as a function of distance, are shown in
Fig. 4.6. The curve index is the parameter gt. For small values of ¢¢, the max-
imum of the field intensity occurs near the wave front and it decreases
linearly while approaching the dipole. At large values the maximum moves
away from the wave front.

The diffusion equation does not allow us to study the first arrival of
energy or the initial stages of the transient response. In the case of sinusoidal
oscillations, the quasi-stationary approximation is described by a sinusoidal
wave, whose amplitude strongly decays with the distance. An accuracy of
this approximation is defined by the ratio of displacement and conduction
currents. Propagation and diffusion phenomena take place not only in the
case of the step-function excitation. The same phenomena are observed
when the pulse is of an arbitrary shape. Of course, the shape affects behavior
of the field. For example, when the pulse has a rectangular shape of a very
small width comparable to 7, the field within the pulse is subjected to influ-
ence of both the displacement and conduction currents. In other words, this
field propagates as high-frequency waves. At the same time, outside the
pulse the field is relatively weak because the fields caused by the step-
functions, comprising the pulse, almost cancel each other, and the quasi-
stationary stage is hardly noticeable. Correspondingly, a system of such
alternating step-functions, following one after another, approximately rep-
resents the high-frequency wave, when only propagation is observed. With
an increase of the pulse width the quasi-stationary stage appears inside the
pulse as well as outside because the cancelation effect becomes weaker.
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In developing the theory of induction logging, we focus our attention on
quasistationary fields observed in the borehole in the presence of cylindrical
and horizontal boundaries. However, to gain understanding of peculiarities
of fields in complicated formations, it is useful to study fields in a uniform
medium excited by a vertical magnetic dipole and obtain insight into the
physical principles that form the basis for induction logging.

5.1 EXPRESSIONS FOR THE FIELD

When a magnetic dipole with a sinusoidal current is placed in a uni-
form conducting medium, a change of the primary magnetic field with
time causes a primary vortex electric field, and the latter gives rise to
the induced currents. These currents and their interaction cause an appear-
ance of the secondary magnetic and electric fields. Due to the symmetry,
the interaction does not change a current’s direction, and in the spherical
system of coordinates they have only a ¢-component. Because the system
is linear, the secondary field is also a sinusoidal function of the same fre-
quency as the primary field. In Chapter 4, we derived equations for the
electromagnetic field of the magnetic dipole in a uniform medium when
both conduction and displacement currents are present. Taking into
account Eqs. (4.42), (4.45), we have for the complex amplitudes of the
quasistationary field:
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_ k@M

E, = R (1 —ikR)exp (ikR)sin @
M

By /;;)TR;) (1 —ikR)exp (ikR) cos 0 (5.1)
M

B; :Z;Rg (1—ikR — ¥*R) exp (ikR) sin 0

Here the wave number is

1+4i 2 \'? 103
=", 5:( > =—(10pT)"m (5.2)
1) 40 2r

where T is the period of oscillation and, as before, 6 is the skin depth. The
dipole moment varies as

M = M, cos wt (5.3)

and, in accordance with the Biot-Savart law, it generates primary magnetic
fields, ng) and BY:

M
cosf coswt and B(HO) = 'ZO R;) sin @ cos wt (5.4)
7

B0 _ oMo
R 2gR3

This field is confined to meridian planes and synchronously changes with
the dipole current. Earlier we called this field quasistationary. Its variation
with time causes the vortex electric field (Chapter 3) with complex
amplitude:

S sin 6 (5.5)
and for the field EEJ? ) we have:

M
exp (—imt) | = aZj:RZO sin @ sin ot (5.6)

) _ iwp Mo
E,"=Re 47 R2

which is confined to horizontal planes and exists at any point in space
regardless of whether the medium is conductive. The primary electric
and magnetic fields are shifted in-phase with respect to each other by
90 degrees. As in the general case (Chapter 4), it is convenient to express
the complex amplitudes of the field in a conducting medium in terms of
the primary field, that is
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by, = (1 —ikR) exp (ikR)
by = (1—ikR — kK*R*) exp (ikR) (5.7)
¢, = (1 —ikR)exp (ikR)

Inasmuch as the right-hand sides in Eq. (5.7) are complex numbers,
we can say that there is a phase shift between the field and the dipole current.
For instance, in the case of the radial component we have:

M,
Br ZZ;RQ cos ORe[(cg + idR) exp (—iwt)]
or
M,
Br :/;;rR;) cos O|cg cos @t + dp sin wt] (5.8)
where
(R + ldR == b*R
By analogy,
M,
By :Z;Rg sin B[y cos wt + dy sin wt] (5.9)
Here

T idgzbz

In essence, the field is a sinusoidal wave that relatively rapidly decays with
the distance from the dipole. We can also interpret fields as a sum of two
harmonic functions, called the in-phase and quadrature components:

Inbr = cg coswt Qbr = dp sin wt
(5.10)
Inbg =cy coswt Qbgy = dy sin wt

By definition, the real and imaginary parts of the complex amplitude are
the amplitudes of the in-phase and quadrature components, respectively.
The in-phase component changes synchronously with the primary field,
whereas the quadrature component is shifted in-phase by 90 degrees. In gen-
eral, these oscillations have different amplitudes. Similarly, the electric field
and the current density can be represented as the sum of the quadrature and
in-phase components. According to the Biot-Savart law, the quadrature
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component of the secondary magnetic field arises due to currents that are
shifted in-phase by 90 degrees with respect to the current in the dipole,
whereas the in-phase component of the field is the algebraic sum of the pri-
mary field and the in-phase component of the secondary field. The latter is
contributed by induced currents in the medium that are in-phase with the
dipole current. This representation is useful for understanding the physical
principles of induction logging, which is based on measurements of
corresponding components of the field. It is natural to distinguish two spe-
cial cases when either radial or equatorial components exist: § =0 (bg # 0

and by =0) and @ =7/2 (bg =0 and by # 0).

5.2 LOW AND HIGH FREQUENCY ASYMPTOTIC

First, consider the low frequency spectrum (or limit) of the field.
Expanding exp(ikR) in the series

and substituting this into Eq. (5.7) after some simple algebra, we have:

© |- 3
=1+ T”zﬂ/zp” exp <i%) (5.11)
n=2 .

Here

}’How) 172 R
= R=— 5.12
=5 . (5.12)
is the parameter characterizing the distance between the dipole and an obser-
vation point expressed in units of skin depth 6. Sometimes the parameter p is
called the induction number. Taking into account Eq. (5.11), we see that the
series describing the low frequency part of the spectrum contains whole and

fractional powers of @. As follows from this equation:
* 2 25 * 25
Imby, =dr~p —3P and RebR:cle—gp (5.13)

or

2 243/2
poMy TR (o RO)T

Im B, ~ 5.14
m By 2R’ S 5 3(2)1/2 ( )
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and

3/2
«  HoMo (1o R) 3/2
ReBj ~ 3 COs 1—71/260/
2R 3(2)

(5.15)

Thus, within the range of small parameter p, the quadrature and in-phase
components are related to the frequency, the conductivity, and the distance
from the dipole in completely different manners. The first term on the right-
hand side of Eq. (5.15) characterizes the primary field, which is caused only
by the dipole current. The next term describes the in-phase component of
the secondary magnetic field, which arises due to the currents induced in the
conductive medium. At the same time, all the terms describing the quadra-
ture component correspond to the secondary field. Comparison of the last
two equations shows that the in-phase component of the secondary field is
more sensitive to changes in conductivity than the first term of the quadra-
ture component, and in this low frequency limit the in-phase component is
independent of the dipole-receiver distance. In fact, this interesting feature
at p < 1 indicates potentially large depth of penetration of the in-phase com-
ponent compared to that of the quadrature component. In a similar manner,
we obtain expressions for the azimuthal component of the field:

4 4
Imbj)~ —p* + 5193 and Rebj~1+ 3p3 (5.16)

In accordance with Eq. (5.7) at the high frequency range when p > 1,
the in-phase and quadrature components of the field approach zero:

Reb* —0 or Reb” =—b’ and Imb* —0

where b*" is the complex amplitude of the secondary magnetic field. At such
frequencies the induced currents are concentrated in the vicinity of the
dipole causing strong skin effect. Correspondingly, the secondary
in-phase component differs from the primary field by sign only.

Since the radial and azimuthal components behave similarly, we may
focus on the radial component:

Imb}, = exp (—p)[(1 +p) sinp—pcos p]
* . (5.17)
Rebjy = exp (—p)[(1+p) cosp + psinp]
The graphs, illustrating dependence of both quadrature and in-phase

field components on the parameter p, are presented in Fig. 5.1A and B. With
an increase in the induction number, the quadrature component (Imby)
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Fig. 5.1 (A) Quadrature and (B) in-phase components of the magnetic field.

increases, reaches maximum, and then tends to zero. By contrast, the
in-phase component decreases and then, like the quadrature component,
approaches zero in an oscillating manner. According to Eq. (5.13), at the
low frequency limit, the amplitude of the quadrature component prevails
over the secondary in-phase component Inby, and we have:

oMo
4R

Hence in the range of a small parameter, the quadrature component is

QBr = YHow cosOsinwt, p<kl (5.18)

directly proportional to the conductivity and the frequency, and inversely
proportional to the distance from the magnetic dipole. As will be shown
later, some of these features of the field also remain valid in a nonuniform
conducting medium. From Eq. (5.17), we also see that at p<1 the
in-phase component of the secondary field InB. is much smaller than the
primary field and the quadrature component of the secondary field QBg:

InB. < QBr < BE{” (5.19)

Because of this inequality (5.19) low frequency induction measurements
require high-accuracy compensation of the primary field.

5.3 EXPRESSION FOR INDUCED CURRENTS

Let us analyze the behavior of the field in terms of the distribution of
induced currents. Applying Eq. (5.7) and Ohm’s law:

Jj=7E
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we have the following expression for the current density at any point in a
uniform medium:
iy oM
1 =THOOP0 b (ikR)(1 — ikR) sin 6 (5.20)
47R?
As in the case of the magnetic field, we represent the current density as
the sum of the quadrature and in-phase components, and, using Eq. (5.20),

obtain:
. yuo@Myr .
Imj, =" s exp (—p)[(1+p) cosp+ psin
7 (5.21)
' Yo Mor .
Re_]q)—_ 47[R3 CXP(—p)[(l +p) Slnp—pcosp]

The distribution of currents represents a system of rings located in planes
perpendicular to this axis (Fig. 5.2A) and having a common axis with that of
the dipole. According to Eq. (5.5), for the density of induced currents arising
due to the primary electric field, we have:

. iy,an)M()r

()% — o, 5(0)
Jo =1E 4nR3

(5.22)
and their phase is shifted by 90 degrees with respect to the dipole current.
If interaction between induced currents is negligible, then Eq. (5.22)
describes the actual distribution. In this case, the current density at any point
in the medium is a product of two terms. The first term depends on the
dipole moment, frequency, and conductivity at the observation point; the
second 1s determined by coordinates of the point of observation. Finding
current distribution and magnetic field of these currents is an elementary task
when interaction between induced currents is negligible and the primary
electric field does not intersect any boundaries. This last condition is critical
because appearance of the electric charges changes the direction of the
current density; the geometry of currents becomes unknown, making it
impossible to apply the Biot-Savart law.

In Chapter 6 we demonstrate that the approximation based on the use
of Eq. (5.22) is the foundation of Doll’s “geometrical factor theory” in
“low frequency” induction logging. The behavior of amplitude of the cur-
rent f; ) in planes perpendicular to the dipole axis is shown in Fig. 5.2B. It
also illustrates that increase of the distance from the dipole along z-direction
z1 <22 < z3 leads to the shift of the maximal density along the radial
direction.
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Fig. 5.2 (A) Geometry of current tubes; (B) distribution of current density, f;,, in planes
perpendicular to the dipole axes; (C), (D) quadrature and in-phase components of the
current density, respectively.

Introducing notation:

. YHooMo 1
Jo 47 R3

we may rewrite Eq. (5.21) as

Qjp =Jjoexp (—p)[(1+ p) cosp+ psin p|

v . 5.23
Inj, = joexp (—p)[(1 + p) sinp — p cos p] .23)

Analyzing functions Eq. (5.23) we can see how the actual current den-
sity, jig, differs from ji, for difterent values of p. The quadrature and in-phase
components of j, normalized by jj are shown in Fig. 5.2C and D. For small
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values of the parameter p < 0.7, the quadrature component of the current
density 1s essentially the same as jy, indicating that interaction between
induced currents is negligible. As the parameter p increases, the ratio
Qjyp/jo decreases, passes through zero, and for large p, approaches zero in
an oscillating manner. The ratio In(js/jo) has a completely difterent charac-
ter. At small p the ratio Inj,/j, approaches zero, then increases to a maximum
value at p ~ 1.5 and tends to zero again in an oscillating manner. The actual
distribution of currents, in contrast to jo, is determined by both geometric
factors and the interaction of currents. Although at small values of p the
quadrature component of the current density is dominant (Fig. 5.2C and
D), there is a range of p where the in-phase component is significantly larger.

The main features of the magnetic field can be analyzed, proceeding
from the distribution of the corresponding components of the current den-
sity. If the frequency is low enough and the medium has a relatively high
resistivity, the range of distances for which the actual current density Qjy,
is almost equal to jo becomes large and the magnetic field QB is defined
entirely by currents in this area. In this frequency limit the depth of inves-
tigation cannot be increased by lowering frequency despite increased
penetration of the field into the formation. Both the current density Qj
in this area and magnetic field caused by these currents are directly propor-
tional to the frequency, Eq. (5.22). Within some range of the parameter p,
the dimensions of this volume remain much greater than the distance from
the dipole to an observation point. As the parameter p increases (e.g., by an
increase of the frequency), the size of this volume becomes smaller, leading
to decreased growth of QB with frequency. As frequency increases further,
there is a rapid decrease of both ratio Qj/jiy and the quadrature component
of magnetic field.

By analogy, the behavior of the in-phase component of the field can be
explained by the in-phase component of the current. Unlike the quadrature
component Qjs, which is not indicative of the diffusion in the medium,
the in-phase component clearly shows a diffusion process. For instance, a
maximum of Inj, moves away from the dipole when the frequency
decreases, indicating an increased sensitivity of magnetic field to the distant
parts of a medium. The depth of penetration of the in-phase component
gradually increases with a decrease of frequency, regardless of the distance
between the dipole and an observation point. This feature of the in-phase
component manifests itself primarily when the separation between the
dipole and receiver is comparable to or less than the thickness of the skin
depth (similar behavior is observed in the transient field discussed in
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Chapter 10). Inasmuch as the density of the current Injy around the dipole is
small, the field component, InB, is defined by currents located relatively far
from the probe. For this reason, a change of relatively small distance between
the dipole and receiver practically has no effect on the field. However, with
further increase of separation, the dipole-receiver distance has greater influ-
ence. These general features of the quadrature and in-phase components of
the field remain valid for a nonuniform medium as well.
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In 1949, Henri Doll suggested the method of induction logging for measur-
ing the electrical resistivity of formations surrounding a borehole [1]. He also
developed an approximate geometrical factor theory, allowing one to estab-
lish a relation between parameters of a geo-electric section and a signal, mea-
sured by the induction probe. The basis of this theory is the assumption that
the frequency of the induction probe, located on the borehole axis, is rel-
atively low, and the mutual interaction of currents induced in the borehole
and surrounding axially symmetric medium can be neglected.

This assumption implies 90 degrees phase shift between induced currents
in the medium and the current in a transmitting coil. Thus, the signal
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measured by a receiver coil of the induction probe consists of two parts.
The first 1s the primary signal, caused by a transmitting coil located in free
space; the second part is caused by induced currents in a medium whose
amplitude depends on the conductivity of formation. Analysis of the field
of a magnetic dipole in a uniform medium (Chapter 5) shows that the
behavior of the field and the induced currents assumed in Doll’s theory
is a good approximation of the actual situation when the transmitter-
receiver distance, frequency, and conductivity are relatively small. Later,
we compare results of a field calculation using the Doll’s theory and exact
solutions and establish conditions when the theory of geometric factor is
valid. Doll’s theory permits a simple derivation of the quadrature (out-of-
phase) component of the magnetic field in a medium with either horizon-
tal or cylindrical interfaces, provided that the field is caused by a vertical
magnetic dipole directed along the vertical axis of the borehole. In this
case, there is no component of electric field perpendicular to the bound-
aries between regions of different conductivity and, therefore, no surface
electrical charges. Of course, Doll understood very well the phenomenon
of skin effect as well as the conditions under which this effect is negligible.
In practice, these conditions define useful operating frequencies of induc-
tion logging, and it is not occasional that, after 60 years, most induction
logging instruments still use frequencies in the range that are close to those
suggested by Doll.

6.1 TWO-COIL PROBE

Describing Doll’s geometrical factor theory we begin from the basic
concept of the geometrical factor of a simple two-coil probe.

6.1.1 Geometrical Factor of the Elementary Ring

Let us consider the region formed by the intersection of two horizontal
planes with two coaxial cylindrical surfaces having a common axis with
the borehole (Fig. 6.1).

The elementary region bounded by the planes and cylindrical surfaces
forms a horizontal ring, which is filled with a uniform medium. Its cross-
section dS1is rectangular; for convenience, we assume that the region has unit
area (dS=1). It is essential that dimensions of the cross-section are small
compared with the ring’s radius. Doll called this part of the medium an
“elementary unit ring.” Now we find the signal at the receiver of a two-coil
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Fig. 6.1 Elementary ring with respect to the two-coil induction probe.

induction probe caused by the induced current circulating in the ring. As
shown earlier (Eq. 3.42), the primary electric field of a dipole in free space is

. iﬂ()a)I’MT
 4zR}

Here ris the radius of the ring, M7 is 2 magnetic moment of the trans-
mitter coil, and R is the distance from the transmitter coil to the ring. Then
Ohm’s law directly gives the complex amplitude of the induced current in
the ring as

) COVMT R
=R G s =1 6.1)
4nRy
where ¥ is the conductivity of the medium occupied by the ring (Fig. 6.2).

Cross-sections of elementary rings with a maximal geometrical factor lie

on the solid circle. Because the ring’s cross-section is small:

dr<<r and dz<z
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Fig. 6.2 (A) Geometry of elementary current rings used in Eq. (6.1). The black boxes on
the borehole axis are the locations of the transmitter and receiver coils (dipoles).
(B) Elementary rings whose cross sections lie on circles that pass through transmitter
and receiver coils with centers on the r axis.

the elementary ring forms a circular loop of radius r. The current in the ele-
mentary ring with radius r generates the secondary magnetic field, which has
only the vertical component at the axis:

_#01*72

B =
2R3

(6.2)

Here, R, is the distance from points of the ring to the receiver coil. The
flux of this secondary magnetic field piercing a small receiver coil along the
axis 1s

I*r
(D* = @—3 Sz ny
2 R,
where S, and n, are area and number of turns in the coil, respectively.
For the complex amplitude of the electromotive force in the coil, arising
due to a sinusoidal in time magnetic field, we have
iop, I*r?

Substituting Eq. (6.1) into Eq. (6.3), we obtain the expression for the
electromotive force in the small receiver coil, generated by the secondary
magnetic field:
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3

oz
E= —}fzﬂéﬂo& Sanyny (6.4)

r

303
RiR;
where Ij is the current amplitude in the transmitter coil, Sy, 1y, and S5, n, are

areas and number of turns of the transmitter and receiver coils, respectively;
fis the frequency of the field. By definition

My = IySin
is the magnetic moment of the transmitter coil. Also the product
MR - Szl/lz

is called the moment of the receiver coil, so that Eq. (6.4) can be rewritten as

3

RiR3

[1]

/4
= — =/ gy MMy

Note that the transmitter and receiver moments have different units
(Am? and m?), but this notation is still convenient, especially for discussing
multicoil probes.

Let us write the last equation in the form

E=Korgo (6.5)

where
_ oo
K()——— M01081521/l1112

is the coefficient that depends on parameters of the two-coil probe, and

;,3

= (6.6)
R{R3

Lo

is a function depending on the radius and location of the ring as well as on the
probe length L. Doll called this function “the geometric factor of an elemen-
tary ring” or the “elementary geometric factor.” Thus, the signal generated
by the current in an elementary ring within a medium is directly propor-
tional to the conductivity and geometric factor of the ring. Now we repre-
sent the function g, in a cylindrical coordinate system, r, z with its origin at
the middle of the induction probe (Fig. 6.2). Because

Ri=[P+(L/2+27]"" Ro=[P+(L/2—27]""
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we have for the function gy:

1,3

L= 2t (/242 P (12— 6.7)

Following Doll, we introduce a new function g:

L L r

T2 (e P (L2 2]

At the same time, the probe coefficient K is multiplied by 2/L:

2
K=—-Ky
L

It will be shown later that the geometric factor of the whole space is equal
to unity. In accordance with Eq. (6.8), this factor ¢ depends on the angle
under which both coils of the induction probe are seen from any point of
the elementary ring, and it is equal to

sin®A

S (6.9)

g =
Indeed, as follows from Fig. 6.2,

sinA sina . r sinA r
= sinag =—, =

L Ry’ R’ L RiR,

and, therefore,

_L P _Lsin3A_sin3A
C2RR3 2 L3 2I2

g

In other words, for a given probe length L the elementary geometric
factor is defined by the angle under which the probe is seen from points
of the elementary ring. Thus, all elementary rings have the same geometric
factor, if the probe is seen under the same angle from the ring’s points.
Consequently, they contribute the same signal if they have the same con-
ductivity. The cross-sections of elementary rings with the same geometrical
factor lie along circles that pass through the transmitter and receiver coils and
have their centers on the r axis. Fig. 6.2A illustrates this concept for such
circles of different radii. Elementary rings for which sin 4 = 1 have the max-
imum geometric factor, which are equal to 1/2L*. Cross-sections of these
rings are located on the circle with radius L/2.



Geometrical Factor Theory of Induction Logging 179

6.1.2 Solution of the Forward Problem

Now we derive the signal, caused by induced currents in a whole space. In
fact, making use of the principle of superposition and neglecting interaction
of induced currents, the electromotive force is equal to the sum of the signals
from all elementary rings, i.e.:

E:ijgds (6.10)
S

where dS is the cross-section of the elementary ring. In general, the conduc-
tivity can be a continuous or discontinuous function of coordinates. In par-
ticular, if the medium is uniform, we have

2= KngdS = KyJ ergdz
N roz
Inasmuch as radii of elementary rings change from 0 to oo and the coor-

dinate z varies from —oo to +00, the expression for electromotive force in
uniform medium is

E:Kyjdr Jgdz (6.11)
0 —00

As follows from Eq. (6.8), this double integral gives

dr J dz= Jdr J dz=1 (6.12)
l V) e e P (12— 2

and

[1]

In other words, the geometric factor of uniform medium is equal to
unity. Let us consider a nonuniform medium divided into different uniform
regions, as shown in Fig. 6.3.

Taking into consideration the axial symmetry, we denote the regions
with letters A, B, C, D, and E. The contribution of every uniform part
of the medium to the total signal is proportional to the product of the
corresponding conductivity and geometric factor of this part. By definition,
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|
Fig. 6.3 Conductivity distribution in a nonuniform medium.

the latter is a sum of geometric factors of elementary rings over the area of
the considered part of the medium. For example, if conductivities of parts A,
B, C, D, and E are equal to 4,75, Y YD, and ¥, the total electromotive
force is

2=K yAJJgdS + yBJJgdS + ycjjgds + ;/DJJgdS + yEJJgdS] (6.13)

A B C D E

o s

A

Here

are geometric factors of the corresponding parts of the medium. Introducing

Ga= ”gds, Gp= ” dSees Gy = “ S

A B E

notations

we obtain the following expression for the magnitude of the electromotive

force:

E=K(y,Ga+yrpGp+ycGe+ypGp+reGe) (6.14)
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Inasmuch as the geometric factor for a whole uniform medium is equal to
unity, we always have

Ga+ G+ Ge+Gp+ Gp=1 (6.15)

As follows from Eq. (6.14) the electromotive force is given by the sum of
products of geometrical factors and the conductivities of different regions of
the media. Thus the conductivity of a region and its geometric factor has a
similar influence on the signal. For instance, a region with a high conduc-
tivity and small geometrical factor and a region with low conductivity and
large geometrical factor make the same contributions to the total signal, if
their conductivity-geometric factor products are the same.

6.1.3 Apparent Conductivity

By analogy with the apparent resistivity in direct-current methods, Doll
introduced the apparent conductivity y, defined by
t_ E

71 EW(}%)

(6.16)

It characterizes how the measured electromotive force differs from that
in a uniform medium with conductivity y. This definition is equivalent to
the more commonly used definition, utilizing K-factor:

In accordance with Egs. (6.12) and (6.14), for the apparent conductivity
Y. and apparent resistivity p, we have:

Ya=7Y4GatygGptrcGe+ypGp +r7eGe (6.17)
Pa=74Ga+75Gs+7cGe+ypGp+ypGe™ (6.18)

The concept of an elementary geometric factor makes it easy to derive
expressions for the signal caused by currents in various parts of a conducting
medium. Doll also used geometrical factors of elementary horizontal and
cylindrical layers to study both the vertical and radial characteristics of the
two-coil probes, as well as much more complicated induction systems.
The concept of geometric factor, which is often called “geometrical factor
theory,” can be summarized as:
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1. In geometrical factor theory, induced currents are generated only by the
primary electric field of the transmitter coil:

0s _ lopgMrr
¢ 4zR3

2. The theory implies that the mutual interaction between induced cur-
rents is neglected, and thus every element of a medium manifests itself
independently, regardless of the resistivity of neighboring parts. This
theory does not predict an in-phase component of the secondary
magnetic field.

3. The Doll’s approximation is more valid in regions that are close to the
source where induced currents are mainly defined by the primary elec-
tric field. In areas located far from the source, currents are subject to the
skin effect and geometrical factor theory is less applicable. As the length
of the probe increases, the frequency must be lowered in order for Doll’s
approximation to remain accurate.

4. Simplicity of the theory is based on an axially-symmetric geometry of a
media and absence of electrical charges at the boundaries of regions with
different conductivities. In the absence of axial symmetry surface charges
appear, whose density depends on the magnitude of the normal compo-
nent of electric field at the boundary and on the resistivity contrast across
the boundary. In such cases, it becomes impossible to retain the concept
of'a geometric factor, although at a sufficiently low frequency, the quad-
rature component of magnetic field is still directly proportional to the
frequency and conductivity.

In the following chapter, we show that geometrical factor theory represents

the first approximation of the integral equation, describing the response of

induction tool in a medium with varying electrical conductivity. Now we
use Doll’s theory to study the response of induction probes in different for-
mations and start from horizontally-layered media.

6.2 THE VERTICAL RESPONSES OF THE TWO-COIL
PROBE IN THE MEDIA WITH THE HORIZONTAL
BOUNDARIES

6.2.1 Geometric Factor of an Elementary Layer

By analogy with an elementary ring whose cross section is small, a layer
whose thickness is much less than the probe length can be considered as
an elementary layer. The geometrical factor of an elementary layer is defined
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by a summation of the geometrical factors of its elementary rings, which are
all located at the same distance z with respect to the origin. The radius of
these elementary rings ranges from zero to infinity. Thus, the geometric fac-
tor of an elementary layer G. is

G.= Jgdr (6.19)
0

where ¢ is the geometric factor of the elementary ring. Making use of
Eq. (6.8), we have

Loo rdr
GZZEJ 5 213/21 , 2
[P+ (L/2+2)7] "7 [P+ (L/2—2)7]

3/2
0

Here L is the probe length. Introducing notations:
L/2+z=m, L/2—z=n, and r=x

we obtain

o)

xdx
G.=

L
T4 j [ + (m2 + n2)x + m2”2]3/2

or

o]

G.=

il
T4 ) (x2+bx+c)(x2+bx+c)1/2

xdx

(6.20)

where
m>+n>=b, m*n’=c
This integral is well known and is equal to

Lc Lb
(4c—b2)c'/2 2(4c—1b?)

Thus, the geometric factor of an elementary layer is

G—— L (6.21)
5 2(m+n)? .
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In case when the elementary layer is located between coils of the probe:

—L/2<z<L/2
the geometric factor G. is
1
Gy=— (6.22)
2L

and it is independent on coordinate z. When the layer is located above or
below the probe:

z<—L/2 or 2>L/2
the geometrical factor is

L

And again, the geometric factor of the whole space is equal to unity:

[e5] —o0

LJdZ L L J dz L2 1 L2
G==| =+ =+ e R |
22 2L 8 22 8L 2 8L
L)2 —L/2

=3 =

According to Egs. (6.22), (6.23), the geometric factors of elementary
layer located outside the probe decrease inversely proportional to 2> while
geometric factors of all elementary layers located inside the probe are equal
to G.=1/(2L). A curve, illustrating the behavior of geometric factor G. (in
units of L) as a function of z, is shown in Fig. 6.4. The middle of the two-coil
probe is located at the origin of coordinates.

It is useful to notice that geometrical factors of two regions:

L L L J L
—§<z<§, z< BEE an z>§
have the same value, equal to 0.5. As follows from definition of the function
G., the geometric factor of a layer with very small thickness dz << L is equal
to G.dz and it is dimensionless. Since the function G. gives sensitivity of the
probe to induced currents in elementary layers, Doll called this function G.
the vertical response of a two-coil probe.

6.2.2 Geometric Factor of a Layer With a Finite Thickness

Using geometric factor of an elementary layer it is easy to find geometric
factors of layers with a finite thickness. To proceed it is necessary to present
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.
y

Fig. 6.4 Geometric factor of an elementary layer as a function of the layer position z.

N~

the layer as a sum of elementary layers and perform summation of their geo-
metric factors. Let us consider several positions of the two-coil probe with
respect to the bed.

Case 1
The probe is located outside the bed of finite thickness (Fig. 6.5A). To
derive the geometric factor of this bed G, we integrate function G. over
the interval from z; to 2, which characterizes the bed thickness. Then we
have

Lfd= L/f1 1
szg —==|— (6.24)

Assuming that coordinate z, corresponds to the middle of the bed
and taking into account that
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Fig. 6.5 Position of the probe with respect to the bed. (A) Probe is outside the bed.
(B) One coil is inside while the other one is outside the bed.

z21=20—H/2 and z,=20+H/2
we have

LH 1
Gy=—r

s 22y (6.25)

Here, H is the bed thickness, 2z is the distance from the middle of
the bed to the center of a two-coil probe. This equation is applied if the

upper coil of the probe does not intersect the low boundary of the
bed, i.e., it is valid if

L+H

Z1>— or zp>
=5 0=

Case 2

One colil is inside of the bed, while the other one is outside (Fig. 6.5B).
To derive the geometric factor of a bed with thickness H, we have to
sum up geometric factors of the parts of the bed located outside and

inside the probe. In accordance with Eq. (6.23), the part outside the
probe is

o _L(1 1 B L
1 _§<L—/2_ (ZO+H/2)> "4 8(z0+H/2)
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The geometric factor of the part hy located inside the probe is

h 1 /L H
G=t=—(Z—z+ >
2L 2L \2 2

h1 :L/Z—(Z()—H/2)

because

Therefore, for the geometric factor of the bed, we have

1 L

1
Gy=Gi+Gy=-——(20—H/2) = ———
b= Gt G=3 =5 (20— H/2) 8(z + H/2)

5L (6.26)

This formula is applicable until the upper coil of the probe is located
within the bed and thickness of the bed is smaller than the probe length,
(H<L),1ie., when

(L—H)/2<z <(L+H)/2

When the bed thickness is greater than the probe length (H > L),
this formula can be used until the lower coil does not intersect the lower
boundary of the bed, i.e., when 2o > (H —L)/2.

Case 3
The probe is located against the bed (Fig. 6.6). There are two possible cases:
a. The probe length exceeds the bed thickness (H < L); thus, the geo-
metric factor Gy is

G =2 (6.27)
"Tor '
Re - Re
Zo o H Zy |-« H
0 _ 7/ ! 0 7
Te Te \ 4
(A) (B)

Fig. 6.6 Position of the probe with respect to the bed (Case 3). (A) Probe length exceeds
the bed thickness. (B) Thickness of the bed is greater than the length of the probe.
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b. The thickness of the bed is greater than the length of the probe
(H > L); thus, the geometric factor Gy is

L L/2 1 L/2 1
G=— (e )+ (2
2L 8\L =z +H/2) 8\L z—H/2

1 L . L 1 8
2 4 8(z+H/2) 8(zg—H/2) 4 (6:28)

. LH
8[5 — (H/2)’]

These equations can be applied, provided that
L H .
0§ZO<5_E 1fH<L
and
H L |
OSZO<E—E if H>L

Derived formulas allow us to determine apparent conductivity for a
two-coil probe located in a medium with two horizontal interfaces.

6.2.3 Apparent Conductivity in the Presence of a Layer With
Finite Thickness

As follows from Eq. (6.17) in case of a layer with conductivity ¥ surrounded

by a medium of conductivity y, for the apparent parameter y,, we have

Ya=71G1t7,G (6.29)

where G; and G, are geometric factors of the layer and surrounding
medium, correspondingly. By definition, the sum of these factors is equal
to unity, i.e.,

G=1-G
Before we discuss apparent conductivity in the presence of a layer of a
finite thickness, let us consider the influence of one horizontal interface.
If the probe is located in a medium with conductivity y, (Fig. 6.7A), then
in accordance with Eq. (6.24), the geometric factors of both half-spaces are

Gi

S =—
L <0

L L2 1 L L2 L
8( )++ i

T8y 2L 8L 8%
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Fig. 6.7 Two-coil probe in a medium with one interface. (A) Both coils are located in the
same layer. (B) Coils are located in different layers.

and

L
Yoa=72— (12 —71)8—, z0>L/2
20
This formula is applicable when the interface is above the probe. In the
case when the interface is below the probe (29 < L/2), we have

L
ra=r1—(n _}’2)8_
20
When coils are located in different layers —L/2 < z; < L/2 (Fig. 6.7B),

the geometric factors are
L2 1 /(L 1 = 1 (L L2 1 =z
Gi=c-t—|s—%|=5—%57 Q=512 | tg7=51t57
8L 2L \2 2 2L 2L \2 SL 2 2L

For the function y,, we have

1 <0

7’,125(71 +7’2) + (72‘71)%

Apparent conductivity curves for different positions of the probe with
respect to the interface are shown in Fig. 6.8. One can notice that the value
of the apparent conductivity is equal to the mean value of both conductiv-
ities when the probe center is located at the interface.

Now we turn to apparent conductivity curves in the presence of a layer.
Because it is assumed that conductivity above and beneath the layer is the
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Fig. 6.8 Normalized apparent conductivity curves for different positions of a two-coil
probe with respect to the interface.

same, we can restrict ourselves to cases when z is positive. In deriving for-
mulae for apparent conductivity for various positions of the probe, we use
the equations of geometric factors of a layer of finite thickness.

Case 1
Probe is located outside the layer (Fig. 6.5A).
The expression for the apparent conductivity is

Ya=VyGo T 7,Gy

where y;, and G, are the conductivity and geometric factor of the layer,
and y,, G, are the conductivity and geometric factor of the surrounding
medium. Because

G=1-G,
we can rewrite the expression for the apparent conductivity as

Ye=0Gtr,(1-=G)=r.+Glr,—7,) (6.30)
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According to Eq. (6.25), the geometric factor of the layer is

LH
8[=5—(H/2)’]

Gb -

Substituting this expression into Eq. (6.30), we obtain

LH

Vo=v:+ (n—n)m

(6.31)
The latter applies until the upper coil does not intersect the low
boundary of the layer, i.e., if z0 > H/2+ L/2.

Case 2
One coil is located inside the layer (Fig 6.5B). In this case, according to
Eq. (6.26) the geometric factor of the layer is
1 z—H/2 L

Gy==~ -
"7 2L 8(z0 + H/2)

Substituting the expression for G, into Eq. (6.30), we obtain

+ - L
:7/}1 Vs + Vs yb(

Ya > oL ZO_H/2)+(7/;_}’1))W (6.32)

This formula applies when

L—H L+H
—— <% <
2 2

provided that H < L. In the case of (H > L), Eq. (6.32) is valid when

H-—L L+H
—— <% <
2 2

Case 3
The layer is located either between the probe coils (H < L), or the probe

is inside the layer (H > L) (Fig. 6.6A and B). For the first case (Eq. 6.27),
we have

Gy=—
"Tor

Correspondingly,

(6.33)
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This equation is applied if 0 <z, <(L—H)/2 and H < L. When
H > L, according to Eq. (6.28), we have

LH

R

Thus,

LH

—8 [2(2) — (H/Z)Z] (6.34)

Vo=t t (rs =7
if0<zg<(H-L)/2.

Note that, upon introducing new variables, one can represent these
equations in the form that does not contain the length of the probe.
Curves, showing dependence of y,/y,, on the ratio of the layer thickness
to probe length, are presented in Fig. 6.9, H/L > 1. Calculations have
been made using equation

Yo 14 (& _ ) L

Vb Vb 2H
With increase of conductivity of the surrounding medium and a
decrease of the layer thickness, the influence of the surrounding medium

Yal Yy

50 [~

20

1 2 5 10 HIL

Fig. 6.9 Apparent conductivity y./y, as a function of H/L (H/L > 1). Center of a probe
coincides with the middle of the layer. Curve’s index is yu/ys.
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becomes greater. If the conductivity of the layer y,, is significantly smaller
than y,, the apparent conductivity is strongly affected by the surrounding
medium and only for a large ratio (H/L) approaches the conductivity of
the layer. In such cases, the vertical characteristic of the two-coil induc-
tion probe is essentially worse than the one corresponding to the
response of the normal probe used in electrical logging with direct cur-
rent. If the layer conductivity is greater than that of the surrounding
medium, for most typical values of y,/7,, the influence of the surround-
ing medium becomes insignificant when H/L > 4. Apparent conductiv-
ity curves y,./7, for the case of the layer thinner than the probe length are
shown in Fig. 6.10. They are calculated as

H

Va_ Ve, (1 _ &) H

Yo Vb v,/ 2L
Ifthe layer’s resistivity is higher than that of the surrounding medium
and its thickness is less that 0.2L, the layer is practically invisible to

7/a/yb i i
164 : \i\
116
10 frmmmmmmmmemeee s R T——
112 : :
H o —
! I i i
1 | "]
2’_;/i/
4 : :
8 !
0.1 3

0.2

©
3

HIL

Fig. 6.10 Curves of ratio y./y, as a function of H/L, (H/L<1) when the center of a
probe coincides with the middle of the layer. The index is y,/ys.
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induction logging. This behavior is directly opposite to the DC electrical
logging, which is sensitive to the presence of the resistive layer. Thin
conductive layers may have essential influence on induction tool
responses; with an increase of the ratio y,/y, the apparent conductivity
7. tends to a constant value of S;/2L, where S; =y, H is the longitudinal
conductance of the layer and can become much greater than ¥,
(Fig. 6.10).

Let us consider a case when the probe is located opposite to a system

of very thin layers. Then, the expression for the apparent conductivity
(6.33) is

N " H H
=y |1-) — |+ —=y | 1—=)+y,— 6.35
Ya 75( % 2L> e Z L J@< 2L> o3[ (6.35)
where h; is the thickness of the i-layer, n is number of layers, and

n
H= Zhi. A set of thin layers located against the probe is equivalent

i=1
to one layer having the same longitudinal conductivity and thickness
equal to the sum of thicknesses of all thin layers. Eq. (6.35) can be gen-
eralized for the more general case of different conductivities and thick-
nesses of layers. It is noticeable that in all cases above Doll’s theory have
allowed us to study vertical characteristics of the probe using only ele-
mentary functions.

Finally, following Egs. (6.4) and (6.16), we derive an expression for

the quadrature component of magnetic field:

2 2
E= Kya = _%wﬂ(}S—]\iTsza = _QBinR
Here,
* a)ﬂ%MT
QB. = 4z L Va

Then, for the quadrature component of magnetic field b., normal-
ized by the primary field B! = u,Mr/2zL?, we have

QB:  wpuy L’
* L ___
Q=" =" 7.

z

(6.36)
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6.3 RADIAL CHARACTERISTICS OF TWO-COIL
INDUCTION PROBE

Following Doll, we begin to study the radial response of the two-coil
probe located at the borehole axis, assuming that the surrounding medium is
uniform. For the apparent conductivity y,, we have

Ye=r1GitrG

where 71, 72 and Gy, Gj are conductivity and geometric factors of the
borehole and formation, respectively.

6.3.1 Geometric Factor of the Borehole

By definition, the geometric factor of the borehole Gj is a sum of geometric
factors of elementary rings, located inside the borehole and, in accordance
with Eq. (6.8), we have

L L [P
Gi=—|gdS== | dz|—553dr
2 2 R{R;
S —00 0
or
G =L Td J rdr (6.37)
1== < .
2J) ) [r2+(L/2+z)2]3/2 [r2+(L/2—z)2]3/2

where a is the borehole radius. Unlike the geometric factor of the layer, the
radial characteristics of the probe G cannot be expressed through elemen-
tary functions. There were numerous attempts to simplify Eq. (6.37) and
make it more convenient for calculations. For instance, Doll performed
integration of geometric factors of elementary rings and obtained the follow-
ing expression:

1 2
G =1——— | E(k) + |E(k) —K(k 6.38
L ey CUATC R ) IS
Here E and K are elliptical integrals of the first and second kind,

a

=
(a2 +4)'/?
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and a = L/a is the ratio of the probe length to the borehole radius. At the
end of 1950s, Kudravchev (Russia) obtained another expression for the Gy:

G =1- 270[ JA(m) cos amdm (6.39)
0
where
Alm) =5 [2K (m)Ki (1) = mK () + mE<3 ()] (6.40)

and Ky(m), K (m) are modified Bessel functions of a second kind. The form
(Eq. 6.39) is convenient for the analysis because

a=— (6.41)
a
is a single parameter that defines the geometric factor of the borehole. Later,
Eq. (6.39) will be derived rigorously, but here it is used to study radial
responses of a two-coil probe. Also we need an expression for the geometric
factor of the formation, which is

20 i
Gy=— JA(m) cos amdm (6.42)
p3

0

First, consider the function A(m). For the sufficiently large m, we have
the following asymptotes:

Kim) ~ exp () (- )”2(1—%),

2m

When m — o0, the integrand in Eq. (6.39) rapidly decreases, and calcu-
lation of the integral in this range of m becomes a simple matter. When
m — 0, the corresponding asymptotes are

1
Ko(m)—>—< 1n 2 +c), Ki(m) — —
2 m

where Cis some constant. Substituting these expressions into Eq. (6.40), we
obtain
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A(m)—>l<()(m)—>—<lng+c>, as m—0 (6.43)

Thus, the integrand has a logarithmic singularity as m tends to zero. In
order to remove this singularity, we make use of the following equation:

1 2TK<> (am) d
W:— olm)coslam)am
(1+a?) ™)

Then, the function Gy can be presented in the form

[o8)

2a a
Gi(a)=1 - JA(m) cos (am)dm = l—m
0 (6.44)

+ 276( J[Ko(m) — A(m)] cos (am)dm

In accordance with Eq. (6.43), the integrand in Eq. (6.44) is free of sin-
gularities, and its calculation represents a relatively simple task.Next, we find
the asymptotic expression for the geometric factor of the borehole, starting
from the case when the probe length L is small compared with the size of the
borehole. In this case, parameter a tends to zero while the function G; tends
to unity as

Gi(a)~1—0.5862a, if a<1 (6.45)

Now we consider the case when probe length L is much greater than the
borehole radius a. Let us first analyze the integrand in Eq. (6.44), which is the
product of two functions:

®(m) =Ko(m) —A(m) and cos(am)

The first function gradually changes with m, while the second oscillates
with a period,
2r
m=—
a
and decreases with an increase of a. For this reason the integral in Eq. (6.44)
is defined by the function @ (i) and its derivatives when m approaches zero,
provided that o> 1. In fact, integrating by parts we receive
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T 1T | 1T

J@(m) cosamdm =— J(I)(m)dsinam =—®sin (am)|; —— Jq)/(m) sinamdm
a a a

0 0 0

e8]

"

1 1
=—®sinam| + S cosam|y — @ (m)cosamdm
a a

a2
0

(6.46)

For the large values of m, the function ®(m) and its derivatives tend to
zero; therefore, instead of Eq. (6.46), we have

i 0 R
J@(m) cosamdm = —y ®(0) el @'(0) o JCI) (m) cosamdm (6.47)
0 0

For small values of m (m — 0), we have

2 2
1
Ko(m) ~ — Inm—— Inm+——C and Ki(m)~—+ Zhm-=2
4 4 m 2 4
Substituting these expressions into @ (m) gives
1 1 1
(I)(m)%i-i-ZmZ In m, (I)'(m)%g In m, (I)”(m)mi Inm, if m—0

Thus,

[So] [so] [Se]
1 1 1 =
®(m) cosamdm — —— | In mcosamdm ~— | Ky(m) cos amdm — ——
202 202 202 2a
0 0 0

ifa>1.

Then, for the geometric factor (Eq. 6.44), we get

N ISy R S R S
Gia)m=1—(1+a7?) toa=mmr el (6.48)
Therefore, for large values of @, the geometric factor of the borehole is
inversely proportional to . (This peculiarity is used to design “focusing”
probes with minimal sensitivity to the borehole.) Comparison of
Eq. (6.48) versus exact solution shows that Eq. (6.48) describes with suffi-
cient accuracy the value of function Gi(@) if @ >4. In other words, the
asymptotic behavior is already observed when the probe length exceeds
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Gy(a)' ;
Exact values
I — Small parame
Large parameter
0.01 s
0.1 1 10 o

Fig. 6.11 Exact, small, and large parameter approximation of function G;(a).

twice the borehole diameter. Similarly, we can obtain the following terms

for the expansion of the function Gy(a) for the large values of a. For exam-

ple, the expansion with the second term gives

1 3 lna—4.25
+

Gi(a)~— if a>1 6.49
(@)~ + 0 (649

The geometric factor Gy(a) for the small and large values of parameter o
in comparison with an exact solution, obtained through numerical calcula-
tions, is shown in Fig. 6.11. As we can see, the asymptotes describe with

sufficient accuracy the value of function Gy(a) if @ >4 or a < 0.6.

6.3.2 Radial Characteristics of Two-Coil Probe

The function Gy(a) allows us to study the radial responses of induction pro-
bes in a medium with cylindrical interfaces. Again, we use the concept of the
apparent conductivity 7,

B. =
Lo QB N & (6.50)

i QBo(ri) o QBu(r)
where y; is the borehole conductivity, QB. and QE are the quadrature
components of magnetic field and electromotive force, respectively, while
QB.o(y1) and QE((y;) are quadrature components of the field and
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electromotive force of the two-coil probe in medium with conductivity y;.
According to Eq. (6.36), we have

UowL? UowL?
Qbao(r)) =="—r1 and Qb-=="—, (6.51)

As follows from Eq. (6.50), the ratio y,/y; shows how the field or the
measured electromotive force differs from the same quantity in a uniform
medium with conductivity y1. This method of introduction of the apparent
conductivity is natural only within Doll’s theory, where the skin effect is
negligible. By definition, for the apparent conductivity, we have

N
o= _1.Gu (6.52)

n=1

For a cylindrically layered medium with borehole and formation, we
obtain

1.=11Gi+t1G=r+Gi(r; —7,) (6.53)
while in the presence of an invasion zone, we have
Va=11G1 112G tr3Gs (6.54)

A very short probe is mainly sensitive to the currents in the vicinity of the
probe; that s,

Ya—v1 it a—0 (6.55)

On the other hand, as the probe length increases, the geometric factor of
every cylindrical layer of finite thickness decreases, while the geometric fac-
tor of the formation approaches unity. Therefore, the depth of investigation
in the radial direction increases; that is, for any given conductivity distribu-
tion y(r) there is such length L, when the probe is mainly sensitive to the
conductivity of the formation yx:

Yo—rNn if a— 00 (6.56)

This is illustrated in Fig. 6.12 where apparent conductivities y,/y, are
presented for the different ratios of y»/y4. It is seen that the influence of
the borehole becomes greater as its conductivity or radius increases. Of
course, as the probe length increases (@ — o0), the quadrature component
of magnetic field B. approaches that in a uniform medium having
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Fig. 6.12 The apparent conductivity curves y,/y; in the absence of an invasion zone.
Curve index is y,/y;.

conductivity yn. For illustration, let us consider one numerical example,
assuming L=1m, a=0.1 m, and p,,p, =30.

Then, as follows from Eq. (6.54), G; = 0.01, and, for the apparent con-
ductivity, we have

Ya_q4 <”—1— )Glz1.29
14 14

showing a significant (29%) contribution from the borehole. In reality,
it is even stronger, because the geometrical factor theory does not take
into account the skin effect that reduces contribution of formation into
the measurements. Also, in the presence of an invasion zone, distortion
of the apparent conductivity of a two-coil probe becomes even stronger,
especially in the case of the conductive invasion when p; <p; <pjs.
Although the induction logging was first introduced for the measure-
ments in boreholes filled with water-based muds, these measurements are
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Fig. 6.13 The apparent resistivity curves for the normal probe in the absence of the
invasion zone; d; is the borehole diameter. Curves index is p,/p,.

more suitable in boreholes with a nonconducting mud. Also, a comparison
of radial responses of the two-coil induction probe versus responses of the
standard DC two-electrode probe (Fig. 6.13) showed no advantages of
induction measurements in the case of conductive borehole fluid. Naturally,
the first field experiments had shown that the conductive borehole makes a
strong influence on the induction measurements. To overcome the short-
comings of the two-coil induction probe, Doll suggested multicoil differen-
tial probes (1949). He also developed an approach for determining
parameters of the corresponding tools, which have much better radial and
sometimes vertical characteristics. This made the induction measurements
one of the most successful in the logging industry and are now widely used
all over the world.
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We have to point out that quantitative interpretation, based on the
geometrical factor concept, requires relatively low frequencies. But at such
frequencies, the secondary field, containing the information about a
medium conductivity, is always much smaller than the primary field, and
this situation creates a serious measurement problem for detecting a small
signal in the presence of a larger one. Although the primary and secondary
signals are shifted in phase with respect to one another, even a small error in
the detecting electronics may greatly decrease the accuracy of the measure-
ments. To improve measurements, engineers undertook several steps. The
first was compensation of the electromotive force of the primary field at the
receiver coil. For this purpose, an additional coil is placed into the receiver
line of the probe, as is shown in Fig. 6.14. This compensating coil has a
smaller number of turns than the main receiver coil and is located relatively
closer to the transmitter. Moments of receiver coils are chosen in such a way
that the primary electromotive force at the compensating coil has the same
amplitude but an opposite sign to the primary electromotive force in the
main receiver. Thus, in place of a two-coil probe, we obtain the three-coil
probe, consisting of two two-coil probes. The first probe has length L,
which characterizes the distance between transmitter and the main receiver
coil, while the second probe, formed by the transmitter coil and the com-
pensating receiver coil, has a smaller length L;. The output of the three-coil

L, 0
g

T

Fig. 6.14 Three-coil induction probe; d is the distance between centers of the short and
long two-coil probes.
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probe is the combination of the outputs of the two receiver coils. Because
the number of turns in the compensating coil is considerably smaller than
that of the receiver coil, the secondary signal from formation induced in this
coil has only a minor effect on the total secondary signal. (The same
approach of compensation of the primary field is used in multicoil probes).
However, this method alone does not provide sufficient accuracy of mea-
surements in the real borehole conditions, when changes in pressure and
temperature cause fluctuation of the primary and thus affect the responses
in the coils. Because electromotive forces caused by the primary and the sec-
ondary field are shifted in phase by 90 degree, the original three-coil probes
designed by Doll measured only the quadrature component of the field (or
in-phase component of EMF). This procedure greatly reduces an influence
of the primary electromotive force instability. The next improvement was
the usage of a negative feedback scheme, which permits stabilization of the
measurements by reinjecting the electronic drift back into the system. Of
course, with time, due to great progress in quality of materials and electron-
ics, it became possible to measure even small in-phase components of the
secondary magnetic field (or quadrature of EMF).

6.4 MULTICOIL OR “FOCUSING” INDUCTION PROBE

Analysis of the field in a media with horizontal and cylindrical inter-
faces shows that a two-coil induction probe has noticeable advantages over
direct-current probes only in boreholes filled with nonconductive fluids. In
the case of conductive fluids, the influence of induced currents in the bore-
hole can be so strong that only very long probes can permit determination of
the formation resistivity. The last circumstance motivated developers to look
at the alternative approach, which permits deep depth of investigation with
relatively short probes. The approach is based on the focusing of electromag-
netic field into the deep part of the formation.

Proceeding from geometrical factor theory, let us analyze multicoil pro-
bes provided that currents in any part of a medium create a signal defined by
the conductivity of the region in question and its geometric factor. The con-
tribution of various parts of a medium in forming a signal, essentially depends
on the probe length: with an increase of the probe length, the influence of
remote parts of a medium increases; consequently, the relative contribution
of induced currents near the probe becomes smaller. By applying probes of
various lengths with a different number of turns and connected in series
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either in the same or opposite directions, one can significantly reduce the
signal caused by currents in any element of the medium.

However, improvement of radial characteristics of the probe, practically,
always leads to deterioration of its vertical characteristics and vice versa.
Indeed, reduction of the near borehole regions and penetration of the field
into the deep part of formation requires a long probe with reduced vertical
characteristics. Moreover, increase in the length leads to reduction of the
measured signal level. Thus, the opposite requirements have to be satisfied
simultaneously to improve the radial and vertical characteristics of a
multicoil probe. As will be shown later, under certain conditions it can
be done, although, in general, an improvement of the radial characteristic
of a probe results in deterioration of the vertical one and vice versa.
A multicoil probe can be treated as a sum of two-coil probes. Early in
the development of probes with improved radial response, they were called
“focusing” probes by an analogy with the focusing of optical and seismic
waves. Wave-field focusing uses the phenomenon of constructive and
destructive interference to enhance a response: for example, by using a lens
to force a set of parallel light rays converge at some point. The physics of a
multicoil “focusing” probes is based on a completely different principle: the
addition and subtraction of geometrical factors.

6.4.1 Conditions for the Application of “Focusing” Probes

Geometrical factor theory assumes that the interaction between currents is
absent, i.e., that all currents induced in a conducting medium are shifted in
phase by 90 degrees, regardless of distance from the source. For this reason,
signals induced in different measuring coils are in phase with each other. Ina
more general case, when skin effect manifests itself, the induced currents
have both in-phase and quadrature components, and the magnitude of
the quadrature component depends on distribution of conductivity in a
medium. Correspondingly, geometric factors become different from the
ones determined by the geometric factor theory. Deviation from Doll’s
region leads to a serious deterioration of the “focusing” features developed
under the assumption that the interaction between currents in those parts of
a medium (borehole, invasion zone), the influence of which should be sig-
nificantly reduced is absent.

However, the absence of such an interaction is not sufficient for appli-
cation of focusing probes. Indeed, we may present a probe signal as a sum of
the signal, caused by the currents, which are not affected by skin effect and a
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signal generated by currents in the external area, for example, in the forma-
tion. Because the skin effect increases with the distance from the primary
source increases, the distribution of currents in the external area depends
on the currents in the near probe area. For this reason, this first eliminated
area may still indirectly affect distribution of currents in the formation. In
this case, the signal from the formation is not only a function of its conduc-
tivity but also a function of the conductivity and geometry of the borehole
and invasion zone. Therefore, the second condition for application of
“focusing” probes is the absence of an influence of currents in the internal
area on the current distribution in the formation. The skin effect in the for-
mation has to manifest itself in the same manner, as if the borehole and inva-
sion were absent.

It turns out that two conditions listed above are often met far beyond the
range of small induction numbers, and, correspondingly, the “focusing” may
perform even at higher frequencies than those dictated by Doll’s original
theory. In the following chapter, we discuss the approximate theory of
the induction logging, accounting for the skin effect and satisfying the above
two conditions. A comparison between this theory and exact solution will
allow us to establish the maximal frequency when the multicoil probes are
still able to reduce the influence of the borehole and invasion zone.

6.4.2 Three- and Multicoil Probes

Focusing probes consist of several two-coil probes. The main probe has
maximal product of the transmitter and receiver coil moments. Also, there
are some additional probes, which are located either inside or outside the
main probe. In the most successtul focusing probes, both types of additional
two-coil probes are present. In all multicoil probes, transmitting coils as well
as receiving ones, are connected in series. Because all transmitting coils have
the same current, and the area of coils is the same for all transmitters and
receivers, it is convenient to characterize the moments of all coils by the
number of turns. The coil, wounded in the opposite direction to the main
probe, is characterized by the negative number of turns.

Let us consider the geometric factor of a cylinder for such multicoil probe.
For each two-coil probe the function Gy(r, L) characterizes a signal caused
by induced currents in a uniform cylinder with radius r. By selecting partic-
ular lengths of the two-coil probes and changing their number of turns, it is
possible to achieve three goals. First is to reduce the borehole and invasion
zone effect and obtain the geometric factor with minimal contribution into
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the signal from the cylinder with relatively large radius. Second is to max-
imize the signal caused by the currents outside of this cylinder. Besides, these
“focusing” probes should have sufficient vertical resolution to guarantee an
accurate interpretation in relatively thin layers.

The multicoil probes can be divided into symmetrical and non-
symmetrical ones, considering the location of additional coils with respect
to the center of the main probe. In a symmetrical arrangement, the identical
two-coil probes are located symmetrically with respect to the center of the
main probe. Symmetrical probes, unlike nonsymmetrical ones, have a sym-
metrical response with respect to the center of a bed provided that the resis-
tivity of a medium above and below the bed is the same. Symmetrical
vertical response is also observed in a modified symmetrical multicoil probe
where the number of turns in all transmitters or receivers is changed by the
same coefficient. An example of such symmetrical probe will be shown con-
sidering the dual induction tool. Depending on location of additional coils,
multicoil probes can also be classified as probes with internal, external, and
mixed “focusing.” In probes with internal “focusing,” the additional coils

’

are located between the main ones; with external “focusing,” they are
located outside the main probe, and probes with mixed “focusing” addi-
tional coils are placed inside and outside the main probe. An example of
the simplest nonsymmetrical three-coil probe is depicted in Fig. 6.14.
Examples of symmetrical probes with internal, external, and mixed
“focusing” are shown in Fig. 6.15.

In 1952 Schlumberger introduced the first focusing induction probe
5FF27, which had two external “focusing” coils and one internal coil.

The length of the main two-coil probe was around 0.7 m (27 in.), and it

R R, R,
T; T T
R;
R; R Ti
R
T Te T,
(A) (B) (C)

Fig. 6.15 Multicoil symmetrical “focusing” probes with (A) internal, (B) external, and
(C) mixed “focusing.”
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provided limited depth of investigation, especially in a presence of invasion.
In 1956 they introduced 5FF40 with a slightly deeper depth of investigation,
but it was still insufficient in wells drilled with salty muds. Then, the Lane
Well Company (Disterhoft, Hartlineand Thomsen) introduced a multicoil
induction tool with a deeper depth of investigation. In 1959 Schlumberger,
in turn, developed the 6FF40 probe [2], which became an industry standard
and through various modifications was successfully used by well logging com-
panies for more than 30 years all over the world. About the same time, Doll,
recognizing that a multicoil probe is a superposition of two-coil probes,
suggested to measure individual signals of each two-coil probe and, then,
numerically form different combinations obtaining information about cylin-
drical layers, located at different distances from the borehole.

In the late 1950s, Russian geophysicists, following achievements by US
logging companies, started developing the theory and equipment for induc-
tion logging. The first nonsymmetrical induction probe was developed in
1959 by Akselrod (Baku). Slightly later, Russian well logging operators
began to use the symmetrical induction probe 6 F1, designed by Plusnin
(Moscow). This probe had similar parameters to the 6FF40. At the same
time, further development of induction logging theory took place in Novo-
sibirsk [3], where it was accompanied by the design of the first high-
frequency induction probe (VIK).

To illustrate the concept of “focusing” probes, we consider only two
examples. Proceeding from the known expression for the electromotive
force in a two-coil probe, caused by the quadrature component of the
magnetic field,

—a)z,uéMTM R
4rL Va

—
—_ —
—_—

we find expressions for the measured signal in the multicoil probes. Let us
start from the simplest three-coil probe.

Example One
Three-coil probes (Fig. 6.14).

This focusing probe [3] consists of one transmitting coil and two receiv-
ing coils, which have opposite direction of turns. Then, the measured
electromotive force is
_wzﬂ%MT }/a(L) ya(L1)

Mp ——M 6.57
- i3 R L R1 (6.57)

—
—_ —
—_—
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Here, L; and MR, are the length and the receiver moment of the short
two-coil probe, Ly < L. Bearing in mind that the primary electromotive
force for the main two-coil probe is

- —op MpMp
(L) =——F—7F—
olL) 27l
instead of Eq. (6.57), we have
= —1 2= 2=
E=Zwpy [L2[E0(L)]r,(L) = LY 1Eo(L1)lr.(L1)] (6.58)

Suppose that the number of turns in receiving coils is chosen to compen-
sate the primary field:

1Z0(L)| = [Eo(L1)| (6.59)
Then, Eq. (6.58) is simplified to

[1]

1
= EE()(L)wﬂO [Lz}’a(L) - L%ya(Ll )} (6.60)

When the invasion zone is absent, we have

[1]

1_
5 Eo(L)@uq (N [LGi(L) = LI Gy (L)) + 75 [L* Go(L) = Li Go (L)) )

(6.61)

Here Gy and G, are geometric factors of the borehole and formation, and

their sum is equal to unity. Suppose that Ly > a1, where a; is the borehole

radius, then, as follows from Eq. (6.49),
1 3Ina—4.25
GRS+ — (6.62)
a a

where @ = L/ay. Substitution of the leading term of the latter into Eq. (6.61)
gives an approximation for =:

[1]

~
~

Eo(L)wuy (L* = LTy, (6.63)

NS

which does not depend on parameters of the borehole. As soon as the radius
of the invasion zone is much smaller than the probe length L, an influence
of this zone is also negligible. Let us present Eq. (6.60) as

L2

EZEEO(L)(l —pz)wﬂo(}’1 G +72G;) (6.64)
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Here, p=1,;/L <1 and

Gi(L) —p*Gy(Ly)
1 —p2

)
: G§=62(L)1 _pp? 0 (6.65)

Gy =

are geometric factors of the three-coil probe for the borehole and formation,
respectively. Assuming that @>> 1, we have for the function Gj:

N 1 31np
Gir——(217- 5—3 Ina (6.66)
pa I=p

In Fig. 6.16, we show the borehole geometrical factor for a three-coil
probe. It illustrates reduced sensitivity of the probe to the region close to
the borehole axis. At the initial part of the radial response, G} has negative
values, which are much smaller than those of the geometric factors for the
two-coil probes Gy(L;) and Gq(L). Near the radius, where

L 31
3lna=3In—~217- 222
aq 1—p2
Gi [
8
6_
4_
2_
O-|||||||||| T N I T T T S O T T
1 15 2 25 3 3.5 o

Fig.6.16 Borehole geometric factor of the three-coil probe as a function of parameter a.
Parameters of the probe are L=1.4 m,p=0.7.
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10 Ll/ay

Fig. 6.17 Normalized apparent conductivity curves for two-coil (dashed) and three-coil
(solid) probes in a medium with an invasion zone, L, /L=0.7; a,/a; =6; y,/y, =0.3.

the geometric factor G7 is equal to zero and then rises monotonically,
approaching unity. A combination of two factors—compensation of the pri-
mary field and behavior of the function G;(a) as 1/a” provides a significant
reduction of the borehole and invasion zone on the signal, if probe length L
is several times greater than radius of the invasion as.

Of course, as the probe length increases, the eftect of “focusing” man-
ifests itself stronger. For illustration, Fig. 6.17 shows behavior of apparent
conductivity curves for a medium with an invasion zone. When parameter
p increases the focusing properties of the probe improve for the expense of
the signal level. Let us consider the vertical response of the three-coil probe
starting from the geometric factor of an elementary layer. Sometimes it is
called the “vertical response function of a probe.” From Eq. (6.65) we have

G.(L,2)—p*G.(Li,z+d)

Gl = 6.67
, - (6:67)

=

where, according to Eq. (6.21), G.(L,2) is

G.(L,z)=
2
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and

(1-p)

d=-L/2+Li/2=-L—

(6.68)

is the distance between centers of the short and long two-coil probes
(Fig. 6.14). This equation for the depth-offset d is valid for a three-coil probe
with one transmitter located at the bottom of the probe (see Fig. 6.14).
Obviously, if the probe is turned upside down, the offset d changes the
sign. Geometric factors of the elementary layer for three-coil and
corresponding two-coil probes (p=0.5) are shown in Fig. 6.18. Geometric
factors of an elementary layer for different three-coil probes are shown in
Fig. 6.19. Corresponding offsets are=d/L=0.7, —0.375, and —0.125.

-3 -==-12=05
3-coil

-4 [ [

_5 .

0 010203040506 070809 1¢G,L

Fig. 6.18 Geometric factor of an elementary layer for a three-coil probe. The solid line
shows the geometrical factor of a three-coil probe with p=0.5. Dotted and dashed cur-
ves show the geometrical factors of the corresponding two-coil probes.
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Fig. 6.19 Geometric factors of the elementary layer for three-coil probes with p=0.25,
0.5, and 0.75.

As we see, the vertical characteristics of three-coil probes can be quite com-
plicated if the layer thickness is smaller than the length of the main probe.

Suppose that the center of the three-coil probe is located against the layer
and its middle coincides with the center of the main two-coil probe
(Fig. 6.20A). As in the case of the two-coil probe, we consider a function
v./¥s =f(H/L) for different ratios of y,/y, (Fig. 6.20B). Here, Lis the thick-
ness of the layer with conductivity y,, L is the length of the main two-coil
probe, and y, is the conductivity of the surrounding medium (“shoulders”).

Examples of profiling curves are given in Fig. 6.21. The three-coil probe
has almost the same vertical response as the two-coil probe, but displays
some asymmetry with respect to the center of the layer and is slightly more
influenced by surrounding medium. The latter is also true for any multicoil
probe with internal “focusing” and probes with the external focusing, when
the thickness of the layer is greater than the probe length. Indeed, we may to
recall that the geometric factor of the two-coil probe placed in the middle
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Fig. 6.20 (A) Model of a medium. (B) Function y,/y, =f(H/L),p = 0.6. Curve index is yu/ys.
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Fig. 6.21 Curves of profiling for three and two-coil probes, y,/y,=f(z/L),H/L=2
and 4; y,/7,=1/32,p=0.6.
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of the layer, and having the same thickness as the probe length, is equal 0.5.
Suppose that the length of the main two-coil probe is equal to the thickness
of more resistive layer, and that external focusing probes are located in the
surrounding medium. In this case, the vertical response of the probe is
improved due to a relatively large reduction of the signal from the surround-
ing medium compared with the marginal reduction from the layer.

Focusing probes are more affected by the skin effect compared with the
two-coil probes of the same length due to increased sensitivity to the deep
part of the formation, where interaction between induced currents are the
most pronounced.

Also, the vertical response of the three-coil probe is slightly worse than
that of the two-coil probe.

Example Two
Multicoil probe 6FF40

The probe was introduced in 1960 and became the industry standard for
30 years. The 6FF40 array has six coils with the main transmitter-receiver
pair spaced 40 in. (102 cm) apart. The main design parameters of the array
are the spacing between the coils, the number of turns, and the polarity of
each coil. The three transmitting and receiving coils are each connected in
series to produce one signal output. The 6FF40 was designed to read deep
into the formation while minimizing the signal close to the tool and
maintaining reasonable vertical resolution.

This symmetrical focusing probe 6FF40 is shown in Fig. 6.22. One of the
objectives of the focusing probe is to compensate primary electromotive
force (EMF). In the dipole approximation with parameters presented in

Position, Number
inches of turns
50 ®R, -4
20 I T 60
10 T; -15

0 —+
-10 I R; -15
-20 R 60
=50 ®T, -4

Fig. 6.22 Configuration of the symmetrical focusing probe 6FF40.
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Fig. 6.22 (distances between coils and their moments), the uncompensated part
of the primary field is more than 3% of the primary field of the main two-coil
probe. Obviously, such level of compensation is insufficient for measurements
of the secondary field. In reality these calculations may not be relevant because
of the contribution of other factors such as the finite sizes of the coils, inaccuracy
in coil positions, or uneven winding of the wire in the coils. For this reason, posi-
tions of the two external focusing coils are adjusted to account for all distorting
effects to provide required compensation. At the same time, these small adjust-
ments do not have a visible effect on the focusing properties of the probe.

The symmetrical probe 6FF40 could be defined by six parameters, which
characterize the distance between coils and moments of coils. Values of
these parameters were chosen graphically using the radial characteristic of
two-coil probes, and they are given below in Table 6.1. As shown in
Fig. 6.22, this system can be presented as a sum of nine two-coil probes with
the lengths (L;), products of number of turns in the transmitter and the receiver
(M), and offsets of its centers from the center of the main probe (d,), given below:

1 L1:L,M1:n2 d1 =0;
2. Lr=pL, szcn dgf
3. Ly=p.lL, Mz_Cﬂ dr =
4

Li+ L 1+ Ly L Li—L 1—p;
= 12 2 _ 2P1L M= —cn d4—71—74_ 14 2 _ 4P;L;
IL»+L 1+ L L I,—L 1—p;
5. Ls— 22 1 2P1L Ms = —cn. ds = 22 25: 24 1_ 4P1L;
13— L ,— 1 L L L4+ L 1+
6. LGZ%ZPLZ , Mg = —con”, d6:71+?6: 14 3:TPEL,
13— L -1 L L —I3—L 1+9p,
7. L;= 32 1=p62 R = —(oh d7——?3+77: 34 1:— 4pLL;
I3 — L L L I, + L P+
8. Ig= 32 2 _PePi 2p'L Mg = cien®, dg = 22+?8: 24 3:pt4pEL;
I3— L L —I[3—L i+,
9. =12 2_Pe—pi p:L Mo = ciean dg———3+2= 3—Lo _ pitpe,
2 2 2 2 4 4

The total electromotive force is equal to

E=I[E(L)| + |E(L2)| + [E(Ls )| = [E(Ly)| = [E(Ls)| — [E(Le)]
—[E(L7)| + [E(Ls)| + [E(Ls)]

Table 6.1 Parameters of the 6FF40 Focusing Probe
L (inches) p; Pe n G Ce

40 05 25 60 025 0.066667
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Inasmuch as ¢ < 1,¢, < 1, terms 1, 4, 5, 6, and 7 give the main contribu-
tion into the measured signal. As shown above, the secondary signal in the
main two-coil probe is

— 0’}
477L1

—
—_ —
——

MrMgy, (L)

where M = IySn and Mg = Sn. Therefore, from Eq. (6.69), we have

2,2 2 2

- O fr c 2¢; 2¢;
== MM L)+ Lty (L) + Ly (Ly) ———v (Ly) ———vy, (L
L, MrMe va(L1) pi}/a( 2) pe?’a( 3) 1+pi}/a( 4) 1+pi7/a( 5)
2¢, 2¢, 2¢ic, 2¢ic,
- Ya(LG) - Ya<L7) + Ya(LS) + Ya(L9)
pe—1 pe—1 Pe = Pi Pe—Pi
(6.70)

If formation resistivity does not change in a vertical direction, the sym-
metrical probes 4 and 5 measure the same signals. The same is true for the
pair of coils 6 and 7, 8 and 9. Then, Eq. (6.70) is transferred into

212 2 32
2= " HOM M |y, (Li) + Ly, (L) + 7, (Ls)
4rly pi Pe
6.71)
4¢; 4¢, 4cice
— g Ya(la) Vo(Le) + Va(Ls)
pi pe—1 e — Pi

In particular, if a medium is an infinite cylinder with a radius r and con-
ductivity y; for the signal &, we have

I i ¢ A
== MTMRj/l G1 (L1) + —G] (Lz) + —G] (L3)
4rLy pi Pe 6.72)
4¢; 4, 4¢ic,
=G~ Gy (L) + Gi(Ls)|.
1+pi pe—1 Pe—pi

Here, Gy is the geometric factor of the borehole for a two-coil probe.
With increase of r the function G; tends to unity. It is natural to introduce
the geometric factor of the borehole for a multicoil probe as

Gi=[1+++=— - Gi(Li) + - Gi(Ls)
pi pe 1+pi pe—1 pe—pi i

2
c 4¢; 4¢,
+—€G1(L3) — G1(L4)— Gl(L()) +
Pe 1+ p; pe—1 Pe—Pi

-1
c 2 4¢; 4¢, + 4c,-ce] [ 2

4C,'Cg

Gl(Lg):|
(6.73)
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In such case, the geometric factor G} changes from zero to unity; there-
fore, the sum of geometric factors of a borehole, invasion zone, and the for-
mation is equal to unity. Correspondingly, the apparent conductivity in a
medium with cylindrical boundaries is

Ye=11Gl 712G +75G; (6.74)
and
G, =Gi(n)—Gi(n), G=1-G/+G;

Finally, for the signal &, we have

:‘:_w2'u(2)MTMR<1+i+£— o _ % + ot >Y (6.75)
4Ly pi pe 1+p po—1 pe—pi)"°

The geometric factor G for the probe 6FF40 is shown in Fig. 6.23.

To illustrate the radial responses of 6FF40 and two-coil probe, the curves
of the apparent conductivity are shown in Fig. 6.24.

Next, we describe the vertical responses of the 6FF40 probe and first
consider the geometric factor of an elementary layer for this probe. By anal-
ogy with the geometric factor of the elementary layer for a three-coil probe
and making use of Egs. (6.70) and (6.73), we obtain

0.6

0.4

0.2

%4 2 3 4 5 6 7 8 9am

Fig. 6.23 Borehole geometrical factor for the symmetrical focusing 6FF40 probe. The
function Gj is plotted as a function of the borehole radius for the parameters in
Table 6.1.
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1 10 Liay

Fig. 6.24 Normalized apparent conductivity curves for two-coil (dashed) and 6FF40
(solid) probes with invasion zone. The ratio a,/a; =6, y,/y; =0.3.

) —1
G;:|:1+i+é_ 4¢; B 4c, + 4eice
pi pe ltpi pe—1  pe—pi
2 2
C; I 2¢ 2¢
[cz(Ll,d1)+icz(Lz,dz)+ch(Ls,ds)——le(L4,d4)— — G.(Ls, ds5)
pi Pe 1+ pi 1+pi
2 2 26 26
— 2 Gu(Ley do) ———— Ga(Lg, d7) + — G (Lg, dg) + —— G (L, do)
pe_l Pe_l Pe —Pi Pe — Di
(6.76)
Here
L
G.(L, 2)

To(L/2+ 2 +|L/2— =)

and offsets d; are derived in the beginning of this subsection.

The geometric factors of the elementary layer for the 6FF40 and two-coil
probe with L=40 in. are shown in Fig. 6.25. A geometric factor of the
6FF40 probe has some “horn” effect caused by the positioning of the focus-
ing coils with respect to the elementary layer boundaries (Fig. 6.25).

Profiling curves of y,/y, as function of logging depth for the 6FF40
probe, assuming no influence of the borehole and invasion are presented
in Fig. 6.26. Two cases are shown: H=6.67 ft and H=13.33 ft, which,
respectively, correspond to H/L;=2 and H/L;=4. For comparison, the
dashed and dotted lines show responses for a two-coil probe with L=40 in.
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Fig. 6.25 Geometric factor of the elementary layer for 6FF40 and two-coil probe
(L=40in.).

Depth (ft)
Yol ¥s=1/32
10
5
0 :
-5
=== 2-coil HIL=2
-10 — 6FF40 HIL=2
eesess 2-coil HIL=4
6FF40 H/L=4
-15
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Fig. 6.26 Profiling curves for 6FF40 and two-coil probes, y,/y,=f(z),H/L; =2 and 4;
vo/vs=1/32.
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Position, Number Position, Number
inches of turns inches of turns
50 Rps -4 30 T, 2
30 T, -2 20 T, 105
20 7, 105 10 T, —26
10 o7, -26 0
0
10 LRy 15 14 MR, 7P
—20 Rp1 60 5 MRy, 4
-50 Ts -7

50 &7, -7
(A) (B)

Fig. 6.27 Dual induction probe. (A) Deep induction. (B) Medium induction.

One can see that 6FF40’s vertical response has a flat part over the bed with
H/L,=4.

In 1962 Schlumberger developed a dual induction probe (DIL tool),
which contains 6FF40 and a smaller probe to better resolve parameters of
the invasion zone. The dual induction tool (tools DIT-D and DIT-E) is
shown in Fig. 6.27.

Evolution of Multicoil Focusing Probes
The dual induction system with two focusing probes was the first step
towards the development of more general multicoil induction arrays. The
6FF40 and the dual induction probes had along and continuing success, pro-
viding both deep depths of investigation and good vertical resolution. How-
ever, with time these tools were unable to satisfy all the needs of the industry,
which required greater depth of investigation in the presence of large inva-
sion. Moreover, the industry also desired tools capable of resolving thin beds
with the thickness down to 0.3—-0.6 m. To meet the needs of the industry,
Schlumberger (AIT) and Western Atlas (HDIL) developed array induction
tools, which were comprised of plurality of the tree-coil probes.

Both AIT and HDIL generate resistivity logs from measurements made
at several different depths of investigation ranging from several to tens of
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inches. The differences between the curves enable characterization of the
invaded zone and determination of the deep formation resistivity.

6.5 CORRECTIONS OF THE APPARENT CONDUCTIVITY

Focusing probes are designed to remove influence of the borehole
and invasion zone and measure formation conductivity. However, some
influence of these parts of a medium remains; correspondingly, the apparent
conductivity differs from the conductivity of a formation. In most cases,
there is an influence of medium (so-called shoulders), located above and
beneath a bed, especially if their conductivity is greater than that of a
bed. Also a displacement of a probe from the borehole axis causes a change
of an apparent conductivity. In addition, function ¥, is equal to conductiv-
ity of a uniform medium only in the absence of skin eftect, which in reality
is always present. Below, we describe some approximate methods (correc-
tions), which allow one to take into account the influence of these unde-
sirable factors.

6.5.1 Skin Effect Corrections

As previously discussed, the skin effect increases with the probe length, for-
mation conductivity, and frequency. Because measured signal E is propor-
tional to the frequency, we face two opposing tendencies: on one hand, it is
useful to increase the frequency to generate a larger signal and improve ver-
tical response; on the other hand, it is attractive to use a lower frequency to
minimize the skin effect and benefit from the simplicity of the low-
frequency approximation. To meet these opposing requirements the
multicoil induction probes are equipped with the option of selecting a fre-
quency, for example, 10, 20, and 40 kHz. Moran suggested a method to cor-
rect for the skin eftect, assuming that the measured signal is caused only by
currents in a formation. To make a correction, he used an apparent conduc-
tivity curve in a uniform medium (Fig. 6.28.) A horizontal axis depicts the
corrected value of conductivity, while the y-axis is the apparent conductiv-
ity. By drawing a horizontal line, corresponding to a measured value of y,,
one may find the point of intersection with the curve y, =f(y) and perpen-
dicular from this point to the x axis gives a corrected conductivity. As one
can see in Fig. 6.28, the skin effect is practically negligible for formations
with conductivity lower than 0.1 S/m. But at conductivity of 1.0 S/m, it
becomes quite visible and, for the two-coil probe, leads to more than
20%, 35%, and 56% error at 10, 20, and 40 kHz, correspondingly.
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Fig.6.28 Apparent conductivity for a two-coil probe as a function of the conductivity of
a uniform formation, L =40 in.

A similar curve for the 6FF40 probe is shown in Fig. 6.29, and, as pointed
out earlier, the skin effect here is larger than for the corresponding main
40-1in. two-coil probe. The increased skin effect is caused by deeper pene-
tration of the field into the formation. In a medium with high conductivity,
this correction method may give two values of corrected conductivity. For
example, if the apparent conductivity for the probe 6FF40 at a frequency of
20 kHzis equal to 1 S/m, it may correspond either to formation resistivity of
0.7 ohm-m or 0.125 ohm-m. In order to avoid such ambiguity, it is neces-
sary either to use a lower frequency or combination of several frequencies.

In the case of 6FF40, instead of the graphical approach, the approximate
equation

log 7/2""““" = log(ay,) + aby, (6.77)

can be used. Here, coefficients a=1.0899 and b =0.000135 are chosen to
provide an exact conductivity reading of 6FF40 in 500 mS/m formation.
The apparent conductivities in this equation are expressed in mS/m. The
correction technique described above is applied only if an influence of
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Fig. 6.29 Apparent conductivity for the 6FF40 probe as a function of the conductivity of
a uniform formation.

“shoulders” is negligible. This limitation motivated development of alterna-
tive correction techniques. They are valid in a uniform and nonuniform
medium, provided that the low frequency signal can be described by only
two terms of the series for the both quadrature and in-phase components.
The corrections rely on the fact that the second terms for both components
are equal to each other. For instance, as follows from Egs. (5.14) and (5.15)
for a two-coil probe in a uniform medium, we have

M L2 L2 3/2
QB' %/;o L3T }’/l; w— (VHE) )132 2 + (6.78)
= V3 3(2
M 12)%/?
I”BZ%Z()”UT . (75(02 )132 02 (6.79)

The first term of the quadrature component (Eq. 6.78) corresponds to
the secondary signal in geometrical factor theory, while the first term of
the in-phase component (Eq. 6.79) represents the primary field, which is
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compensated in all multicoil probes. Because second terms are the same and
a multicoil probe measures both quadrature and in-phase components, a skin
effect correction can be made by subtracting the in-phase component from
the quadrature component. This technique was first used in the dual induc-
tion tool, which does measure both components.

Next, consider one more approach allowing for reduction of the skin
effect. Let us modify (6.78) and keep only the first two terms:

1/2
. 4nL (7#()L2)/ 1/2
QBz 2 N}/_ 71/2 7/(1)
wpyMr 3(2)

(6.80)

As follows from Eq. (6.36), the left-hand side of this equation is the mea-
sured apparent conductivity. By rewriting this equation for two frequencies,
we receive

L2 1/2
n(ﬂ)w—%r@ﬂﬁ)m (6.81)
L2 1/2
7a(2) w—%r(%fz)l/z (6-82)

Multiplying Eq. (6.81) by v/f> and Eq. (6.82) by v/f; and subtracting one
from another, we obtain the following skin effect correction formulae:

y(om'eftrzd — Ya (fl ) \/JT — 70(/[2) \/ﬁ (683)

’ Vh=Vfi

If measurements are performed at more than two frequencies, one can

apply a least-squares technique and further improve accuracy of this
approach.

6.5.2 Borehole Correction

Usually the focusing probe allows one to remove influence of the borehole,
but if its radius is large and conductivity greatly exceeds that of the forma-
tion, 7,,/y; >100, an influence of the borehole should be taken into
account. Because the borehole diameter and its conductivity are known
from independent measurements, it is easy to make an approximate correc-
tion. Indeed, as follows from Eq. (6.29),

Ya=YuGr+r,(1=Gy) (6.84)



226 Basic Principles of Induction Logging

where y,, and yrare the mud and formation conductivity, respectively, and
G, 1s the geometric factor of the borehole. Thus

corrected — Va—Vm Gb

6.85
-G, (6.85)

4

In the case of the 6FF40 probe G, is typically smaller than 0.01, and,
Eq. (6.85) is reduced to

corrected

14 ~Va=Vm Gb (686)
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Chapter 6 describes Henri Doll’s theory of induction logging, which
provides a good approximate representation of the field at low induction
numbers when the skin effect is negligible. In this chapter, we shall consider
two other approximations that in many cases can greatly simplify determi-
nation of the field, while still taking into account the skin effect. We start
with the so-called hybrid method [1].

7.1 PHYSICAL PRINCIPLES OF THE HYBRID METHOD

As was shown earlier, the geometrical factor theory is based on the
assumption that the secondary currents in a conducting medium are deter-
mined solely by the electric field generated by the time-varying primary
magnetic field of the transmitting coil. This assumption implies that the
interaction between secondary currents, which generates the skin effect,
is neglected. As a result, the secondary currents have only a quadrature
component. However, the analysis of the field has demonstrated that
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the magnitude of the actual secondary currents in a uniform medium
(Chapter 5) decreases faster than predicted by the geometrical factor theory.

The same behavior is observed in a more complicated medium—the

values of the quadrature component of the magnetic field are smaller than
those calculated from the geometrical factor theory. There was definitely
a need for approximation that would take into account the skin effect while
still avoiding time-consuming numerical calculations. One so-called hybrid
method was developed in Russia in 1963 [1], and is still sometimes used in
solving forward and inverse problems. In this section, we describe this
approximate method, which under certain conditions accurately accounts
for the skin effect. The hybrid method is quite simple. Let us represent
the currents in the space around the induction probe as a sum of two parts,
namely: (a) currents in an “internal” region, where the induction probe is
located; and (b) currents in an “external” region. For simplicity, we assume
that the conductivity of the external region is constant. Suppose that two
conditions are valid:

(1) The induced currents in the internal region are shifted in-phase by
90 degrees with respect to the dipole current, and their density depends
only on the conductivity of the medium at a given location. In other
words, mutual interaction between currents induced within this region
is practically absent, and they are induced only by the primary vortex
electric field of the magnetic dipole.

(2) The induced currents in the external area do not depend on the resis-
tivity within the internal area; thus the interaction between currents
located in these two different areas can be ignored. This condition
emphasizes the fact that the skin effect manifests itself at relatively large
distances from the source.

7.2 DERIVATION OF THE EQUATION FOR THE FIELD

Proceeding from these assumptions we derive simple expressions for
the quadrature and in-phase components of the magnetic field. Let us
represent the quadrature component of the magnetic field as a sum of the
magnetic fields caused by currents in the internal and external areas:

QB! = QB! + QB”

or

Qbt = Qb + Qb (7.1)
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where the superscripts “i” and “e” denote the components of the magnetic
field caused by currents within the internal and external areas, respectively.
In Eq. (7.1), all terms are normalized by the field in free space

B0 — FoM

= 2ml?
Here, M is the magnetic moment of the source coil, and L is the distance
between the source and receiving coil of a two-coil probe. Results of

Chapter 6, as well as the first assumption above, enable us to represent
the magnetic field Qb™ as
2
wpL”
2 a

where ', is the apparent conductivity for the internal area. In accordance

Qb = (7.2)

with Eq. (6.17), the apparent conductivity is related to the actual conduc-
tivity as:

7i=7,Ga+75Gp+ycGe+ - +ypGr (7.3)

Here, G4, Gp, G, and Gr are geometric factors of homogeneous
regions in the internal area with corresponding conductivities ¥.4,¥B, 7 cs
and y . First consider the special case when the conductivities of the internal
and external areas are equal to each other and we have a uniform medium.
Then, the field can be presented in the form:

Qb (re) = Qb2 (r.) + QT (re) (7.4)

This last expression follows from the assumption that the field in the exter-

nal area does not depend on the conductivity of the internal area. In Eq. (7.4),

Qb (y,) is the quadrature component of the field in a uniform medium with

the conductivity of the external area, y,, and Qb.(y,) is the quadrature com-

ponent of the field caused by currents of the internal area whose conductivity

is also y,. As follows from the first assumption, this part of the field can be
expressed through the geometric factor of the internal area, G;;

N wp, L
Qb (y,) = S 7.Gi (7.5)

Therefore, for the quadrature component of the field caused by currents
in the external area we have:

wp,L?
2

Qb (7,) = Qb2 (y,) — Qb2 (r,) = Qb2 (y,) — 7.Gi (7.6)
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Correspondingly, for the total quadrature component of the field in a
nonuniform medium, we obtain:

* CO,LI LZ i unx CU,M L2
Qb: :—;’ v+ Qb (y,) — 5 7.Gi
unk Q)2 L2 i
= Q" (1) + = (1.~ 1.G) (7.7)

where 7', is given by Eq. (7.3). Thus, according to the hybrid method, to
determine the field it is sufficient to know the geometric factors of the
corresponding parts of the internal area and the field of the magnetic dipole
in a uniform medium with the conductivity of the external area, y,. The field
in a uniform medium is well known, while calculation of geometrical factors
is a simple matter, which for some typical cases was already addressed. The
first term of the right-hand side in Eq. (7.7) accounts for the skin effect in a
uniform medium with conductivity y,. It is proper to emphasize again that
Eq. (7.7) corresponds to the special case of the uniform external medium,
although later this limitation will be dropped and the method applied to
more general cases.

Now let us show that as the induction number p=L/§ decreases,
Eq. (7.7) describes the field derived from the geometrical factor theory.
Here, L is again the length of the two-coil probe and & is the skin
depth in the external area. As was shown in Chapter 5, the quadrature com-
ponent of the magnetic field in a uniform medium can be expressed in the

form:
Qan* un* }/E//l a)LZ :
5= Q) =T if pxd (7.8)
Substitution of Eq. (7.8) into Eq. (7.7) gives:
* Cl)'LlOLZ
sz:T[YeGe+}’AGA+VBGB+"'+7’FGF] (7.9)

where G, is the geometrical factor of the external area. The last equation
coincides with the expression derived by Doll. Now using the relation
between the apparent conductivity and the field we have:

Ya Qb =yt +7,—7.Gi

B o, L?
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or

un i un
Ya_To (Vo g tayVag, B+ v g (7.10

Ve Ve Ve Ve Ve Ve Ve
Unlike geometrical factor theory, the hybrid method predicts a value for
the in-phase component of the field caused by the secondary currents.
In fact, because the currents in the internal area do not contribute to the
in-phase component, we can write:

Inb” = Inb""(y,) (7.11)

In particular, for small values of the induction number we have:

2
Inb"~1 —5;;3 (7.12)
Thus we obtained an in-phase component of the field that is the same as
if the whole medium was uniform. Expressions (7.7), (7.11), describing
in-phase and quadrature components, can be combined into the complex

field:

wp,L?
bz = blzm* (ye> + ﬂ (yla - Yeci) (713)
Next, we derive expressions for the field in some typical geo-electrical

models.

7.2.1 Media With Cylindrical Boundaries

First, suppose that there is no invasion zone (Fig. 7.1A). Then, from
Eq. (7.13) we obtain:

Q2= Q™ (1) + 2L, — )G (a) 0.1
and
Inb? = Inb"" (y,)
Correspondingly,
Ya_1i'(r2) <y—1—1> Gi(a) (7.15)
14 72 72

Here, y1,7» are conductivities of the borehole and formation, respec-
tively; Gy is the geometric factor of the borehole; @ = L/ay is the ratio of
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Fig. 7.1 Medium with (A) one and (B) two cylindrical boundaries; (C) medium with one
cylindrical and two horizontal boundaries; (D) medium with two cylindrical and two hor-
izontal boundaries.

the length of the two-coil probe and borehole radius; and Qb (y,) and
7a'(y2) are the quadrature component of the magnetic field and the
apparent conductivity in a uniform medium with conductivity y,. As
follows from Eq. (7.14), to determine the field, we have to know the
field in a uniform medium and the geometric factor of the borehole.
In Chapter 8, we show that the use of Eq. (7.14) is much simpler than
a rigorous numerical solution of the corresponding forward problem.
Next, suppose that there is also an invasion zone, which, together with
the borehole, forms the internal area (Fig. 7.1B). Then by an analogy
with Eq. (7.14), we have:

wp L wp, L

sz = szn*(}%) + (7’1 —73)Gi + (72 - 7’3) Go (7.16)

Inb” = Inb"" (y5) (7.17)
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where Gy and G, are the geometrical factors of the borehole and invasion
zone, respectively. Of course, in the range of the small induction number,
the in-phase component is:

2
Inb* ~1 —gpg (7.18)

7.2.2 Media With Borehole and a Layer of Finite Thickness

In this more general case (Fig. 7.1C), the borehole is still the internal region
and a two-layered medium with horizontal boundaries is treated as the
external area. Applying the same approach, we obtain:

wp,L? wop,L?
: (r1—7)G + g

(71 _73)(61 - GT)
(7.19)

Qb. = Qb(y2,75) +

Here, Qb%(y,,75) is the quadrature component of the magnetic field in
the absence of the borehole when conductivity of the bed and surrounding
medium are ¥, and ¥, respectively; Gy is the geometric factor of the bore-
hole, and G is the geometric factor of the part of borehole that is contained
within the bed. For the in-phase component we have:

Later we demonstrate that in the range of small induction numbers,
Eq. (7.20) becomes:

2
Inb* ~1 —gpg (7.21)

In this case, the in-phase component of the secondary field is defined by
conductivity y3 surrounding the bed. Note that it is a simple matter to
generalize Eq. (7.19) for the case in which the media above and beneath
the bed have different conductivities.

7.2.3 Media With Horizontal Bed and Invasion

Now suppose that the bed has an invasion zone (Fig. 7.1D). By analogy with
the previous case, we have for the quadrature component:
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* * WH L2 *
QbL=Qb(y3,74) + ; (r1—73)G]

12 12
+a),u§ Al (r1—74) (Gl - GT)

(7.22)

(r2—73)G" +
and

for the in-phase component. As shown earlier, we can expect that at the
range of small parameter

2
Inb* ~1 —gpi (7.24)

Here, Qb*(y3, 7,) is the quadrature component of the field in a medium
with only two horizontal boundaries; G} is the geometrical factor of the part
of the borehole against the invasion zone, and G|* is the geometrical factor
of the invasion zone, which can be presented as:

Gl = Gj(a2) = Gi(a).

Some comments:

1. The method described in this section represents a natural extension
of Doll’s theory and is called the hybrid method because the concepts
of both geometric factor and skin eftect are used in derivations.

2. The hybrid method is much simpler to apply than rigorous numerical
calculations, and is therefore useful for quick estimates of the field in
typical geo-electrical scenarios.

3. This hybrid method is valid in the range of frequencies for which the
borehole and invasion zone do not contribute to the in-phase
component of the field. In particular, in the case of cylindrical bound-
aries, the in-phase component is defined only by the conductivity of the
formation.

4. The derived equations also enable us to formulate conditions when geo-
metrical factor theory can be applied with sufficient accuracy. As was
shown in this section, the quadrature component of the field can be
written in the form:

. 2
QbL~p*(r1)f (ﬁ, Gf> -Zp(r,) (7.25)
71 3
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Here, 71 is conductivity of the borehole, y; characterize the conduc-
tivity of an invasion zone, formation bed, and a surrounding medium; ¥ is
the conductivity of the whole space surrounding a bed. When conductiv-
ities above and below the bed are different from each other, y, corresponds
to the largest value of conductivity. Functions G; describe geometric
factors of the borehole, invasion zone, and formation. Thus, for each
model of a medium, the geometrical factor theory can be applied if

; 2
P (26 )20 726

1

For instance, in a uniform medium we obtain the known conditions

JASY !

sincef(ﬁ, G,-> =landy,=y,=1.
71

5. Inaccordance with Egs. (7.24), (7.25), the second term of the quadrature
component coincides with the in-phase component of the secondary
field. Correspondingly, by measuring the in-phase component, we
can correct for the skin effect and determine the first term of the quad-
rature component (7.25) (Chapter 6).

6. Limits of the hybrid method were established by conducting rigorous
numerical calculations and comparing results versus approximate solu-
tions. The comparison was carried out for the layered formations with
cylindrical boundaries and it was shown that for some typical cases, a
satisfactory accuracy can be reached if

f <0.2 Xpmin/(ﬂOLZ)

where p i, is the minimal resistivity comprising the medium and L~1 m.
The method might be useful in studying focusing systems because the last
inequality coincides with conditions favorable for application of focusing
probes.

7.3 A VOLUME INTEGRAL EQUATION AND ITS LINEAR
APPROXIMATION

The geometrical factor theory and the hybrid method are derived
from specific assumptions about the distribution of induced currents in a
medium. In this section we demonstrate that both approaches follow from
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the first (linear) approximation of the integral equation for the electrical
field. To derive an integral equation for the electric field, we assume that
a vertical magnetic dipole is located on the borehole axis and the medium
1s axially-symmetric. The time-variable moment of magnetic dipole creates
a magnetic field, which, in accordance with Faradey’s law, produces primary
vortex electric field Ej. Because of the axial symmetry, the electric field does
not intersect boundaries between media of different conductivities and,
therefore surface charges are absent. As a result, the electromagnetic field
is generated solely by the primary source and induced currents in the
medium.
The density of the induced current is determined by the Ohm’s law:

j* :y(E;;O +E]) (7.27)

Here, Ej and E] are the complex amplitudes of the primary and second-
ary electric fields and y is conductivity at a given point. Induced currents and
the primary electric field have only the azimuthal component j,, which dras-
tically simplifies the derivation of the integral equation. Visually, we can
imagine the whole space filled with an infinite set of elementary current
tubes of circular shape, whose centers are located on the borehole axis. Each
tube creates the electric field at the point of observation p equal to:

dE;, (p) = ionyG(p, 9)j,(9)dS (7.28)

Here dS is the cross-sectional area of the elementary tube, G(p,q) is
a Green’s function that depends on geometrical parameters and can be
presented in explicit form; while j; (¢) is the complex amplitude of the total
current density at the point ¢q. Performing integration of Eq. (7.28) over the
entire cross section occupied by current tubes, we receive:

E' () = z'awoj Glp. 0)i5(0)dS

or

E!(p) = wowjﬂq)%(q) Glp. q)ds+ iwuojm)E:;(q) Glp.q)dS (7.29)

N S

where integration is performed over the region (r >0 and —oo < z < ©0).
This is a Fredholm integral equation of the second kind for the secondary
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field E;,(¢). The equation connects the secondary electric field at any point

in the medium with the electric field of the primary source and induced
currents. Let us rewrite Eq. (7.29) in the form:

E! () = F(p) + iopy j dzjy@c(q, PE (dr (7.30)
—00 0
where
F(p) = oy j dzjy<q>Es¢<q>c<p, 2ds 7.31)
—0 0

is the secondary electric field created by the primary field £ ,. By discarding

the second term in Eq. (7.30), we arrive at the first approximation of the
volume integral equation

E! (p) ~ F(p) = iopy [ dsz(q)E@(q)G(n Dis  (1.32)

[t is essential that the integrand on the right-hand side of this equation is
known, so that Eq. (7.32) represents a formula for calculating an approxima-
tion to the secondary electric field. By disregarding the second term in
Eq. (7.30), we assume that the induced currents arise only due to the primary
field in free space, which exactly coincides with the main assumption of
geometrical factor theory. Thus Doll’s theory represents a first order approx-
imation in solving the integral equation (7.29).

Although the electric field on the axis of the borehole is equal to zero, the
electromotive force Z* arising in a horizontal loop of a finite size r can be
estimated as

== 27T1’11E;

where 1 is the number of turns in the receiver coil.

The approximation described by Eq. (7.32) implies that induced currents
are caused only by the primary electric field, and that the skin effect is absent,
because no interaction between induced currents is taken into account.
Inasmuch as these assumptions are made regardless of the distance from
the primary source, it is natural to expect that the function F(p) correctly
describes the field at sufficiently low frequencies only when the probe is
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insensitive to remote parts of a medium where the skin effect is always
present.

7.4 A SURFACE INTEGRAL EQUATION
FOR THE ELECTRIC FIELD

Eq. (7.30) is not very convenient to use because of numerical compli-
cations caused by the infinite limits in r and z directions. Furthermore, it
does not allow derivation of simple asymptotic expressions that take into
account the skin eftect. To facilitate calculation of the field and obtain more
accurate expression valid at any frequencies, we derive an integral equation
along the surfaces located at the fixed distances of r.

7.4.1 Integral Equation for Cylindrically Layered Formation
We start by assuming that there is no invasion zone and that the medium
surrounding the borehole is uniform. Then, proceeding from Green’s for-
mula we obtain an integral equation for the component Ej in which the
integration is performed over the cross section of the borehole only. The
vector electric field E* at any regular point of a homogeneous medium
satisfies the vector Helmholtz equation:

V°E* + ’E* =0 (7.33)
Let us represent the electric field as a sum of two components:
E'=E;+E] (7.34)

where E{ is a function that obeys the following equation outside and inside
the borehole:

V’E} + 5E; =0 (7.35)

except at location of the dipole, and describes the electric field of a magnetic
dipole in a uniform medium with the conductivity of the formation y,. The
field Ejj consists of the field of the dipole source in free space and the field of
the currents induced in the uniform medium. The second term E] in
Eq. (7.34) appears because of the presence of the borehole with conductivity
71 and radius a. Substituting Eq. (7.34) in Eq. (7.35), we find that the field E}
satisfies the equation

V’E! = —k’E} — K’E} — V’E}, (7.36)
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Taking into account Eq. (7.35) for the region of the formation and the
borehole we have:

V’E! = —kE], if r>a (7.37)
and
VE; = —kE| + (k5 —k})E}, if r<a (7.38)

Unlike the total field E*, the functions Ej and E} do not characterize the
actual electric field in the medium, and application of the Biot-Savart law
directly to the terms y4Ej, y.E( and y,EJ,7,E] is not straightforward. At
the same time, by applying the Biot-Savart law for the total current densities

71 (Ej+E}) and y,(Ej +E)

we may calculate the magnetic field. By definition, the complex amplitudes
of the electric field are

E;=E}i, and Ei =Ei, (7.39)

where iy is a unit vector directed along the @-coordinate line. Next, we
introduce a vector function P* = P*iy, which along with its derivative, is
a continuous function and satisfies the equation

VP* + 5P =0 (7.40)

except at the point p, at which the field is determined. Also at this point the
function P* = P*i; has a singularity of logarithmic type. Consider the
expression

2 2
P*V°E| —E;V°P"
It is obvious that
P*VZET = P*i¢ (i¢v2E1k + ET V2i¢)
By analogy,
E;V'P* =E}i, (i,V°P" — P*V?i,)
Thus, we have proved that

P*'V’E! —E!V?P* = P"V’E| — E;V*P* (7.41)
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The next step is to use the two-dimensional Green’s formula and derive
an integral equation in the form we are interested in. We may notice that the
anomalous field E] is a continuous function of a point of integration ¢, but
the function P(p, q) depends on both the point g and an observation point p
where the electric field is determined.

The Green’s formula is given as:

0 0
J (pV>p— pV2p)dS = 1; ((pa—i5 - 8_(Z> dl
S I

Here, functions ¢ and ¢ are continuous at any point of the surface S,
and /is a contour surrounding the surface. The normal # is directed outward
at the area of integration. To apply this formula to functions E; and P, we
have to surround an observation point p by a small circle /,, because the latter
has a singularity at the point p. Then, for the borehole and formation we
have:

J(p*VZE;‘ —E;V2P*)dS = fi; (P*% —E 61) dl

on L on
S1 I()
OET 9P\ | (7.42)
+ PW—EHE dl 1f1’<d
I
and
(P*V?E} — E{V*P*)dS = —% <p 8—;—51 W) dl if r>a (7.43)

S>

Here, [ is the line parallel to the z-axis at r = a that corresponds to the
radius of the borehole, and [, is a small circular contour around the point
p (Fig. 7.2); @/dn is the normal derivative. The negative sign at the right-
hand side of Eq. (7.43) is selected because of the opposite direction along
the line [ in integrals of Egs. (7.42), (7.43). As follows from Egs. (7.37),
(7.38):

P*V?E; —E;V?*P* =0, if r>a
and

P*V?E; — E{V?P* = (k5 — k) E{P* + (k5 — k7)) E;P*, if r<a
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Fig. 7.2 Integration contours in Eq. (7.42).

From continuity of functions E and P and their derivatives at the bore-
hole boundary, from the last two equations we have:

OE; OP*
(k5 — k’f’)JE;‘P*ds+ (k5 — /ef)[E;pdszﬂg Pt —Ej——)dl (7.44)
Oon on
8 Si I,
To proceed in deriving an equation for the anomalous field E; for any
point p in the borehole, let us define the function

G =iwp,P

as the electric field caused by the circular unit current with radius ,. Later we
demonstrate that it can be presented as:

(o]
i,
el In, J I () K (rv) cos mzdm if r >,
n

0

el

I, | I} (rv) Ky (nev) cos mzdm if r < A

ct—3
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Correspondingly, in place of Eq. (7.44), we have:

<y2—y1>jEr<q>c*<q,p>ds+ <y2—mjﬁz<q>c*<q,p>ds

N S

_ ! jE s B LGS P (7.45
oy, on ' On 49)

p

Next consider the integral on the right-hand side of the last equation
when point q of the contour [, approaches an observation point p and radius
r of the circle tends to zero. Taking into account that radius vector r and
normal n have opposite directions we obtain:

OB, L0GY  [(..0G _OE
(o252 )amf (57 - %)a oan

P P

In approaching the current circle, the electric field G* is defined only by
the current element located in the vicinity of the point ¢g. Inasmuch as the
distance between the point g and this element tends to zero, it can be treated
as infinitely long current line. It is well known [2] that the electric field of
such source placed in a uniform medium is

1o,

G =
b3

K()(kzi’) (747)

where Ky(kyr) is a2 modified Bessel function of the second kind, and
Ko(kar) — —Inr if r—0
Bearing in mind that the field E] and OE]/Or have finite values and

oG* N iwu,

if 0
or 27y nre

the contour integral in Eq. (7.45) can be replaced with —Ej (p). Thus, this
equation becomes

El(p)=(r, —y2>jEf<q>c*<q,p, 2)dS + (7, —y2>jE:;<q> G (g.pr ko) dS

(7.48)

The latter is the Fredholm integral equation of the second kind, where
integration is performed over the region of the borehole only. Next suppose
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that there is an invasion zone with conductivity y,, surrounded by the for-
mation with conductivity y3. The function G* has the same meaning as
before and satisfies the equation

VG +5G =0 (7.49)
In accordance with Egs. (7.37), (7.38), for the anomalous field E] we have:
VE; =—KE; + (ks —k)E; if 0<r<a
V2E; =—KE; + (k5 —k)E} if o) <r<a (7.50)
VzET = —k_%E’{, if ¥>a
where q; is the radius of the borehole and a5 is the outer radius of the inva-
sion zone. Applying Green’s formula to the regions of the borehole, the

invasion zone, and the formation, respectively, we have the following
equations:

_ EX

J (G*V’E} —E;V°G")dS= —2zE;(p) + J (G* OL; oc >dl

Or U or
Sl l1
. . (7.51)
E
(G*szT—ETVZG*)dszJ(—c*a 1 +E;*6G )dl
Or Or
: h OE: . 0G" (7.52)
+ * —Ef
[( % 5% )

h

E* %
J(G*VZE;—E;*VZG*)Q'S_J (—c*aayl +E;‘a§ )dl (7.53)

S L

Here, [ and b are straight lines located at the boundaries between the
borehole region S; and the invasion zone S, and between the invasion zone
and formation region Ss, respectively. Now taking into account Eq. (7.46)
and performing a summation of Egs. (7.51)—(7.53), we obtain an integral
equation that includes two surface integrals over half cross sections of the
borehole and invasion zone:

Ei(p)=(r— }'3)JE§(61)G*(/€3,19, 9)dS+(y2—73) J Eg(q)G" (ks, p, q)dS
S S

+(r1—73) J E{(q)G" (k3. p, 9)dS+ (y2—73) J E;(q)G"(ks, p, q)dS
S S

(7.54)



244 Basic Principles of Induction Logging

It is clear that the integral equations (7.44), (7.54) coincide with each
other if k; = k; or k» = k3. Thus, we derived integral equations for two cases
when the solution of the boundary value problem can be obtained in explicit
form. In both cases the Green’s function corresponds to a uniform medium
with the conductivity of the formation.

7.4.2 Integral Equation for Horizontally Layered Formation

Next we derive the integral equation for the case in which the
formation with conductivity of y;, has a finite thickness. Let us introduce
a new Green’s function that, outside the source region, is a solution of
the equations

VPG +I5G =0 if 21 <2<z

(7.55)

VQG*-H%G*:O if z2<z0orz>2
where z; and 2, are the lower and upper boundaries of the layer; k> and kj
are the wave numbers of the layer and the surrounding medium, respec-
tively. Also assume that the function G* = G"iy and its first derivative with
respect to z are continuous at the interfaces between the formation and the
adjacent medium. From the physical point of view, the function G* repre-
sents the electric field of a circular filament in a horizontally layered medium,
and it can be expressed in an explicit form as an integral. As before, we
represent the total electric field as a sum:

E'=E +E (7.56)

where Ej = E[jiy the electric field of the magnetic dipole in the layered
medium, and E} = E7i is the secondary electric field caused by the presence
of the borehole. Therefore, in the formation layer and in the adjacent media,
respectively, we have:

V’E; = —k3E, and V°E!=—kE, (7.57)

Taking into account Egs. (7.36), (7.57), we have the following equation
in the formation:

V’E! = —I5E;} (7.58)
and in the adjacent medium:

V’E; = —kKE! (7.59)
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In the part of the borehole that is located against the formation layer we
have:

V’E; = (k5 — k})E; (7.60)

and in the part of the borehole that is located against the adjacent
medium:

V°E; = (k5 — k})E; (7.61)
Correspondingly, the function
G'V’E; —EV*G*

is equal to zero within the formation layer and the surrounding medium.
At the same time, it is equal to

(8- R)E G+ (B-R)EG
in the part of the borehole located against the formation layer and to
(B-R)EG + (8- R)EG

in the adjacent medium. Then, applying Green’s formula we obtain an
integral equation for the secondary electric field

Ei(p) = F(p) + (7, —mjm)c*(p, 2)dS

5 (7.62)
+(r2 —71)JE1(4)G*(P’ q)ds

S

Here

Ff<p>=<y3—mjﬁz;<q>c*<p, s+ <y2—y1>JE:;<q>c*<p, DS,

S>
(7.63)

where S; and S, are the regions of the borehole located against and outside
the formation layer correspondingly.

The solution of the integral equation (7.62) enables us to determine the
electric field, and therefore the total electric field in the receiver. In the pres-
ence of an invasion zone, the integral equation has the form:
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E{(p) = + (7, —y1>jEr<q>c*<p, DS+ (72— 7,) j E(9)G (p. 9)dS

=1 | B G (. a)is

Here, S; is the region representing the invasion zone in the formation
with the wave number k,. Also

B =1 [ B @G (.05 (1 -1) [ B0 G )t

- <y4—y2>jEz;<q>c*<p, 2)ds

S3

(7.65)

It is obvious that all previous cases follow from Egs. (7.64), (7.65).

7.4.3 Integral Equation and the Born Approximation

At the end of the 19th century the mathematician Carl Neumann developed
the theory of integral equations for potential fields and, in particular, con-
structed formal solutions to these integral equations as an infinite series of
terms, which is now called the Neumann series. The first term on the
right-hand side of this series is called the first or linear approximation of
the solution, similar to linear term in a Taylor series expansion of a function.
Before Neumann’s work, the physicist Lord Rayleigh had used the linear
term as a first approximation to the integral equation that describes the scat-
tering of light by small objects. In 1926, Max Born applied this approach in
the approximate solution of integral equations that describe the scattering of
quantum mechanical wave functions, and now it is commonly called the
Born approximation in the physics literature. When applied to our case,
the Born approximation for the field EJ is

E{(p) = F, (p) (7.66)

with F} given by Eq. (7.65). For simplicity, consider the simplest model
with one cylindrical boundary. Then Egs. (7.64), (7.65) give:

E; =<y2—y1>jE:;<k2, )G (o, p, 9)dS 7.67)

S
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In this approximation the sources of the secondary field arise due to the
field Ej(ko,q) created by a magnetic dipole located in a uniform medium
characterized by the wave number k,. The function G*(p, ¢, k,) describes
the electric field of a current ring, whose cross section passes through the
point g in the (r, 2) plane. The function Ej(q, k) has a very simple expression,
and G*(p, q, k) can also be expressed with elementary functions. Thus, cal-
culation of the field E} by integration over the borehole region is a relatively
simple task. The situation is not much more complicated in the presence of
an invasion zone. When the formation has a finite thickness, solving the for-
ward problem in the presence of the borehole requires complicated numer-
ical techniques. At the same time the use of Born approximation is much
simpler. Note that when frequencies are relatively low E[ can be replaced
by the primary field in a free space with G* describing the field of the current
ring in a free space. For instance, for the case of one cylindrical interface,
instead of Eq. (7.65), we obtain:

E —<y2—y1>jﬁs<q>c*<p, 2)ds 7.68
S

This is the same expression that was derived earlier using the hybrid
method. Finally, replacing the field Ej(p) in Eq. (7.56) by the first term
of its expansion in series of a small parameter (the induction number), we
arrive at the expression, which corresponds to the geometrical factor theory.
Thus, the geometrical factor theory and the hybrid method are particular
cases of the first approximation of the integral equation (Born approxima-
tion). In conclusion, we note that in a medium with only cylindrical bound-
aries, the Born and hybrid approximations require practically the same
computation effort, but in the presence of the horizontal interfaces, the
hybrid method is simpler to apply.

Numerical calculations show that for typical in induction logging fre-
quencies, the hybrid method describes the field with error less than 5%
unless the ratio y;/y, <200. At the same time, the Born approximation is
even better and permits accurate calculations in a wider range of frequencies
and conductivity contrasts.
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We derive an expression for the vertical component of a magnetic field on
the axis of a borehole when the source of the primary field is a vertical
magnetic dipole and the formation has an infinite thickness and several
radial zones. Special attention is paid to the asymptotic behavior of both
quadrature and in-phase components.

8.1 THE BOUNDARY VALUE PROBLEM FOR THE
VECTOR POTENTIAL

In the formulation of the boundary value problem it is
assumed that:
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1. The borehole surrounding the induction probe is uniform and isotropic.

2. The electrical properties of the medium do not change in the direction
parallel to the borehole axis. This means that the top and bottom of the
bed are significantly distant from the probe.

3. The borehole shape is an infinitely long circular cylinder.

4. A medium located between the borehole and the bed represents a system
of coaxial cylindrical layers with the axis coinciding with the
borehole axis.

5. The transmitter and receiver coils of the probe are located on the
borehole axis, and they can be considered dipoles because they are small
compared to both the probe length and the borehole radius.

Thus, the boundary problem is formulated as follows. The medium
comprises a set of (n—1) coaxial cylindrical surfaces with radii
ai,dp,as, ..., dy,—1, separating » isotropic cylindrical layers having conductiv-
ityy; (i=1,...,n). Magnetic permeability and dielectric constant are usually
assumed to be equal to those in a free space, po, &y. The vertical magnetic
dipole is located at the borehole axis and its moment is a sinusoidal function
of time, causing a primary electrical field to have only an azimuthal compo-
nent E((]? ). The currents, induced in the horizontal planes of the medium, also
have only an azimuthal component. Therefore, the vector lines of the cur-
rents are circles with a center on the borehole axis, and the corresponding
boundary value problem can be solved by using only one component of the
vector potential. As shown in Chapter 2, for the complex amplitude of the
vector potential A%, we have:

VA  + AT =0 (8.1)
and
E'=arl A", ioB* = kA" + gradiv A* (8.2)

Here k is a wave number

) 1/2 ,
1+
1 = ippow and k= (@) (1+i)—% (8.3)

where 6 is the skin depth.

Let us choose a cylindrical system of coordinates (r, ¢, z) with a magnetic
dipole, placed at the origin of this system (Fig. 8.1). The moment of the
magnetic dipole is oriented along the z-axis. As mentioned in the previous
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Fig. 8.1 Medium with two cylindrical boundaries and the magnetic dipole on the axis.

section, we look for a solution using only the z-component of the vector
potential AZ.
According to Maxwell’s equations, the vector potential must satisfy
several conditions:
1. Function AZ is a solution of Helmholtz’s equation in every part of the
medium:

VAL + AL =0 if R#0
This equation can be written in the form:

10 [ 04T\  10°AF  0PA%
-— =)+ = + S+ kA= .
rOr <r Or ) r? op* 02> il =0 ®.49

2. Near the origin of coordinates system the function A% tends to the
vector potential of magnetic dipole in a uniform medium, that is:

: 0
*_ la)ﬂoMO

N R P (ikR)

3. At the interface r = a,, tangential components of both the electric field
E and function B/u are continuous functions. The electrical field
has only Ej; component, but the magnetic field is characterized by
two components B, and B., and they are expressed through the vector
potential as:
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DAY DAL DAL OA?
* z : * : * 12 g% z *
Ey= 5 iwB; = ER 32 iwB. =k A_ + 92 Ey= 5; (8.5)
Here A7 E,, B/, and Bl are complex amplitudes of the

corresponding vectors. Therefore, boundary conditions for the vector
potential at the interface of a medium of a different conductivity and
magnetic permeability can be written in the form:

8At m aAf m+1
Or Or

and

2 g% 2 A%
24 e P 13} (8.6)
" z,m 82’2 Pt m+1“" z,m+ 1 82’2 .

4. With an increase of the distance from the magnetic dipole the function

A tends to zero. Moreover, the function A7 has to obey the following
conditions, related to the medium and the source. First, due to the axial
symmetry the vector potential and all the field components do not
depend on the ¢ coordinate, that is A* =A%(r, z). Also, the vector
potential does not depend on the sign of the z-coordinate because of
a symmetry of a primary source with respect to the plane z=0:

Al(r,z)=Al(r, — 2)

To find the field we have to solve Helmholtz’s equation, which is a differential
equation of the second order with partial derivatives with respect to coordi-
nates rand z. To solve this equation we represent the solution as the product of
two functions depending on one argument only. Consequently, we have:

AT =T(®(z)

Substituting the latter into Eq. (8.4) and taking into account that A7 is
independent of ¢ we obtain

o0 (0T 82 2
Dividing both sides by T(r)®(z) we have

Vom0 L
T Or rar @82
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Let us represent the left hand side of this equation as a sum of two
terms:
Term1 10 /[0T 2 Term? 10°®
ml=——(r— , m2=———
¢ Tor\ or © ® 022
At first glance each term depends on the argument r or z, and Eq. (8.7)
can be written as

Term 1 (r) + TermZ(Z) =0

Obviously, the last equation might hold if each term does not depend on
the coordinate and represents a constant value. For convenience we desig-
nate this constant in the form #m?, where m is a constant of separation.
Thus, instead of Helmholtz’s equation, we obtain two ordinary differential
equations of the second order:

1d(dT
G—>+%:1M

Trdr \_ dr

and (8.8)
1o,

®dz2 o

Reduction of partial differential equation down to two ordinary differen-
tial equations represents the essence of the method of separation of variables.

The symmetry of the field with respect to coordinate z suggests the
negative sign in the equation for the function ®(z):

PRl
-4
dz2

The solutions to Eq. (8.9) are the trigonometric functions sinmz and

m’®=0 (8.9)

cosmz. In particular, the function cos mz provides a symmetry of the poten-
tial with respect to the plane z=0. Correspondingly, the equation for the
function T(r) becomes

1d [ dT e

Introducing a new variable y
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and performing differentiation we obtain

ET(y)  1dT(y)
dr? y dy

T(y)=0

The solutions to the last equation are modified Bessel functions of zero
order Iy(y) and Ky (y). Bearing in mind that A*(r, z) = A%(r, — 2), we should

use only the function cos mz for the solution of Eq. (8.9) and, correspond-
ingly, for each value of the separation constant we have:

Al(r,z,m, k) =T(r, k)®(2)
= [C,.Iy(r, k, m) + D,,Ko(r, k, m)] cos mz (8.10)

By definition the function A%(r, z, m) satisfies the Helmholtz equa-
tion, and we may think that the first step in solving the boundary value
problem is accomplished. However, this assumption is incorrect because
the function A%(r,z, m) depends on m, which appears as a result of
transformation of Helmholtz’s equation into two ordinary differential
equations. At the same time, the vector potential A%, describing an elec-
tromagnetic field in the medium, is independent of m. Inasmuch the
function A*(r, z, m), given by Eq. (8.10), obeys the Helmholtz equation
for any m, we present the solution in the form of an integral as a super-
position of partial solutions A*(r, z, m) corresponding to different values
of m (0<m < o0):

A= J [Culo(m, k, r) + D,,Ko(m, k, r)] cos mzdm (8.11)
0

which becomes independent of m after integration.

8.2 EXPRESSIONS FOR THE FIELD COMPONENTS

Taking into account the symmetry of the field with respect to the
plane z=0, the expression for the vector potential within the borehole
can be written as:

o

iou M jkiR) 2
_ lop Mo | exp (ikiR) +Z J Cly(myr) cos mzdm (8.12)
4z R d

0

*
Az1
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because the function Ky(mr) tends to infinity as r— 0. Here

1/2 . . .
my = (mz—k%) / , and C is some function, which does not depend on

coordinates. From the theory of Bessel’s function it follows that

kR) 2 [
M:— JKO(WH”) cos mzdm

R V2
0
Thus
‘ oo
AL = za)g;[i\/[() J [Ko(myr) + Cly(myr)] cos mzdm (8.13)

0

The right-hand side of this equation represents the Fourier’s integral.
First, consider a solution when the invasion zone is absent. Inasmuch as
the function I,(mr) increases to infinity when r — oo, the vector potential
within the formation is

[ee]
. ia)/l2]\4()

AL, = 5 JDK()(mzr) cos mzdm (8.14)

0

Let us recall one remarkable property of Fourier’s integrals. Considering
the equality:

J W, (m)cos mzdm= J W, (m) cos mzdm
0 0

we derive that
W (m) =2 (m)
Then substitution of Egs. (8.13), (8.14) into Eq. (8.6) gives
my [—K1 (1441 a1) + CI1 (Vm a)] = —MQK1 (1412611 )D
pom [Ko(myay) + Cly(myay)] = pym3 Ko (mpay ) D
since

B =" =1, ki) =T = ki




256 Basic Principles of Induction Logging

Here I;(x), Ki(x) are Bessel functions of the first order. Solving the sys-
tem we obtain

Ko (maay ) Ky (myay) — pymi Ko(myay ) Ky (mpay)

 uymaKo(maay) I (myay) + pymy I (myay ) Ky (maay)
Halm

maay [y myKo(maar) I (myay) + pymy Iy(myay ) Ky (maay )]

(8.15)

D=

(8.16)

The function A? along with coefficients in Eqs. (8.15), (8.16) satisfies all
conditions of the boundary value problem and thus describes the vector
potential and components of the electromagnetic field. As follows from
Eq. (8.5) the complex amplitudes of the field within the borehole are

(69
iwp M,
E:;) = (’;¢ —% JmlCll (myr) cos mzdm
0
oo
M
B =B, —”21”20 Jm% Cly(myr) cos mzdm (8.17)
0
oo
M
B =B;, —% Jmml CIi (mr)sin mzdm
0

Here Ej, B, and Ej, are complex amplitudes of the field in a uniform
medium with parameters ¥, 1. In particular, at the borehole axis we have
E,;=0 and B/ =0

J m?C cos mzdm (8.18)

0

1Mo
272

B=B).—

The primary magnetic field in a nonconducting medium along the z-axis
caused by the magnetic dipole is
g0 Mo

= opl3

and, correspondingly, the vertical component of the normalized magnetic

field is

m? C cos mLdm (8.19)

<
2
|
N§ Ncge
I
i~
o
Y
©
c— 3
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Here L is the length of the two-coil probe, while the function b, was
described in detail in Chapter 5. It is obvious that in the presence of several
cylindrical interfaces we arrive at the expression similar to Eq. (8.19), but
with the modified function C. For instance, in the case of two cylindrical
interfaces and a nonmagnetic medium the function C is

C
A

(8.20)

Here

Ay = [—maly(maar) Ky (myay) — my Ko(myar) I (mpay )]
X [m3 Ky (mpaz) Ko (m3zaz) — my Ko (maaz) Ky (m3az)]
+ [ma Ko (maay ) Ky (myar) — my Ko(mya) Ky (maay)]
X [—=m3 1y (maaz) Ko (maaz) — maly(maan) Ky (m3az))]
A = [—maly(maar ) [y (myay) + myIy(myar) I (maay )]
X [m;,K1 (ngdg)Ko(Wl?,dg) — mzKo(mzag)K1 (1413512)]
+ [ma Ko (maay ) Iy (myay) + my Iy (myar) Ky (moay )]
X [—=m3 11 (maaz) Ko(msaz) — maly(maaz) Ky (m3az)]

(8.21)

and
= (=), = (=) " k= (=)

Also a; and a5 are the radii of the borehole and invasion zone, respec-
tively. Thus, the complex amplitude of the magnetic field on the borehole
axis is expressed in terms of an improper integral, and its integrand represents
the product of complex function m7C and the oscillating multiplier cosmL.
Let us study the frequency response of the B, field and start from the case
when the induction number is either too small or too large.

8.3 THE MAGNETIC FIELD IN THE RANGE OF SMALL
INDUCTION NUMBER

A small induction number corresponds to the near zone, when trans-
mitter to receiver spacing, L, is much smaller than the wave length 4 or the
wave number k tends to zero:

p<1 or |kL|<1 (8.22)

To analyze the asymptotic behavior, we apply three different approaches.
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8.3.1 The First Approach for Deriving the Leading Term of the
Quadrature Component (Transition to Doll’s Formula)

At the beginning consider the case when an invasion zone is absent and

U1 =, =H,. Then as follows from Eq. (8.15) we have

2 2m2Ko(I’I’lQa1)K1 (Wl1 a1)—m1K1 (m2a1)K0(m1a1)
m; C=mj

(8.23)
mzKO(mzm )11 (I’l’l1 al) +m Ky (l’l/lzal)l()(mlm)

If |ki| <m and |ks| <m then keeping the first two terms in Taylor’s
expansion for the functions m; and m, we obtain:

AN 142
m1—(m2—k%)1/2—m<1——1> ~m———0t

e 2 (8.24)
_ 2 kZ 1/2_ 1 k% 1/2N 1k§
= (=) Tl 105 ) Mg
By analogy we have:
1le2a1
Io(miar) = Ip(may) —51716(’“41)
1k?a
I (l’i’l] Cl1) ~ I (mm) —5171111(1’”611)
(8.25)

1/6%&11 /
K()(m1a1) ~ K()(mal) — EWK()(W!CH)

1kfa1 /
K; (m1a1) ~ K; (mal) — 57K1 (141611)

Substituting Egs. (8.24), (8.25) into Eq. (8.23) and making use of recur-
rence relations of Bessel functions:

Ii(x) =N(x), Kj(x)=—Ki(x),

et ) = 1) == 20, Tyt (5)+ By () == 21,
Kyo1(x) = Kyo (x) = —2—;K,,(x), Ko 1(x) + Ky o1 (x) = —2K' ()

after simple algebra we obtain

C=( )" -
x {2Ko(may ) Ky (may) — may [K7 (may) — Kg (may)] }

Thus, the quadrature component of the magnetic field expressed in terms
of the primary field (8.19) is
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2 13
_ b0

b.
Qb- 2 2r

0

(s— 1)71,“0601’”“1 (8.27)
X [2K0K1 — may (K12 — Kg)] cos mLdm

Here s=y,/y,. Let us introduce notations

X =may, a:L/m

Then Eq. (8.27) can be rewritten as

L’ 2a |
Qb, = a),u; v+ (12 —yl)—a J;[ZKOIQ - x(Kl2 - Kg)} cos axdx
/2
0
or
oL
Qb. = > (r1G1 +7,Ga) (8.28)
where
2a X ) )
G, = —13 [2Ko(x) K (x) — x (K} — K7 )] cos axdx (8.29)
0
and

Gi=1-G,

In the same manner we can derive Doll’s theory or low frequency
asymptotic for the medium with several cylindrical interfaces. Making
expansion of radicals m; with respect to a small parameter, it was assumed
that k7/m” is less than unity. Since integration is performed from 0, there
are always some small values of m when ratio k7/m” exceeds unity and
our assumption is not valid. But it turns out that for very small values of
k, contribution of this part of integration can be neglected, provided that
only the leading term of the field is calculated. At the same time, if we
are interested in the following terms of the low-frequency spectrum, it is
advisable to use a different approach.
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8.3.2 The Second Approach for Deriving the Leading Term

of the In-Phase Component
By applying the first approach we were able to derive the leading term of the
series describing the quadrature component of the magnetic field. To obtain
the leading term for the in-phase component of the secondary field, we have
to recall that magnetic field B, on the axis of the magnetic dipole in a uni-
form medium can be presented as

[ PV o Kl R
b= a1 2 UR)

n=2

Neglecting all terms except the first three, we have

M, KL> 1
B0y e T kL) 4
= 273 2 3

(8.30)
The second term of this series is the leading term for the quadrature com-
ponent, k* = iyu @, while the last term

ﬂoMoi
2rl33

HoMo
61

(kL)® = ik’ (8.31)
defines the leading term of the in-phase component, as well as the second
term of a quadrature component. Now we demonstrate that in a more
general case, when there are cylindrical boundaries, the leading term of
the in-phase component of the secondary field B: is also defined by
Eq. (8.31), provided that k corresponds to an external medium of the for-
mation. To proceed let us represent the integral on the right-hand side of
Eq. (8.17) as a sum of two integrals

(s mogy [e)

J my C cos mzdm = J m; C cos mzdm + J m; C cos mzdm (8.32)

0 0 my

where mj is a very small number. In the case of the second integral when the
value of m is greater than the magnitude of wave numbers: m > k, the radicals
can be expanded in series by powers k*/m>. Correspondingly, the integrand
C can be presented as:

[+3) b 2n .
C=)a, <Zl> it m> my (8.33)

n=1
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where a, are coefficients that depend on the parameters of the medium.
Because the external integral

(o]
J m%C cos mzdm

myg

does not contain point m =0, we can replace it with the series

(s}
J m?C cos mz = Z bnk?” (8.34)

n=1
my

Therefore, the series describing the external integral has only terms
of even powers of wave number, k, and the integer powers of @. This sug-
gests that the terms of the series with odd powers of k, in particular k°, can be
derived from an expansion of the internal integral only, provided that

k—0, m—0 (8.35)

Taking into account the behavior of modified Bessel functions for a
small argument:

x
Ih(x)~1, Il(x)zi, Ky(x)~—Inx, K;j(x)=~

the function C can be presented as

Q|

Cr my Ko (mpar ) Ky (myar) — mi Ko(myay) Ky (mpar)
m Ky (maay)

or

K
%@MKO(MZM) — Ko(miay) (8.36)
mq K1 (m2a1)

Replacing the ratio Kj(mqay)/ K (moa;) with its asymptotic value we
finally have:

2
m
Cr m—iKo(mzm) — Ko(myay) and m%C ~ méKo(mzm) — m%KO(m1a1)
1

Thus, the internal integral can be presented as

o o mo

m%C cos mzdm = J m%Ko(mzm) cos mzdm— J m%KO(l’lﬂal) cos mzdm (8.37)

0 0 0
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Taking into account that

Ko (m;r) cos mzdm

exp (ikiR) 2
R
0
and keeping in mind that we are interested in odd powers of k, the following

equality can be written:

Mo Mo
272

m; C cos mzdm = —B}_(kaR) + B,_(kiR) (8.38)

S—3

where Bf_(k:R) and B};_(k; R) are magnetic fields on the surface of the bore-
hole in a uniform medium with resistivity of a formation and borehole,
respectively, R = (a? +22)1/2. Substituting Eq. (8.38) into Eq. (8.17) we
have:

B.~ B, (kiz) + B).(k2R) — By, (ki R) (8.39)

Again, the latter is valid in the range of small induction numbers only
when the terms of a series proportional to odd powers of the wave number
are considered. As follows from Eq. (8.31), the second term of a series,
describing the magnetic field on the borehole axis, is:

MMy 5
i——k;
6

Thus, we see that the leading term of the in-phase component of the sec-
ondary field B, coincides with that in a uniform medium with conductivity
of a formation:

This result does not depend on the ratio of conductivities as well as the
probe length. In other words, at the range of small parameter the borehole
becomes “transparent” and does not contribute into the in-phase compo-
nent. Next, we demonstrate that the same result is valid for a three-layered
medium. Let us proceed from Egs. (8.20), (8.21), again assuming that
m— 0, k— 0. Introducing notations
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by = —moly(maar) Ky (myay) — my Ko (myay ) I (m

(m2ay)
o = m3 Ky (mpaz) Ko(msaz) — myKo(maaz) Ky (mzaz)
by = myKo(maay) Ky (myay ) — my Ko(myay ) Ky (maay)
o = —mzl (maar) Ko(msaz) — maly(moar) Ky (mzaz)

by = —moly(maar )y (myay) + myIy(myay) I (maay )
)

i =maIi (myay)Ko(maay) + myIy(myay) Ky (maay

and taking into account the behavior of modified Bessel functions for the
small argument we have

my ms3 my
by =~ —my Ky (myay) = , R Ko(m3zay) ———Ko(mpaz)
mydq maan maayp
my m my
by ~ Ko(maay) — Ko(may), o~-—
mydaq maaq mzay
mymaay mqmy
by~ ——— + —0, —

1
2 2 moay

Whence, for small values of m and k we obtain

C%b161+b262:bli+b_2

Inasmuch as

00 =—

bicy

(&) %}

m

Q0 (o15) a3
miq ms le
———, big=——"—Ky(mzap) + —2—
msdaay miaqgay mimsdayay

2 2
ni

1 G m

we have the following expression for the function m7C:

o

0
o

2
ny

Ko(maaz),

m m b
— Ko(m3a) —m—iKo(mzaz), = =—Ko(maa) — Ko(myay),

~ Wl%Ko(W@clg) — WliKo(leag) + ngKo(f’l’lQm) — m%Ko(ﬂ’lzm)

Thus, the internal integral has the form

mo ma

0 0
mo

m%Ko(mzal) cos mzdm — m%K()(muu) cos mzdm

m%C cos mzdm =~ ngK()(M3dg) cos mzdm — Jm%K()(mgaz) cos mzdm +

(8.41)
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which leads to the following expression for the in-phase component of the
field:

B =B (ki2) + Bi_(ksR2) — B, (kaRo) + B (kaRy) — B (ki R;) (8.42)
Here

R, = (22 + a%)l/z and R, = (22 + aé)”z

Similarly to the case of a two-layered medium, we derive the k> term

l.ﬂoM
6

3
k3
which corresponds to the in-phase component of the secondary field in a
uniform formation with conductivity y3. Bearing in mind the expression

for the quadrature component derived earlier, we have the following
expression for the secondary magnetic field (k— 0):

My |1 2
B z”i - 0 [ZZ K2 G + gikgl (8.43)

Here k? = iy u o, Lis the probe length. For the quadrature and in-phase

component we have:

3 1/2

oMy | op 2 3/2

QB.~" [—L(’E 7iGi= = (rspg)” ]
n=1

and (8.44)
poMy 2/

3/2
e T(?’aﬂow) /

InB, ~

where y;, G; are conductivity and geometric factor of the corresponding part
of a medium such as borehole, invasion, and formation. The last result can be
generalized and applied to the case of invasion zone with resistivity varying
in a radial direction. Also, we have to notice that Eq. (8.44) can be derived
using the hybrid method, which gives

2

HoMy iop, My
Bim="2bi(y;) + —— (ri=75) Gi (8.45)
2rL 4L

n=1

By expanding the right-hand side of the latter into a series and keeping
the leading terms only, we arrive at Eq. (8.44).
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1. The first and second approaches give the leading terms for the quadrature
and in-phase components of the series, describing the field on the
borehole axis.

2. Application of the Doll theory almost always requires correction for
the skin effect. At the same time, as follows from Eq. (8.44), at the
low frequency limit the second term for the quadrature component
has the same magnitude as the in-phase component. Therefore, mea-
surements of InB. enable us to correct the quadrature component for
the skin effect.

3. We demonstrated that in a medium with cylindrical interfaces the lead-
ing term of the series for the in-phase component is defined by the con-
ductivity of the external part of the formation. In other words, the
borehole and invasion zone become transparent and do not affect the
measurements. As we see later, such behavior is also observed at
the low frequency limit in a medium with horizontal boundaries, as well
as in more complicated cases.

4. This discussion underlines again that the quadrature and in-phase com-
ponents depend quite differently on parameters of the formation, and
thus they have a different depth of investigation.

5. The series, Eq. (8.43), is valid regardless of the probe length.

6. As follows from Eq. (8.44), the second term of the quadrature compo-
nent and the leading term of the in-phase component do not depend on
either probe length or the parameters of the borehole and invasion zone.
Therefore, by measuring these quantities, one can essentially measure
properties of the deepest part of the formation.

8.3.3 The Third Approach to Deriving Asymptotic Expressions
of the Field
We have derived only two terms of the series describing the quadrature
component of the field and the leading term of the in-phase component
of the secondary field. To obtain subsequent terms of both series, it is nec-
essary to perform more cumbersome transformations on expansion of the
internal and external integrals in Eq. (8.32). In the internal integral, Bessel
functions can be expanded in the series because their argument is small. This
reduces the integral to a sum of simple integrals of elementary functions. The
integration of the external integral is based on Eq. (8.34) and calculation of
coefficients b,. Finally, we have the following series describing the field at
the low frequencies:
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Bz — Bg)) (Zﬂl;1k2n + azﬂanJrl + Ink
n n=1

=1 n=

a3ﬂk2">, (8.46)
1

where BY is the field, caused by the primary source in a free space. Later it
will be shown that only the second and third sum in Eq. (8.46),
corresponding to the internal integral, contribute to the late stage of the tran-
sient field. Holding only first terms of the last two sums in Eq. (8.46), we
arrive at the following asymptotic expressions for b7 — 1:

(1) two-layered medium

bE— 1= fik] + sk + frk] + k] Inky, (8.47)
where
a2 a’s 1—s
a‘s?  aPs(1—s) 5 » s(1—ys) 77 Ins
=fi| e+ —(1—3)— C—+—
F f5[280 n TR T < 60 2 )}
N

C is Euler’s constant,
s=7,/y; and a=L/a
(2) three-layered medium
bt — 1= dsk; + dsk]

Here

1 53 06251 512
d3=505351/, ds:d:s(W—? s S =Y3/11 2=1/1

sp=1—s+ (32—31)ﬁ2, ﬁ:az/m

8.4 FAR ZONE OF MAGNETIC FIELD ON THE AXIS
OF BOREHOLE

Now we focus our attention on the case of a large parameter L/ay
when the probe length exceeds several times the borehole radius. The
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purpose is to find from an asymptotic representation some specific features of
the field that can be further utilized for increasing depth of investigation.
Derivation of asymptotic expression of the field is based on a proper treat-
ment of singularities of the integrand m7C on the complex plane of m. In
accordance with Eq. (8.19) the variable of integration m has only real values
0 <m < oo, while the probe length L is the multiplayer in the argument of
the oscillating term cos L. For small values of |kL| the function 1 C rapidly
decreases with an increase of m. In addition, the presence of the oscillating
factor cosLm also reduces contribution from the integrand at large values
of m. For this reason the integral

oo

[ m%C cos Lmdm (8.49)

0

is mainly defined by the integrand m7C near small values of m, allowing
a derivation of the geometric factors of the borehole, invasion zone,
and formation. With an increase of the wave number |k| the integrand m;C
decreases slowly and for m < |k| it does not practically change. Correspond-
ingly, despite an increased number of oscillations the integral is not defined
anymore by the integrand at the initial part of integration and additional trans-
formations of the integral (8.49) are needed to treat the case of |kL| > 1.

8.4.1 Cauchy’s Formula and Deformation of
Integration Contour

To obtain asymptotical expression for the field at |[kL|>1 we use an
approach based on the Cauchy formula. Since

1
cosmL = > [exp (imL) + exp (—imL)]

we have

| =

Jmecos mLdm = Jm%CeXp (imL)dm + JmeeXp(—imL)dm
0 0 0

The latter describes the secondary field, Eq. (8.18). Taking into account
that m7C is even a function of m, the last equality can be represented as

| =

J m: C cos mLdm = J m; C exp (imL) dm (8.50)
0 —0
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In accordance with Cauchy’s theorem an integral from an analytical
function f(z) around a closed path [/ is equal to zero:

ﬁ;f(z)dzzo (8.51)

l

which corresponds to a single-valued function f(z) with no singularities
inside . In other words, the deformation of the contour does not change
the integral if the integration path doesn’t intersect singularities on the com-
plex plane of the variable m. Note that with deformation of the contour of
integration in the upper half plane (Imm > 0), the exponent exp(imL) tends
to zero with increase of Im(m). In general, the integrand in Eq. (8.50) has
two types of singularities, namely, branch points and poles. From
Eq. (8.18) we have:

3

L
bo=1b;, — — m; C cos mLdm (8.52)

c—.3

and the function m7C has two branch points at the upper half plane of m:
m=ky and m=k;

where this function is not an analytical one. Now consider a closed path D,
shown in Fig. 8.2, consisting of several paths, namely: (1) the original path
from —oo to 00, (2) the path Dy, which includes two lines in the vicinity of
branch cut my =0, (3) the path D, which also has two lines near branch cut
my =0, and finally (4) the semicircle of an infinitely large radius.

Im(m)

Re (m)
Fig. 8.2 The closed path of integration in the upper part of the complex plane of m.
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Since the integrand in Eq. (8.50) has the term exp(imL), the integral
along this last part is equal to zero. Inside the closed path D the integrand
is an analytical function and we can write

%m? Cexp (imL)dm=0 or

D

J m: C exp (imL) dm = J m; C exp (imL) dm + J m5C exp (imy L) dm
—00 D, D,

(8.53)

Integrating along the path, where Rem; =0, we introduce a new var-
iable of integration my = it. Here tis the parameter of the branch line, which
varies from 0O to oo on the right side of the branch line and from —oco to 0 on
its left, since the radical changes sign bypassing around the branch point. The
variable of integration m along the contour D; can be presented as

m=(—F+1&)"? =i(f —in)"?
and correspondingly

itdt o .2 . on1)/2
dm :m and mp = (—l + my — li’lz)
1

where
2 . d 2 .
=i and 1, =1y oW

Thus, for the integral along both sides around the branch cut m; =0 we
have the following expression:

©
J(—tz |:M42K()(Wl2a1)K1 (itm) — itK()(ita1)K1 (m2a1)
MQKQ(W!QM )11 (ita1) +itKy (1442611 )Io(itﬂ1)

dt

. ) . on1/2
mzKo(m2a1)K1(—ita1) + i[K()(—ital)Kl (l’l’l2a1):| 1texp |:L(t - li/l]) i|
MQK()(MQQ1)11(—ita1) — ilK1(ﬂ12d1)I()(—ita1) (tZ _ li/l%)lp

(8.54)
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Making use of relations

lo(-itéh) = I()(ita1), Ko(-itéh) = Ko(itéh) + iﬂ[()(ita1)

. ) . ) ) , (8.55)
11(—1ta1) = —I1(lta1), K; (—1ta1) =—-K; (zta1) + 17rI1(zta1)

we can present the second term in parentheses of Eq. (8.54) in the following
form:

mzKo(m2a1)[—K1 (ita1) +irl (il‘cﬁ)] +itKy (m2a1)[Ko(ita1) + iﬂ[o(itdl)]
—WlZKo(I’H2a1 )11 (itm) — itKl (WlQﬂOIQ(iIﬂO

. m2K0(m2)K1 (lt) —itKy (mZ)KU(lI)

= — i
my Ko (ma) 1 (it) + it Ky (m2) Iy (it)

(8.56)

Inasmuch as the first terms in Egs. (8.56), (8.54) are the same, the integral
along the path Dy is greatly simplified and we have:

” J 3 exp [—L(tz—in%)] i

. 1/2
Jo e

This integral, which is being multiplied by 1/7, represents the field of
magnetic dipole b, in a uniform medium with conductivity y;. Thus, as
follows from Egs. (8.52), (8.53) the field on the borehole axis is expressed
in terms of the integral along the branch cut D,, Rem, =0 only. Replacing
the variable m, = it we have:

itd
m:i(tz—ing)l/z, dm:W, m1:[—t2+i(n§—nf)]l/2
—n;

Respectively, the integral along the path D, can be rewritten as

0
J 5 |:ill<()(ita1)K1 (mlal) — WllK()(Wu al)K1 (itd1)
my (= . ;
ltKo(ltm )I1 (Wl] 611) + my I()(Wl] a )K1 (ltch)

dt

. ) ) 1/2
_itK()(—ita])K1 (Wl1g1) — le()(mlal)Kl (—ita1)] itexp [—L(t — an) :|
—itKo(—itay) Iy (myay) + myIy(myay ) Ky (itay) (2 — mg)lﬁ

(8.57)
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Using Eq. (8.55) we obtain for the numerator inside large square brackets
of Eq. (8.57), the following expression:

myit[ly(myay) Ky (myay) + Iy (myay) Ko (myay)]
X [Ko(—itch )K1 (itm ) + Ko(itm )K] (—ita1 )]
Inasmuch as

() Ka () + I (x) Ko () = -

the numerator is further reduced to iz/a7, and the field b% on the borehole
axis is expressed through the integral along the right-hand side of the branch
cut D,

I3 ]0 m?texp {—L(t2 nz)uz}
O ll’l2 /2 ltK()(ltal)I1(m1a1) +m K (ltal)l()(l’l’uch)] (858)

dt
X
[—itK()(—ita1)11 (I’I’l1 a1) +m K (-itm )10(1411 ay )]

The integrand can be presented as a product of two functions: F(my, 1)
and

£ exp [—L(t2 - ng)}
(=)'

The last function is the integrand of Somerfield integral describing field
in a uniform medium with conductivity y,. For the sufficiently long probes
this integral is mainly defined by an initial part of the integration path when
m is small and function F(my, f) varies gradually. By taking this slow-varying
function out of the integral and assuming m = 0, we receive

1
bt b (koL)
B8 -1
or
b exp (ikyL)(1 —iky L) (8.59)

|8 -]
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For the conductivity of the borehole being much greater than conduc-
tivity of a surrounding medium we have:

b*

T ————exp(ikrL)(1 —ikL 8.60
z Ig(lkﬂu) P( 2 )( 2 ) ( )

The expression (8.59) was first derived by V. Sokolov [1]. He also obtained
the asymptotic formula for the medium with an invasion zone. In this case there
are three contours around the branch cuts: along my =0, m, =0, and m3 = 0.
Integration along my = 0 gives the field b};_(y,), the integral along branch cut
my = 01isequal to zero, and an expression for the field contains the integral along
branch cutms = 0 only. In more general cases of  cylindrical or plane interfaces
the integration is also reduced to that along the branch cut m,, + ; = 0 only. For
the two cylindrical interfaces we have

1
i (CIE TR e

and it is reduced to Eq. (8.59) either at k, = k3 or k; = k. Here b¥(k3L) is
the complex amplitude of the field in a uniform medium with a resistivity of

b*

b (ks L) (8.61)

a formation.

As was pointed out in Chapter 1, the behavior of the quasistationary field
often reflects some features of a propagation of the field. Suppose that there is
one cylindrical interface. Then one may imagine that the electromagnetic
field travels from the dipole to an observation point by two passes. One is
the wave moving through the borehole, while the second wave moves from
the dipole to the boundary, then along the borehole surface inside the for-
mation, and the last interval is located between the borehole surface and an
observation point, Fig. 8.3A and B.

The last path suggests that the field can be described by the equation

b =1(ky, ko) b2 (ko L)

Comparison with Eq. (8.59) shows that
F=1"[ (8- 1) "]

Assuming that the resistivity of the formation is larger than the resistivity
of the borehole, it is natural to expect that with increase of the probe length
the second wave plays the dominant role, while the influence of the wave,
propagating through the borehole, is negligible. Similar interpretation can
be given to Eq. (8.61). Note that wave paths for the three-coil probe have
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Ra ‘L
R 4’ e 2
T% ; ‘t
‘ P1 P2 ‘ P1 P2
A (B)

Fig. 8.3 (A) Wave path in two-coil probe. (B) Wave path in three-coil probe.

common elements, located in the borehole, and this leads to a very impor-
tant practical application. Let us present the complex amplitude of the field,
given by Eq. (8.61), as

bt = A, - A(ksL) exp [ipy (k3 L)] (8.62)

where functions A* and ¢* depend on the conductivity and radii of
the borehole and invasion zone and have no dependency on the probe
length L. The rest of Eq. (8.62) coincides with the complex amplitude of
the field in a uniform medium with resistivity of the formation. Suppose that
the field is measured at two distances L; and L, from the dipole source,
corresponding to the far zone. By definition the electromotive force in
the receiver is equal to

and their ratio is

Then Eq. (8.62) gives
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In particular, if moments of receiver coils are chosen in such a way that
primary electromotive forces E are the same, Eq. (8.62) gives

E(L) _ bi(Lz)‘ :A(k3L2)
E(L)| |b(Ly)| A(ksLy)
and
Agp = (ksLa) — o (ksLy) (8.63)

As is seen from Eq. (8.63), these two quantities at the far zone, are insen-
sitive to parameters of the borehole and invasion zone, and this remarkable
fact is the main reason why these measurements are used in some modifica-
tions of the induction logging (for example, VIKIZ system). Since amplitudes
are measured in the presence of the primary field, the operating frequencies in
such logging systems should be high enough to increase the secondary field
and provide sufficient sensitivity to properties of the formation.

As soon as an observation point is located at the far zone the further
increase of the probe length doesn’t influence the depth of investigation.
From Eq. (8.63) we see that at this zone the ratio of amplitudes and difter-
ence of phases are independent of parameters of the borehole and invasion
zone. To utilize these measurements the three-coil probe, described earlier
as the simplest “focusing” probe, is used. (Historically the measurements of
amplitudes ratio and phase differences were first introduced in dielectric and
later were also applied in induction logging).

8.4.2 Validity of the Approximate Solution

Now we evaluate a range of medium parameters, frequency, and probe
length where approximation (8.59) is valid. First, consider the low fre-
quency part of spectrum when

k5 — k7 |a7 <1
Then, bearing in mind that

2
Io(x)z1+%, if x<1

we have:
1
B8]

1+ (6 - B)d
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Thus

1 . un un
b %?a’/‘o(ﬁ —72)aib?" (ko L) + b2 (k2 L)
We are interested in the low-frequency spectrum, thus the first term can

be simplified to

* va) un
b %1$(71—72)‘ﬁ+bz (kaL)

z
or

L2
b =i 2K
2

1
+ 6" (kL)

(71 —72);

The latter coincides with an equation derived by hybrid method for the
case when the probe length exceeds several times the size of the borehole
(Chapter 7). In particular, considering the quadrature component only
the second term b2"(k,L) can be replaced with

iopyy,L*
2

yielding to the expression for

iop, L2 1 1
b =— —+p(1-—=
z ) |:}/1 az 72 < az

corresponding to the Doll’s approximation. Therefore, Eq. (8.59) certainly

gives the correct result at the range of small parameters when the probe
length is sufficiently large. Also, this equation describes the field when
the argument of Bessel function is very small and the distance L is large

‘(ki—kf)lpm <1 and a>1

Considering propagation of waves along the paths, shown in Fig. 8.3A,
one may assume that Eq. (8.59) is also valid when

|I€1L‘ >1 and Y1 >y2

In fact, in such case the wave propagating inside of the borehole decays
more rapidly. To confirm these assumptions we compare exact solution ver-
sus an approximate one using Eq. (8.59). The comparison is conducted for
the three-coil probe using two functions Tj(@) and T>(a):
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Fig. 8.4 Comparison of approximate and exact solution. Attenuation (A) and phase dif-
ference (B). p; =0.10hmm, y,/y,; =1/100.

I(Ly)
4(Ly)

Ag
Ag’
shown in Figs. 8.4 and 8.5. AL and A(L) are field amplitudes,
corresponding to the approximate (8.59) and exact solution, respectively.

T (a0 ' . and Tx(a)=

In practice, instead of ratio of amplitudes we use the attenuation:

A
201log =<

3
. . M, Ly .
assuming that receiving moments — = ( — | selected to provide zero
2 1

attenuation of the field in the air. Index of curves is frequencies, used in
the VIKIZ. In the calculations: a; =0.1 m, L,/L; =0.7.
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Fig. 8.5 Comparison of approximate and exact solution. Attenuation (A) and phase dif-
ference (B). p; =0.50hmm, y,/y,; =1/20.
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As we see even in a quite conducive borehole (y,/y; =1/100) the
approximate solution (8.59) provides an accurate estimate of both attenua-
tion (Fig. 8.4A) and phase difference (Fig. 8.4) with an error less than 10% if
a > 10: the lower the frequency, lesser the error. In the case of less conduc-
tive borehole (y,/y; =1/20) the approximate solution describes responses
with an error not exceeding 5% (Fig. 8.5), when

a>5 (8.64)

Similar conditions can be derived when there is an invasion zone: the
validity of approximation is shifted toward greater distances from the dipole
and it deteriorates with increase of conductivity and radius of the invasion.

8.4.3 Sensitivity to the Formation of Amplitudes Ratio and
Phase Difference (Three-Coil Probe)

As was pointed out earlier Egs. (8.59), (8.61) show that attenuation and
phase difference at the far zone allows one essentially to reduce an influence
of the borehole and invasion. Let us consider sensitivity of these two quan-
tities to a change of a formation conductivity and, as example, choose fre-
quencies used in the VIKIZ system, Fig. 8.6, assuming that L4 =1 m,
L, =0.7 m, and p; = 0.50hmm. Along the vertical axis we plot either atten-
uation Fig. 8.6A or phase difference Fig. 8.6B, while a ratio of conductivities
is plotted along the horizontal axis. Index of curves is frequency. At relatively
small resistivity contrast y,/y; > 0.1 attenuation and phase difference have
practically the same sensitivity (ramp of the curve) to the conductivity of
formation, but attenuation is more sensitive when the contrast increases,

72/71 <0.1.
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Fig. 8.6 (A) Sensitivity to the conductivity of formation of amplitude ratio and (B) phase
difference.
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It is also useful to compare sensitivity of attenuation At(B7) and phase
difference A¢(B?) of probes with different length to the conductivity of for-
mation. With this purpose in mind we calculate normalized attenuation and
phase difference by the corresponding values measured in uniform medium
with resistivity of formation:

_ Ag(BY)

_ 4B
e " a9(6:7)

=|—F———=| and Pag(a

At(B) 5(@)
shown in Figs. 8.7 and 8.8. Here At(Bz”") and A¢(BI"") are attenuation
and phase difference measured in uniform medium with resistivity of a for-
mation. Calculations are performed for the case when f=3.5 MHz,
a1 =0.1 m, p; =0.5 ohmm, L,/L; =0.7. Index of curves y,/y;.
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Fig. 8.7 (A) Sensitivity of attenuation P;(a) and (B) phase difference P,(a) to the conduc-
tivity of formation.
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Fig. 8.8 (A) Sensitivity of attenuation, P4(a), and (B) phase difference P,,(a) to the con-
ductivity of formation in the presence of invasion zone.
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Comparison shows that when a > 5, attenuation and phase difference
have similar sensitivity to the formation and almost the same probe length
is needed to eliminate an influence of the borehole. Also, Fig. 8.8 illustrates
behavior of these functions in the presence of invasion zone, when y3/y is
varying and ay /a1 =4,7,/y, =0.1.

Clearly, in the presence of invasion the attenuation is less than phase dif-
ference affected by the borehole, especially when parameter a > 7.

8.4.4 The Main Features of the Field of the Two-Coil Probe

Now consider the main features of frequency responses of this field on the
borehole axis. Results of numerical modeling presented in this section are
based on calculations of the field b., given by Eq. (8.19) for the models
of a medium with one and two cylindrical interfaces. As we already know:

1. Vertical magnetic dipole induces eddy currents located in horizontal
planes that have shape of circles with the common center on the bore-
hole axis. An electrical field has only azimuthal component Eg, but the
magnetic field has two components, B,and B.. On the borehole axis the
magnetic field is oriented vertically, while both the electrical field, Ej,
and the radial component of magnetic field, B, are equal to zero.

2. Induced currents density, jg, at any point of medium is characterized
by the in-phase and quadrature component. Unlike the in-phase com-
ponent the quadrature components is shifted in phase by 90 degrees
with respect to the dipole current. Distributions of these components,
Injg, and, Qjy, are essentially different. The quadrature component is
dominant near the source and rapidly decreases with an increase of the
distance from the dipole, frequency, and conductivity of formation. In
the range where Qj; dominates, the skin effect manifests itself similarly
to a uniform medium with resistivity of the formation.

3. Near the source the quadrature component Qjy of the current density is
directly proportional to the frequency, but with an increase of the dis-
tance from the source it becomes stronger subjected to an influence of
the skin effect.

4. Near the dipole the in-phase component Injy is significantly less than
the quadrature one; with an increase of the distance it reaches a max-
imum and then rapidly approaches zero.

5. In accordance with the Biot-Savart law both the quadrature and the
in-phase component of the field are determined by the distribution
of the quadrature and in-phase component of current density,
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respectively. Examples of the vertical component of magnetic field,
expressed in units of the primary field, are presented in Figs. 8.9 and
8.10 where the quadrature Qb% and in-phase Inb? components are
expressed in units of the primary field. The ratio a;/4, is plotted along
the abscissa; 4y =270, is the wave length in the borehole, d; is the skin
depth. The index of curves is po/p; (Fig. 8.9) and p3/p; (Fig. 8.10). For
a  three-layered medium, calculations are performed for
P2/p1=4ax/a; =4, L/a; = 10.

The quadrature component increases linearly with frequency,
reaches a maximum and then tends to zero. (The oscillating behavior
of Qb. at the right part of the response (aj/4; — o) is not shown
because of a logarithmic scale.)
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Fig. 8.9 Frequency responses of field components in a two-layered formation.
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Fig. 8.10 Frequency responses of field components in a three-layered formation.
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6.

10.

The left-hand asymptote of the frequency response of the quadrature
component is a straight line with a slope of 63°30" with respect to
the horizontal axis. This part of the response corresponds to the case
when intensity of induced currents is defined only by the primary mag-
netic flux and resistivity of a medium. As was mentioned above, the area
where induced currents, shifted in phase by 90 degrees, increases with a
decrease of frequency and an increase of formation resistivity. At the
same time, with an increase of the probe length the volume of the
formation contributing to the measured signal increases and, corre-
spondingly, the influence of the medium near the probe becomes
smaller. For this reason the longer the probe the earlier the deviation
of the quadrature component from its left-hand asymptote begins.
The part of the frequency response, Qb. which practically coincides
with its left-hand asymptote is called Doll’s range. Within this range
the quadrature component is significantly larger than the secondary
in-phase component.

In a two-layered medium when resistivity of the borehole exceeds that
of the formation (p; > p,) the departure from Doll’s range takes place at
the same values of parameter L/J, as in a uniform medium with
conductivity y5.

If conductivity of the borehole exceeds that of the formation, y; > 7,,
and the skin depth in the borehole is significantly larger than its radius,
the Doll’s range is shifted toward larger values of parameter L/J,.

In this case a relative contribution of induced currents, subjected
to the skin effect in the formation, is smaller than in the case of a uni-
form medium with conductivity y,. Similar features are observed for
a three-layered medium: with an increase of the conductivity of the
borehole and invasion, as well as its radius a,, the Doll’s range is shifted
towards larger values of L/d5; compared to a uniform medium with
conductivity ¥s.

With an increase of parameter a;/4; the frequency response Qb. departs
from the left-hand asymptote and within a certain range of parameter
a1/ Aq there is practically no skin effect neither in the borehole nor in the
invasion zone. But in the formation the skin effect manifests itself in the
same manner as in a uniform medium with the resistivity of formation.
This low-frequency range is the most favorable one for the “focusing”
probes. The main features of the field within this range have been
described in detail earlier. This range of a,/4, is favorable for application

of the hybrid method.
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11.

12.

13.

14.

15.

16.

Frequency responses of the quadrature component, Qb., for a two-
layered medium has one maximum, which to some extent increases
with an increase of resistivity of the borehole. The position of the
maximum is mainly defined by resistivity of the formation. For exam-
ple, an increase of the borehole conductivity by a factor of 100 only
slightly shifts the maximum to a range of lower frequencies. In some
cases, when the invasion zones are relatively large, we can observe
two maxima.

With increase of the frequency the skin effect leads to increased influ-
ence of the borehole and reduced sensitivity to the formation; in the
presence of thick conductive invasion frequency response in a three-
layered medium almost coincides with response in a two-layered
medium with resistivity of invasion p,. Within Doll’s range, the influ-
ence of the borehole is defined by geometric factors and distribution of
resistivity in the medium. Within a broad range of frequencies, far
beyond the Doll’s range, the influence of the borehole and invasion
zone depend on their geometric factors and resistivity, but the influence
of the formation is determined by the skin depth in a medium with
resistivity of formation pj.

In a wide range of frequencies, when the skin depth J; is several times
larger than the borehole radius, the influence of resistive borehole is not
significant and the frequency response of the field, Qb., practically coin-
cides with that corresponding to a uniform medium with the resistivity
of the formation.

Since the response Qb has a maximum the same value of the quadrature
component can be observed at two different values of a;/4,. The ambi-
guity can be removed by using either an additional measurement or
prior information.

Selection of frequencies for induction logging cannot be based only on
the study of the field in a medium with cylindrical interfaces. However,
these calculations allow us to study radial characteristics of two-coil pro-
bes, as well as probes consisting of several coils. In particular, the calcu-
lations permit to establish a range of frequencies and resistivities
favorable for application of “focusing” multicoil probes.

Although both in-phase and quadrature component depend on the
same geo-electric properties of formation, their frequency responses
are quite different. At the range of small parameter a;/4; (low frequen-

3/2

cies, high resistivity) the function Inb. tends to zero as @™, and with a

decrease of frequency the ratio of the in-phase and quadrature
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17.

18.

components rapidly decreases. In this range the in-phase component
Inb’. depends on the conductivity of formation as y*'%. With an increase
of the ratio a;/4; the in-phase component of the secondary field
increases and then becomes greater than the quadrature component.
In particular, when skin depth is smaller than the borehole radius,
the in-phase component prevails and function Inb. approaches —1 indi-
cating the concentration of the induced currents in the borehole.
With a decrease of frequency maximum of the induced currents is
shifted deeper from the borehole providing increased sensitivity of
the in-phase component to the remote part of the formation. But com-
plexity in the cancelation of the primary field, coinciding with the
in-phase secondary component, makes application of this component
quite difficult. For this reason it is more practical to use a quadrature
component. Because of the strong skin effect at the high frequency,
the induced currents are concentrated near the borehole, and quadrature
component of the field mainly provides information about an invasion
zone and the borehole. At the same time decrease of the frequency leads
to increase of the depth of investigation only up to a certain limit. Below
this limit contribution of the borehole and invasion into the measure-
ments remains practically the same and quite significant, especially for
the short-spaced probes. In other words, the depth of investigation
is limited, regardless of frequency. To overcome the limit one
should increase a length of the probe. This outlines a current trend in
the development of advanced logging tools toward multiarray systems
with frequencies in the range of tens to thousands of kilohertz. These
systems mainly rely either upon measurements of the quadrature com-
ponent or attenuation and phase difference. Also, as follows from
Eq. (8.43), combination of quadrature components at two different
frequencies

QB.(w2)  QB:(w1)

(] 1

allows us to remove leading linear term and achieve a depth of inves-
tigation, similar to that of the in-phase component. As was mentioned
above, the presence of this linear term doesn’t permit an increased depth
of investigation by a simple decrease of the frequency.

When invasion zone is absent and measurements are performed in the
far zone, the sensitivities of the attenuation and phase difference to the
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formation are practically the same. But in the presence of invasion
attenuation is significantly more sensitive to the properties of formation.

8.5 DISPLACEMENT OF THE PROBE FROM THE
BOREHOLE AXIS

In real conditions the induction probe may be shifted from the bore-
hole axis. Below we study the effect of this displacement on the readings of
the two- and three-coil probes. Shift of the probe leads to change in the
geometry of the induced currents and appearance of the surface charges at
the boundary between borehole and formation. Since the surface electric
charges give rise to the electric field, the induced currents are generated
by both an inductive electric field and charges. In general, these vortex
and galvanic parts are related to each other, but at the range of small induc-
tion number they are independent.

Inasmuch as the density of charges depends on the conductivity of the
borehole and formation the concept of the geometric factor is not applicable
anymore. However, there is one exception, namely when conductivity of
the formation y, is small and the coefficient

T

Ki>
Y1t

is close to unity. At the range of small induction number the charges are
mainly created by the primary electric field, and correspondingly we can
expect that the in-phase component of the secondary field tends to that
in a uniform medium with resistivity of the formation:

Inb® — Inb™"(y,), if p—0

In other words, it is less sensitive to the probe displacement than the
quadrature component. The same tendency is observed in dual-frequency
transformation:

QB:(w1) QB(@s)

(] (O]

which has reduced sensitivity to the near borehole zone. Of course, when
the probe is shifted from the borehole axis the current lines aren’t circles any-
more and have some vertical component. In general, determination of the
magnetic field with no symmetry is rather a complicated problem, which is
usually solved numerically either by a finite element or finite difference
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techniques. But if the medium is symmetrical one, the semianalytical
approach allows us to reduce the original non 1D problem to the series
of 1D problems [2]. Our analysis of an influence of the probe displacement
is based on the use of the last approach. First we consider the range of small
induction number when interaction of currents inside the borehole can be
neglected. Then, by analogy with the response of the two-coil probe we
have:

2.2
Wp Y a0

> [G(a, s, d) +sG3(a, s, d)] (8.64)

Qb=
Here

a=L/a;, s=y,/y;, d=r/a

The parameter d characterizes a displacement of the probe, normalized
by the borehole radius. Inasmuch as analytical expression for the field is
absent, we cannot derive formulas for the function Gd(a, 0, d), and particu-
larly the asymptote for @ >> 1. Nevertheless we can try to determine the
function G approximately for the limiting case of a nonconductive forma-
tion, s = 0. In such case the influence of galvanic part of the field is maximal
and there is no normal component of the current on the borehole surface.
From Eq. (8.64) we obtain

2

F=a’G! a,0,d)=———
0= e

Qb: (8.65)

Behavior of the function F(a) is shown in Fig. 8.11, where index of cur-
ves is the parameter d and p; =1 ohmm, 4 =0.1 m.

The displacement of the probe makes strong influence on the function
F(a), which approaches the constant value with increase of the probe length.
In other words, the function G‘li, characterizing an influence of the borehole,
decreases as 1/a:

Gl =1/, if a>1

regardless of the displacement. Correspondingly, with an increase of a the
normalized response of the two-coil probe Qb7 also tends to the constant,
but the field decays as the primary field. With an increase of d transition
to the asymptote is observed at larger values of the probe length. Bearing
in mind the main features of the three-coil probe, we can expect reduction
of the effect of displacement on this probe.
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Fig. 8.11 Function F(a). Index is a displacement of the probe.

When parameter s =%, /y, is small and charge density reaches a maximal
value, the function G has almost the same asymptotic behavior as in the case
when s=0. To confirm this behavior we use a ratio

r(Qz) = Qbi(a, d, s)/ Qb"(1>)

indicating closeness of the response Qb. to that in the homogeneous
medium with conductivity y,. Results of calculations for two-colil,
Fig. 8.12A, and three-coil, Fig. 8.12B, probes at small induction number
are presented below. Parameter a varies from 2 to 20, while other
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Fig.8.12 (A) Effect of probe displacement on two-coil and (B) three-coil probe. Function
r(Qz) = Qbj(a, d,s)/Qb}*" (y,). Index is a displacement of the probe.
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parameters are: ¢y = 0.1 m, p; =0.2 ohmm and s=0.02. The index of cur-
ves is the parameter d.

‘With an increase of the probe length all curves approach unity, but in the
case of three-coil probe Fig. 8.12B it takes place at much smaller probe
length. Bearing in mind the main feature of the latter, we can expect such
asymptotic behavior of the function Gf regardless of the contrast s. In other
words, the three-coil probe demonstrates “focusing” properties.

[t is noticeable that an increase of the displacement for the two-coil probe
leads to the reduced influence of the borehole, while for the three-coil probe
the opposite tendency takes place. This behavior is observed in a wide range
of frequencies typical for induction logging.

Earlier we pointed out that at the low frequency limit the in-phase
component of the secondary field is less sensitive to the borehole than the
quadrature component. This is confirmed by Fig. 8.13, where effect of dis-
placement on the two-coil probe at frequency f = 50 kHz is presented in the
form of a ratio

(1) = (1 = 1)/ (b (7) = 1)

indicating closeness of the response Inb? to that in the homogeneous
medium with conductivity y,. Here p; =0.2 ohmm, s=0.02, ¢y =0.1 m.

The data clearly show reduced impact of the displacement on the
in-phase component compared to the two-coil quadrature component

r(Iny) 1 : i ;
| \ d=0.0 =50 KHz
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Fig. 8.13 Effect of the displacement on the in-phase component of the two-coil probe
r(In;) = (Inb; — 1)/ (Inb;*" (y,) — 1). Index is a displacement of the probe.
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Fig. 8.14 Effects of displacement on (A) attenuation and (B) phase difference. Index is a
displacement of the probe.

(Fig. 8.12A), although it is more pronounced compared to the three-coil
quadrature component (Fig. 8.12B). Finally, we compare the effect of
displacement on the attenuation and phase difference for the VIKIZ at
the frequency of 3.5 MHz. The formation model is the same as in
Fig. 8.13. The results of calculations are in Fig. 8.14.

Along y-axis we show normalized functions P.(a) and Pag(a)
representing attenuation and phase difference normalized by that in a uni-
form medium with conductivity y,. Fig. 8.14A and B shows that the atten-
uation is less sensitive to the probe displacement compared to the phase
difference. The graphs above can be used to perform corrections for the
displacement when the parameters of the borehole and value of the displace-
ment are known.
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In this chapter we consider vertical responses of two-coil induction probes
located at different locations with respect to the horizontal interfaces
between a bed and a surrounding medium. Special attention is paid to
the effects that the frequency has on the vertical responses of the probe as
well as the ratio of conductivities, and geometric parameters such as forma-
tion thickness and probe length and position.

9.1 VERTICAL COMPONENT OF THE FIELD
OF A MAGNETIC DIPOLE

Suppose that there are two parallel interfaces that divide a space into
three parts as shown in Fig. 9.1. The vertical magnetic dipole is placed at the
origin of the cylindrical system of coordinates, and its moment is oriented
along the z-axis.

The magnetic permeability of the medium is equal to 4z x 1077 H/m. As
in the case of a medium with cylindrical interfaces, we introduce the vector
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Fig. 9.1 (A) and (B) Magnetic dipole in a medium with horizontal boundaries.
(C) Magnetic dipole in a medium with thin layer.

potential of the electrical type with complex amplitude obeying the Helm-
holtz equation:

VA" + A" =0 (9.1)
As was shown before
E'=anrlA*, B* =k*A* + graddiv A* 9.2)

Due to the axial symmetry the boundary value problem can be solved
using only the z-component of the vector potential:

A" =(0,0,A47) 9.3)
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which depends on two coordinates: r and z. Then Egs. (9.2), (9.3) give

B* o 82Ai B* o kZA* + 82AZ B* _ 0
N e ) P
and
Er :E¢:0, Ed):—lCOﬂ()E (94)

From the continuity of tangential components of the field, boundary
conditions for the vector potential at interfaces are:
0A;. O0A;.
0z 0z

Near the origin of the coordinate system, where the dipole is located, the

A=A, and

if z=h (9.5)

field tends to that of a magnetic dipole in a uniform medium. Therefore, for
the vector potential we have:

—), as R—0 (9.6)
R

where R? = 1* + 2% At infinity (R — oo), the field and correspondingly, the
vector potential, vanish. Thus, to find the field, it is necessary to solve the
equation:

V2AL + AL =0 (9.7)

and satisfy conditions (9.5) as well as a corresponding behavior of the field
near the dipole and at infinity. The equation above is the Helmholtz equa-
tion and, in a cylindrical system of coordinates, it can be presented in the
form:

DPA*  10AF  OPAT

+o 24 +EAT=0
or? r Or 0z? s

*

0A
because 90 0. Letting A* = U(r) V() and applying the method of sep-

aration of variables, we obtain two ordinary differential equations:

PU(r) 1dU(@r) v 5 s
42 +m2U=0 and —— (=) V =0 9.8
dr? rdr e (" =) ©8)

where m is the separation constant. The first equation of the set (9.8) is a

Bessel equation, and its solutions are Bessel functions of the first and second

kind:
U(r) = AJo(mr) + BYy(mr)
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Function Yy(mr) tends to infinity as r— 0, and therefore it cannot
describe a field. The solution of the second equation is:

5

V(2) = Ce(m=k)"= 4 pelor=F)

12

Thus, the general solution of Eq. (9.7) can be presented in the form:

(o]

A=

[N1 o122 4 Ny o= (k)1 /22 Jo(mr)dm (9.9)
0

The sign of radical (m2 — letz) '/2 i chosen in such way that its real part is

positive:

1/2

Re(m”—k) " >0 (9.10)

We present the field in a medium where the dipole is located as a sum:

. _ oMy exp (ikR)
12 4r R

+ A 9.11)

where A% describes the secondary field. It is known that the vector potential
of the magnetic dipole is expressed as a Sommerfeld integral:

exp (ikR)

R - Jo (m? _mkz)uz €xXp [(mz - Iez) 1/2Z:|Jo(f’m’)dm

Now we derive formulas for the vector potential for various positions of
the dipole with respect to the interfaces:

Case 1: The magnetic dipole is located outside the bed, as shown in

Fig. 9.1A
In accordance with Egs. (9.9), (9.11) and taking into account the con-
dition at infinity, expressions for the vector potential in each part of a
medium can be written in the form:

M,

i _ Moo ﬁ[”“M + Dye"* | Jo(mr)dm z <y

= 4ﬂ' 0 my

N H M oo hz —myz

h. = Z.n' . [Dze’”~ + D3€ " ]]()(mr)dm l/l1 S 4 S I/l2 (912)
M, [® N

i :”Z I Dye ™o (mr)dm z2>h
T Jo
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Here hy is the distance from the dipole to the nearest interface,

h, =h; + H, and H is the bed thickness. From boundary conditions,
Eq. (9.5), we obtain a system of linear equations with respect to
Dl’ DZ’ D3, and D4:

M h J —-

—e mi _,’_ D1€m1 1 — Dzemz 4| + D3€ mohq

my

J h / J
_menﬁ al + ml eﬂl] 1 — szzemz 1 m2D3€m2 1 (913)
Dgt’mzhz 4 D36—1113hg — D4e—mlhg

m2D26m2hg o m21)3 oM hy —m 1)4 €7m1h3

Solving this system we have:

D — mK]Qe_zmlh] (1 _ 6—21112H) B 2mK]26—(m1 + "’2)”11 6_2"’2H
11— 5 2 — 5
(1= Ky (1 + m2)(1 = K2
D 2me—(m1—mg)hl D — 4my mze—(m—mz)H
3 — 5 4 —
(1 +m2) (1 — Kye2mH) (my +mp)? (1 — KZe=2mH)
(9.14)
Substituting these expressions for the coefficients in Eq. (9.12), we
have:
_,—2m — h—z)
. _MOMO ooﬂ 1111‘z|_K12(1 o 2m H)e my (2
Ay = 4z )y m 4 1= K0 2l Jo(mr)dm
M, [® 2m€7m1111 efmz(zflu) 1+ K eng(thlfH)
Ay, =H [ - ] Jo(mr)dm  (9.15)
4 )o (my +m2) (1 — Ky H)
Mo [® 4 —(my—my)H ,—myz
Az, =1 e ‘ Jo(mr)dm
) 4 Jo (my +mo)”(1— Kie 2mH)

Here =z is the distance between the dipole and an observation point.
As follows from these equations, the vertical component of the magnetic
field, measured with the two-coil probe at the z-axis when r=0 is:

dm if f>1

(1) 1P nd Kip(1— e 2m%)e™ ey
[92 = bo:(yl) —EJO m_l 1— K122€72mga

b(z)* Joo m?)e—wn/}e—mz(l—ﬂ) [1 + K1262mz(1—/3—11)} p 1 >ﬂ >1
= —Q
z 0 (WH + MQ)(l _K122€—2mza) m 1 ZpP=
© 53 —(my—my)a ,—my
PO = J e C  im if f<1
0 (my +my)~(1— Kie 2ma)

(9.16)
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Here, b7 is the complex amplitude of the field, expressed in units of
the primary field equal to b’ =2u,M,/4n=z>. Also:

2 2 2\1/2 H hy
Kyp=——, m;:(m —kiz) , a=—, f=—
I’H2+ﬂ/l1 4 4

H is the bed thickness, and b;)_ is the field in a uniform medium with
conductivity y;. The last equation of the set (9.16) corresponds to the
case of the layer located between the dipole and the observation point,
and as it follows from this formula, the field does not depend on the posi-
tion of the layer with respect to the probe coils.

Case 2: The magnetic dipole is located within the bed, as shown in

Fig. 9.1B
For the dipole located within the bed, expressions for the vector poten-
tial can be written in the form:

M, (® N
AL Mo Dye" =]y (mr)dm if 2<hy
4z ),
My [ ~ ) .
A5, — 0 I pmlal 4 Dye™* + Dsye "% | Jo(mr)dm  if hy <z<Iy
4z 0 my
M (Se]
A, _ Hofo Dye "o (mr)dm, if z2>Mhy
N 4z ),

(9.17)

where h s the distance from the dipole to the upper interface of the bed,
h, = H — hy, and H is the bed thickness. To determine the unknown
coeflicients, we use the boundary conditions, which lead to the follow-
ing system:

m _ _
D1 e_mlllz —— moho + D2€ moho + D3€mzhz
myz

mDye"" = me™"" + myDye™"" — my Dye (9.18)

m _ ., _
D4€7m1h1 =" mahy + Dzemgm + D3€ mahy
my

—f’l’l1D4€_ml h — _me—mghl 4 mZDzemzlu _ mZDSe—mz/u
In this case, the field is considered only inside the bed, inasmuch as

expressions for the field outside the bed can be derived from the set of
Eq. (9.16). Solving the system (9.18) we find:
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mKlze—Zmzlu (1 + K12€_2m2hz)

D, = d
2 o (1 _ K122€—21112H) an

(9.19)
mK12€72mZhZ (1 + K12672mzh1 )

D, =
3 l’l/l2(1 _ K122€—2mzH)

Substituting these expressions into the second equation of (9.17), we

obtain:
A — MOM) Jwﬁerﬂ2|z
> 4 )y mo
mK, [efmg(Zhl —2) 4 efmz(th +2) 4 2K12€721112H cosh mzz]
5 Jo(mr)dm
my (1 — Kiye2mH)
9.20)

In accordance with Egs. (9.4), (9.20), the expression for the vertical
component of the magnetic field on the dipole axis related to the primary
field is:

1 Joo m3K12 [e—(l +2a)my 4 e—(2a—2ﬂ—1)m2 + 2K126—2amz cosh mZ]

2 0 (1 — Kgye=2am)

m,

2
9.21)

where a = H/z, B = hy/z. If coils of the probe are located symmetrically
with respect to the interfaces, 2 = a — 1, the latter equation can be pres-
ented as:

co 3 —2amy o
K 2 ¢ + K5 cosh
b= +J onee f 1250 dm 9.22)

_ K2 ,—2am
0 my 1 — Kj,e=am

Next we derive equations for the field in one special case.

9.2 THE FIELD OF THE VERTICAL MAGNETIC DIPOLE
IN THE PRESENCE OF A THIN CONDUCTING PLANE

Let us assume that the length of the probe is significantly greater than
the thickness of the bed (Fig. 9.1C). Then, if its conductivity is much larger
than that of the surrounding medium and the skin depth inside the bed is
much greater than its thickness, the bed can be replaced by a thin conducting
plane with conductance S, equal to the product of the conductivity and
thickness of this layer.
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Such replacement enables one to use approximate conditions—which
do not rely on the field inside the bed—instead of the exact boundary con-
ditions. From a continuity of the tangential component of the electrical field
we have:

E,=E;, (9.23)

Circulation of the magnetic field along the contour abed is equal to the
current piercing this contour (Fig. 9.1C), hence we can write:

ngdl = By,dr — By, dr = pydrdhEy, h— 0

or
B}, — By, =,SE, 9.24)
where Sis the conductance of the thin layer. Correspondingly, the boundary

conditions for the vector potential have the form:

047 o4,
0z 0z

For the function A% outside the conducting plane we have:

Al =45, = —iwpSA5, (9.25)

My (® [ m N
0

z 4 mq
(9.26)
M o0
2 ﬂ(z)t OJ Dae™"Jo(mr)dm if =2
T Jo

Substituting these expressions into Eq. (9.25), we obtain the system of
equations for determination of Dy and D,:

_ m
_D1 enuhl + D2€ myhy =", m1h1’ " 1)1 emlh1
myq

+ (my — iwpyS) Dye™ "M = e~
Solving this system we have:

o
mKS_e 21’111}11 m

TR T )

(9.27)

here K? = iwu,S. Therefore, for the vector potential we obtain:



Magnetic Dipole in a Layer of a Finite Thickness 297

"= | Jo(mr)dm

0o 2 —mih
A* _HOM)J [ﬂe—mdz + mee n
1z

4 o |mM m (214/11 - Ksz)
and
oMy [ 2m .
A = " Jo(mr)dm
Z o 4g JO 2m — K2 Jo(mr)

Correspondingly, for the vertical component of the magnetic dipole
along its axis we have:

(&Y m3eM1

dm, b;Z:J —dm (9.28)

by, = by + =
1= =bp.(r1) o 2m1—n,

n, 0o m?)eml(l +2a)
2

0 2my—n

where my = (m2 — k%22)1/2, a=hy/Z, and n,=iu,wSz.
The derived formulas enable us to study the vertical characteristics of the
two-coil probes in the presence of a thin conducting layer surrounded by the

uniform medium.

9.3 THE TWO-COIL INDUCTION PROBE IN BEDS
WITH A FINITE THICKNESS

9.3.1 Dependence of the Field on the Parameter p=1L/§,

First we assume that the two-coil probe is located symmetrically with respect
to the interfaces of the bed. The vertical component of the magnetic field on
the z-axis, expressed in units of the primary field, is defined by three param-
eters: the ratio of the probe length, L, to the skin depth, 4, in the bed; the
ratio of conductivity of the bed to that of the surrounding medium; and the
ratio of the bed thickness, H, to the probe length.

Examples of the quadrature and in-phase components of the field
bZ(L/8y), are presented in Figs. 9.2 and 9.3. Similar to the cases of a uniform
medium and a medium with cylindrical interfaces, the in-phase component
of the secondary field |Inb"| gradually increases with an increase of the argu-
ment, then reaches a value slightly exceeding the primary field, and finally,
approaches unity in an oscillating manner. The quadrature component also
increases initially, then reaches a maximum before decreasing and
approaching zero. Such behavior of both components of the complex
amplitude of the quasistationary field is typical for any conducting media.
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Fig. 9.2 Frequency responses of the in-phase and quadrature component. Index of
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An analysis of the results of calculations allows us to outline the following
features of the field:
1. For small values of parameter L/8; (low frequency, high resistivity) the

in-phase component of the secondary field is much smaller than the

quadrature component: Inb. << Qb.. Comparison of quadrature and
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in-phase components leads to the conclusion that in the range of small
parameter, induced currents in the medium surrounding the bed have a
much stronger influence on the in-phase component than on the quad-
rature component. In the limit when parameter L/, tends to zero,
the in-phase component of the magnetic field approaches that of a
uniform medium with the conductivity of the surrounding medium
(Chapter 7):

5% 2 3
Inb? — =3P (9.29)

Here

w\ 3/2
= (?’2/;0 ) 13
It is essential that this result does not depend on the ratio of the bed
thickness and the probe length (H/ L), as well as the ratio of conductiv-
ities. In other words, with a decrease of L/9y, the bed becomes transpar-
ent to the in-phase component regardless of the probe length. Within
this range of L/, the in-phase component is much less sensitive to
the bed than the quadrature component. Its asymptotic behavior
according to Eq. (9.29), is mainly defined by the conductivity of a
surrounding medium.

2. Inthe range of small parameter, the quadrature component of the field is
directly proportional to the frequency and conductivity following Doll’s
theory. The left-hand asymptote of the frequency response is described
by the function QbZ(L/6,):

wp,L?

b* =
Q="

(NG +71.Ga) =p; (Gl + :—Zcz) (9.30)
1

Earlier, we used this equation to study in detail the vertical responses
of the two-coil probe and, in particular, demonstrated that the influence
of a surrounding medium is rather strong when a bed is more resistive
and has a relatively small thickness. By analogy with the case of a medium
with cylindrical boundaries, we will derive Eq. (9.30) from an exact
solution. In fact, according to Eq. (9.22), the vertical component of
the magnetic field along the dipole axis is:

00 mSK e*Zamz M 4+ K. cosh m
bi:bgz(yle 12 12 Zdm, a>1

_ K2 2w
0 my 1 K12€ 2
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where b;_(y1) is the field in a uniform medium with a bed conductivity
expressed in units of the primary field and

. 1/2 , 1/2
my = (m? —ing) "2, ma = (2 —inx) "%, Kz = (ma— my) / (ma + my),
m =y Uo®L*, ny =y oL’ s=y,/y;, a=H/L
Expanding the radicals in a series by small parameters n;/m>:

ii/l1 ii’lg
mem-—-——_—, mm—_—,
2 2m

and considering only the first term, we obtain for the integrand:
1
——(s—=1)nge ™™
76— Dm
Correspondingly, taking into account the expression for b;_(y1), the

integral becomes equal to

i
" 4a (s— 1)7’2,“()sz

Thus, the field in the range of small parameter n; is:

L _inpe@L® i
bz = T - E (5 - 1)72/400’L2
and
. wpL? 2 72
Qb= > (G +1G)=pi| G+ 7_G2
1
where

Gi=1-1/2a and G,=1/2a

Of course, the latter was already derived in Chapter 6, proceeding
from the concept of a geometric factor. Therefore, Doll’s theory is in
fact the theory of a very small parameter, which characterizes the dimen-
sions of a model, expressed in units of the skin depth. For example, with a
decrease of the probe length, parameter L/d also decreases. From the
physical point of view, this means that the effect of induced currents near
the dipole, which are shifted in-phase by 90 degrees and do not interact
with each other, increases.
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3. Until now we have considered the range of parameter p when the func-
tion Qb increases in direct proportion to p°. As was shown in Chapter 7,
there is a range in which components of the field behave as:

2
Qb =" (1~ )G+ Q) and b= bk () (931
Here G is the geometric factor of the bed, and b, is the field in a
uniform medium with a conductivity of the surrounding medium y,.
With further increase of the parameter p, induced currents in the bed
become more subject to the skin effect, and the quadrature component
QUb? grows at a decreasing rate. Finally, it reaches a maximum and then
decreases in value, approaching zero in an oscillating manner. An
increase of the parameter p can be caused by either an increase of the
probe length or a change in frequency. The former leads to increased
sensitivity of the probe to remote parts of the medium; the latter causes
an increase of the skin effect near the probe.
With an increase of the parameter L/, the in-phase component of
the secondary field also increases, and at the upper limit, it approaches

that of the primary field

HoMo
N
2rL3

*

z

Correspondingly, induced currents are concentrated in the vicinity
of the source, and their direction is opposite to the direction of the cur-
rent in the source dipole. In other words, the primary and secondary
fields cancel each other, and the resulting field in a conducting medium
is equal to zero.

9.3.2 Some Features of the Apparent Conductivity Curves
Next we consider dependence of apparent conductivity on the frequency. In
general, apparent conductivity can be introduced in different ways, but we
follow Doll’s approach:

2
 opL?

’, Qv 9.32)

Such apparent conductivity reads true conductivity in a uniform
medium only within Doll’s domain, but outside of this range the apparent
conductivity differs from the true conductivity.
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In most practical cases, the field behavior either corresponds to the Doll
approximation or relatively close to it. At the same time, when frequency is
sufficiently high and the resistivity of a bed is known, it is appropriate to
introduce apparent conductivity as

Qb

9.33

Ya="1

Of course, within the range of small parameter, Egs. (9.32), (9.33) lead to
the same results for y,.

Let us consider the case when the bed is thicker than the length of the
two-coil probe located in the middle of the bed Fig. 9.4. Normalized appar-
ent conductivity (9.32) is plotted as a function of L/d,. The index of curves is
71/7>. This figure shows that all curves of the apparent conductivity at the
left-hand part are in the Doll’s range and parallel to the horizontal axis. In
this range, an increase of the conductivity of the surrounding medium y,

Yan B
- HIL=2.0
- 1/128
R :
- 1/64
I _
10| < 1/32
———
- % 1/16
A ——
i \ 118
L T 1/4
I— 172
1k
i 1 128
0.1}
0.01 0.1 1 L/6)

Fig. 9.4 Apparent conductivity curves. The index is y1/y,.
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leads to increased readings of apparent conductivity. But with increase of the
frequency, the skin effect in the surrounding medium becomes stronger,
causing a decrease of y,. This means that a relative contribution of currents
in the bed increases and the influence of the conductive surrounding
medium on the response becomes less than what follows from the Doll’s the-
ory. This observation was made many years ago [1] and motivated the usage
of frequencies higher than those in the original system. Of course, the fre-
quencies should not be increased at the expense of reduced depth of inves-
tigation in the radial direction. This is one reason why in the latest systems of
the lateral induction soundings, the highest frequencies are used for the
shortest probes having shallow depth of investigation, and lowest frequen-
cies in the long-spaced probes permitting deep lateral sounding.

Comprehensive numerical calculations show that decrease of the bed
thickness leads to a deviation from the left-hand asymptote at the smaller
frequencies if ¥, > y,. It is appropriate to relate the maximal values of the
parameter L/J; to the resistivity and frequency, when the Doll’s approxima-
tion is valid. As a result, for the frequency of 20 kHz and y, > ¥, corrections
due to the internal skin effect are small, and for the relatively thick bed
(a>8) and low resistivity (p; = 1ohmm), they range between 10% and
20%. But if conductivity of the bed is smaller than that of the surrounding
medium, then the influence of the skin effect can be significant. For instance,
for f =20kHz, p; =200ohmm, and p, =2.50hmm, L=1m and H=2 m,
the value of apparent conductivity, y»/yq, is equal to 2.0 versus 2.8,
corresponding to the Doll’s theory:

1

Ye=r1t 5(72_}’1) (9.34)

The influence of the internal skin effect manifests itself to an even greater
extent if higher frequencies, for example 60 kHz and above, are used. Also,
apparent conductivity curves show that with an increase of the probe length
the influence of the skin effect becomes stronger. As mentioned previously,
this is related to the increased sensitivity of the field to the remote parts of the
medium. To minimize interpretation error, it is highly advisable to use exact
numerical solutions, which accurately take into account the skin effect in the
surrounding medium. Analysis of the field in a medium with cylindrical
interfaces (borehole, invasion zone, formation) shows that the skin effect
in a radial direction also has to be taken into account. However, the impact
of the skin effect on the radial responses is usually less pronounced than that
on the vertical responses. In theory, we can use such a high frequency that



304 Basic Principles of Induction Logging

the influence of induced currents in the surrounding medium is practically
negligible and thus detection of resistive beds (y; < ¥,), having relatively
small thickness, (L~ H) will be improved. However, the intent to elim-
inate the influence of the surrounding medium may require frequencies of
dozens of megahertz deteriorating a radial response of the probe, especially
when the invasion zone presents and has intermediate resistivity p,
between the borehole and formation (p; < p, < p5). Also, high frequencies
increase the influence of the borehole and the dielectric properties of for-
mation. These issues essentially reduce attractiveness of very high frequen-
cies for reduction of the influence of the surrounding medium on y,. But
an increase of frequency within certain limits, when the radial response
practically does not change, can significantly improve characteristics of
the vertical response of the probe. It is not a coincidence that all modern
systems of induction logging use frequencies that are much higher than
20 kHz.

Now let us consider the main features of the apparent conductivity
v./71 when the bed is thinner than the probe located in the middle of
the bed (Fig. 9.5). As was shown earlier, in this case the field does not
depend on the position of the bed inside the probe, and it can be presented
in the form:

bi=2

o 1’}’[3 mzef(mgfrm )(le*lm
m, a<l

d
0 (1411 + Wl2)2(1 — K122€—2am|)

Comparing the curves of apparent conductivity for both thick (a> 1)
and thin (a < 1) beds, we conclude that in the latter case, the low-frequency
asymptote takes place for larger values of the parameter L/d; (v, <yy).
Asymptotic representation for the function y,/yy, as L/8; — 0, can be
derived in the same manner as Eq. (9.34). Omitting intermediate manipu-
lations we receive:

Ya _T2 <Q_1>ﬁ (9.35)
Y1 "N 71 2

Of course, this equation coincides with the one derived using the geo-
metric factor (Chapter 6). By analogy, it is a simple matter to obtain an
expression for the apparent conductivity, which is valid for larger values
of the parameter L/6; (Chapter 7).
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Fig. 9.5 Apparent conductivity curves. Index of curves is y1/y,.

Assuming a 90 degrees phase shift in the induced currents inside the bed,
and no interaction between them and currents in the surrounding medium,
we have:

Ya_Ya _ <Q_1>ﬁ (9.36)
Y1 "N 71 2

where y," is an apparent conductivity in a uniform medium with conduc-
tivity ¥,. Obviously, within Doll’s domain this value coincides with y,.
Eq. (9.36) is valid for larger values of parameter L/J; than Eq. (9.35), and
this fact becomes more noticeable for relatively resistive beds. Analysis of
apparent conductivities shows that thin beds with resistivity greater than
that of the surrounding medium are hardly noticeable when the parameter
L/, is small. For example, if a < 0.3 and y, /7, < 1/8, the influence of the
bed does not exceed 5%—10%. On the contrary, the presence of thin con-
ductive layers is more pronounced. For example, for small values of L/d;,
when a~ 0.3 and y, /y, =8, the influence of the bed reaches 50%.
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9.4 PROFILING CURVES FOR A TWO-COIL PROBE
IN A BED OF FINITE THICKNESS

As was shown in the first section, the signal and the apparent conduc-

tivity depend on

* the ratio between the probe length, L, and the skin depth in a surround-
ing medium L/&5.

* the ratio between the bed thickness and the probe length: H/L.

* the ratio between conductivity of the bed and the surrounding medium
Y1/72.

 theposition ofthe probe with respect to the bed, which can be characterized
by the distance between the middle of the bed and the center of the probe.
(Needless to say, the measured electromotive force depends on the
moments of the transmitter and receiver, as well as on the probe length
and frequency). The formulas for calculation of the fields were derived ear-
lier. We again use the following definition for the apparent conductivity:

ai 2o

71 B VikowL? T 7

Let us consider the influence of the main factors, mentioned above, on
the shape of the profiling curves corresponding to certain values of y,/y» and
H/L. In the analysis it is advisable to distinguish four typical cases.

Case I: Conductive bed

Profiling curves for the layers with thickness H/L = 4,2, 1 are presented in
Fig. 9.6A—C. The index of curves is the parameter 1, = y,u,@wL>. Along
the x-axis we depict the apparent conductivity. The y-axis depicts the dis-
tance between the middle of the bed and center of the probe, expressed in
units of the bed thickness. The curves are symmetrical with respect to the
middle of the bed. In the case of the thick layer H/L = 4 and frequency,
corresponding to Doll’s region limit (1, = 0.01), the apparent conductiv-
ity readings are only 20% below the true value. The deviation from the
true value increases as the layer becomes thinner (Fig. 9.6B) and it reaches
50% in the case of H/L = 1. In accordance with Doll’s theory, the ratio of
v./71 corresponding to the bed interface and its middle point is:

1—1/4a

—05.— 12
T 1—1/2a’

a=H/L>1
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Fig. 9.6 (A—C) Profiling curves of apparent conductivity across conductive beds of
different thicknesses. Index of curves is youwl?.



308 Basic Principles of Induction Logging

According to this formula, only for the relatively thick layers the
parameter 7 approaches the value of 0.5. In such cases the bed thickness
can be determined by using points of the profiling curves, corresponding
to half of the maximal value. For example, an error in H does not exceed
3% if a=4.0 (Fig. 9.6A), but it increases to 10% for a =2.0 (Fig. 9.6B)
and 80% for @ = 1.0 (Fig. 9.6C). With an increase of frequency, the appar-
ent conductivity readings y,/y at the middle of the bed experience strong
skin effect and significantly deviate from the true conductivity of the bed.
Furthermore, the width of an intermediate zone, where apparent conduc-
tivity y, differs from a uniform medium with conductivity y,, becomes
narrower and the readings are closer to the true conductivity y».

Case II: Thick resistive bed

Typical profiling curves for the thick H/L =4 bed are presented in
Fig. 9.7. With an increase of parameter n,, the width of the intermediate
zone decreases. Unlike the previous case, an increase of the frequency
leads to a better detection of the resistivity of the bed. In the example
from Fig. 9.7, apparent conductivities y,/y1 against the bed practically
approach the true conductivity, while outside of the bed the readings
become lower due to the strong skin effect. In particular, when
(n2=0.64), v,/y,=1/16 and H/L =4, the readings outside of the
bed y,/y1 are 1.6 times lower compared to the true value, Fig. 9.7.

Case III: Thin conductive bed

Examples of profiling curves, corresponding to this case, are presented in
Fig. 9.8A and B. Similarly to the first case, when parameter n, = 0.01 is in
the Doll’s range, the readings outside of the bed correspond to the true
conductivity of the surrounding formation. In the middle of the profiling
curves, readings are largely off the true conductivity values (Fig. 9.8A).
With increase of the frequency (1, = 0.32), the skin effect becomes pro-
nounced, reducing apparent conductivity along the entire profiling curves
(Fig. 9.8A) and making determination of the thin bed impossible.

The situation improves with a gradual increase of the layer thickness
to H/L>0.5.

Case IV: Thin resistive bed
The profiling curves, shown in Fig. 9.9, behave similarly to the curves
corresponding to the case of a thick resistive layer (second case). It is clear
that skin effect is pronounced even at the relatively low frequency
(np =0.01), leading to the lower apparent conductivity inside and outside
the bed. Anincrease in the frequency (1, = 0.64) shifts the ratio y,/y closer
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Fig. 9.9 (A) and (B) Profiling curves across thin resistive layer for different ratios of y/y5.
Index of curves is youwl?.

to unity, although the value of y, still significantly deviates from y;.
For example, when 7, /y, = 16 and H/L = 0.5, the apparent conductivity
in the middle of the bed is more than seven times larger than the true value.

Determination of the thickness of such thin resistive beds using
points, corresponding to half of the maximal value of y,/y4, is practically
impossible.
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In 1963, mathematician P.P. Frolov (Moscow), investigating the transient
electromagnetic field on the earth’s surface, showed that measuring the
transient field with relatively small separation between the transmitter and
receiver reveals information about the distribution of resistivity beneath
the earth’s surface. This was not an expected result because in surface and
borehole geophysics, experts strongly believed that only an increased sepa-
ration between transmitter and receiver permits increased depth of investi-
gation. Soon after his publication, a new method of surface geophysics called
transient soundings in the near zone was developed and found broad appli-
cation in Russia and globally. The possibility of studying resistivity of the
formation around the borehole with a short two-coil probe triggered an
interest in transient electromagnetic measurements within the logging
industry, resulting in several publications and development of the transient
induction logging theory in the 1970s. Like the induction phenomena in a
frequency domain, the main features of the transient field can be studied by
analyzing the field in a simple model of a uniform medium.

10.1 TRANSIENT FIELD OF THE MAGNETIC DIPOLE
IN A UNIFORM MEDIUM

Suppose that the constant current in the small loop (magnetic dipole)
vanishes instantly following a shape of a step function:

L if <0
1_{0 if £>0 (10.1)

In contrast to a general case discussed in Chapter 4, we focus our atten-
tion here on the quasi-stationary field when displacement currents are
disregarded and the propagation speed is infinitely large. Under these
assumptions, the field instantly appears at any point of a medium regardless
of the distance from the source. In reality, this corresponds to the time of
observation greatly exceeding the time needed for the field to arrive at
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the observation point. We proceed from the expression for the vector
potential A* for the quasi-stationary field assuming k* & iwyp:

o fopo Mo exp (ikR)
= 47 R

Fourier’s transform of the last expression gives the following for the time
domain:

oMy u

and

_ 2zR 1/2

u=="—, = (2mptx 107) (10.3)
T

The same result can be derived from a general expression for the vector
potential (Eq. 4.61), letting €, and therefore the time of arrival of the wave,
70, to be zero.

10.1.1 Expressions for the Field

Taking into account Eq. (10.2) and the known relations between the vector
potential and field components:

E' =l A*

we obtain the following expressions for the components of the electromag-
netic field in the time domain:

20 M 2u-M 7\ 1/2

Br = f,:RSO bR cosd= f;:R3O (I)(u) . <J_T> 1 exp (_u2/2)] cos O
Mo M oM 2\ /2

By = 4;)rR2 bgsin @ = 431R(3) D(u) — <;> u(l + MZ) exp (—u2/2) n o
M 2 1/2 M

Ey= 4ﬂ3§4 epsinf = (;) 4;; w exp (—u?/2)sin @

(10.4)
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where

is the probability integral.

10.1.2 Main Features of the Transient Field

To illustrate the main features of the field components (Eq. 10.4) we present
numerical data in Table 10.1, containing values of bg, by, and e, as functions
of the parameter u.

The corresponding curves are shown in Fig. 10.1.

First, let us study the transient response at the early transient stage (t — 0)
after the current in the source is switched off. In this case, 1 — oo and the
function ®(u) tends to unity, so that we have

200 M M,
= HoMo 050, Be:#o 0

=R © nR3 sinf), Ep=0 (10.5)

As predicted by Faraday’s law, at the early stage, the induced currents
arise initially near the source and attempt to maintain magnetic field
unchanged. From Eq. (4.61), which takes into account displacement cur-
rents, it follows that at the initial moment the field is absent in all parts of
a medium. But in accordance with equations for the quasi-stationary field,
the field propagates instantaneously and has a finite value, even when ¢ < 7,
while in fact it equals to zero. To derive the late stage of the transient field,
we should expand the probability integral in a series of a small parameter u.
Performing an expansion, we have

2 12 woouwd
D(u) ~ <;> <u—€ + i ) (10.6)

Substituting this series into Eq. (10.4), we obtain approximate formulas
for components of the secondary field:



Table 10.1 Field Components as Functions of the Parameter u

u R/t 1— bR 1— bg €y bR bg

0.0500 0.796E—02 0.3300E—04 —0.6661E—04 0.249E—-06 1.0000 1.000
0.0595 0.946E—02 0.5561E—04 —0.1118E-03 0.592E—06 0.9999 1.000
0.0707 0.113E—-01 0.9364E—04 —0.1878E—-03 0.140E—05 0.9999 1.000
0.0841 0.0134 0.1575E—-03 —0.3152E-03 0.334E—-05 0.9998 1.000
0.100 0.0159 0.2649E—03 —0.5290E—-03 0.793E—05 0.9997 1.001
0.119 0.0189 0.4452E—-03 —0.8873E—-03 0.188E—04 0.9996 1.001
0.141 0.0225 0.7476E—-03 —0.1487E-02 0.446E—04 0.9993 1.001
0.168 0.0268 0.1254E-02 —0.2488E—02 0.1058—-03 0.9987 1.002
0.238 0.0379 0.3518E—02 —0.6917E—02 0.590E—03 0.9965 1.007
0.283 0.0450 0.8760E—02 —0.1147E-01 0.138E—02 0.9941 1.011
0.336 0.0535 0.9780E—-02 —0.1891E-01 0.324E—-02 0.9902 1.019
0.400 0.0630 0.1623E—01 —0.3091E-01 0.754E—-02 0.9838 1.031
0.476 0.0770 0.2676E—01 —0.4993E—-01 0.173E—-01 0.9732 1.050
0.556 0.0900 0.4378E—01 —0.7930E-01 0.393E—-01 0.9562 1.080
0.673 0.1070 0.7081E—-01 —0.1229 0.877E—01 0.9292 1.123
0.80 0.1270 0.1128 —0.1839 0.1899 0.8872 1.184
0.951 0.1514 0.1758 —0.2612 0.3955 0.8242 1.261
1.13 0.1801 0.2661 —0.3432 0.7799 0.7339 1.343
1.35 0.2141 0.3873 —0.3988 1.423 0.6127 1.399
1.60 0.2560 0.5355 —0.3732 2.326 0.4645 1.373
1.90 0.3028 0.6945 —0.2048 3.256 0.3055 1.205

Continued

SIUSWRINSEa T JUSIsURI] UO paseg Bbuibbo uoponpu)

SlLE



Table 10.1Field Components as Functions of the Parameter u—cont'd

u Rlz 1-bg 1—by e br bo

2.263 0.3601 0.8368 0.1222 3.659 0.1632 0.878
2.691 0.4283 0.9354 0.5192 3.014 0.0646 0.481

3.20 0.5093 0.9834 0.8271 1.600 0.0166 0.173
3.805 0.6057 0.9977 0.9662 0.457 0.232E—02 0.338E—01
4.525 0.7203 0.9999 0.9972 0.541E—01 0.135E—03 0.278E—02
5.382 0.8650 0.9999 0.9999 0.185E—02 0.229E—05 0.662E—04
6.400 1.019 1.0000 1.0000 0.109E—04 0.673E—08 0.273E—06
7.611 1.211 1.0000 1.0000 0.537E—08 0.160E—11 0.944E—10
9.051 1.441 1.0000 1.0000 0.788E—13 0.117E—16 0.974E—15

ole
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Fig. 10.1 Field components bg, by, and e, in a uniform medium.

M, (2\ 2 3
BR%—ﬂO s W 1——u?)cos@
6nR3 \ & 10
M, 2\ '/? 3
By~ (2} 3 (1242 ) sing (10.7)
6mR3 \x 5

1/2
E %—M)p % /u5 1—M—2 sin@
¢ 47R* \ & 2

By keeping only the first term in Eq. (10.7), we receive

1/2 3/2
B N_ﬂoMo % / 3 cos = — HoMo ﬂo/ 7’3/2 9
RN~ s\ ) weosf= (A PP cos
n(n)
M, (2 1/2 M 3/2,3/2
By~ 2(—) W sin 0 = 10 01/2”0372 5in 6 (10.8)
6mR3> \ 1 127(r) 3/
1/2 5/2
b (2 M s M
A V3 471'R4u = 16 12 6/2
()
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These expressions describe the field at a late stage with acceptable accu-
racy when u < 0.2. During this time interval, the transient field does not
depend on the separation between the source and observation point,

exhibiting a stronger dependency on conductivity oc y>/2

than the quadra-
ture component, which is typically measured in a frequency regime. For
illustration, some values of parameter u as a function of resistivity p and time
t, if R=1 m, are given in Table 10.2.

Table 10.2 shows that the value of u=0.2, corresponding to the late
stage, is reached quite soon at t = 16 s, even in the conductive medium with
resistivity of 1 ohm m. The independence of the late stage field from the dis-
tance between transmitter and receiver suggests that the sources of the sec-
ondary field are located at distances from an observation point significantly
larger than the probe length R. Now, consider the behavior of the current
density. As follows from Eq. (10.4), the current density in a whole space is

, 2\ 2 My sin@ - ,
M:_(;) —— w exp (—u’/2) (10.9)

Graphs of function

F :%us exp (—u2/2)
are shown in Fig. 10.2. As time increases, the maximum of the current den-
sity shifts toward the deeper part of the medium. For this reason, electro-
magnetic fields on the axis of the transmitting dipole, become more
sensitive over time to the remote parts of the medium.

Let us confirm this assumption through the following consideration. We
mentally represent whole uniform space as a system of concentric spherical
shells. At any moment, a measured magnetic field is defined by the distribu-
tion of currents in the shells. By applying Biot-Savart’s law and omitting
intermediate transformations related to the calculation of the magnetic field,
we may find the ratio between the electromotive force, caused by the cur-
rents in shells with the radius larger than R,, and the electromotive force in
the coil, located at the distance R;:

Gl a) = <1 _%v@) exp [—2 (@ — 1) /2]

where @ = R, /Ry and u; =2zR, /7. Curves G(uy,a) are shown in Fig. 10.3.



Table 10.2 Parameter u for Different Values of Resistivity and Time

p
(ohm m) t=1ups t=4pus t=9pus t=16 pus t=25ps t=36 us t=49 ps t=64 pus t=81ps t=100 ps
0.1 2.50 1.25 0.84 0.63 0.50 0.42 0.36 0.31 0.28 0.25

0.5 1.11 0.56 0.7 0.28 0.22 0.19 0.16 0.14 0.12 0.11

1.0 0.80 0.40 0.27 0.20 0.16 0.13 0.11 0.10 0.09 0.08

5.0 0.35 0.18 0.12 0.088 0.071 0.059 0.051 0.044 0.039 0.035
10.0 0.25 0.125 0.084 0.063 0.050 0.042 0.036 0.01 0.028 0.025
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Fig. 10.3 Function G(u,, ) illustrates concentration of currents in an external area at the
late stage. Index of curves a.

At the earlier times, currents are concentrated mainly near the dipole,
and the field, measured at point Ry, does not practically depend on induced
currents located in remote parts of a medium (#; — co, G — 0). By contrast,
for the late stage (u; — 0), the field is mainly defined by currents induced in
an external area (R>R;) and G(uy,a) — 1. Thus the measurements
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Table 10.3 Electromotive Force (pV)

)
(ohmm) t=1ps t=4ps t=9pus t=16 ps t=25ps

0.1 0.543E+04  0.179E+04 0.365E+03 0.101E+03  0.355E+02
0.5 0.600E+04  0.300E+03  0.431E+02 0.106E+02  0.351E+01
1.0 0.290E+04  0.115E4+03  0.158E+02 0.381E+01 0.126E+01
5.0 0.334E+03  0.109E+02  0.145E+01  0.346E+00 0.113E+00
10.0 0.122E+03  0.390E+01  0.515E+00 0.122E+00  0.402E—01

performed at the late stage are defined by currents of the remote parts of a
medium, providing increased depth of investigation. Such behavior can also
be expected in a nonuniform medium. As the depth of investigation
increases radially, the sensitivity of the probe to the parts of formation
located above and below the probe also increases, at, of course, the expense
of the reduced signal level.

Let us estimate the signal level at different moments of time in the 1 m
long two-coil probe. We assume an effective transmitter-receiver moment
of MrMgr = 0.1 Am*. Calculated electromotive force E values are presented
in Table 10.3.

The values of E are calculated using the following equations:

MyMg 2\ /2
:MT,O@[/, and ey = (7_r> 1 exp (—u2/2)

[1]

The data in Table 10.3 demonstrate asymptotic behavior Eoc 1/ /2 of
the signal at the late stage.

10.2 TRANSIENT FIELD OF THE MAGNETIC DIPOLE IN
A MEDIUM WITH CYLINDRICAL INTERFACES

10.2.1 Fourier Integral and Calculation of the
Transient Field

In Chapter 8, we studied frequency responses of a magnetic dipole in the
presence of cylindrical interfaces. Here, we use those results to study the
transient field, proceeding from the Fourier integral:

Fl) =L J F* (@) exp (—ioot)de
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and
F'(w)= jF(t)exp (iwt)dt (10.10)
0

where F(f) some component of the transient is field, and F*(w) is the product
of the complex amplitudes of the field and the spectrum of excitation. When
the primary magnetic field of the dipole is varying as the step function:

B()(l‘) :B() if t<0 and B()(t) =0 if t>0

the excitation spectrum is defined by Eq. (10.10):

1
Fy(w)=— (10.11)

iw
Harmonic amplitudes (Eq. 10.11) have the same phase and decrease
inversely with the frequency. Because the low-frequency harmonics dom-
inate in the spectrum of the step function, this type of excitation is an effi-
cient way of delivering energy to the remote parts of a medium. As follows

from Eq. (10.10), the primary magnetic field can be written as:

1
—exp (—iwt)dw (10.12)
i®

=
I
|
g —8

where the integration path does not include the point @ = 0. Let us present
the integral (Eq. 10.12) as a sum:

—&

1 J exp(—za)t)dw_ b J exp(—za)t)dw

2mi 0] 2ri ®
+e
1 —iwt 1 —iwt
+ b J exp (—iw >dw+—,J exp (—iw )da)
2mi 0 2mi 0]
—€ +e

We choose a semicircular path of integration surrounding the origin
w =0, and let the radius of the semicircle tend to zero. It is convenient
to introduce a new variable ¢:

@ = pexp (i)
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that gives

dw = ip exp (i) d¢p

and for the second integral we have

+e 27
1 J exp(ia)t)dw: 1 .Jipexp('iq’))dqb:l
27i @ 2zi ) pexp (i) 2
—& /2

Thus the expression for the primary field in which the variable of
integration @ takes only real values is

B(t) =

dw (10.13)

©
B,—o + By exp(—ia)t)
2 2ri w

—o0

Correspondingly, for the secondary transient field caused by the step
function we have

B ()

exp (—iwt)dw (10.14)

=

|
o)
D3
g

+
—

g ——"

Here,
B* () =ReB*(0) + ilmB* (o)

is the complex amplitude of the field. The expression (10.14) is convenient
for numerical calculations because it is carried out along the real values of
frequencies. Let us write Eq. (10.14) in the form:

Bf _ 1 T Im B* t—ReB* in @t
B(t) :wT4’ 5 J mB* (@) cos - eB'(w)sinw dor—
. - (10.15)
i JImB*(a))sina)t-i-ReB*(a))cosa)td
— o
2r w

As follows from Eq. (10.10)

ReB'(w) =ReB*(—w) and ImB*(w)=—ImB*(—w)
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Correspondingly, the second integral in Eq. (10.15) is equal to zero, and
because the integrand is an even function of the frequency, we further

receive
% *® % %
B 1 (ImB*(w wt— ReB*(w) sin wt
B(r) = ‘;M—J m B (@) cos cB()snor, (10.16)
T ®

0

Next, we make one more simplification. Because the current source
changes as a step function, and there is no secondary field at <0
(B(t) = By at t < 0), Eq. (10.16) yields

[Se]
0 _ BZ;O N 1 J Im B*(®) cos @t + Im B* (@) sin ot (10.17)
m o

0

From the last two expressions, we obtain

o0

2 (ImB*
B(t)——J = (w)cosa)tdw and
r
0
2 [ReB'(w) .
B(t) = B(y—g) —— | ———sinotdw (10.18)
T

0

For the time derivatives we have

oB 2

—=_= JImB* (w)sinwtdw and

ot T
0

0B 2

E__;JRCB*(O)) cos wtdw (10.19)
0

Because the primary electric field is zero, the corresponding transforma-
tions for the electric field take the form:

o) o5}

2 J ImE? 2 JRGE;
0 0

E(/)(t):i_r ¢coswtdw and E(/)(t):_;

sinwtdo  (10.20)
w

)

The last set of equations (Egs. 10.18—10.20) is used to calculate the tran-
sient field from the frequency responses. Next, we analyze some important
asymptotic features of the transient field at the early and late transient stage.
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10.2.2 The Early and Late Stage of Magnetic Field
on the Borehole Axis

As was mentioned, at the beginning of the transient process the internal skin
effect leads to appearance of induced currents mainly in the vicinity of the
source, and thus the measured magnetic field contains information about the
conductivity of the borehole only. With time the diffusion manifests itself
and induced currents appear in the surrounding medium. To investigate
the asymptotic behavior of the magnetic field caused by these currents,
we proceed from the first equation of (10.18) assuming that the parameter
t is large. First, we introduce a new notation:

ImB*(w)
w)=——""->=
hrlw) ="
and it gives
2
B(r) =2 J(]bl(a)) cos wrde (10.21)
7
0
Assuming that the value of f is large, and performing integration by parts,
we obtain
2 |y sinwt|™ 1 [, .
B(t)=—|——| —- )sin wtdw
=7 |25 [
0 (10.22)

1
+ t—zqﬁ’l cos wt ¢ (o) cos wtdw

()]

s [oe]
1J
T2
o !
0

By continuing integration by parts, we can obtain the following terms of

0

this expansion. At first glance, calculation of these terms requires knowledge
of spectrum at the high frequencies. However, because the integrands in
Eq. (10.21) contain rapidly oscillating functions at t — oo, the value of
the integral is mainly defined by the initial part of the integration
corresponding to the low-frequency range of the spectrum. Thus such an
approach does not require function ¢, at the high frequencies, and the
obtained series (Eq. 10.22) is suitable for derivation of an asymptote at
the late stage. This asymptote is controlled by the low frequency of the spec-
trum and its derivatives with respect to the frequency; the intermediate and
high-frequency parts of the spectrum have practically no control over the
late stage of the transient field. If the derivative is a dominant factor, then
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the field behaves quite differently from that at the low frequency; this case
will be discussed later. In the same manner, we can obtain a series expansion
using a real component of the spectrum:

ReB*
w

¢, =

As was shown in Chapter 8, the low-frequency spectrum for any com-
ponent can be presented as a sum:

[es]

Zc /eZ"+Z kz"+1+z 2" In k (10.23)

n=1

Here, k= (iy,uoa))uz and ¢, 6, ¢3 are coeflicients depending on the geo-
electric parameters, distance, and the moment of the dipole source. Note
that the first sum of Eq. (10.23)

o)

Z cgﬂ) k"

n=1

has no effect on the late stage of the transient field. In fact let us rewrite this
term as a sum of the real and imaginary parts:

ic i = Z a\" " + ii B! (10.24)
n=1

n=1 n=1

For the Fourier transform of Eq. (10.24), we obtain two types of inte-
grals, namely

[So] [S0]
L,= Ja)z”1 sinwtdw and M, = Jooz”2 cos wtdw (10.25)
0 0
which are the limiting cases (f — 0 and t — oo0) of more general integrals:

L,=lim JwZ'H exp (—pfw)sin wtdw
w (10.26)

M, = Ja)z”_2 exp (—pw) cos wtdw
0
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Presentation (Eq. 10.26) is valid because introduction of the exponential
term exp (—pw) does not change the initial part of the integration, which
defines the integrals (Eq. 10.26) at t tending to infinity. These integrals
are expressed through elementary functions, and they approach zero when
B tends to zero. Thus we have shown that the first sum in Eq. (10.23), which
contains only the integer power of @, makes no contribution to the late stage
of the transient field. At this stage, only fractional powers of @ and logarith-
mic terms determine the transient response. This fact plays a fundamental
role in understanding the relationship between the frequency and time
domain responses of the field. For example, the quadrature component at
the low frequency is controlled by the leading linear term of @, while the
following terms, containing fractional powers of @ and In®, have a negli-
gible effect. However, these less significant terms affect the behavior of
the transient field at the late stage, making it difficult to establish an intuitive
one-to-one relationship between the time and frequency responses. Specif-
ically, the first linear term in the series for the quadrature component essen-
tially differs from the rest of the terms by not contributing at all into the late
stage of the transient signal. By contrast, the leading term in the series expan-
sion for the in-phase component of the secondary field contains either a frac-
tional power of @ or Inw. For this reason, we may expect that the behavior
of this component of the secondary magnetic field at the low frequency is
practically the same as that of the transient field during the late stage. Indeed,
such similarity is observed in a uniform whole space and in more
complex media as well.

Next, using the second and third sum on the right-hand side of
Eq. (10.23), we may determine the series that describes the late stage.
The second sum can be written in the form:

oo (9]

Z )2+ Z (1) (20 +1)/2 4 Zb PRCIERVY

=1 n=1 n=1

For calculation of the series in the time domain, we can use either the first
or the second sum of the last expression. For example, let us use the in-phase
component of the field:

iagﬂ)w(znﬂ)/z:agl)ws/z+a52)w5/2+

n=1
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Substituting this sum into the Fourier integral (Eq. 10.18) we obtain

e8]

2 (6]
=3 a Ja)”_1/2 sin wt do (10.27)

n=1 0

Since we are mainly concerned with the behavior of the integral at
t — o0, we need to consider only the initial part of the integration path. Let-

ting n=1 we have
[So]
I, = le/zsin wtdw
0

Integrating I; by parts and discarding the high-frequency portion of the
spectrum, we obtain

1 1 > 1 t
l1=——Ja)]/2dcosa)t:—— '/? cos wt ——Jcoswd
t t 0 2) ol?
0 0
1 [ coswt 1 cos x
ZZ_tJ PRV dw:2t3/2 J 172 dx
0 0
The last integral is well defined:
cosxd B <7z)1/2
x1/2 =2
0
Thus
LY ARG 10.28
=30G) (10.28)

For n=2 we have

o0
L= Ja)3/2 sinwtdw
0
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Integrating twice by parts, we obtain

1 © 37 3
12:—? (a)3/2cosa)t) —EJa)1/2cosa)tda):| :Z—tJa)W2 coswtdw
0
3 12 ;. IRV 1 (sinwt, 3 sin x
7?Jw dsma)tda)f?a) sma)tO —3 pRYE 52 | n X
0 0 0

In as much as

we have

121
b=—1 (5> = (10.29)

Using the same approach, any term in the sum (Eq. 10.27) can be cal-
culated. We can see that a term proportional to @>’? generates a term in

the time domain proportional to =32, Therefore, the portion of the spec-
trum described by the sum:

Zag")w” +1/2

is responsible for the appearance of a sum

O
> (10.30)

in the expression for the late stage of a transient field.
The third term in Eq. (10.23) can be written as:

[e8)

(ﬂ)k2n lnk= Ink © (Vl)kZﬂ =1 |: 1/2 (z):|
";53 n n ”E: G n | (ypuow) '~ exp i
- TN 1/2
g G }/,uoa) "exp i )n= In (ypow) '~ + 14

Zc (yuow)" cos gn + iZc:E") (yuow)"sin gn]

n=1 n=1

l—|
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Letting n=2p and n=2p — 1 in the first and second sums, respectively,
and taking into account that

2p—1 _
p ﬂ:(—l)‘n 1

coszp=(—1)" and sin

we receive the following expressions for the real and imaginary parts of the
third sum in Eq. (10.23):

= T _ _
5 w3 o= T3 st

= p=1

Z 1) 6 (rpoo) p+ In (yuoo Z Vﬂow)zpll

p=1 p=1

(10.31)

i

f—l
IS

Substituting the real part of the last equation into the Fourier transform,
we obtain two types of integrals:

o0
A, = szp—z sinwtdw and B, =

0

(0 ' Inw)sinotdo  (10.32)

ct—u3

For example, when p=1 we have

(9] o 1
= Jsina)tda):limJexp(—ﬂa))sina)t:? if f—0and t— oo
0

B; = J(a) Inw)sin wtdw = JF(a)) sin wtdw
0 0

where F(w) =w Inw.
Integrating by parts, we obtain

6] [Se]
1 1 ®
Blz—?JF(a))dcosa)t:—? F(w)coswt| — JF’(a))cosa)tda)
0 o0
1 ol B
== F(w) cos wt - F'(w)dsin wt
0
0

1

1
= —?F(a)) coswt| + t_ZFI(w) sin wt

0

(69
|
-5 JF”(a)) sin wtdw
0 t
0
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Because
/ /! 1
F(w)=1+ Inw and F'(w)=—
0]

we have

(o]
1 [ sinwt w1
B1:—— da):———2
10} 2t
0

Similarly, we can derive integrals 4, and B, for any values of p. It is read-
ily seen that the portion of the low-frequency spectrum described by the last
sumin Eq. (10.23) gives a rise to the sum of terms proportional to 1/¢" in the
representation for the late stage of the transient field:

© 1
Sar- (10.33)

Therefore, as follows from Egs. (10.30), (10.33), the late stage of the
transient electric and magnetic fields of the magnetic dipole in a conducting
medium can be presented in the form [1]:

= n 1 = n 1
ag)tm/z + _1543); (10.34)

n=1

In Chapter 8, we showed that the part of the low-frequency spectrum
that does not contain even powers of k is

Fl + kS + frk] + k] Inkey + -+ (10.35)

When the invasion zone is absent, we have

B2 as 11—
ﬁz—%nﬁ=ﬁ<s S)

10 2

ats? oPs(1—s) 5 » s(1—ys) 77 Ins
Y R c-L-22
F=hla 0 TR T ( ﬂ

h=—firs(1=9)

Here a=L/ay, s=v,/7;-
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In the case of two cylindrical interfaces for the first two terms ¢; and ¢s,
corresponding to the low-frequency spectrum, we have

1 530 a’s; s
¢3:§a351/, s =3 <W_7 (10.37)
Here,
V: 4 a
q=22 =22 sp=1l—s+(o—s)P f=— (10.38)
71 71 a

Now, using the procedure described earlier, we can present the field and
its derivative at the late stage in a form similar to Eq. (10.34). First, consider
the leading term of this sum:

3/2.3/2 3/2.3/2
HoMo //‘0/ 73/ an 0B. - HoMo Mo/ 73/
~ ~—
127[(71’)1/2 t3/2 ot Sﬂ'(ﬂ')l/Z t5/2

(10.39)

The latter coincides exactly with expressions for the field in a uniform
medium with resistivity of the deepest part of the formation. In other
words, the field does not depend on the resistivity and radius of either
the borehole or the invasion zone; and such behavior occurs regardless
of the probe length. In principle, the transient induction probe may consist
of one coil only. Although the possibility of using a single-coil probe sounds
very attractive, there are some serious technical challenges to overcome in
implementing this approach, such as large signal dynamic range, ultra-fast
current switch, etc.

The approximate expression for B, /0t, which takes into account the
first two terms of the series, has the form:

OB. 2\ Mp, [ 27\’ 15 822
o= (2) () A AATEYC I

Here p; and a; are resistivity and radius of a borehole, respectively; L is
the probe length; and functions ¢; and ¢s are given by Egs. (10.37), (10.38).
Comparison with the exact solution for the three-layered models shows

that the asymptotic Eq. (10.40) describes the field with accuracy sufficient
for practical needs, if 71 /a; > 20 or

d2
t>-1107 [s]
P1
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For example, for p; =3 ohmm and a; = 0.1m, the late stage occurs quite
early, at 0.03 ps. In other words, the time range that contains information
about the borehole is very limited.

10.2.3 Apparent Resistivity Curves of the Transient Signals in a
Medium With Cylindrical Interfaces

We present results of calculations of the field, B, /0, in the form of appar-

Bls<t) 2/3
&:<.Z ) (10.41)

ent resistivity defined as:

P B.(1)

z

where p, and p; are apparent resistivity and borehole resistivity, respectively;

B; (py, t) is the time derivative of function B.(py, f) at the late stage in a uni-

form medium with resistivity of the borehole; and B.=B./0t is the
signal observed on the borehole axis. As was shown earlier:

s 1/2\'"*Mop, -
B = (2) Molrs 10.42
z(p1 ) a? <7T> 271.0{514l ( )
Because
u1:2ﬂ'(1a—1, a=L/a, T1Z(Z”P1t><lo7)1/2’
71
we have
1/3 2/3
&_8_”3<£> / (M“p1> : (10.43)
= 3 o N
P T \7 tB.(t)
or
Hy [ oMo 2/3 2/3
0 0 2 il
— Fo [ Ho70 =K(B.(t 10.44
Pe = 4t <th(t)> (8:()) ( )

An advantage of introducing apparent resistivity according to Eq. (10.44)
is independence of the probe coefficient K from the resistivity of a medium.
Examples of apparent resistivity curves for the two-layered media, when
p,/p1 = 64 and the invasion zone is absent, are given in Fig. 10.4. The code
is parameter a = L/ay.
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Fig. 10.4 Apparent resistivity on the borehole axis (invasion zone is absent).

All calculations are performed for the relatively long probes, exceeding
the diameter of the borehole, @ > 2. For this reason, even at the early stage,
the transient field does not tend to that in a uniform medium with resistivity
of the borehole. With a decrease of time, a value of p, increases infinitely,
due to the field at the early stage being much smaller than that, calculated
using the formula for the late stage. The shape of the curves essentially
depends on the probe length and conductivity of the medium. With an
increase of time, these curves display a minimum, which becomes deeper
with a decrease of the probe length and an increase of the formation resis-
tivity. Then, with an increase of time, p, rapidly increases and approaches
the right-hand asymptote equal to the formation resistivity. Within this
range of time, the smaller the probe length and larger resistivity of the for-
mation, the earlier the time when the main contribution into the measure-
ments comes from the currents induced in the far-located region away from
the borehole and the probe. At the same time, the density of these currents
still depends on the borehole resistivity. The larger the resistivity of the
external area, the more rapidly a transient field and induced currents decay
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near the probe. Correspondingly, the influence of the probe length on the
field reduces at earlier times. The second term in Eq. (10.35) has a form:

a’s 1—s
fs:ﬁ(ﬁ_ 2 )

For sufficiently large formation resistivity and relatively small probe

length, when conditions

a’s<1 and s<1

are met, the second term of the asymptotic (Eq. 10.35) is independent of
formation resistivity and the probe length, and it is mainly defined by the
resistivity of the borehole. Thus if parameters of the borehole are known,
it is possible to correct p, for the effect of the borehole at the time range
when the field differs from that in a uniform medium with resistivity p».
As follows from Egs. (10.40), (10.41) the corrected apparent resistivity is

5
&z&(l——vﬁ) (10.45)
P1 P 3

Here,

277.'611
U =

(2!

The second term in Eq. (10.45), which defines a correction of p, at the
late stage, is directly proportional to the conductance of the borehole za’y;.
Behavior of the function in Eq. (10.45) is shown in Fig. 10.5. From com-
parison with the exact solution, it follows that Eq. (10.45) provides sufficient
accuracy in determination of p, for a relatively resistive formation,
po/py >10,if a=L/ay <4 and 71 /a; > 15.

A comparison of the exact solution and asymptotic formula shows that
the field in a two-layer medium becomes practically the same as in a uniform
whole space with resistivity of formation p, if

71/a;>30 or tye >90a; /27p, (10.46)

Apparent Resistivity Curves in the Presence of an Invasion Zone

Examples of apparent resistivity curves in this case are shown in Fig. 10.6.
a
The data presented are for two sets of the models Lr_ 22 P3
P @ Py
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Fig. 10.5 Behavior of function p./p,.
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Fig. 10.6 Apparent resistivity curves in the presence of invasion zone for two sets of

Pa_92_P3
[<]]

L/G1.

.The code is a =
P1

P3

P1

If the resistivity of the invasion is less than that of the formation, the
shape of the p, curves is the same as that of the case of two layers, but
the curves are approaching the right asymptote at later times. In the case

of p,/p; > 1, the change in the shape of p;, is noticeable for short probes
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and large radii of the invasion zone: at the early stage p, increases with time,
reaches some maximum defined by the resistivity of the invasion zone, p,,
and then, when currents are mainly located in the conductive formation,
asymptotically decreases approaching its right-hand asymptote, p;.

10.3 TRANSIENT FIELD OF THE VERTICAL MAGNETIC
DIPOLE IN A MEDIUM WITH HORIZONTAL
BOUNDARIES

The study of the transient field in a medium with cylindrical bound-
aries enabled us to obtain information about radial responses of two-coil
probes. As time increases, the influence on the field of a surrounding
medium (shoulders), located above and beneath of the layer, becomes
greater and this influence increases with increase of shoulders conductivity.
It is important to establish the maximum time when measurements with a
two-coil probe, located inside the layer of finite thickness, are practically
independent of conductivity of the surrounding medium. With this purpose
in mind, we consider the behavior of the transient field in a medium with
one and two horizontal interfaces.

10.3.1 Transient Field in a Medium With One Horizontal
Boundary

As we showed in Chapter 9, an expression for the harmonic field on the axis
of the magnetic dipole is

[e5]

M 3
BW* = B (kg 2) + Fo=20 Jm—mn exp[—Qa—1)mz]dm if a>1
- - 4 mi
0
My [ 2m’
Bg)*:ﬂi 0 J T exp (—amiz)exp [—(1 —a)mpz]dm if 0 <a<1
T my my

0
(10.47)

Here, ky and k, are wave numbers of the first and second medium, and
the dipole is located in the first medium:

’,nl:(mZ_k%)l/z’ m2:(m2_k§)1/2’ and m12:ﬂ11—1412

my +my

Also, z is the probe length, L is the vertical distance from the dipole to
the boundary between two layers and



338 Basic Principles of Induction Logging

L
a=—
z

Assuming that the current in the dipole changes as a step function:
I=1I) it t<0 and I=0 if t>0

for the transient field B.(f) we have

o)

. 2
B.(t)= - JImBz(a)) sin wdw
0

Applying this formula and omitting rather simple algebra, we derive the
following asymptotic expression for the late stage:

OB. My, (g)l/zu_i’lsl/z—l_(ﬂ>1/2(2a—1)(5+1)(s—1)2

~
~

ot > \m s—1 5 2 4
(10.48)
2
Here, s:Q, "y ZE, T = (27rp1t X 107)1/2.
71 71

Examples of the apparent resistivity curves, calculated using Eq. (10.47),
are shown in Fig. 10.7. Apparent resistivity is related with the field as

e (5)"
p1 Bz

p oy L * 3

0.1

Fig. 10.7 Curves of the apparent resistivity for = 1.2. Index of curves is s=y, /7.
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where

1/2 2
~1m_1VI()P1 2 5 uy
be =g \z) e\ 72

is the field in a uniform medium with resistivity p;.

For the small values of parameter 7,/z, when both the source and obser-
vation point are located in the medium with resistivity p;, (2 < L), induced
currents are concentrated near the source and curves approach the same
asymptote p, = p; (Fig. 10.7). As time increases, the influence on the second
medium becomes stronger. Moreover, the higher its conductivity, the ear-
lier it manifests itself. The right asymptotes correspond to the late stage,
which depends on the resistivity of both media. As we can expect, with
an increase of time, the induced currents are located at distances greatly
exceeding L and the field is practically independent of the distance between
the probe and the boundary. Within the early stage, we observe an extre-
mum (maximum if p, /p; < 1 and minimum when p,/p; > 1). Appearance
of the extremum can be explained as follows: at the earlier times, the near-
borehole currents produce their own magnetic field, which aftects the cur-
rents at some distance from the dipole and, eventually, the field in the
receiver. The effect is the most pronounced in the case of high contrast
between conductivities of the medium. Now, consider the case when the
dipole and observation point are located in the different media (Fig. 10.8).

The left asymptote tends to zero if p,/p; > 1 and to infinity when the
second medium is more conductive, p,/p; < 1. At the early stage, the field,

p‘[/p'l

0.1
1

10 100 nlz

Fig. 10.8 Curves of the apparent resistivity for « =0.6. Index of curves is s.
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measured in the second medium, depends on both resistivity near the source
and resistivity in the vicinity of the observation point. By contrast, at the late
stage, all curves, regardless of the position of an observation point, approach
the horizontal asymptote, which depends on resistivity of both media. As
follows from Eq. (10.48) for the asymptotic value of apparent resistivity,

pe (5 s—1 2/3
pl_ 255/2_1

10.3.2 Transient Field of the Vertical Magnetic Dipole Inside
a Layer of Finite Thickness

we have

Suppose that the center of the two-coil probe is located in the middle of a
layer and that the resistivity of a medium above and beneath the layer is the
same. In this case an expression for the vertical component of the field, nor-
malized by the primary field, B,=u,M/2zL>, is equal to

bo=0""(ky2) + exp (—2amy) dm  (10.49)

(o]
mmis exp (amy ) + myachm;
my 1 —mi,exp (—2am;)
0

Here, L and H are probe length and the layer thickness, respectively

my —m
my = (m2 - k?)l/z’ w2 = (mz - kg)l/z’ 2= m11 + mj

kq and k, are the wave numbers of the layer and surrounding medium. Pre-
sentation of the field as a sum of two terms, (Eq. 10.49), is sufficient for the
calculation of the frequency regime and becomes problematic for the calcu-
lation of the transient response at the late stage. The numerical problem is
especially severed when resistivity of the surrounding medium becomes
much larger than the resistivity of the layer: the two terms in Eq. (10.49)
having opposite signs practically cancel each other and an accurate estima-
tion of the spectrum becomes very time consuming. To overcome this
problem it is advisable to modify Eq. (10.49) to the following form:
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bz:bzn*(klz)—i- J[F_m eXp( am1) +m exp( aw)}dm

214’12 Zl’l’l1
0
J m® exp (—ami)  m®exp (—am)
+ — dm
21/112 Zf’l’ll

To calculate a transient field, the Fourier transform is further applied to the

spectrum. The major challenge here is the calculation of the signal at the late
stage, which requires hardly achievable accuracy of calculations at low fre-
quencies if Eq. (10.50) is applied literally. For this reason, we derive an
asymptotic expression for the low frequency spectrum and use it further
for the estimation of the late stage of the transient field. Applying Taylor’s
expansions in series by powers k> for all functions in the integrand Eq.
(10.49) and performing analytical integration of the first several terms, for
the case of the conducting surrounding medium we arrive to following
the low-frequency asymptotic:

TR qkf + 62]6:15 + qle‘l‘ In2k, + 641641‘ + cSk:;’

where
1 as(s—1
pmlon, st
= Llsgr(gr Lo dar) (2ep dsp
; 15 4 4 4 4
H

P
and s= —1, a=—.
P2 <
Coefficients of the first and fourth terms are not given because the latter
contain even powers of frequency and, therefore, do not contribute into the

late stage. Integration by parts of the Fourier integral gives for the late stage:
OB M, (2\'7 Sf 3 (m\1
=— - t—(=) 2« —1
ot 225 \z) " (2> ms(s=1)

+12 522 52 _Tap 3ap)_ (232 _3sp
4 4 P

Here

(10.50)
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2nz .
Uy =—, T1:(2ﬂ'p1t><10
3!

)1/2

The field at the late stage becomes practically equal to that in a uniform
medium with resistivity of a surrounding medium independently on the
probe length. Similarly, we may derive an asymptotic expression describing
the late stage of the transient field in the presence of the non-conducting
surrounding medium (s=0):

ot nz

O0B. 3M
. 05P1 a%ff(l _80[2“%_40,“?) (10.51)

In that case, the currents are uniformly distributed along the z-axis,
and the field is directly proportional to the cube of the longitudinal con-
ductance, S=y;H. Results of calculation of the apparent resistivity when
the two-coil probe is located symmetrically inside the layer are shown in
Fig. 10.9A and B.

Each family of curves is characterized by the same parameter a. As we
can see
1. At the early stage, when currents are concentrated near the source, the

field only depends on the resistivity of the layer. Correspondingly, the

left asymptote of curves p,/p; is equal to unity.
2. In the late stage, when 71 /2>>1, the currents are practically absent in the
layer, and the curves approach the right asymptote equal p, /p;, (P, 7# ).
3. If p,/py > 20, then the curves of the apparent resistivity also have an
intermediate asymptote, which corresponds to the case of a noncon-
ductive surrounding medium. This asymptote occurs at a time interval

pdpr f pdpr |

10 i | [ | IS S ;
5 ‘ ‘ .
- 2 ! ;
1 E . N e I
E 112 L1/2
| i
O e N 116 1/8-
E o og=1 | 01g =116
F nlys =132 ! £ nlys = 1/32 —

0.01 L ol i coo vl ol

100 1000 10 100

(A) 7lz (B) Tlz

Fig. 10.9 Apparent resistivity curves for (A) a=1 and (B) a =2. Code of the curves
is y1/72-
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in which currents have not yet penetrated the highly resistive surrounding
medium, but inside the layer, they are distributed almost uniformly along
the z-axis.

4. In the case of relatively high conductivity of the surrounding medium,
the curves have a maximum even at relatively small times; such phenom-
enon was explained earlier.

5. Over time, the induced currents move away from an observation point
and the influence on the probe length becomes very small. The calcu-
lation shows that for the given value of p,/py, the field is practically
defined by the parameter 7,/H.

6. Apparent resistivity only slightly differs from the resistivity of the layer if
the following conditions are met:

2

Tl max H
—<6 or t 7 <0.6—
H P1

1
provided that @>2 and 16 >22>
p1 16

10.4 TRANSIENT FIELD IN APPLICATION TO DEEP-
READING MEASUREMENTS WHILE DRILLING

During the last decade, the petroleum industry made significant pro-
gress toward developing deep-reading resistivity measurements while dril-
ling (MWD). All major service companies rely on induction tools, which
use a sinusoidal excitation source, to provide information about directional
resistivity on a scale several times greater than conventional logging tools.
Specifically, deep-reading tools developed by service companies such as
Schlumberger, Ltd and Baker Hughes Incorporated identify resistivity
contrasts at tens of meters away from the wellbore. The primary applica-
tion of these tools is detection of up to 20 m away from the borehole of
the oil-water contact and the reservoir faulting. Measurements are per-
formed in the presence of conductive drill pipe, which creates a large
induction signal in the receivers by diminishing sensitivity to the properties
of the formation. To reduce contribution of the signal from the drill pipe
while still providing greater depth of investigation, long three-coil systems
(20-30 m) at frequencies between several to hundreds of kilohertz are
used. The measurements are inverted to obtain distances to boundaries,
resistivity of the reservoir, and the resistivity of the beds above and below
the penetrated layer.
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In many geo-steering scenarios, it is also desirable to detect the presence
of a formation anomaly ahead of the bottom hole assembly. Traditional
frequency-based measurements have limited potential to accomplish these
tasks. The limitation is dictated by a controversy between requirements
of having deep-reading capabilities and the necessity of increasing tool
length. Indeed, deep-reading induction tools require long transmitter-
receiver spacing, which immediately reduces capabilities of detecting anom-
alies ahead of the bottom hole assembly.

In the following paragraphs we explore an alternative approach aimed to
resolve this controversy by using relatively short systems (approximately
7 m) based on transient electromagnetic measurements. Specifically, our
focus is on a deep-reading transient system that is capable of looking ahead
of the drill bit. We show how the eftect of the drill pipe in a short system
might be reduced to preserve sensitivity of the measured signals to the prop-
erties of the formation ahead.

The asymptotic formulas, describing both frequency and transient
responses of the field, are very useful for understanding how to suppress
signal from the drill pipe. Unfortunately, deriving them for logging-while-
drilling (LWD) measurements is extremely difficult because the
corresponding forward problem becomes two-dimensional and can only
be solved by applying advanced numerical techniques. At the same time,
solutions for some idealized models are still available, making it possible
to study field characteristics at frequency and time limits that are deemed
important. To simplify the study, we can assume that the drill pipe is a cyl-
inder with a constant radius g, whereas transmitter and receiver coils have the
same radius r,, which slightly exceeds the radius of the cylinder. Such an
approximation enables us to apply the method of separation of variables
and derive formulas for the field at distances exceeding the radius of the
cylinder. First, we study an electric field of the current ring placed in a uni-
form formation and then consider the field of this ring symmetrically placed
around a conductive cylinder.

10.4.1 Normal Field of the Current Ring in a Uniform
Conducting Medium

As in the case of the magnetic dipole, the vector potential of the electric
type A, caused by the current element Id], is equal to:
poldl exp (ikR)
=i
4r R

dA* (10.52)
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Fig. 10.10 Position of the current element and an observation point.

Here, I is the current of the element length dl, and R is the distance

between an observation point p and the current element:
R= [r,f + % —2arcos ¢ + 22] 12

while i is a unit vector indicating the direction of the element dl (Fig. 10.10).
In the cylindrical system of coordinates, the point p and current element
have coordinates (1,0, z) and (r, ¢, 0), respectively.

The vector potential of the current ring located in a horizontal plane
has the ¢ component only (Chapter 1), and for the current element dl
we have

exp (ikR) Iy cosadl  Tuyn exp (ikR)
R 47 4z

dAy(p) = cos ada (10.53)

The angle a is shown in Fig. 10.10. Similar to the case of the magnetic
dipole, we express the field through cylindrical functions and use the follow-
ing representation for the term exp(ikR)/R:

ikR) 2 T
exp(ikR) _ 2 JKO [ —12)'"d] cos mzdim (10.54)
R T

0

Here, k*=iyp,w and R= (2> + d2)1/2. Substituting Eq. (10.54) into
Eq. (10.53) and integrating along the ring we obtain

o 2
Tuyr, 2
A;; — Holk2 J cos mzdm J Ky [(mz — kz) 1/2d] cosada (10.55)
4r &
0 0
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In accordance with the addition theorem of modified Bessel functions of
the second kind, we have

Ko(dv) = Ky (rv)I(rnv) + ZZKﬂ(rl))I”(Vkv) cosna if r>r,
n=1

and - (10.56)
Ko (dv) = Ky (nv)Io(rv) + ZZK”(rkl))Io(rl)) cosna if r<w,

n=1

Replacing in Eq. (10.55) the function Ky(dv) by the right-hand side of
Eq. (10.56), and applying the condition of orthogonality of trigonometric
functions

2
Jcosna‘ cosmada=0 if m#“n

0
2z

Jcosna‘ cosmada=rm, if m=n
0

we obtain the integral representation for the vector potential of the current

ring in a uniform conductive medium:

I (nw) K (rv) cos mzdm r >,

Aj= (10.57)

L (r0)K; (no) cos mzdm r<mn,

Here, v = (m° — k2)1/2. Considering that divA =0, for the electric field
Ey we have
0A;

E¢— —6t —1wA¢

or

0
Ey= 2 Uth (n0) K (rv) cos mzdm if r>n (10.58)
n
0
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o0
10)
o) I, J L (rv)K; (n) cosmzdm if r<u, (10.59)
z

0

*_
E,=

With decrease of the radius r,, the field tends to the field of the magnetic
dipole. In such cases, the ratio 2/, becomes very large and the integral is
defined by small values of m. Then, replacing the Bessel function I;(x) with
the asymptotic value of x/2, we have

iwpy 122 ﬁ exp (ikR)

x iw/’l()
E ~
o2 ko9, R

» Ir,f JZ/IQ (rv) cos mzdm=—
7T
0
_ iop
 47R2

Inr exp (1 —ikR)sin @ if r>rn,

Thus we arrived at the expression for the electric field of the magnetic
dipole. Assuming that the radius of the receiver coil is small and it is located
sufficiently far from the transmitter, we have

B* ~ ﬂUM)

SRy 2

exp (ikz)(1 —ikz) (10.60)

The asymptotic behavior of this field was studied in detail in Chapter 4
and, in particular, we found that at a low frequency and, correspondingly, at
the late transient, the expressions for the field are

ro 7

QB.oc InB.o< (yo)*?, B:(1)oc s (10.61)

10.4.2 Boundary Value Problem in the Presence of an Ideally
Conductive Cylinder

Now we begin to study the influence on the field of a conductive cylinder
and, accounting for its high conductivity. First, consider the limiting case
when the cylinder is an ideal conductor. Thus we have to solve the bound-
ary value problem for a cylinder with the radius a, surrounded by a medium
with conductivity y and excited by the current ring with radius n, > q,
located in the plane perpendicular to the axis of the cylinder. In
Chapter 8, we showed that in that case, the solution to the Helmholtz equa-
tion can be presented as a combination of modified Bessel and trigonometric
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functions. Taking into account (Eq. 10.59), the total electric field at r <1,
can presented in the form:
[oe] [oe]
. _ lop
E,= 71@ L (r0) Ky (nw) cosmzdm + | C(0)Ki(rv) cos mzdm
0 0

(10.62)

Here, the second integral describes the electric field caused by currents
induced in the cylinder, but the first integral represents the normal field
of the current ring surrounded by a uniform medium. The function Ej
satisfies the Helmholtz equation and radiation boundary conditions at infin-
ity. At the surface of the ideal conductor, the electric field is equal to zero,
thus we have the following boundary condition to determine the unknown
function C(v):

I (av)K; (r) + C(0) Ky (a0) =0
Whence

Clv) = —% (10.63)

and for the total electric field we have

I
E;; = E;;” — ;ia)ﬂ() J%IQ (nw) Ky (rv) cos mzdm (10.64)

0
The last equation enables us to estimate an electric field as a function of

the z-coordinate. In particular, for the secondary field in the receiver of the
radius r =r,, we obtain

K7 (nv) cos mzdm (10.65)

(o]
In, J I (av)
0

s — K
z o K (av)

In the case of a nonconductive surrounding medium, the equation earlier
leads to:

K7 (nem) cos mzdm



Induction Logging Based on Transient EM Measurements 349

while for the normal field we have
o0
o e,
E}" =—iwpuyln, | I (n.m) Ky (nm) cos mzdm
T
0

As follows from the last two equations the secondary electric field and the
normal electric field at the surface of the cylinder differ only by a sign. In
other words, the electric field of induced currents on the surface of the ide-
ally conductive cylinder r=a completely compensates the primary electric
field caused by the current ring. In the case of the primary source varying
as the step function, the surface currents almost instantaneously arise and
then remain constant with time because there is no diffusion of the currents
into the ideal conductor and correspondingly, there is no conversion of elec-
tromagnetic energy into heat.

Now we again assume that a surrounding medium is conductive and it is
experiencing harmonic excitation. The current ring r, induces primary vol-
ume currents in the medium and surface currents on the cylinder. By def-
inition, the normal field is caused by the current ring and the induced
primary volume currents in the medium, while the anomalous field is
due to the surface currents and their interaction with the volume currents.
Because the current ring is located near the cylinder, and the total field at the
surface of the ideal conductor is equal to zero, the surface currents are mainly
concentrated near the source.

The direction of the surface currents is opposite that of the current
source, and they decay as oc 1/R® with the distance from the ring. The
smaller the difference between the radius of the ring and the cylinder
(r, — a), the larger is the concentration of the surface currents near the ring.
The phase difference between the surface currents and that of the primary
source 1s 180 degrees.

In the case of the transient excitation, when the source current I is
abruptly turned off, the induced currents of the same direction instantly arise
in the vicinity of the source and begin diffusion inside the formation. The
induced currents in the formation cause the normal field, which gives rise to
the currents on the surface of the cylinder. These surface currents create a
secondary field of the opposite direction to the normal field, maintaining
a zero electric field along the entire surface of the cylinder. Similar to the
frequency domain, an influence on the ideally conductive cylinder, even
at the relatively small distance from the source, is practically described by
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the transient field of the equivalent magnetic dipole, located at the center of
the current ring. Thus, at distances several times greater than the size of the
ring, the secondary and normal fields have the same dependence on the con-
ductivity of the formation, observation time, and the distance from the
source. In particular, at the late stage, both the normal and secondary fields

decay as oc /2

. To confirm this qualitative analysis, let us assume that
r=rn,, 2>r. In such case, the integral in Eq. (10.65) is mainly defined by
small values of m and its integrand can be approximated as:

L(aw) @ 55 @
Ki(nv)cosmz~—v"Kj(nv) cosmz ~—vKj (V) cos mz
K1(ay) 1(k) 2 1(76) 21 1(16)

Correspondingly, for the electric field Ej’ we have

B I 0 JK( ) p I . 081 (‘IeR)ﬂ
=—iwpy—— vr,) cos mz dm = —iwp, sin @—— exp (ikR) =
¢ on ﬂoam 0\ 2 Ho RRF 2
0
or
s Ii*n ) ) ) )
E, = T RE Mo exp (ikR)(1 —ikR) sin 6 (10.66)

Therefore, we arrived at the expression for the electric field of the mag-
netic dipole in a uniform medium. As was mentioned earlier (Eq. 10.4), the
expression for the transient field is

2\ Mop 5 Y\
Ey(t)=— (;) R w exp (_E) sin @

_ 2nR

Here,

“ . = (2mpr107)"? (10.67)

Now we compare the dipole transient response Ey(f) in a uniform
medium with that from the ring of a finite radius that can be easily obtained
using the frequency response for Ey(w) (Eq. 10.59) and Fourier transform. In
the case of a step function, the spectrum is 1/(—i®), and for the transient
response, we have

it
w exp(za))dw
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In the simulation, for the case of dipole excitation we use a small receiv-
ing loop with a radius of 1y = 0.01 m. For the ring excitation, transmitting
and receiving coils of the same radius (e.g., r, = 0.1 m) are selected. To per-
form a comparison of the electromotive forces excited by the dipole and cur-
rent ring, they are both normalized by the product of transmitter M, and
receiver M, moment:

e¢(t) = E¢(t) . ZHVO/MtM,

Normalized transient responses at a very early stage (f <1 ps), when the
size of the ring is the most pronounced, are shown in Fig. 10.11A and B for
formations of 1 and 100 ohm m, correspondingly. In both cases, the signals
are calculated at two transmitter-receiver spacing of 0.5 and 2 m. The devi-
ation of the ring response from the dipole response is most noticeable in the
conductive formation at the relatively short spacing of 0.5 m. But even at
0.5 m spacing, this difference becomes negligible when the observation time
is greater than 0.1 ps. In the case of the resistive formation, the effect of the
finite size of the ring is practically negligible even at ¢>0.03 ps
(Fig. 10.11B). Overall, we see that if the distance between the transmitter

e,/(MM,) £,/(MiM,)
100 100
10708 10708
(A) (B)

Fig. 10.11 Early stage transient responses from the whole conductive (A) and resistive
(B) medium excited by the dipole and ring. Index is spacing.
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and receiver is more than five times greater than the radius of the ring, the
dipole and ring responses practically coincide over the entire time range.

Bearing in mind the similarity between the normal field and the field
caused by the ideally conductive cylinder, we may also conclude that for
all practically important transmitter/receiver spacing, the response from
the cylinder surrounded by a conductive medium is described by the field
of magnetic dipole. Later we will see how this fact can be used for the prac-
tical design of the transient logging tool.

10.4.3 Influence on the Finite Conductivity of the Cylinder
Boundary Condition

To find the field in the case of a cylinder of finite conductivity, solving the
boundary value problem requires determination of the magnetic field inside
and outside the cylinder. But we take advantage of two facts and simplify the
problem. First, our goal is the field outside the cylinder only. Secondly, we
are dealing with the cylinder whose conductivity in orders of magnitude is
greater than that of the surrounding medium. Those two factors enable us to
apply the approximate impedance boundary condition that is known as the
Leontovich boundary condition. To proceed let us assume that the plane
wave in a medium with the wave number k; approaches at some arbitrary
angle the boundary that separates the medium with wave number k. Then
in accordance with Snell’s law, the direction of the refraction wave is prac-
tically normal to the boundary, provided that

|]€2|>>|/€1|

Correspondingly, the electric and magnetic fields of the refraction wave
are parallel to the boundary, and by definition their ratio is equal to the
impedance of the plane wave in the second medium:

By_2Z

B2z Ho

Inasmuch as tangential components of both fields are continuous at the
boundary, we have

By _Ey_7

192 _ (10.68)
Bi. Bo. g

where Ej, and Bj, are complex amplitudes of the tangential mutually

orthogonal components of the field in the first medium outside the cylinder.
Leontovich had shown that Eq. (10.68) is valid for the more general case of
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an arbitrary boundary and nonplane incident wave, provided that the radius
of the surface curvature greatly exceeds the skin depth. Eq. (10.68) implies
that in the vicinity of the boundary from the side of the second medium, the
field behaves as the plane wave and moves in the direction perpendicular to
this boundary. The practical importance of Eq. (10.68) is the possibility of
avoiding determination of the field in the second medium. Thus, for appli-
cation to our problem of axial-symmetrical excitation of the cylinder, we
have the following expression for the complex amplitude of the impedance:

Eyy

Z; =Ho0or B
1z

which relates the field in the surrounding medium with the impedance of
the cylinder. On the other hand, for the intrinsic wave impedance Z; of
the plane wave, we have

WH

ky (a’ﬂopz) exp( i"/4) = (wyopz/Z)l/z—i(a),u(,pz/Z)l/z

Zy=—

Bearing in mind that the Leontovich boundary condition is an approx-
imate one, it is useful to estimate a minimal frequency f,;, when the skin
depth 6, = (2/7/2/100))1/2 in the highly conductive cylinder becomes high
enough to satisfy the condition. Suppose that p, =1x 10" ohmm and
8> =2x 1072 m. Then, for the frequency f,,;,, we have an estimate:

1 4 1
> [— | x=—10°~10*H
Join 2 5 07 (8%2) 872 ‘

At such frequency, the corresponding amplitude of the complex imped-
ance |Z;| is quite a small value:
wuyd, 2r-4x-1077-2-1073

- — 10* ~10"*ohm

‘Zz 21/2 21/2

Approximate Solution to the Boundary Value Problem
Following Eq. (10.62), the electric field in the surrounding medium can be
presented as:

[So] (o]
E,= @In J I (rv) K; (n,0) cos mzdm + J D(v)K;(rv) cos mzdm
n
0 0

(10.69)
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where the first integral is the normal field; and D is an unknown function of
the integrant, which determines the secondary field. At the same time, the
magnetic field might be expressed directly from the Maxwell equation:

9 -

rarrE‘i’ iwB’

After substituting Eq. (10.69) into the latter, we receive

6] [S0]

JDK] (nw)Io(rv) cos mzdm — J Dv - Ky(rv) cos mzdm

0

Tugrn
7

B =

z

From Eq. (10.18), we have

(
o]
1
i, Holk ! I (av) Ky (r,0) cos mzdm + JD(U)IQ(av) cos mzdm

0

[oe]
L JI/K1 (nv)Iy(av) cos mzdm — JDDKQ(LII/) cos mzdm
n
0 0

(10.70)

Let us introduce notation:

Z
i
Because k* = —iwpuy, for & we have
_ A 1 5%

iwp, ik (i—1)
where 6, is a small number because it represents the skin depth of the highly

conductive cylinder and the product v is dimensionless. Thus, for the sec-
ondary electric field, we have

*s o, I (av) — vély(av)

KT Ki(nv)K dm (1071

rkJK1(a1/)+l/§Ko(ay) 1(nv) Ky (rv) cosmzdm — ( )
0

For instance, in the case of an ideal conductor £ =0, the electric field is

i,
T

K (nv)Kq(rv) cos mzdm

*
Ej=—

Il’k

that coincides with Eq. (10.65) at r =r,.
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High-Frequency and Early Transient Stage Asymptote
The fraction in Eq. (10.71) can be presented as:

Li(av) —vél(av)  Li(av) L (av)
Ki(aw) +véKy(av) Ki(av) Ki(av)

(10.72)

where the last term corresponds to the case of the ideal conductor. Combin-
ing the first two terms in Eq. (10.22) and considering that

I()K1 + 11 I<() = 1/(1/(1)

we obtain
I]K] —l/de(}K1 —I1K] —UfI]KO IoK1 +I1K() 1 1
= —U = —
Ky (K + 1éKy) Ky (K + véKy) aKi[K; + VEK]

Thus the total field comprises the three field components: the field Ej" of
the current ring in a uniform medium; the field E* caused by the presence
of an ideally conductive cylinder; and the field E}’, characterizing diffusion,

providing that the skin depth in the cylinder 1s sufficiently small. For the last
component, we have

i, £ K (nv)Ki(rv)

za o J Ki(av)[K;(av) + vEKy(av)]

E;;‘\' =— cos mzdm (10.73)

Suppose that the field is observed at a large distance from the current
source. Then the integral is mainly defined by small values of m and «.
By neglecting the second term in the brackets of the denominator and
replacing K (rnv)/K;(av) with an asymptotic value of a/r,, we receive

[So] [Se]
iwp, 1 K iwpyl
:;f ~ - 2H rkfﬁ J 1(rv) cos mzdm =z — 210 Ea J VK (rv) cos mzdm
za n ) Ki(av)
0 0
or
oyl 0 i jwpyl . 0
E;f ~ ﬂcfa— JKo(ru) cos mzdm = ﬂfa—R*l exp (ikR)
T 81’ 2 87 (10 74)
. I 0 )
,
Efm— ’21’2 Eaexp (ikR)(1 — ikR)sin 0

Atfirst glance, the field E} in Eq. (10.74) is small compared with the field

of the ideal conductor. However, if the difference in radii of the ring and the
cylinder is small, then the terms describing the normal field and the field
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from the ideal conductor almost cancel each other, and the diffusion term
may dominate. Suppose that |ka<<1|. Then the frequency dependence of
the electric field, caused by the diftusion in the cylinder, is

*S A 1 ¢
¢ R3 (wy)uz

Correspondingly, the early stage of the transient process in the cylinder is

defined as:

(9]

B, (1) c 1 ZJcosa)t c 1 1
= = _
¢ V2R3x ) /2 R3y1/241/2

(10.75)

This equation suggests that the finite conductivity of the cylinder causes a

1/2 of the transient field [2]. A large difference in con-

very slow decay oc 1/t
ductivities leads to a very different decay of the transient field in the forma-
tion and the cylinder. Specifically, the late stage of the transient process
(hundreds of microseconds) in the formation corresponds to the early tran-
sient stage in the cylinder. We may expect that in the presence of both cyl-
inder and formation, the slowly decaying term oc 1/ 1'/2, corresponding to
the cylinder, will completely dominate over the fast decaying signal oc 1/£7/2
from the formation.

10.4.4 Effect of Spacing on the Pipe Signal

Now we compare our qualitative analysis with numerical calculations using
the advanced finite element numerical technique. In the model, the source is
the current ring with the radius , = 0.085 m, which slightly exceeds a radius
of the pipe, a=0.07 m. The electromotive force is measured at the distance
z=3m (Fig. 10.12A) and z=7 m (Fig. 10.12B) between the transmitting
and receiving coils. Resistivity of the entire space is set to
p =100, 10, and 1 ohmm.
As shown in Fig. 10.12, it is useful to distinguish three different time
ranges:
1. The early time range ¢ < 10 ps. In this case the signal is mainly defined by
the resistivity of the formation.
2. The intermediate range 10 <t <100 ps, when the signal depends on
properties of both the formation and the pipe.
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Signal, V T T 7 Signal, V F !
100 ohm m Skacing =3 m N Spacing=7m
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Fig. 10.12 Transient response at L =3 m (A) and 7 m (B) spacing in the presence of con-
ductive pipe in homogeneous whole space. Index of the curves is whole space
resistivity.

3. At later times, the influence on currents in the pipe completely domi-
nates, and obtaining measurements of formation resistivity becomes
hardly possible.

At relatively early times, when the diffusion of currents in a pipe is insignif-

icant, the influence of the surrounding medium becomes stronger. This fact

is not occasional, because at such time range, the pipe behaves almost as an
ideal conductor. Correspondingly, we focus our attention on conditions in
which induced currents in the cylinder are located relatively close to the
transmitter coil, but the diffusion in the surrounding medium is described
by the intermediate and late stages. Those conditions correspond to the mea-
surements at the relatively large spacing, when the early stage transient pro-
cess can be measured at the expanded time window. However, this approach
alone has a limited value, because it leads to undesirable increase in the tool
length and does not preserve sensitivity to the deep parts of the formation

(see Fig. 10.12, when at f > 100 ps signal from the pipe dominates).

The influence on the pipe signal is even more pronounced when the
object of interest is located ahead of the two-coil probe. For example, let
us consider the case of a conductive layer placed at two distances (distance
to the boundary, or d2b) of 10 and 30 m ahead of the receiving coil
R (Fig. 10.13). The resistivity around the tool and ahead-placed layer is
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p,=50 ohm m

po=10hm m

Fig. 10.13 Two-coil probe surrounded by resistive layer and conductive layer placed

ahead of the probe.
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Fig. 10.14 Transient response in the presence of ahead-placed conductive layer at the

spacing of 3 m (A) and (B) 7 m. Code of curves is d2b.

p1 =500ohmm and p, =1 ohmm, correspondingly. Our primary objective is

to detect the ahead-placed boundary.

In Fig. 10.14, we show signals in the absence (dashed lines) and presence

(solid lines) of the conductive pipe for two spacing of 3 m (Fig. 10.14A) and

7 m (Fig. 10.14B).

In the absence of the pipe, the signals (dashed lines) are very well distin-

guished and demonstrate high sensitivity to the distance to the boundary,

while the presence of the pipe diminishes the sensitivity by making it
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impossible to resolve the target (overlapping solid lines). In other words, the
transient process is entirely defined by the properties of the pipe.

Like in the previously considered case of a homogeneous formation
(Fig. 10.12), increasing the spacing from Ly =3 m to L, =7 m leads to
the increase of the relative contribution of the formation into the total signal
because the signal from the pipe drops as oc 1/2°, while signal from the for-
mation, at least at the late stage, practically does not depend on the spacing.
For example, at 3 m spacing and 100 ps, the ratio of signals from the pipe
and formation is 0.002 (Fig. 10.14A), while at 7 m spacing it increases by a
factor of(7/3)3 =12.7t0 0.03 (Fig. 10.14B). But even at the increased spac-
ing, the ahead-placed boundary is still practically invisible.

10.4.5 Effect of the Increased Pipe Conductivity
on the Transient Response

There is another approach that can also delay diffusion through the pipe, thus
reducing its influence. Looking at the equation for the transient signal
(Eq. 10.75) we may notice that the leading term is inversely proportional
to the square root of pipe conductivity. This suggests a possible reduction
of the signal from the pipe by covering it near the transmitter and receiver
with a material (shield) that has higher conductivity than that of the steel.

First, this assumption is confirmed by the rigorous modeling for the pipe
of different conductivity, changing from y =1.4 X 10° S/m (Siemens per
meter) for the steel to y=0.6x 10> S/m. The intermediate value of
y=0.6 x 108 S/m corresponds to the conductivity of the copper; while y =
0.6x10S/m and y=0.6x10"2S/m to some hypothetical
“superconductive” materials.

The modeling results for 3 m and 7 m spacing (Fig. 10.15) confirm
reduction of the pipe signal with an increase of the conductivity. This signal
reduction is in full agreement with Eq. (10.75), which indicates on oo 1/,/7
dependence on the conductivity of the pipe and co1/2> dependence on the
spacing. It is also interesting to notice the fast, practically exponential, decay
of the signal (Fig. 10.15, y = 1.4 x 10° S/m) at the very late stage, t > 1 ms,
when thickness of the skin layer in the pipe becomes comparable with the
pipe thickness.

Let us explore further the effect of the increased pipe conductivity by
analyzing the transient response in the case of a highly conductive pipe sur-
rounded by homogeneous formations of different resistivity. For illustration,
a modeling is presented for the pipe with y =0.6 x 10'> S/m and a set of
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Fig. 10.15 Transient response in the presence of conductive pipe of different conduc-
tivities at (A) 3 m and (B) 7 m spacing. Index of the curves is conductivity of the pipe.

homogeneous formations with p=1, 10, and100 ohmm. The results
(dashed lines) at spacing of 3 and 7 m are presented in Fig. 10.16A and B,
correspondingly. In addition, the signals for the homogeneous medium in

the absence of the pipe are also shown (solid lines).
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Fig. 10.16 Transient response in the presence of highly conductive pipe in homoge-
neous formation at (A) 3 m and (B) 7 m spacing. Index of the curves is whole space

resistivity.
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Analyzing these responses we notice the following:

— For the given formation resistivity and spacing there is a time range where
behavior of the signal is slightly affected by the presence of the conductive
pipe. In this time range the skin depth in the pipe is practically equal to
zero and the pipe behaves almost as an ideal conductor (Eq. 10.65).

— Thelower the resistivity of the formation, the greater the time range where
the pipe behaves as an ideal conductor (overlapping dashed and solid lines).
For example, in the case of the 100 ohm m formation and 3 m spacing, the
overlap is observed up to t = 4 ps, while in 10- and 1-ohm m formations, it
is extended to t~ 30 ps and ¢~ 150 ps, correspondingly.

— Increase in the spacing significantly extends the time range in which the
response follows the response in the whole space. Comparison of the data
in Fig. 10.16 demonstrates an extension by a factor of 4.

10.4.6 Reduction of the Pipe Signal Using Finite Size Copper
Shield and Bucking

Unfortunately, there is no material with such high conductivity as in the

example earlier (y =0.6 x 10'2 S/m) to replace the steel. But we still may

use available conductive materials, such as copper, y,=0.6 X 1008 S/m,

and partially reduce the signal from the pipe. According to Eq. (10.75)

and the data in Fig. 10.15, the copper leads to reduction of the signal from

the pipe by a factor of \/y,/y,=6.55. As we discussed before, the major
effect from the conductive pipe comes from the region near the transmitting
and receiving coils. For this reason, a thin and relatively short copper layer
wrapped around a steel pipe (Fig. 10.17) serves as a shield. In the following
numerical examples, transmitting and receiving coils are placed in the mid-
dle of the 0.75-m long copper shield. In addition, we can further suppress
signal from the pipe by considering that the signal from the pipe decreases
with the spacing as co1/L?, while the transient signal from the formation
only slightly depends on the spacing, especially at the late stage. Thus, by
combining two signals at two different spacings, we may substantially reduce
contribution from the pipe into the total signal.

Obviously, the signals should be combined with the weights that are
inversely proportional to L or, more precisely, with the weights that pro-
vide no signal in the absence of the formation. For example, let us select two
spacings, Ly =5 mand L, =7 m, and estimate a coefficient k(f), which pro-
vides the following condition:

Sm’r(t) — SGLIZV(I) _ k(t) . SL1 “”([) =0 (10.76)
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Fig. 10.17 Three-coil probe with copper shields surrounded by resistive layer and con-
ductive layer placed ahead of the probe.

We call the coefficient k(f) the bucking coefficient; the short-spaced
receiving coil is the bucking coil; and the long-spaced coil is the main coil.
In fact, the bucking coil in the transient regime plays a similar role to the
bucking coil used in the three-coil induction system with harmonic excita-
tion, compensating a large signal caused by eddy currents in the pipe.

As we mentioned earlier, the signal from the pipe (Fig. 10.18A) is pro-
portional to 001 /L%, thus the bucking coefficient should approach a constant

value k= (L, /L2)3 (Fig. 10.18B). However, with an increase of time, dif-
fusion of currents in the pipe (see Fig. 10.15, y = 1.4 x 10° S/m) leads to a
small deviation from the constant k: the higher the conductivity of the pipe
(or conductivity of the shield), the later this deviation takes place.

Now let us show effectiveness in suppression of the pipe signal using both
the copper shield and bucking technique when applied to the one of the
most challenging tasks of geo-steering—detection of the target ahead of
the drill bit. It is assumed that resistivity around the transient system is
50 ohm m, while the conductive layer ahead of the drill bit has resistivity
of 1 ohm m. The distance from the transmitter to the bucking and main coils
is 5 and 7 m, correspondingly. Modeling results are shown in Fig. 10.19A.
First, we may notice the reduction of the signal amplitude caused by the cop-
per shield. By comparing the upper dashed curve (representing steel) with
the solid curve (representing the pipe with the copper shield) in

Fig. 10.19A, we see that the signal drops by a factor of 1/, /7, =6.55.

Next, using the signals at 5 and 7 m spacing and applying Eq. (10.76), we
obtain a family of the bucked curves corresponding to the difterent distances
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Fig. 10.19 (A) Effect and (B) magnified illustration of effect of the copper shield on the
bucked response in the presence of ahead-placed boundary. Code of the curves is d2b.

to the boundary, d2b=10, 20, and 30 m (solid curves). The curves show the
effectiveness of the transformation defined by Eq. (10.76), and enabling us to

essentially reduce the influence of the pipe and preserve sensitivity to the

target. Moreover, the behavior of the bucked curves is very similar to the
synthetic signals observed in the absence of the pipe (Fig. 10.19A, dashed
lines): the shorter the distance to the target, the closer the bucked curves

to the curves obtained in absence of the pipe. The difference between curves
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is most pronounced at the late stage when the target is located 30 m ahead of
the main coil. The magnified mismatch is shown in Fig. 10.19B and it is
caused by the increased influence of the skin effect in the pipe when the con-
ductive target has limited contribution into the signal. Similar behavior was
observed (Fig. 10.16) when the skin effect in the pipe was especially pro-
nounced in the resistive formation of 100 ohm m.

10.4.7 Improving Formation/Pipe Signals Ratio Using Magnetic
Shielding
To further reduce the influence of the pipe, one can use a magnetic shield in
the form of a short nonconductive cylindrical ferrite with high magnetic
permeability located between the coils and the pipe. The ferrite’s high per-
meability causes the magnetic field lines to be concentrated in the core mate-
rial, thus increasing the effective magnetic moment of the transmitting coil
(Fig. 10.20). When ferrite is placed in the external magnetic field, it becomes
magnetized, and magnetization currents of different directions arise both
externally and internally of the ferrite’s surface. Specifically, on the external
surface, the currents produce a magnetic field of the same direction with
an external field, while currents on the internal surface (close to the pipe
surface) generate the magnetic field of the opposite direction. As a result,
the total field in the vicinity of the pipe becomes smaller, thus reducing

Current

F

Fig. 10.20 Distribution of vector lines of the magnetic field in the presence of ferrite.
Solid lines show the magnetic field of the primary source (ring); dashed lines correspond
to the magnetic field of the magnetized ferrite.
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Fig. 10.21 (A) Effect and (B) magnified illustration of effect of the ferrite shield on the
transient bucked response in the presence of ahead-placed boundary. Code of the cur-
ves is d2b.

the intensity of undesirable induced currents in the pipe. Of course, the
shielding effect on the receiver side is similar to that on the transmitter side.

Let’s see how the ferrite affects the transient response when it is added to
the previously analyzed arrangement, based on the use of the copper shield
and bucking technique. We assume that the ferrite inserts in the transmitting
and each receiving coils are placed at 5 and 7 m, correspondingly. The
length of the ferrite is 25 cm, its thickness is 1.5 ¢m, and relative permeability
is 100. The position of each coil is centered with respect to the ferrite.
Modeling results are shown in Fig. 10.21 and demonstrate increase of the
signal level and improved resolution with respect to the ahead-placed
boundary. Moreover, the bucked signals (solid lines) practically coincide
with synthetic signals that are calculated in the absence of the pipe. This fact
is desirable because it enables us to exclude pipe from the forward model,
and eventually perform an inversion in a more reasonable amount of time.

Reducing pipe influence on the response was impossible when either
shielding or bucking alone were used. On the other hand, by combining all
the analyzed means we were able to reach a desirable level of pipe suppression.

10.5 INVERSION OF TRANSIENT DATA IN THE TASK
OF GEO-STEERING

Inversion is a technique for determining the geo-electrical properties
of a formation using induction logging data. In LWD, inversion constitutes a
critical part of the technology because real-time data are used to determine
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the best course for the drilling operation. The measurements are used in
geo-steering to determine dip angle and bed boundaries to keep the well
in the sweet spot throughout long lateral sections. Typically, decisions are
made by jointly interpreting data from gamma ray, acoustic, and resistivity
tools. In the following section we illustrate the main aspects of inversion
using a hypothetical induction probe operating in the time domain and mea-
suring different field components.

10.5.1 Well- and llI-Posed Problems

In the case of forward modeling, the problem is referred to as well-posed
because the equations and coefficients, which are defined by properties of
the formation, along with primary sources, are known. The corresponding
boundary value problem has a unique solution, which continuously depends
on parameters and the data- small changes in parameters result in small
changes in the solution. With today’s available computational power, solu-
tions to almost any forward modeling problem can be found in a very rea-
sonable amount of time.

In the case of the inverse problem, the coefficients are unknown and have to
be found using a set of measurements taken with a logging device. Itis called an
inverse problem with respect to the forward problem because it uses the mea-
surements and then calculates properties of the formation. The physics that
relates the formation’s parameters (i.e., the model parameters) to the observed
data is governed by Maxwell equations. The vast majority of inverse problems
are ill-posed because of the lack of uniqueness and continuity with respect to
small changes in the data. Typically, solving an inverse problem requires solving
systems of linear equations at some point. The main property of any system is
so-called condition number, which is defined as ratio of the largest to smallest
singular value in the singular value decomposition of a matrix of a system. If a
system has linearly independent rows and columns, it is characterized by a small
condition number; otherwise thisnumberis large. Asamatter ofrule, allinverse
problems lead to systems with a large condition number.

Example 1 Let us look at the system with linearly dependent rows (large
condition number):

x1+ SXQ:6+€
10x; + 50.1x, =60.1

where € is some small value. If € is equal to zero, the solution is x; =1,
xp =1, but the small perturbation of the right-hand side by &=0.001
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Fig. 10.22 The difference between two models is indistinguishable.

leads to the solution x; =2.0, x, =0.8, significantly deviating from the
unperturbed case of € =0, and illustrating lack of continuity of the solution.

Example 2 This is the famous example of Lanczos, demonstrating the non-
uniqueness or equivalence between different models. Lanczos fitted the
same set of data using first, a set of two exponents and then a set of three
exponents. The results are

£ (f) =2.202exp (—4450¢) + 0.305 exp (—1580¢),
£(t) =1.5576 exp (—5000¢) + 0.8607 exp (—3000¢) +0.0951 exp (—000¢)

The difference between f>(f) (Fig. 10.22, solid line) and f;(f) (Fig. 10.22,
dotted line) is less than the line width used to plot the data. In the given time
range it is impossible to establish the exact number of exponents in
the model.

10.5.2 Main Elements of the Inversion Algorithm

Any inversion algorithm includes steps of comparison of measured and syn-
thetic data, reproducing the probe response in the presence of the formation.
The combination of formation parameters providing the minimum misfit is
considered to be the solution of the inversion problem (see the following
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diagram). Normally, hundreds and thousands of comparisons between syn-
thetic and measured data are needed to find the solution.

Adjust model
Model .
vs. Forward

measurements modeling

Measured data s Initial model

Yes

Inverted model

Inversion diagram

For this reason, forward modeling, which generates synthetic data for the
different geo-electrical models, is the first critical element of the inversion
algorithm. The next component is the strategy used to generate parameters
of formation candidates to be tested for the best fit. Because of the ill-
conditioned nature of the inversion problem, the means for stabilizing or
regularizing the solution constitute another critical element of the inversion.
In particular, regularization includes increase of the data set, optimal number
of parameters subject to inversion, prior information about some of the
parameters, for example, range of parameters variation, and so on. In fact,
any additional information about the model or data constitutes regularized
inversion.

Finally, when the inversion is complete, it is important to have an esti-
mator of the error in inverted parameters. In other words, the interpreter
needs to know error bars, indicating how an error in the measured data
propagated into the error of estimated parameters.

10.5.3 Table-Based Inversion

When the number of parameters is limited, it is possible to invert data
by applying an old-fashioned approach that is based on the precalculated
master curves. Indeed, in the simplest geo-steering landing scenario, the typ-
ical formation model represents two layers and the borehole trajectory is
tilted at some angle with respect to the boundary separating the layers
(Fig. 10.23). Overall, we have only four parameters: resistivity of the upper
layer py, resistivity of the lower layer p,, dip angle @, and the most important
parameter in this application, distance to bed d2b.
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Fig. 10.23 Formation model and drilling trajectory.

We use the simplest arrangement comprising one transmitting and one
receiving coil placed in the upper layer. The task of geo-steering is to pro-
vide an optimal landing point, that is, a point where the well transition into
the horizontal/lateral portion of the well occurs. Let us estimate the time
needed to generate a table using, for example, 30 points to discretize each
parameter. The total number of precalculated transient signals will be 30,
Assuming that the typical time to calculate one master curve on an average
dual-quad processor is approximately 0.1 s, the table can be generated in a
matter of days using only one multicore processing unit. An important fea-
ture of the table-based inversion algorithm is that, for the given probe and
formation model, the master curves are generated only once and used
indefinitely.

The inversion algorithm is simple: we perform a global search by com-
paring the measured data with synthetic data from the table by calculating a
least square deviation A in each node of the four-parametric table:

A

LN (Si=Si(apy pyd2b)\?
_NTj:1 S

where S;/, S/ are measured and theoretical data, correspondingly; and N is
the number of time discretes in the precalculated transient signals. Then the
parameters corresponding to the node, providing a minimal value of A, are
accepted as a possible solution to the inverse problem.
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The data may include some number of logging points along the drilling
trajectory as well as the different measurements corresponding to the difter-
ent orientation of transmitting and receiving coils. Another benefit of the
table-based inversion is simplicity in implementing constraints on the
invertible parameters: the regions of parameters specified by constraints
are simply excluded from the scanning.

10.5.4 Stability of the Inverse Problem Solution

Stability of the inversion is mainly defined by the propagation of error in the
measurements into errors in the inverted parameters.

The solution is stable when noise in the data is not amplified too dras-
tically and the error in the reconstructed parameters is acceptable. Of course,
such notion is subjective. For example, if 10% noise is translated into 10%
error in the parameter, the solution is stable, whereas 100% error in the
parameter would indicate lack of stability.

There are different approaches for studying the stability of the inversion
scheme. One way would be to determine how the result is changing if input
data have been perturbed by some small number. Another way is to examine
how the result of inversion had been changing with respect to a different
realization of the noise while the statistical properties of the noise are kept
the same. The simplest example of such noise is a Gaussian noise having a
probability density function equal to that of the normal distribution with
a fixed standard deviation.

In the following examples we use model in Fig. 10.23 and the 30 nodes
for each parameter to discretize the parameters with a geometric step. The
discretized range for resistivity is from 1 to 200 ohm m, the distance from
transmitter to boundary is in the range from 1 to 50 m, and the deviation
angle is from 0 to 90 degrees. The transient signal is calculated with a geo-
metric step in the time interval from 1 ps to 10 ms (100 points).

The probe is a simple two-coil system with axial transmitting and receiv-
ing coils separated by L=5 m spacing. The length of the perpendicular d2b
from the receiver to the boundary (Fig. 10.23) is called the distance to the
boundary (or so-called true vertical depth), and the distance between the
receiver and the boundary along the trajectory is called measured depth,
Rd2b=d2b/cos(a) (Fig. 10.23).

To study the stability of the table-based inversion algorithm, we con-
structed numerical experiments consisting of 100 consecutive inversion
runs. In each run, a different noise realization of the same standard deviation
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is used to contaminate the data. The sets of inverted parameters comprise the
results of our statistical inversion. One of the input parameters used in the
experiments is the number of logging points along the drilling trajectory.
By varying this number, we can see how additional logging points affect
the stability of inverted parameters.

In the analysis we look at two sets of the data: in the first set, data from
only one logging point closest to the boundary are included; in the second,
data from two additional logging points from the previous toll positions are
added. In the numerical experiments, there are three different deviation
angles o of 0, 45, and 83 degrees are used, corresponding to the vertical,
deviated, and near-horizontal borehole trajectory, correspondingly. The
standard deviation of the relative Gaussian noise imposed on the data is
either 10% or 20% of the signal level.

Statistical Inversion for the Case of a Vertical Well

(0 Degree Deviation Angle)

In the first example, the boundary is placed at the distance of d26=23.5 m
from the receiver, and the resistivity values of the first and second layers are
p; =40and p, = 1 ohmm, correspondingly. In the experiments 20% noise is
added to the data. In Fig. 10.24, statistical inversion results are presented for
the case when data are placed at either one logging point at the distance
Rd2b=23.5 m from the boundary (left subplot) or three logging points at
distances Rd2b=23.5, 33, 45 (right subplot). In each subplot, the x-axis
represents the inverted deviation angle, and the left y-axis depicts inverted
distance to boundary d2b (dots). The right y-axis shows percentage P of
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27.5 -~ #log.points =111l {90 27.5 [—-4--- #Log. pomts=3lrﬁ+”%ﬁ_ 90
25 |- -lamadanat i+t 80 o
I I I I I .\ [} [ ] I I
225 -*'- 70 3
20 [=-m==t-==r--1==|Rd2b=23.5m [| 60 |
17.5 e 50 |
45 || Ninv=100 R 0 H
Noise =20% | i i ! }
12.5 || d2b=23.5m =11 30 +
10 p1=40 ohm m IR S T
p2=10hmm Lol
7.5 Deviation=0 deg. [l " :’ N WT’_ 10
-45-35-25-15 -5 5 15 25 35 45 -45-35-25-15 -5 5 15 25 35 45
(A) Deviation angle, degree (B) Deviation angle, degree

Fig. 10.24 Statistical inversion results for (A) one and (B) three data points (vertical well,
20% noise).
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repetitions when inverted parameters d2b and deviation angle resulted in the
same values (gray bars) during 100 sequential runs. The exact values of the
parameters are represented by the black stars and bars.

Asshown in Fig. 10.24, the percentage of runs when inversion accurately
found both distance to bed d2b and deviation angle a practically does not
depend on the number of logging points used in the inversion; in both cases
it stays at approximately 40%. At the same time, the number of inversions
resulted with a deviation angle larger than 20 degrees decreases from 17%
to 3% when three logging points instead of one are used. Similarly, we
can see reduction of outcomes with inverted d2b exceeding 24.0 m. In fact,
by increasing the data set from one to three measurements, we effectively
increase the signal-to-noise ratio, and it is eventually to the reduced number
of outliers and increased stability of the inversion. The eftect of reduced
noise is further shown in Fig. 10.25 where statistical inversion was con-
ducted for 10% noise. As seen from Figs. 10.24 and 10.25, the main conse-
quence of reduced noise is reduced spread in the inverted parameters.
Specifically, the results in Fig. 10.24 (right subplot, three logging points)
are similar to those presented in Fig. 10.25 (left subplot, one logging point).

The stability of the inversion is further improved when three logging
points are used (Fig. 10.25, right subplot). In particular, in the case of three
logging points and 10% noise, there are no outcomes of inverted angles
larger than 15 degrees. Interestingly, the inversion provided an accurate
result for the resistivity of both layers in all analyzed cases (for this reason,
inverted resistivity is not presented). These parameters are well defined
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Fig. 10.25 Statistical inversion results for (A) one and (B) three data points (vertical well,
10% noise).
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Fig. 10.26 Statistical inversion results for (A) one and (B) three data points (vertical well,
20% noise).

because the data include both an early time range (first microseconds), when
the transient process strongly depends on the resistivity of the upper layer,
and the very late stage (hundreds of microseconds), which is mainly driven
by the resistivity of the bottom layer.

Shallow Distance to the Boundary d2b =4.3 m

When the ahead-placed boundary is located at the shallow distance to bed
d2b=4.3 m, it becomes comparable with the probe length (L=5.0 m), and
this leads to a significant uncertainty in the inverted parameters. This is
shown in Fig. 10.26, in which results of statistical inversion are presented
for the case of the data contaminated with 20% noise. In the left subplot,
the spread in the deviation angle covers the entire range of 90 degrees. In
other words, there is no stability in determining deviation. But the stability
is drastically improved when data at two points Rd2b=7.4 and 11.4 m are
added. We can see (Fig. 10.26, right subplot) that the spread in the inverted
deviation angle is reduced by a factor of approximately 4.

Also, the number of outcomes corresponding to the exact solution for
d2b increases from 8% to 48% (compare black bars in the left and right sub-
plots), significantly reducing the number of outliers with deviation angle a
larger than 20 degrees (gray bars, right subplot).

Statistical Inversion for Deviation Angle = 45 Degrees and Deep
Distance to Boundary Rd2b =25 m

The results of statistical inversion for the case of deep d2b when Rd2b=25 m
are shown in Fig. 10.27 (noise =20%). The major difference from the case
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Fig. 10.27 Statistical inversion results for (A) one and (B) three data points (deviation
angle =45 degrees, deep d2b, 20% noise).

with a zero deviation angle is the significantly more pronounced effect cau-
sed by the increased number of logging points on the inversion result.
Indeed, an increase to three logging points reduces the spread in Rd2b from
the range of 15.3-18.3 m to the range of 17.2-18.3 m.

Although additional logging points placed further from the boundary do
not directly improve sensitivity to the boundary position, their combination
does improve sensitivity to the deviation angle, and this eventually leads to
the improved stability in inverted d2b.

Regularization Using Constraints

In the previous examples we assumed that all four parameters are unknown
and we have no prior information about the parameters of the model. In
many practical cases, however, we do have knowledge about the formation
either in terms of approximate values of those parameters or, at least, the
range of their possible variation. Incorporation of this knowledge into the
inversion scheme reduces the size of the parameter’s space and increases
stability of the inversion. In application to the table-based inversion, incor-
poration of constraints assumes exclusion of some region of the constrained
parameters from the global search or scanning, and there is no surprise that
the reduced parameter space leads to the reduced uncertainty in the inverted
parameters.

The effectiveness of the constraints in reducing uncertainties of param-
eters is illustrated in the following example in which we consider a two-
layered formation with resistivity around the probe of 10 ohm m and
resistivity of the ahead-placed second layer of 1 ohm m. The spacing
between transmitter and receiver is 5 m and the level of the relative noise
is 20%. In the inversion we use two logging points placed at distances of
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Fig. 10.28 Results of (A) unconstrained and (B) constrained inversion (deviation
angle =0 degree, 20% noise).

Rd2b=23.5m and Rd2b=33.5 m. Results of the statistical inversion are
shown in Fig. 10.28. The subplot on the left represents inversion results
when no constraints are imposed on the parameters. We can see that there
are some outliers in the region above 30 degrees (dots), which correspond to
the scenarios of the receiver intersecting the boundary. The subplot on the
right shows results of the inversion when a constraint on the boundary was
applied (d2b > 0) by imposing the boundary to be below the receiver. The
subplot on the right in Fig. 10.28 shows that the constraints removed all the
erroneous values of parameter d2b by eliminating outliers above 30 degrees.

Opverall, table-based inversion is robust and provides satisfactory results in
finding parameters of interest. Uncertainties in deviation angle and resistivities
are in the acceptable range and permit accurate distance to the ahead-placed
boundary. An increased number of logging points are the most beneficial in
case of deviated trajectories and benchmarks with the distance to bed compa-
rable with the transmitter-receiver spacing. Constraints help reduce uncer-
tainties in inverted parameters and avoid erroneous inversion results.

10.5.5 Multiparametric Inversion

In the productive layer, it is important to navigate a horizontal well by
detecting bed boundaries and keeping the well in the sweet spot throughout
long lateral sections. The simplest model that describes this scenario consists
of three layers. The trajectory is assumed to be parallel to the boundaries and
there are at least five parameters of interest: resistivity of each layer, the
thickness of the layer, and position of the probe with respect to the bound-
aries (Fig. 10.27B). The number of parameters can be even higher if addi-
tional layers or anisotropy are taken into account.
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In this case, application of the table-based inversion is not effective
because doing so requires large computation resources to generate the tables
and significant time consumption to perform the scanning through each
node in the table. For five or more invertible parameters, it is advisable to
use advanced optimization techniques that do not rely on precalculated
lookup tables but generate synthetic signal during the inversion.

Gauss-Newton Method
One of the most popular iterative methods for solving a least-squares prob-
lem is the Gauss-Newton (GN) method. This method requires calculation

of the first derivatives of the minimized function (I)(}) , called the Jacobian
matrix ] (?) The derivatives are calculated with respect to the parameters of
N N . P —
interest (parameters of inversion), comprising a vector of unknowns x. The
function @(?) represents sum of squared residuals between measured
ye(k=1,...,n)* and model-predicted values s.

In the least-squares formulation, the function CD(&?) 1s presented as:

n

FE) =@ =D ((3) —n)’ (10.76)

k=1

where @(?) is the column-vector of n elements:

(51 ()~ )
d(x) = (52(’6_)”_ r2) (10.77)
(5 (%) =)

These kinds of nonlinear problems are quite popular and have many
practical applications in finding sets of parameters satisfying the measure-

ments. Let | (?) be a Jacobian matrix of function @ (?) , consisting of n rows

and m columns:

[ Os (?) Osy (75) Osy (?) T

Ox; Oxy  Oxy,
PNPEEN 852 ?) 852 ? (952 ;
J(x)= (%El 8£2) &Em) (10.78)

05,(%) 05,(3)  0s,(3)
L 8.’)61 8362 8xm -
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where # is the number of measurements and m is the number of parameters
in the model.

Then, assuming some initial guess for the vector x| the sequential

approximations of D_C}H according to the GN method can be found as:

Fo =% 0T FEUE) T (E)() (10.79)
where JT (97) is a transposed Jacobian matrix. The GN method relies on the

fact that the second derivatives Hessian matrix, having a least-squares
form of:

(f(F) 7E) ()]
3x18x1 axlaxZ 8961836,11
| s e | [w@)

(x)_ 89628361 8x28x2 a-"5283‘:111 B axiaxj 1 (1080)

i=1,j

Pf(x) O*f(x) Of(x)
| Ox,0x1 Ox,,0x2 ~ O0x,,0x,, |
=J" (x)J(¥) +Q(¥)

where
Q(x) =D _@i(x)Hi(x) (10.81)

can be approximated through the Jacobian matrix as I—AI(Y) ~JT (97)](?)

The approximation is valid unless the residuals CD[(;) become large and
the first term in Eq. (10.80) no longer dominates over the second term.
The improved version of the GN method is the Levenberg-Marquardt
(LM) algorithm, which is based on some heuristic ideas and allows improv-
ing stability and convergence of the iterations.

Levenberg-Marquardt Method

It happens that the GN method demonstrates oscillatory features during iter-
ations, manifesting lack of robustness. To overcome this issue, Levenberg
and Marquardt provided a damped least-squares algorithm, which adjusts
some damping factor 4 to control rate of convergence. The updated approx-

. . . — -
imation in the LM for x; is

=% - (T EE) ) I (F)e () (10.82)



378 Basic Principles of Induction Logging

where [is the identity matrix and ?H | — x; is the incremental update in the
estimated vector of parameters. The (nonnegative) damping factor, 4, is
adjusted at each iteration. If reduction of q)(}) is rapid, a smaller value
can be used, bringing the algorithm closer to the GN algorithm, whereas
if an iteration gives insufficient reduction in the residual, 4 can be increased.
For large values of 4, the step will be taken approximately in the direction of
the gradient. If either the length of the calculated step or the reduction of
sum of squares from the latest parameter vector fall below predefined limits,
iteration stops and the last parameter vector are considered to be the

solution.
The drawback of the form Eq. (10.82) is that if the value of damping fac-

tor A is large, inverting (]T (?,)_] (?7) + Akj) is not used at all [3]. Marquardt
suggested scaling each component of the gradient according to the curvature
so that there is larger movement along the directions where the gradient is
smaller. This avoids slow convergence in the direction of small gradient.
Therefore, Marquardt replaced the identity matrix, [ with the diagonal
matrix consisting of the diagonal elements of ([ T (97]) )] (E}), resulting in
the LM algorithm:

S =% (7T E(E) + (T G)(E) (@)@ ()

The choice of damping parameter A is more or less heuristic and mainly
depends on how well the initial problem is scaled. It is recommended to
start from a large number A, calculate the residual sum of squares, and then
reduce 4 in the next step by a factor of v. If both of these are worse than
the initial point, then the damping is increased by successive multiplication
by v until a better point is found with a new damping factor of Aw* for
some k.

If use of the damping factor 4o/v results in a reduction in squared residual
then this is taken as the new value of and the process continues. If using /v
resulted in a worse residual, but using A resulted in a better residual, then 4 is
left unchanged and the new optimum is taken as the value obtained with 4 as
damping factor.

The LM algorithm is a very popular curve-fitting algorithm used in many
software applications for solving generic curve-fitting problems. However,
this algorithm finds only a local minimum like all other iterative procedures,
not a global minimum.
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Combination of Iterative and Table-Based Inversion Algorithms

Both the GN and LM iterative methods of solving least-squares problems
require some initial guess. In the case of geo-steering a horizontal well, it
is a natural choice to use table-based inversion for finding three parameters
of a two-layer model (Fig. 10.29A) and then, use them as an initial guess for
the iterative procedure with five parameters corresponding to the three-
layer model (Fig. 10.29B).

The model in Fig. 10.29B corresponds to a typical scenario of a probe
that is located close to a reservoir roof at the distance d2b, and the task is
to identify all the parameters, including a distance d2b, to the reservoir floor.
Of course, the greater the thickness of the middle layer, for which the lower
boundary of the second layer still can be detected, the better for the navi-
gation. In the presented example the transient synthetic responses include
XX, YY, and ZZ components affected by 10% random noise. In the nota-
tion the first index corresponds to the orientation of the transmitting dipole
and the second to the receiving dipole. The models are selected to illustrate
limitations of the inversion in resolving a distance to the lower boundary
d2b,. Therefore, we consider three cases with d2b,=2, 5, and 10 m, corre-
spondingly. The rest of parameters of the models are p; =1ohmm,
p> =>5ohmm, p; =1ohmm, and d2b; =1 m.

Table 10.4 summarizes the results of inversion experiments. The cells
contain the true value of the parameter (on top), result of the table-based
search (second line), and result of the iterative inversion (at the bottom)
for all three models.

The misfit F shows the relative difference between experimental and
synthetic data normalized by the noise level, and N is the number of for-
ward modeling performed to find the solution by iterative inversion.

Fig. 10.29 (A) Three-parametric model used to find initial guess for the (B) five-
parametric model in iterative inversion.
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Table 10.4 Original Models and Inverted Parameters

P P2 p3 d2b, d2b, Misfit
Parameters ohmm ohmm ohmm m m F
Model 1 1 5 1 1 2
Table-based inversion 1 5.46 5.46 0.7 n/a 63.0
Iterative inversion 0.998 5.05 1.01 098 2 0.39 (Ng=44)
Model 2 1 5 1 1 5
Table-based inversion 1 5.46 5.46 0.7 n/a 55.0
Iterative inversion 0.98 5.0 1.03 0.97 52  0.47 (Ng=61)
Model 3 1 5 1 1 10
Table-based inversion 1 5.46 5.46 0.7 n/a 35.1
Iterative inversion 0.97 5.1 1.3 0.95 7.5 0.35 (Ng=63)

In all three cases, the table-based inversion provides an accurate estimate
of the resistivity p; = 1 ohm m of the upper layer located near the probe. The
resistivities of the second and third layers are determined within the error of
10%, and this error leads to 30% error in d2b;. The inverted d2b, values are
further improved by the iterative inversion. Also, iterative inversion gives a
very good estimate for the lower boundary d2b, when it is below 10 m
(Models 2 and 3). But with increase of the thickness of the second layer,
the data become less sensitive to the far-placed boundary, and the error
in d2b, reaches 30% when d2b,=10 m (Model 3).

10.5.6 Estimation of Parameter Uncertainties

In addition to estimation of parameters, inversion has to assess their uncer-
tainties. This can be done by through linear approximation of the responses
around the inverted model [4]. Let us denote f; (i=1,...,n) measurements
and € (i=1,...,n) noise associated with these measurements, FO —vector of
parameters. This noise causes inverted parameters to be defined with some

uncertainties 6p; = p; — py, 0i0j

j=1,...,m, and our goal is to estimate those
uncertainties (Fig. 10.30) assuming that the noise in the data is well known.
The data set might comprise any combination of electromagnetic compo-
nents taken at any subset of times and subarrays. The parameters are electrical
and geometrical properties of the formation and resistivity of the layers.
Taking into account only the linear term of a Taylor series for the signal

decomposition with respect to parameters, we have

— R

Sf=2.6p (10.83)
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P2

P1

Fig. 10.30 Projection of equivalent ellipsoid onto parameter axis.

where the vector &fi(i=1,...,n) describes the change of the signals
corresponding to the change in the parameters §p;, while the matrix Z is
a Jacobean matrix comprising partial derivatives of the signals with respect

to the parameters of interest p :

ofi -,
Z":—f( )

; 10.84

. al -
The matrix Z has n rows and m columns. Each measurement is charac-
terized by the error €; comprising a vector:

&= |f"|Erm + Aem; (10.85)

where Err;, Aerr; are relative and absolute measurements errors, correspond-
ingly. The error might be described, for example, in terms of the standard
deviation. In this case, for the covariance matrix we have

0

. 1
= o . (10.86)

Having defined matrixes Z and X, we also introduce square matrix A

A=2"3z (10.87)
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Normalizing the data by the noise we set up a data equivalence region:
1 — ~ —
—5fT.32.6f=1 (10.88)
n

and from Egs. (10.83), (10.86) for the equivalence region for parameters
we have

1 — ~ —
SopT A sp=1 (10.89)
n

Eq. (10.89) describes m-dimensional ellipsoid in the parameter space [4].
To derive an explicit expression for the variation in parameters § p we use

eigenvectors v; and eigenvalues 4; of the matrix A:
AV =AV (10.90)

where columns of 17 are the eigenvectors and the diagonal elements are
eigenvalues 4;. Then uncertainties in the parameters are expressed through
projections of the ellipsoid to the parameter axis:

(10.91)

The described technique was applied to estimate uncertainties in the
inverted parameters for Model 3 in Table 10.5. The uncertainties are
expressed in % for resistivity and in meters (m) for distances.

It is seen that the better determined parameters (p1, p,) have a narrow
range of uncertainty compared to the parameter d2b,, which is determined
less accurately.

The described approach does not guarantee that the inverted parameters
are certainly placed in the range of estimated uncertainties; rather it estimates
the range of uncertainties assuming that the inverted model is the one that
fits the measurements.

To conclude, we must emphasize that the nonuniqueness in the param-
eters is an inherent part of the inversion and cannot be completely

Table 10.5 Uncertainties in the Inverted Parameters for Model 3
P =1.0 p2=5.0 p3=1.0 d2b1 =1.0 d2b2=10
Model 3 (ohm m) (ohm m) (ohm m) (m) (m)

Inverted parameter 0.97 51 1.3 0.95 8.5
Range of variation 0.96-0.98 5.05-5.15 1.15-1.45 0.9-1.0 7.1-9.9
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eliminated, but can be reduced. The means to reduce the nonuniqueness
include: completeness of the measurements (spatial, orientational, and time
sampling); decrease of the error in the data; optimal parameterization of the
model, which takes into account only physically important parameters; good
initial guess; and complementary prior information.
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In previous chapters, we have considered various aspects of induction
logging when the source of the field is the vertical magnetic dipole and
the induced currents are located in horizontal planes.

In these cases thin resistive layers, as well as caverns and fractures, that are
perpendicular to the borehole, practically do not manifest themselves; even in
ananisotropic medium only longitudinal conductivity defines a measured sig-
nal. To increase sensitivity to thin resistive and anisotropic layers and, possi-
bly, improve the vertical response of the induction probe, we turn to
modification of induction logging with horizontally oriented coils.

11.1 ELECTROMAGNETIC FIELD OF THE MAGNETIC
DIPOLE IN A UNIFORM ISOTROPIC MEDIUM

We start with the simplest case of a uniform conducting and isotropic
medium. By analogy with complex amplitudes caused by the vertical
magnetic dipole (Chapter 5), for the x-oriented dipole, we have
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o M.
Ej= ’Z”;Q exp (ikR)(1 — ikR)sin @
T
20, M,
B, = fOR” exp (ikR)(1 — ikR) cosO (11.1)
R
M, 4
;:% exp (ikR) (1 — kR — K*R?) sin@
T

where M, is the transversal dipole moment, k= (1+1i)/§ is the wave num-

ber, 6=/ (2 / a)/,toyo) is the thickness of the skin layer, and 0 is the inclina-

tion or polar angle of a spherical system of coordinates. Similar to the case of
the vertical magnetic dipole, current lines are also circles, but they are
located in planes perpendicular to the x-axis. When the field is excited by
the transversal dipole, the main component, arising on the borehole axis,
is also oriented along the x-axis.

Receiver
P(R,6,9)
L
z
0
X
M,

Transversal induction probe.

In accordance with Eq. (11.1), for the complex amplitude of this com-
ponent, we have

B: = By(1 —ikL— k*L*) exp (ikL) (11.2)
where L is the length of the probe, and

_HOMx

By =
"7 4xld

(11.3)

is the field of the magnetic dipole in free space. Let us introduce function by,

defined as

B*
b == exp(ikL) (1—ikL— kL) (11.4)
0
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Substituting k= (1+1i)/§ into Eq. (11.4), we have the following
expressions for the in-phase and quadrature components of by

Inb? =[(1+p)cosp+ p(1+2p)sinp|exp (—p)
Qb =[(1+p)sinp—p(1 +2p) cosp|exp (—p)

where parameter p = L/§ is the distance from the dipole expressed in units of

(11.5)

the skin depth. In accordance with Eq. (11.5), for the magnitude
A= \/(Inbz)z + (sz)z and the phase ¢ = tan~' (Qb%/Inb’) we have

A=exp(—p)[(1+p)? + (1 +2p)7] 2

¢=p—rtan""[p(1+2p)/(1+p)]

First, consider a field in the near zone, when the parameter p is small.

(11.6)

Expanding the exponent from Eq. (11.4) in a series and performing elemen-
tary transformations, we obtain

e (kL) P (1)
bﬁHZW (11.7)

n=0
Restricting the sum in Eq. (11.7) to the first two terms we have

Inb§%1+%p3, Qbi%—p2+§p3 (11.8)

Thus, in the range of the small parameter, the quadrature component
Qb prevails over the in-phase component (lnbi — 1) of the secondary field.
The component Qb is directly proportional to the frequency and conduc-
tivity, and its magnitude is equal to that of the vertical magnetic dipole
placed at the same distance along the z-axis (Chapter 5). In a wave zone
at distances significantly exceeding the skin depth, the component Bj is
greater than By, and at an equatorial plane Bj__ = By, perpendicular to

the x-axis:

M,
B* _ _ﬂ() 0
4L

X

k? exp (ikL) if |kL|>>1 (11.9)

As follows from Eq. (11.1), the ratio of the electric field to the magnetic
field at the wave zone does not depend on the distance, and it is equal to the
impedance in a uniform medium:
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Fig. 11.1 (A) Quadrature and (B) in-phase components of the field.

E*
¢ @
— = 11.10
5= (11.10)
Graphs of the quadrature and in-phase components of by are shown in
Fig. 11.1, and an amplitude and phase of the secondary field ‘bz — 1‘ are

shown in Fig. 11.2.

11.2 BOUNDARY VALUE PROBLEM FOR THE
HORIZONTAL MAGNETIC DIPOLE IN THE
CYLINDRICALLY LAYERED FORMATION

Next we consider 2 model consisting of formation, borehole, and hor-
izontal magnetic dipole located on the axis. The radius and conductivity of
the borehole are a and y4, respectively. The formation conductivity is ¥, and
the magnetic permeability of both regions coincides with that in free space.
We introduce a cylindrical system of coordinates, and the magnetic dipole
directed along the x-axis with moment M = Mjexp (—wt) is placed at its
origin (Fig. 11.3).

The system of equations for the quasistationary field is

arlE* =iwB* divE*=0

11.11
arl B* =yu,E* divB*=0 ( )
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Fig. 11.2 (A) Amplitude and (B) phase of the secondary field.

n 12

Fig. 11.3 Horizontal magnetic dipole on the borehole axis.

In the case of a horizontal dipole the primary vortex electric field, unlike
that of a vertical dipole, intersects the boundary between media with differ-
ent conductivities. For this reason electric charges arise on the borehole
surface, and their density changes synchronously with the electric field at
a given point. The charge density at each point depends on the conductivity
contrast between the borehole and formation as well as on the coordinates of
the point. In this case, when the sources of the secondary field are currents
and charges, it is impossible to express the electromagnetic field using only
one component of the vector potential. Solving the boundary value problem
for the vector potential A* leads to a system of differential equations of the
second order. It is convenient to introduce two potentials, namely, an
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electric A, type and a magnetic A,, type, and present a solution as a sum of
the fields, corresponding to these potentials:

p*— g 4 g@* px— g)* 1 g@*
The relationships between the complex amplitudes of these fields and the
amplitudes of the vector potentials are
EW" =iwanlA* B =il A?, (11.12)
Then, as follows from Eq. (11.11):
B = k*A* — grad U* E®" = iwA; — gradU; (11.13)
After introducing the following gage conditions:

yU' = —divA; and U, =—divA; (11.14)

m

we derive the following differential equations of the second order
(Helmholtz equations):

VZA: + A =0 VZA:L + kAL =0 (11.15)
In fact, the boundary value problem can be solved using only the vertical
components of the vector potentials, that is:

A;=(0,0,47), A;,=(0,0,4;_) (11.16)

m-

In accordance with Eq. (11.12), the vertical component of the electric
field is absent in magnetic potential, whereas the vertical component of
the magnetic field is absent in the electric-type potential:

E.=0 and B =0 (11.17)

mz

In the case of a uniform medium the fields of the magnetic dipole are
fully described by a single vector potential of the magnetic type.

Connection between potential A,,. and corresponding electric and mag-
netic fields follows from Eqs. (11.12), (11.13):

* . 814:12' B* / 82/1?:17
=1W——F =—
w0y T or0z
A: 10247
E = —iw mz B __ mz (1118)
m¢ ! Or mq,’)/:u() v a¢az
OPA:
E,.=0 By, fu =2, + e

mz a 22
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where potential A,,. satisfies the equation:

62/1:;12 18/1:;12 18214;:1: azA;;Z 2 4% __
or? r Or ;’_2 8¢2 + 022 tk Amz =0 (1119)

Similarly, for potential A;. and corresponding field components, we
have

oy Ordz el Ho =7 o¢
1074 OA*
£ J— ez B* J—— (24 1 1 20
@y Do v/ Ho ar ( )
1 OPA*.
E=- (/&4;1 + —2) B.=0
4 ?/ 4 82 ¥4

and

OPA*. 10A.  102A*. DPA
ez 4 ez ez €z +]€2A* =0 11.21
Oor? r or 12 0> 022 “ ( :

Egs. (11.19), (11.21) are not independent ones because only by mixing
Aj. and A,,. it is possible to satisfy a continuity of tangential components at
the boundary (r=a). The continuity results in the following system of
boundary conditions for potentials A,. and A4;,.:

1 9> A* 1 O*A*
- <’%AZ1 + d) = <k§A:2 + ()2>

71 0= 72 0z
1 <182Aj1 e aAj;ﬂ) 1 <182Aj2_ kzaAj;2>
vi \adpo= ' Or v, \adpd= > Or (11.22)
g+ Ty, + S

04y P4, 04, 104y,

or  adpdz  Or  aOdoz

where ky, Ay, Ay and ko, Als, A are the wave numbers and the complex
amplitude of the z-component of the vector potentials in the borehole and
formation, respectively.

Let us find expressions for potentials Ay, and A, in a uniform medium
with conductivity y4. The latter is needed to formulate conditions in the
vicinity of the dipole for A}; and A},;. As mentioned earlier, the field of
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the dipole in a uniform isotropic medium can be described by a single com-
ponent of the magnetic-type potential:

A; = (A:;x’ O’ O)
or
M, k1R Mo [
Ar M0 EEP (ikiR) = Ho0 [Ko(mw) cosmzdm (11.23)
" 4mR R 272
0
where my = (m2 — k?)l/{ and
E*=iwrlA’, B*=kA’ +grad divA’,. (11.24)

Therefore, for vertical components of the field, we obtain

(o9
M
EZ, = iwp, 2_2 sin¢g Jﬂﬁ K (myr) cosmzdm
- T
o " (11.25)
M,
B, = Ho=h cos¢p | mmi Ky (myr)sinmzdm
272
0

where

cos¢p=x/r and r:(x2+y2)1/2

On the other hand, by analogy with Eqs. (11.18), (11.20), we have

1 OPA* OPA*
Ely=—| kA, + =52 ) Bl =kiA} +—22. 11.26
z0 i ( 14%e0 822 > z0 14 m0 822 ( )

The corresponding potentials for the fields in a uniform medium
Eq. (11.26) are

[s9)
M, 1
Ay =—kj sl ing J —K; (myr) cosmzdm
277:2 mq
o (11.27)
MMy m .
Ao = o2 cos¢h Jm—1K1 (myr)sinmzdm
0

The set of two potentials Ay, and A4, in Eq. (11.27) represents an alter-
native form to Eq. (11.23), which describes the field in a uniform medium
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using just one potential Ay,. The potentials Ay, and A, are not independent
and the connection is given by the following relationship:

2 A%
8 Ae()_ 2

_ *

8¢82_ 1“7 m0O

Returning to the original problem, it is natural to assume that while
approaching the dipole, potentials A;; and A, tend to potentials in the
whole space Ay and A, respectively. Taking into account the behavior
of the field near the source and at infinity, we present the potentials inside
and outside of the borehole as:

[s.¢]
M 1
A:l = A:O + k% ’Mgﬂ-zo Sil’l¢ Jm—C1 11 (1411 1’) COS WlZdWl
o
[Se]
M
A=A+ % cos¢p [ mﬂ]Dlh (myr)sinmzdm
- (11.28)
M 1
A, = —k3 ,u;ﬂ;) singh JM—ZCZIQ (mar) cosmzdm
0
(s8]
M m
A,= _”0720 cos¢ JD2K1 (myr)sinmzdm
27[ m2

0

where m, = (m2 — kg) 2 From boundary conditions Eq. (11.22), we may
turther derive a system of equations for coefficients C, D:

m 1
K1 (m1a) - I1 (WHLI) C1 = —2K1 (f’l’lza) CQ— [K1 (mm) - I1 (I’H1 a) C1]
m mpa

1
+ [K{(W") - I{(mlﬂ)Dd =—K;(m2a)C,
moa

+ K{ (M/I2a)D2K1 (14’!151) - l] (Wl] d)D1
m
- m_2K1 (mza)ngf [K{ (mla) — I{ (mla) C1]
1

2

m
+ — [K] (14’!1 a) — I (1411 a)D1]
mya
f’l’l2
= IegK{ (maa) Cy + — K (maa) D,
moa

(11.29)
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Solving this system we find

_Ad _W1K1(W1)—I1(W1)C _W1K1(W1)—I1(W1)D
Cl_Z’ D1_K’ 2 == — , Dy =— —
my K1 (VH2) my K1 (M12)
Ky (m
A, = Iy(m ) Ko (1) + 1) () Ky (1) Py — I (1) K (7701) Pr — s—= ol i)
> Ky (112
Ky(m
Ay = Io(my) Ko (1) + I (1) Ky (711) Py — I (i ) Ky (771 ) Py — = of i)
m2K1(m2)
A =I5 (my) + I} (11 ) Py + Lo (i) Iy (711 ) P
(11.30)
where
2mz—m§( )Ko(mz) my Kg ()
= — ——s
1 it Ki(mz) 75 K7 (i)
L (11.31)
27 — 7t 7 K, (7
YV B VAP AL
mymy;

In Egs. (11.30), (11.31) we replaced variables: ma— m, mja— iy,
mya — Tz, and s=1y,/y,.

The magnetic field on the axis of the borehole has only component B,,
which is parallel to the dipole moment. Using Egs. (11.18), (11.20), (11.28),
we obtain expressions for the magnetic field on the axis (r=0):

o0
x0T op2 g3

1 L_\ _
Di+—Cy ) cos|—m |dm
2 2 a
0
where

(11.32)

" ﬂ M() , .
B, =— 4(7)1'L3 (1 — ik L — Iesz) exp (iky L)

field, is

is the complex amplitude of the field in a uniform medium, and L is the
length of the probe. Correspondingly, the field, in units of the primary
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bt = (1—ikiL—k{L*) exp ik L)
3 (o)

L J (2Dy + K2a>Cy) cosaiidii (11.33)
T

0

Results of calculations of the secondary amplitude ‘bi — 1‘ and phase ¢
for different ratios of >/ are shown in Figs. 11.4 and 11.5. Along the x-axis
we depict the ratio of the borehole radius a and skin depth §; in the homo-
geneous media with conductivity of the borehole y. The left-hand side of
the curves corresponds to the low-frequency part of the spectrum where the
amplitude of the secondary field is small and mainly defined by the quadra-
ture component.

The secondary field increases with the frequency and almost compen-
sates for the primary field approaching unity (right-hand asymptote of curves
in Fig. 11.4). The phase of the secondary field in Fig. 11.5 tends to —z/2 in
the range of the small parameter due to the quadrature component being
greater than the in-phase component and the component’s opposite signs.
At the high-frequencies, the secondary field tends to compensate the pri-
mary field, and, correspondingly, the phase approaches 7.

lbx ~11E
1 /WCQQW
F VA
[ 128
. 112
32
0.1F i
S 114
i 118
0.01 L 2 ) 1/16
F 1/32
L 11128
1 Illi 1 1 11 1 111 1 1 111111 1 1 1
0.01 0.1 1 als,

Fig. 11.4 Frequency responses of the field amplitude, L/a=10.
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Fig. 11.5 Phase responses of the field.

11.3 MAGNETIC FIELD IN THE RANGE OF
SMALL PARAMETER

A transversal dipole M, generates eddy currents located in vertical
planes. These currents intersect the borehole boundary, giving raise to sur-
face charges. In the range of small parameter L/ the intensity of these sur-
face charges is proportional to the square of the wave numbers, i.e.,
k? = iy, pow and k3 = iy,p,. Naturally, surface charges affect the magnitude
and direction of induced currents, but in the range of the small parameter,
the phase of the currents is shifted by #/2 with respect to the primary current
in the dipole. Thus both the magnetic field of induced currents and the sec-
ondary field of charges are proportional to @. The secondary quadrature
component of the electric field is relatively small and, therefore, it is not
taken into account in the small parameter approximation. To obtain an
asymptotic expression of the magnetic field, let us present an integrand of
Eq. (11.33) in the form of a Maclaurin series expansion near k?a®=0.
Restricting the series to its first term, we obtain

m o, ,004(0) W, ,0M4(0)
A ) _ Moo
0) 4 kia om; 4 Kz Oy

[s9)
g’ i 2 a2
ooy 2 Jcosam[ Ta 4

“=b, —
x Ox A(O) 2
0

(11.34)
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where
Ac(o) = (l - S) mljgl((mn?l)
A =— I () + IF (1) Pr + I (i) T (71 ) P2
A(0) = —m {Io(m) + <l () fjg —(1-) hg)]
P01 [y 1+ 2 ) + MR | AT
| Jo() K3 (i) Ko () ]_l K3 ()
K, (m) meKy(m)]  m mK: ()
BAd(O)_ s _i K()(W) B Kg(m) - -
i =( ){ a2 mK (i) HK%(WJH( YKo ()
g hmKi () 1 K (m)
(1=5) m m mKlz(W)
Also
QL2

Thus, for the quadrature component of the field we have

(11.36)

where §; = (2/}/1;40&))1/2, 6= (2/y2u0a))1/2, and y; and y, are conductiv-

ities of medium of the borehole and formation. Also,

Gl =1+ 2;(1 T [ AL0) @aAd(o)] cosamn

"2 amy | A0)
0
B 2aoom(9Ad(O) cosamdm
GZ(“’S)__7J2 g, A(0)

0

As follows from Eq. (11.37), in a uniform medium:

Gi(a, 1)+ Gy(a, 1) =1

(11.37)

(11.38)
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Note that functions Gy and G, are still called geometric factors regardless
of their dependence on the ratio of conductivities. As was shown in
Chapter 7, it is possible to obtain a more accurate expression for the low-
frequency field. For instance, considering two terms of the expansion, we
have

4 4
Inb’ =5(L/52)3 and Qb ~ —ai(L/5,)" + 3(L/52)3 (11.39)

where the coefficient a; is defined by expression Eq. (11.37):
a = G1 + SG2

Therefore, in the range of the small parameter, neither the in-phase com-
ponent nor the second term of the quadrature component, Eq. (11.39),
depends on the conductivity of the borehole. Similar behavior was already
observed in the case of vertical magnetic dipole.

Let us consider functions Gy and G, at the range of small parameter
L/6, and L/6, at different values of a. If the probe length decreases,
a—0, then Gy(a,s) —0, and Gi(a, s) — 1, approaching the geometric
factor of a uniform medium with conductivity, y;. For large values of
the parameter @ due to rapid oscillations of the function cos(ma), the inte-
gral in Eq. (11.37) is defined by the integrand near m =0. For small values
of m, we have

1+s
A(0) ~ — 5 A(0) ~ (1 —s)Ky(m)
11.40
9A0) OAM0)_ (Kol (11.40)
omy Oy m
By using the asymptotic presentation of the Summerfield integral:
_ ., T 1 T
Ky (m) cosamdimn=—————— if a—
21+a?)'?  2a
0
for a>>1, we obtain
1— 2
Gi(a,s)—1— N
1+s 1+s vy,
: (11.41)
— —
Gz(a,s):_ —u:_K12

T+s y+y
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where y,, is the average value of conductivity and Kj; is the contrast
coefficient that characterizes the density of the charges on the surface of
the borehole. Correspondingly, for the quadrature component, we have

1\2
Qi=—|—] ifax>1 (11.42)
" <5z>

Thus, at the low-frequency limit with an increase of the length of the
probe, the field tends toward that in a uniform medium with the conduc-
tivity of formation. In general, functions Gy and G, depend on the resistivity
of the medium regardless of the length of the probe. Now, let us introduce
functions G7(a, s) and G5(a, s), which approach 0 and 1, respectively, when
a— oo:

N 2s N 2
G1(a,s):G1(a,s)—1+S Gz(a,s):Gz(a,s)+l+S (11.43)
Then, instead of Eq. (11.36), we can write
1\ 2
Qb =— <5—> [Gf(a, 5) +sG(a, s)} (11.44)
1

First, consider the asymptotic behavior of function Gi(a, s) at large a. Itis
convenient to isolate singularity of the integrand in Eq. (11.37) for small
values of m. For this purpose, we present Gj(a, s) as:

o)

Gilo) =1+ 22 {5 |80 - 32580 1okt

1+s = (0 2 Omy 1+s
0

[6e]
JKO (m) cosamdm
0

1— 2
=——[1- 4 o |+ «“ j(p(m) cosamdin
1+s (1+a?) / T

0

_ 2al—s
cosamdm ——
wl+s

(11.45)

where

0= 55|30 5 | * 1
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Integrating Eq. (11.45) by parts and considering that the function ¢ (m)
and its derivatives approach to zero when m — co we obtain

e ¢ () cos (aim) i

Tq&(m) cos () diit = ——¢8'(0) ——T

Using the known expressions for Bessel functions

—2 — —2
KO(W);u—<1+mT> lng—C-i- ”“7(1—(:)

1 m
Ki()~—=+—In———(1-2C
mrt s s =5l )
2 7 mZ
I ~1+— I ~—(1+—
() 3 (147
we obtain
2 3435+ 24 8 n°
¢(m) = : 2W2 7 — : 23 + : 5(In2—-C) L 10 77 + const
(1+5) 2(1+5) (1+5) 2
¢'(m)=0 and
4 3—21s+2¢ 8
¢ (i) = : 5 n 7 — : 23 + : 5(In—C)| Inm
(1+5) 2(1+5) (1+5)

Here Cis Euler constant. Inasmuch as the field at large distances from the
dipole is defined by low-frequency spatial harmonics we can use an arbitrary
number in the upper limit of the integral in Eq. (11.45). This gives

1

1 4s
m) cosamdm =—— In 7 cos (am) dim
J¢( ) a? (1+5)2J (a)
0 0

2( In2—C)| | Inmcos(am)dm

3—21s+ 24 8s
2(1+5s) (1+5)

0

Inasmuch as
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1

1 2T I
J In%7i cos (aiit ) diii ~ — In*Tiisin (am)|(1) ——J - sin(aﬁ)dﬁzg( Ina+ C)
a a
0

0

then

T 4 3-215+425

Jqﬁ(m) cos (am)dm = —% —§2 In2a + 7325

) @’ |(1+5) 4(1+5)
whence

. 1 2215438\
Gia,s)=————5 |8 In2a+ ——— | ifa>1 (11.46)
a?(1+s)

Similar transformations lead to:

* 1 2 2
Gz(a,s):1+ﬂ(1+55—223 +16s ln2a)T)2, a1 (11.47)

If the formation resistivity is significantly higher than that of the
borehole, then Eqs. (11.46), (11.47) can be further simplified:
; 1 s
Gi(a,s)~ —;—;(8 In2a —12.5)
: (11.48)
Gy(a,s)~1+ gyl if (a>1,5<1)
Then, using Eq. (11.44), we have the following expression for the
magnetic field:

. L\ (1 1 ,
Qb= |+ ——s[1==(8 In2a—13) if y,/y; <1 and a>1
’ o1 a o?
(11.49)

Table 11.1 contains Gj(a,s), G5(a,s), and G] +sG; for different
values of s and a.

Suppose that the formation resistivity exceeds that of the borehole
(s<1). Then the function Gj(a, s) +sG5(a, s) and, the quadrature compo-
nent, respectively, may change signs twice, because surface charges create a



Table 11.1 Functions G;*, G5*, G;* + sG5"

s 1/128 1/64

14 G1* GZ* G:‘FSG; G]* G2* G:‘FSG;

2 —0.135 0.1240E+1 —0.1256 —0.1357 0.1204E+1 —0.1169

4 —0.7001E -1 0.1037E+1 —0.6191E—1 —0.7163E — 1 0.1038E+1 —0.5540E -1
6 —0.3020E —1 0.1014E+1 —0.2228E — 1 —0.3162E —1 0.1014E+1 —0.1577E —1
8 —0.1672E—1 0.1007E+1 —0.8851E -2 —0.1778E -1 0.1008E +1 —0.2039E -2
10 —0.1074E -1 0.1005E +1 —0.2896E —2 —0.1156E -1 0.1005E+1 0.4144E —2
12 —0.7528E —2 0.1003E +1 0.3104E—-3 —0.8169E —2 0.1003E+1 0.7511E—-2
16 —0.4310E -2 0.1002E +1 0.3518E—2 —0.4739E -2 0.1002E+1 0.1092E — 1
20 —0.2798E —2 0.1001E+1 0.5024E -2 —0.3176E -2 0.1001E+1 0.1254E -1
s 1/32 1/16

a G-|* Gz* G:+SG; G1* Gz* G:‘FSG;

2 —0.1370E -1 0.124E+1 —0.9942E — 1 —0.1395 0.1203E+1 —0.6433E -1
4 —0.7469E — 1 0.1040E+1 —0.4220E —1 —0.8024E — 1 0.1043E+1 —0.1504E — 1
6 —0.3432E — 1 0.1015E+1 —0.2600E — 2 —0.3924E — 1 0.1017E+1 0.2431E—1
8 —0.1982E —1 0.1008E +1 0.1169E —1 —0.2354E -1 0.1009E+1 0.3954E — 1
10 —0.1311E—1 0.1005E +1 0.1830E — 1 —0.1596E — 1 0.1006E +1 0.4692E — 1
12 —0.9394E —2 0.1004E +1 0.2197E—1 —0.1164E—1 0.1004E+1 0.5112E—-1
16 —0.5559E -2 0.1002E +1 0.2576E —1 —0.7062E —2 0.1002E+1 0.5559E -1
20 —0.3699E —2 0.1001E+1 0.2759E — 1 —0.4781E—2 0.1002E+1 0.5782E —1

44
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s 1/8 1/4

@ G,* G,* G, +5-G} G* G,* G, +5-G}

2 —0.1440 0.1201E+1 0.6s155E —2 —0.1516 0.1198E+1 0.1479

4 —0.8936E — 1 0.1049E+1 0.4185E -1 —0.1019 0.1064E +1 0.1637

6 —0.4746E — 1 0.1021E+1 0.8013E—1 —0.5910E -1 0.1030E +1 0.1983

8 —0.2979E — 1 0.1012E+1 0.9669E — 1 —0.3874E — 1 0.1018E+1 0.2157

10 —0.2076E —1 0.1008E +1 0.1052 —0.2764E —1 0.1012E+1 0.2254

12 —0.1542E -1 0.1006E + 1 0.1103 —0.2085E —1 0.1009E +1 0.2313

16 —0.9591E -2 0.1003E +1 0.1158 —0.1322E -1 0.1005E+1 0.2381

20 —0.6600E — 2 0.1002E+1 0.1187 —0.9202E —2 0.1004E +1 0.2417

s 1/2 2

a G1* Gz* G:‘l‘SG; G]* Gz* GT“FSG;

2 —0.1630 0.1190E+1 0.4322 —0.1944 0.1162E+1 0.2129

4 —0.1144 0.1086E + 1 0.4285 —0.1177 0.1160E+1 0.2203

6 —0.7119E -1 0.1048E +1 0.4526 —0.7506E — 1 0.1115E+1 0.2155

8 —0.4820E —1 0.1031E+1 0.4672 —0.5133E—1 0.1083E +1 0.2115

10 —0.3495E — 1 0.1022E +1 0.4759 —0.3723E—1 0.1062E+1 0.2087

12 —0.2660E — 1 0.1016E+1 0.4815 —0.2827E -1 0.1048E +1 0.2068

16 —0.1704E —1 0.1010E+1 0.4880 —0.1799E —1 0.1031E+1 0.2044

20 —0.1194E -1 0.1007E+1 0.4916 —0.1252E -1 0.1022E +1 0.2032
Continued

S)10D) [esiansuel] buisn BuibboT uondnpu|

13014



Table 11.1 Functions G;*, G5*, G;* + sG,"—cont'd

s 8 16

a G* G,* G +s- G G.* G,* G +s- G

2 —0.2194 0.1134E+1 0.8855E + 1 —0.2259 0.1127E+1 0.1780E +2
4 —0.1020 0.1220E+1 0.9656E + 1 —0.9664E — 1 0.1235E+1 0.1966E + 2
6 —0.5858E — 1 0.1176E+1 0.9350E +1 —0.5267E — 1 0.1192E+1 0.1902E +2
3 —0.3758E—1 0.1133E+1 0.9026E + 1 —0.3256E — 1 0.1146E +1 0.1831E+2
10 —0.2606E — 1 0.1102E+1 0.8787E+1 —0.2197E —1 0.1112E+1 0.1778E+2
12 —0.1914E —1 0.1080E +1 0.8619E +1 —0.1579E — 1 0.1089E +1 0.1740E +2
16 —0.1163E—1 0.1052E+1 0.8409E + 1 —0.9305E —2 0.1058E +1 0.1693E +2
20 —0.7854E —2 0.1037E+1 0.8291E+1 —0.6156E —2 0.1041E+1 0.1666E + 2

14014
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field in the direction opposite to that of the primary electric field. Near the
source, (L/a< 1) the influence of the charges is small, and the field coin-
cides with that in a uniform medium with the conductivity of the borehole

71: Qb= —(L/6,).
At the range of large distances, when L/a>> (}/1/}/2)1/
Eq. (11.49), the effect caused by the charges is also small and

2 s follows from

Qb ~ —(L/52)2. For intermediate values of probe lengths, the field caused
by the charges is comparable with the vortex field, and it is oriented in the
opposite direction, causing a zero crossing of the total field. At the vicinity of
these @ and s, the conditions of the small parameter are met only for very low
frequencies, such that we can disregard terms smaller than k*. Table 11.2
shows intervals within which the quadrature component vanishes to zero.

When y,/y, > 1, the function Gj +sGj} does not change sign, and the
expression for the quadrature component is

ai=-(£) Toia +scia] + 3(5)

I\> 4/L\’
Va—(=) g+ =
or Q& <51> g 3 (52)

Returning to Eq. (11.39), we may notice one interesting feature of the

(11.50)

quadrature component. The value
* %
p=G] +s5G;

is an oscillating function of a and s, hence the magnetic field Qby may
increase with frequency faster than linearly when a; 0. This feature is
not observed in the media excited by a vertical magnetic dipole. If a>>1
and s< 1, we have

b~ (£ 1 (L 2+4 LY’ (11.51)
v 51 a2 52 3 52 '

In Egs. (11.49), (11.51), the magnetic field is presented as a sum of two
terms, each depending on either the conductivity of the borehole or the

Table 11.2 Intervals Within Which the Quadrature Component Vanishes to Zero
s 1/128 1/64 1/32 1/16 1/8

a 1+2 1+2 1+2 1+2
11+12 8+9 67 45 1+3
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formation. This feature is favorable for application of the previously described
focusing probes, which permit a significant decrease of the borehole influence.
The simplest of these is a three-coil probe. The signal of the three-coil probe
becomes a borehole insensitive (provided that the electromotive force in each
receiver coil is the same) because one part of the field Qb is proportional to y4
and does not depend on the probe length, L,

In Table 11.3 we present calculated values of Ab* = Qb*(L;) — QbX(L»),
using exact Eq. (11.33), Ab, and approximate Eq. (11.49), Ab*”" formulas. In
addition, we present a difference in the magnitudes in the short- and long-
spaced receivers.

These data show that the signal Ab} of the probe does not practically
depend on the resistivity of the borehole even beyond the range of the small
parameter. As in the case of the vertical magnetic dipole, there are conditions
when induced currents in the borehole and surface charges have no influ-
ence on the skin effect in the formation. Rather, the skin effect occurs in
the same manner as in a uniform medium with resistivity of the formation.
For this reason, instead of Eq. (11.51) for the quadrature component of the

field b}, we have

Qb =— <§1> Gila,s)— <52) G (a, s) + Qb <52> (11.52)

where
G (a,5) =Gy (a,s)—1 (11.53)

The expression for Qb is valid in a broad range of @ and s. The maxi-
mum values of parameter a/d,, for which the results of calculations by exact
and approximate formulas Eq. (11.52) do not differ by more than 5%, are
given in Table 11.4.

11.4 MAGNETIC FIELD IN THE FAR ZONE

Now we derive asymptotic formulas for the field B, in the far zone,
a>>1. To proceed, we deform the contour of integration in Eq. (11.33) on
the complex plane of m in the same manner as was done for the case of the
vertical magnetic dipole. However, such a procedure requires either the
proof of the absence of poles of the integrand or evaluation of their contri-
bution to the integral. Complexity of the integrand makes it extremely dif-
ficult determination of poles.



Table 11.3 Calculated Values Ab,*

L1/a= 10; L2/a= 8

s 1/32 1/16 1/8 1/4 1/2
P> =2.50hm m;Ab¥" ~ —0.88 x 1072 a/8 0.1 0.07 0.05 0.035 0.025
Ab. x 10 _ —0.73 —0.73 —0.74 —0.75
(A1 —A2) x 10 0.76 0.77 0.77 0.79 0.80
p>=5.0ohmm;Ab%" ~2 —0.44 x 1072 a/8, 0.07 0.05 0.035 0.025 0.018
Ab x 107 —0.41 —0.41 —0.41 —0.42 —0.43
(A, — A5) x 10 0.2 0.43 0.43 0.43 0.44
ps = 2.50hmm; Ab¥ ~ —0.22 x 1072 a/8, 0.05 0.035 0.025 0.018 0.012
Ab’ x 107 —0.22 —0.22 —0.22 -0.23 -0.23
(A — As) x 10 0.23 0.23 0.23 0.23 0.24
s =2.50hmm;Ab? ~ —0.12 x 1072 a/8, 0.035 0.025 0.018 0.012 0.0088
Ab X 10?2 —0.12 —0.12 —0.12 —0.12 —0.12
(A1 — As) x 10° 0.12 0.12 0.12 0.12 0.12

S)10D) [esiansuel] buisn BuibboT uondnpu|

L0V
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Table 11.4 The Maximum Values of Parameter a/é;

s 1/128 1/64 1/32 1/16 1/8 Y2 8
a=4 a/d, 0.6 0.7 0.8 0.9 0.2 0.2 0.1
a=38 a/d, 0.15 0.2 0.2 0.2 0.13 0.13 0.05

At the same time, sufficient agreement between the results of calculations
by asymptotic and exact formulae allows us to think that contribution of
unaccounted poles from the upper half~plane of m in a considered part of
the spectrum is sufficiently small. Let us present the integral in
Eq. (11.33) in the following form:

a8,

(o) 3 e
J (D + kia*Cy) cosamdm:g— J (m° Dy + kja® Cy ) exp (ictm) i
T
0 —o00
(11.54)

We suppose that in the upper half-plane of complex variable m, there are
no singularities except the branch points m; = kja and m, = kya. Choosing
crosscuts along lines Rem; =0 and Rem, = 0, it is assumed that the real parts
of radicals (m2 — Ie%) 12

of m. As follows from the asymptotic behavior of the Bessel functions, the

and (m2 — k%) 2 are positive on the complex plane

integrand in Eq. (11.54) increases with m — oo, but not faster than exp
(2|m|). For this reason, convergence of the integral in Eq. (11.54) in the
upper half-plane for @ > 2 is provided by the multiplier exp(iam) irrespective
of the sign of the real part of radicals my and m,. We draw crosscuts from
branch points kja and kya parallel to the imaginary axis and deform the
contour of integration in I" (Fig. 11.6).

Im(m)

Fig. 11.6 Contour integration in complex plane.
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The integral along arcs with an infinite radius, which is due to the pres-
ence of the term exp(iam), vanishes owing to Im m >0, a > 2. For this
reason the integral along the real axis Eq. (11.54) is equal to the sum of
the integrals along the sides of crosscuts I'y and I',. First, let us evaluate
the integral along crosscut I'y. In passing from the left side of the crosscut
to the right side, the value of m; changes sign. Thus the integral along
crosscut Iy is equal to:

o
; J {mz [Dl (ml) - D1 (—Wl )] + kfaz [C1 (m1) - C1 (—W1 )] } exp (zam)dm
I
(11.55)
Using properties of Bessel functions:
I(—2)=1(2) Ko(—=z)=Ko(z)+irl(z) (11.56)

L(=2)=—-Ii(z) Ki(=2)=-Ki(?)+ir](?)
it is fairly straightforward to show that for the functions D and C we have
D1(—W1):D1(W1)—i7r C1(—W1):C1(W1)—i7r (1157)
Thus the integral in Eq. (11.55) has the form:

3
a—iJ (7 + ka?) exp (iai) d7i (11.58)
T
Iy

Letting m =t + kya, we obtain
3

(04

exp (ile)? (7 —2itkja—2k3a*) exp (—ar)dt = (1 — ik L — kaz)

ote—3

exp (iki L) = by (L/61)

where bo(L/8;) is the x-component of the magnetic field in a uniform
medium with the resistivity of the borehole. Correspondingly, as follows
from Eq. (11.33), the magnetic field is expressed, as in the case of the vertical
magnetic dipole, only through the integral along the crosscut I5:

0!3

b= _Z_J (D + ki Cy) exp (iarm) i (11.59)
T
I,
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To transform the integrand in Eq. (11.59), we use relationships that fol-
low from Eq. (11.56):

Ko(z)+ o(—2) i

Ki(z) Ki(=2) zKi(2)Ki(-2)

Ki(z) Ki(=2) _ i [KO(Z) Ko(— Z)]

KX (2) Ki(=2) =Ki()Ki(=2) [Ki(2) Ki(=2)

K3 (2)Ko(=2) | Ki(=2)Ko(2) _ in Ko(2)Ko(=7)

(
Ki(2)Ki(=2)  Ki(—2)Ki(2) 2Ki(2)Ki(—2)Ki(2)Ki(—2)

After relatively simple transformations, we have the following expression
for the difference between the values of function C in both sides of the
crosscut:

in

Cilme) = Gi(=m) ~ TBK () Ky (—772) A (72) A (772

IZ— _2+/€22_2+l€22 I
X{ 1(—M1)(1—5)2m R s ) — o () P (1)
mq ms ms mq
me+kia® | W+ kya? i + ka1 I
X sm _214 + — :|—Sm1 [72& l( )(1—5)—10( )1(’411)}
5 5 5 m1 m
y {_KO(Wi) __Ko(—%) }Jr (14 25) 2, ) Ko (7i12) Ko (=712 }
WlQK1 (WI2) WLQK1 (—1’}’12) 2K1 (M/I2)K1( )
(11.60)
where
e + k2a® Ko(£m,)
A (7)) = — 12 (7)) + (i) |2 (1 — 5) — o2
() = )+ 1) [T (1=
K2 () L () [m° + k2
_ =2 N + I.(77 1 —
N TEKE (L) () 7 2 (1-9)
_ Ko(£mm,)
—(1+ 5)7 P ——
(om0 (2702

Inasmuch as the function D; can be presented in the form:

Ky ()

D =Cy+(s— 1)_141—2[(1 (7)AGo)
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for the discontinuity of the function Dj, we have
Dy (i) — Dy (=) = Ci (72) — Ci (—72) + A(7m2)
where

in(s—1)

A2 = e K (=) Al A (=)

) e S

X [Io(ml) —

(1—s) — I (/) — swry I} (i )

me i3 K (77i2) K (—77i2)
(11.61)
Thus, instead of Eq. (11.59), we have
—o0 + koa
b*:—a—3 J {(m2+k2a2)[C1 (mz)—C1(—m2)]
T 2r . ! (11.62)
+ 72 A7y ) } exp (iotii) diii

Now we introduce a new variable, letting m = it + kya. Along the cross-
cut, the variable ¢ changes from zero to infinity, and

1/2

i = [+ 2ikgat + (= )] 2,y = (= + 2ikrar) 2

Correspondingly, the expression for the magnetic field has the form:
o [ 2. 22
b;’; = CXP(—l’kzL)g J{(W + Iela )[C1 (Wz) —C (—mg)]
0
+ 7t A(7iiy) Y exp (—at) dt

(11.63)

In spite of the cumbersome character of the integrand, presentation
Eq. (11.63) turns out to be useful for the calculations when (a>> 1), because
unlike Eq. (11.33), the integral in Eq. (11.63) does not contain the oscillating
koL| > 1, when the value of
the field is exponentially small, it is very difficult to provide the smallness of

function cos ma. Moreover, in the wave zone,

the integral Eq. (11.33) for (a>> 1) by summation of large oscillating values
of the integrand. By contrast, the form Eq. (11.63) essentially facilitates the
calculations since the small value of the integral is provided by the multiplier
exp (—ik, L), which stands in front of the integral of the nonoscillatory func-
tion. Now proceeding from Eq. (11.63), we obtain the asymptotic formula
that describes the field in the far zone (@>>1). In this case the value of the
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integral is defined by the range t <1/a < 1. Generally, the integrand in
Eq. (11.63) depends on my in a rather complicated manner. However, if
conditions

$<< ‘k12a2| i.e.,

kiL|>1, s<1
are met, we can approximate i as:

— 1/2

iy~ (kKd — )

and think of 7 and functions of m; as being independent of the variable of
integration, f. For the radical m,, we have

_ 1 ko'
my = _72"‘217 , l.e.,

| <1
a

By keeping the terms of orders s/7i3,s> /73, 1/, (s In (Wz)/ﬁg) and
omitting the terms s/73, ..., we can present the expression Eq. (11.60) in
the form:

2K () Ko (— i) A (771 A (— 77tz

C (Wz) —C (—Wz)

me + m2+k242) . M2+ k242 -
?(1—23)( mzl )( m; —23112(m1)T21K()(m2).

1 2 2 2
(11.64)

By analogy, we have

WK (72 K (— 1) A (71 A (1) —{1(,(%)—

e+ k2a? I (11, (3> — k2 d?
+ Kofim) x | 2 8 (1 g — gy B0 O =K q}
5 1 2

Substituting expression Eq. (11.65) into Eq. (11.64) and after simple
algebra, we obtain
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in  ° Ko (i) Ko (72

15 (1) (mZ + k%aQ)

(W2 + k%az — 25)

Cy (i) — Cy (=) = —

—2 —2 — —2 2 2
niy —2sm* 5 Ip(my) 3mT—kjat| 5 5 5 _
X —m — m~ + k5a” ) Ko (o

|:W2 + k%az 21y (my )y 272 + Ie%az ( 2 ) (712)

(11.66)
For function A(m,) we have
_ lﬂ'(S—l) 11(_ ) +k2
Amn) ~ Iy(m)) ——————
(72) 2 Ky (1) Ky (=712 ) A (712 ) A (—7i1) o) o
— —2
, i 5 - 11("11)
~—in(s—1 1—2m
( )I()(m1)11(m1) e+ kia { I()(ml)
e+ kgaz I (ml) 3m° — Ie%aZ K() ﬂ’lz)
5 iy 1 (1) 2 i + ka2
(11.67)

Substituting expressions Egs. (11.66), (11.67) into Eq. (11.63) and dis-
carding terms, giving after integration values of the order of 1/a* we obtain

* exp (iky L) o’ J —2 422

M~ +k —at)dt

(e SR [+ ) exp ()

o (11.68)
2 — Il(ml) —2 —
—2s|m” + 2my —— iy Ko (1112) exp (—at)dt
10(1441)
0
where

) o ) 1/2
sz_t2+2lk2at+k§a2’ My = (—t2+21k2at) /

= (B — k)"

, and 7

The first integral is expressed in terms of elementary functions:

(9]

(i + kya”) exp (—at)dt = —% (1 —ikosL—k5L%).
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The second integral can be presented in the form:

ngKo (12) exp (—at)dt = — JW% Inmm, exp (—at)dt
0 0

1 +2ik 0 ><OO1 (—£* + 2ikoat) exp (—at) dt 11.69
=5\ 522 lza@a n ikyat)exp (—a (11.69)
P o\ T .
9 Zlkgaaa [In(—f) + In(t— 2iaks)]exp (—at)dt
0
We have

T 1 "
J In(—t)exp(—at)dt=——(Ilna+ C)+Z%—ﬂ
0

The second integral in Eq. (11.69) is expressed through the integral
exponential function:

T |

J In(t — 2ikya) exp(—at)dt =—[ In (—2ikya) — exp (—2ik, L) Ei(2ik,L)]
a

0

Correspondingly, for the magnetic field we have

@] Plksa,a) (11.70)

I ()

L1 exp (iksL)
b~ 20w )bm(L/52) TR

where by, is the complex amplitude of the field in a uniform medium with

2s {mf + 277y

resistivity of formation and
0? 0 Ina  In(—2ikya)
P(k + 2ikra— | | — +
(koa, ) = <8 2 2a8a> [ a a

_exp(—2ikL)
a

Ei(ZiIegL)}
Next, we consider several cases. Assuming that [koL << 1|, we have
Ei(2ikyL) =~ In(—2ikya) = Ina+ In(—2ika) and P(ky,a, @)~ — Ina

Therefore, Eq. (11.70) becomes
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o | 1_<£>2 _m_n“[mugm@] (11.71)
© I () ) IGm) [ o () .

In particular, if the skin depth in the borehole is greater than its radius,
then Bessel’s functions Iy(m,) and I;(m,) can be expanded in a series, thus
instead of Eq. (11.71) we obtain

) L 2
by = 4 (= —4sm? Ina
. 2 52

Inasmuch as s<<1 and

_2N_k12L2

1~

a2

for the quadrature component of the field, we have

Qb*Nl L\’ ,_8na L\’
xNaZ 51 az 52

which up to the term s/a”, coincides with Eq. (11.49), derived for the range
of small parameters. In the wave zone when |k, L| > 1, by using the follow-

ing asymptotic expression:

o exp (2iky L)
Ei(2ik, L) ~% ———
i(2ik2L) Diks L
we obtain
a [ O 0 Ina  In(—2ikya)
Plkra,a) ~— | — + 2ikra— | | — +
(kza,0) 4 <8a2 l 2a8a> [ a a

k
%%[lna— In | kzal]

Table 11.5 provides a comparison between A= |b:‘c , calculated using

exact solution Eq. (11.33) and the asymptotic expression Eq. (11.70).

[t is natural to distinguish three frequency ranges of the amplitude spec-
trum; i.e., the range of small parameters, the intermediate zone, and the
wave zone. As follows from Table 11.5, the asymptotic expression
Eq. (11.70) is sufficiently accurate at the range of the small parameter and
the intermediate zone when a/8; < 1. If parameter a/8; exceeds 1 and



416 Basic Principles of Induction Logging

Table 11.5 A Comparison Between Exact and Asymptotic Values of A

s 1/64 1/16 1/4
alé, a A AT A AP’ A A"
0.1 4 1.00 1.00 1.00 1.00 1.00 1.00
10 1.00 1.00 1.02 1.01 1.09 1.08
12 1.00 1.00 1.03 1.02 1.13 1.12
20 1.01 1.01 1.09 1.09 1.32 1.31
24 1.03 1.03 1.12 1.13 1.39 1.38
30 1.06 1.05 1.21 1.21 1.44 1.44
0.2 4 1.00 1.00 1.00 1.00 1.05 1.03
10 1.01 1.01 1.09 1.08 1.31 1.28
12 1.03 1.02 1.13 1.12 1.38 1.36
20 1.09 1.09 1.32 1.31 1.39 1.39
24 1.14 1.13 1.39 1.38 1.28 1.28
30 1.21 1.21 1.44 1.44 1.05 1.05
0.4 4 1.00 1.00 1.05 1.02 1.21 1.12
10 1.09 1.07 1.30 1.27 1.34 1.34
12 1.13 1.12 1.36 1.34 1.23 1.24
20 1.31 1.30 1.37 1.38 0.62 0.65
24 1.38 1.37 1.26 1.27 0.39 0.41
30 1.43 1.43 1.03 1.04 0.18 0.19
0.8 4 1.99 1.97 1.13 1.05 1.25 1.17
10 1.23 1.21 1.22 1.26 0.51 0.61
12 1.29 1.28 1.11 1.18 0.32 0.39
20 1.30 1.31 0.56 0.60 0.033 0.043

24 1.21 1.22 0.35 0.38 0.0094 0.012
30 0.91 1.00 0.16 0.18 0.0013 0.0017

s> 1/4, the accuracy of the approximate solution rapidly drops due to the
unaccounted poles in deriving Eq. (11.70).
kyL>>1| and (a>1); Eq. (11.70) is reduced to:

TR (L)
X Ig(m1) Ox 52

where i = (k%az — k%az)vz.

The last expression suggests that the ratio of amplitudes or phase difference
of two probes of the length L; and L, does not depend on the radius and
conductivity of the borehole, but rather is defined by the formation param-

In the far zone,

eters only. This feature of the ratio of amplitudes and phase difference, pre-
viously observed in bZ of a vertical magnetic dipole, is shown in Fig. 11.7,
where we show modeling results of both ratio of amplitudes and phase
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difference for different contrast between resistivity of the formation and the
borehole.

In fact, similar to the case of the vertical magnetic dipole, instead of the
ratio of amplitudes A; and A, we use the attenuation At = 20log|A>/ A,
assuming that receiving moments M; /M, = (L, / L1)3 are selected to pro-
vide zero attenuation of the field in the air. The calculated attenuation
and phase difference are normalized by the corresponding values in a uni-
form medium with resistivity of the formation:

ai(B;)
At(Bzm)

_ A¢(BY)
Ad) (B:sc»m)

Here, At(Biun) and A¢(By un) are attenuation and phase difference in a

PA (a) = and PA¢((Z)

uniform medium with resistivity of the formation. Calculations are per-
formed for two three-coil probes with the longest two-coil probes at
L=0.75 and L=1.5 m, correspondingly. The length’s ratio between the
short- and long-spaced coils is equal to 0.75 for each probe. The frequency
range is between 10 kHz and 10 MHz. The radius of the borehole is 10 cm,
the resistivity of the formation is fixed at p, = 10ochmm, and the resistivity of
the borehole is equal p; = 1.0, 0.1, and0.01 ohmm. Index of curves is y»/71.
The data (two upper subplots in Fig. 11.7) are in full agreement with the
theoretically predicted behavior: both attenuation and phase difference
are practically insensitive to the properties of the borehole, especially when
the resistivity contrast is less than 100. (The reader should not be confused
with the “horn effect” on the curves caused by zero-crossings of the
corresponding functions.) When the resistivity contrast reaches 1000 (bot-
tom subplots, Fig. 11.7), the short 0.75 m probe fails to remove signal from
the borehole, but the long 1.5 m probe is still practically insensitive to it. We
may notice only a slight advantage of attenuation in removing borehole sig-
nal compared with the phase difference.

11.5 MAGNETIC FIELD IN A MEDIUM WITH TWO
CYLINDRICAL INTERFACES

Let us consider the field of the transversal magnetic dipole in a
medium with two cylindrical interfaces. Analysis of the solution is helpful
in analyzing influence of the invasion zone on the radial response of trans-
versal probes. Using results derived for the case of one cylindrical boundary,
the potentials in the presence of two interfaces might be presented as:
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MAE p1=10hmm, p, =10 ohmm -----; 3’ a;= 10cm -] nAd)
1.30 : 1.30
1.20 L=075m 1.20
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0.90 0.90 1
0.80 0.80
0.70 0.70
0.60 L=15m 0.60
050 ol 0.50 R N E
10* 10° 108 107 104 10° 108 107
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(A) Frequency, Hz (B) Frequency, Hz
Fig. 11.7 (A) Normalized attenuations and (B) phase differences for the three-coil probe

at different contrasts between resistivity of the formation and the borehole.

*
Ael

*
Aml

A, =

*

m2

*
A3e

*
m3

[s]
M 1
=A+ kz 51n¢J—C1I1(m1r) cosmzdm
my
0

[e9)
. M m .
=A0 T py cos¢ Jm_1D111 (myr)sinmzdm
0

22 5 smgbj [— G K (mar) + CsIy (mar)] cos mzdm

o) (11.72)
M
o cos¢ J ﬂ[—D2K1 (mar) + D3I, (mar)]sinmzdm

o)

1
k — sm(ﬁ J —CyKi(mar) cosmzdm
ms
0

M
cos¢p J —DyK; (m3r) sinmzdm
S on? ms

0
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Here, Aj, and Aj,, are complex amplitudes of vector potentials in a uni-
form medium with resistivity p; and indexes 1, 2, 3 correspond to the
potentials in the borehole, invasion zone, and formation, correspondingly.
Similar to the case of one cylindrical boundary, Eq. (11.72) account for
behavior of the field near the source and at infinity. The continuity of tan-
gential components of the electric and magnetic fields at boundaries r =a
and r = b provides a system of eight equations with respect to eight unknown
coefficients C; and D; (i=1, ..., 4):

my [Ky(mya) — Ci I (mya)] = my[ CoKy (mpa) — Cs Iy (mpa)]

mila[Kl(mM) — CiLi(mya)] + K{(mya) — Dy I} (mya)

= m%a [C2Ki(1m2a) — C311 (m2a)] + D2Kj (m2a) — D3 Iy (m2a)
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2
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By numerically solving this system of linear equations, we find all the
coefficients of integrands in Eq. (11.72) that are needed to calculate poten-
tials and, correspondingly, the complex amplitudes of the field components.

The expression for the magnetic field on the axis of the borehole has the
form:

3 (o)
bt=(1—ikL—k{L*) exp (ikL) — “; J [’ Dy + kjaCy ] cos

0

L
dm (11.73)
1
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where gy is the radius of the borehole. The derived solution can be used to
confirm the efficiency of attenuation and phase difference of the three-coil
probe in reducing the eftect of the invasion zone. To proceed, we use the
same parameters for probes, borehole, and formations as in the case of one
cylindrical boundary (Fig. 11.7). In addition, the formation model includes
an invasion zone with the radius b=2a. The calculated attenuation and
phase difference, shown in Fig. 11.8, are normalized by the corresponding
values in a uniform medium with resistivity of the formation.

The data in the left subplots (Fig. 11.8A) indicate the ability of the atten-
uation of the long probe (L = 1.5m) to remove the influence of both bore-
hole and invasion. The advantage of the long probe over the short one
(L=0.75m) is especially pronounced in the case of very conductive inva-
sion with p, =0.01ohmm. Also, by comparing attenuation and phase dif-
ference we see that attenuation has clear advantage and enables us to reduce
influence of the borehole at shorter spacings.
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Fig. 11.8 (A) Normalized attenuations and (B) phase differences for the three-coil probe
in the presence of invasion zone.
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11.6 MAGNETIC FIELD IN MEDIUM WITH A THIN
RESISTIVE CYLINDRICAL LAYER

We suppose that a relatively thin and resistive invasion zone is formed
due to penetration of the very resistive oil-based mud in the formation.
Although in the analysis we assume that the conductivity of the borehole
and the formation are equal, generalization for the case of the different con-
ductivities does not require special effort. Thus, in a uniform medium with
conductivity ¥4, there is a thin cylindrical layer with radius a and thickness h
that has conductivity y,. These parameters satisfy conditions: h/a<<1,
¥1/7>> 1. The electric properties of the layer are characterized by the trans-
versal resistance, T'=h/y,. At the surface, r=a tangential components of
the magnetic field are continuous:

Bi:=Bs. Bip =By (11.75)

where B and B, are fields in the borehole and the formation, respectively.
The tangential components of the electric field are discontinuous owing to
the presence of the double layer, so we have

}/_181512
a O¢

OE;.
E,.=E;.+ Ty, ) - and B>y =Ejp+ T (11.76)
z

Substituting expressions for field components through potentials
Eq. (11.28) into Egs. (11.75), (11.76), we obtain
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where

T T
mp = (mz—kfaz)uz and 7=-—"1=—"
a To

By analogy, Tj can be called the transversal resistance of the borehole.
Solving system Eq. (11.77) gives

mzK()(ml)K{ (Wl1)

k2 ) 77
1—1 m_ll(m1)K1(m1)+m I (VVL1)K{(W11)
L 7 -
kz 2 11.78
m—Ko(m1)K1(m1) ( )
D= kz 3 77
1—1 m—I1(m1)K1(m1)+m I (m1)K{(m1)
L ™My -

Thus the magnetic field on the z-axis of the borehole is

kZ 2
m—11(m1)K1(m1) + I} (my) K (my)

o0

3 2 12

a K a

b;:b(’;x(ﬂ)—i-kfaz—rJ K (my) cosam dm

T

01—1[
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(11.79)

For 7— 0 we obtain b%— b} (y;), whereas in the opposite case, as
T — 00:

m* Ky (my) cosamdm

br=1b; (y,) —ka chll J (11.80)
0

—2 L m1 K1 m1) + I (m1)K{(m1)

i

The calculations show that Eq. (11.80) describes field b} with sufficient
accuracy when 7 > 10. The amplitudes of the secondary field as a function of
the parameter, L/a, are shown in Fig. 11.9. The index is a/9;.

In the presence of the thin resistive layer, the primary field is practically
compensated by the secondary field if L/a> 10 and a/8; > 0.8.

At the range of the small parameter, the quadrature component of the
magnetic field can be presented as:

* L ?
be_—<a> (1+Gy)
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Fig. 11.9 Frequency responses of the amplitude. The index is a/s,.

where

G, =

[Se]
2za J m*K3(m) cosam
-—— m
n J1—zm?I{ (m)K](m)
0

If the length of the probe is much larger than the radius of the borehole
(a>1), then, by performing integration by parts in the integral above we

obtain
[so]
2t « 4 Ina
G~ — ! —szKg(m) cosamdm——- ¢
1+7/2x 1+(z/2) o?
0
Thus

Qb ~ L\’ {4 4t lna
¥ o1 1+T/2 a?

and for large values of 7, it gives

. L\ Ina
Qim— (=) (1+8—=2 (11.81)
X (31 052
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Next, we derive an asymptotic expression for the field in the far zone
(a>1) for arbitrary parameter L/§;. For simplicity, we set parameter 7
to be much greater than unity (i.e., 7>>1). The integrand in Eq. (11.80)
has a branch point on the complex plane of the variable of integration m,
when m=kya, and, by deforming the contour of the integration along
the crosscut and expanding the integrand by powers of m;, we obtain

ico + kia
* * a .
[ 2; J m[Kg(WM) —Kg(—fm)] exp (iam)dm

kia
If [mi| <1, then
K3 (my) — K3 (—my) = 2inKo(my ) I (my) + 2°I5 (my) = —2in Ky (my)
and

ico + kja
b= boy(y,) — 2ia* ko’ J m? Ko(my ) exp (iam)dm

k]ﬂ
Letting my = it + kya, where variable t changes as
0<t< o0

we have
by = by, (v1) + 2a*kjac exp (iki L) J (it + kya)* Ko (my ) exp (—at)dt (11.82)
0

where

1

my = (-tz + 2itle1a) &

For a>>1 the integral in Eq. (11.82) is expressed through the integral
exponential function:
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i i 9
J(H—k1a)2Ko(m1)exp(—at)dt—§(a > +21l€1a%—k2 2>

T i o .,
X |[In(—1) + In(t—2ikja)]exp (—at)dt = N2 +21k1a8 —kja
0

—2ikja)  exp(—2ik L)
a a

X

Ei(2ik1L)]
(11.83)
If |k L| < 1, then
Ei(2iki L) ~ In(—2ik,L)
and Eq. (11.83) becomes

02 0 50\ [~ Ina 2 Ina
J’_ _ J—
<8 > 21Ie1aaa kia >< . > "

Therefore, for the magnetic field we have

kiL? 1
bE=1b% (7)) — 4kja* exp (iki L) Ina = — 12 <1 +8L2a>
a

This expression coincides with Eq. (11.81), which is valid for the range
of small parameters. In the opposite case, i.e., when kjL>1:
2iki L
Ei(2ik L) ~ M
21k1L

and, instead of Eq. (11.83), we obtain

0 0 55 Ina  In(—2ikia)] KkL? Ina — In|ka|
— (= +2ikja—— + —
(8 2 Zlklaaa kia ) [ a a 2 a’

and
b =bi + kiak L*( Ina — In|kial) exp (ik; L) (11.84)
For the range of large parameters |kjL|>> 1, we have

by (y1) ~ —kiL? exp (ik L)
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therefore, Eq. (11.84) can be presented in the form:

Ina — In|k; 4
L (11.85)
a

bE=b" (1) <1 —kL?

11.7 MAGNETIC FIELD IN MEDIUM WITH ONE
HORIZONTAL INTERFACE

Now we begin to study the field of the transversal magnetic dipole in
the presence of horizontal boundaries. Let us place the dipole at the origin of
the coordinates and direct the dipole moment along the x-axis:

M = ReM, exp (—iowt)xo (11.86)

where My = IynS.
As before, we proceed from the field equations

arlE =ioB il B =yu,E

dvE=0  divB=0 (11.87)
Introduction of the vector potential of the magnetic type
E =iwwrlA (11.88)
gives
VZA+KA=0 (11.89)

and the relationships between the vector potential and the field are

E=iwarlA and B=k*A + graddivA (11.90)

We look for a solution, assuming that the y-component of the vector
potential is equal to zero:

A, =0

Then, in accordance with Eq. (11.90), we have

B 0A. E oo 0A, O0A. B . 0A,
=i =iw| —— L= —iw
l dy v 0z Ox Oy
5 o0 a | 5 o
B, =k°A,+ —divA B,=_—divA B.=k"A. + —divA
Ox Oy 0z

(11.91)
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As follows from Egs. (11.90), (11.91), for continuity of the tangential
components of the field at the interface z=1/ it is sufficient to provide
the continuity of values

0A,

z

A., . KA., divA

r4

Thus, for components of the vector potential we obtain two groups of
conditions, i.e.,

0A1, OAs,
Ay, =kBAy),, —=— 11.92
141 272 0z 0z ( )
and
A1z :AQz, diVA1 = diVAQ (1193)

In a uniform medium the field is described by one component of the vec-
tor potential, which has the form:

. _ MoMo exp (iki R)
Ox 4r R
or
o0
M,
A= ﬂ(:m 0 Jﬂ%exp my (—|z|)Jo (mr)dm
0
where

= (o —12)""

By analogy with the case of the vertical magnetic dipole (Chapter 9), we
represent the component Ay in both parts of the medium as

M,
A’l‘xzﬂO 0 J [ﬂexp(—m1|z|) + Ay exp (mz) | Jo(mr)dm if z<h
4 mq
0
M
A;x:’ui 0 JB,,,eXp(—mzz) o(mr)dm, if z>h
o3
0

(11.94)
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where my = (m2 - kg) "2 The boundary conditions at z = h give

m _ _
Ze M1h+Am€mlh:SBme moh

mq
_mefrmh 4 mlAmetmh — —szme*’"zh
Whence
A = ﬂsml —mp 672;”1]7
" my smq + mo
and
2m
Bﬂl - e_(ﬂzl_’/nZ)h (11.95)
smy + my
where s=7y,/7;.
Thus
[s]
”OMO msmy —mp (z—2h)
Al =A + — ™ mr)dm
1x ox(71) iz Jm1sm1+m2 'Jo (mr)
0
. (11.96)
sz _ 'u()MO 21’” C—(nn 7m2)h€7’nzz_]0(mr) dm
” 4 ) smq + mp
0

To determine the component AZ, we use condition of continuity of
divA”™:

N
a (Alx - A2x) = & (AZZ - Alz)

Inasmuch as

an . an (91’ o i +m;z
B o cos(ﬁJF(m)e J1 (mr)dm

0

To provide continuity of divA", it is appropriate to present the solution
for AZ in the following form:



Induction Logging Using Transversal Coils 429

M, .
Tz:/'to OcosqﬁJCmeml‘ﬁ(mr)dm and A5,

0
[6e]

M

—Hoo cosqﬁJDmemzZﬁ(mr)dm

4r

0

In accordance with Eq. (11.93), we have

mh __ —myh
Cpne"" = Dy,e”"™

11.97
(S o 1)mBme—mzh — szmemgh + m Cmemlh ( )
Solving this system we obtain
C, = (S — 1)mBm 67(’”1 +ma)h D, = (3 - 1)Wle (1198)
my + mp my + mp
Thus
0
M —1)mB
>1kz :ﬂO 0 COS¢J (5 )I/l’l me—(ﬂzl + mg)hemlz-h (mr) dm
my +my
0
and
©
M, —1 Bm — Iz
As =H0 s J (= 1)mB - e Ty (mr)dm (11.99)
~ 4 my + mp

0

The magnetic field on the z-axis has component B, only, and, in accor-
dance with Eqs. (11.91), (11.99), we have

b=~ L [ (e
o (11.100)
b =L | ol

0

where b, is the magnetic field expressed in units of the field in free space:

B, B _ ,MOMO

be=—" By=
* By 4xl3

0

and L is the length of the probe. Also,
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by, =eME(1—ikyL—k; L)y (m)

_ (/e%LZ _m2L2> m smy — i 2
2 mq ny + my
3(c_ 1), —2mh 11.101)
m’(s—1)e =" (
$>(m)
m1(sm1 + mz)(ml + mz)

272
_ ksz_Wl L mq +SW!1 214’1 e*(%*mz)h
2 2 mytmy ) smyp+my

+ m?L2

First, consider the field at the low-frequency limit when the skin depth
in both media exceeds the distance from the dipole to the interface as well
as the length of the probe. In deriving the asymptotic formulas, we use the
approach described in Chapter 8, namely the interval of integration is pres-
ented as the sum of two parts, i.e., the internal part where 0 <mL <
moL < 1 and the external part where m > m,. Within the external interval,
radicals m; and m, can be expanded in a series by powers of ki/m> and
k3/m>. For this reason, the integral at the external interval is presented
as a series of terms that have even powers of k. Within the internal interval,
the exponents can be expanded in series (mL < 1), and the integral is
reduced to the sum of tabular integrals, which in its turn can be presented
as a series with respect to the wave number k. Unlike the integral at the
external interval, these series contain odd powers of k and logarithmic
terms. For example, in a medium, where the dipole is located, at the
low-frequency limit, we have

b =1+ ay [ = ’ d Qb ~ L 2+ LY’ (11.102)
no, — daq 51 an . ~ 51 aq 51 .

where
a = 2 i53’/2(51/2—1)—15(57’/2—1)-i-i(sﬂz—l)
2—113 5 15

52 | Vst 1 —1/s+1+ /s
n
2(5+1)1/2 Vst1l+1y/s+1—4/s

J’_

and

B 1(s+5)(s—1) L
R e e s T (11.103)
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where

5 1/2 2 1/2
51:( ) i 52:< ) , L/61 <1, L6, <1, s=p,/r,
Y1Ho@ Vabo®

If the interface is located at a sufficient distance from the source and the
observation point (L/h<1), coefficient d tends to —1, corresponding to a
uniform medium. At the same time, coeflicient a; does not depend on the
position of the probe with respect to the boundary, and it is a function of the
resistivity of both media. The second terms in Eq. (11.102) are proportional
to @>’? and sensitive only to the deepest part of the formation. (In fact, by
measuring these terms we can reach the same depth of investigation as that
achievable at the late stage of the transient field). It is obvious that, as s — 1,

coeflicients a; and d correspond to a uniform medium:
4
ag=— and d=-—1
3

Deriving asymptotic expression at the high-frequency limit, we use the
following relationship:

I,= Jm" exp (m” + kaz)l/zdm ~a, (ki L)V exp (—ky L) (11.104)
0

where |k; L>> 1| and a4, are functions of the number n. In particular, for the
first three values of n, they are equal to 1, (z/ 2)1/2, and 2, respectively. Note
that integrals of type Eq. (11.104) for odd values of n are reduced to elemen-
tary functions, but, for even values they are expressed through modified
Bessel functions K, (kiL). After elementary transformations, by presenting
the field through integrals of type I,, and taking into account exponential
decay at |k;L|>1, we obtain

Vs—1exp[ikiL(2a—1)]
Vst1 2a—1

by, =05 (ry) —kiL? ~b(r,)  (11.105)

where a=h/L > 1. The field becomes the same as that in a uniform
medium with conductivity, 1 due to the skin effect. However, if the dipole
or the observation point is located at the interface @ =1, then the field is a
function of the conductivities of both media regardless of the frequency. In
accordance with Eq. (11.105), we have



432 Basic Principles of Induction Logging

2,/
Vst1

[t is proper to note one specific feature of the current distribution when

by~ — k2L exp (iky L) (11.106)

the conductivity of the medium, surrounding the dipole, is equal to zero
(s— ©00). As seen in Eq. (11.96), the component A, vanishes. For this rea-
son, in the conducting part of the medium, the electric field and induced
currents do not have a vertical component, and the distribution of currents
is symmetrical with respect to the plane yoz, which is not intersected by
current lines.

11.8 MAGNETIC FIELD OF THE HORIZONTAL DIPOLE IN
THE FORMATION WITH TWO HORIZONTAL
INTERFACES

Suppose that the magnetic dipole is located within the formation.
Then, according to the results obtained in the previous section, the expres-
sions for the vector potential have the following forms:

[Se]
/l MO mz
A = 217[ JD1e o (mr)dm
0
if z < —]/lz
[Se]
M, -
A, :”(:m 0 cos¢h JFlem“_h (mr)dm
0
( o f
A;x :/’l() 0 J |:ﬁ€mz|z + Dzemzz + D3€7mzz J()(Wli”)dﬂ’l
4 mo
o if —hy<z<ky
M, . .
A :ﬂ(:l U cosg J [F2e™* + Fye” "% ] (mrdm)
v
0
. (11.107)
M -
A;x:’ui 0 JDJ,e”“‘]O(mr)dm
T
0 o it z>Mh
M
A, :'MZ Y cosg JF46_”’1Z]1(mr)dm
V3
0
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From the system of equations, following from the boundary conditions
at 2 = hy and z = —hy, we can determine the coefficients Dy, D,, D5, D, and
F,, F,, Fs, F,. In particular, for the horizontal component of the magnetic
field on the z-axis, when the two-coil probe is located symmetrically with
respect to the horizontal boundaries, we obtain

(1 —5)(1 — q12)m*m>
(m1 +n12)d2

o0
m —am:
b;‘, = b:x(yz) — J{ <E— k%L2>2q12(1 —qi2¢ *" coshmp) +
0

x[1 = (q12 — Ki2)e” ¥ coshmy — K12q12e_amz]}Le_amz dm, if a=H/L>1

mody
(11.108)
where
_ _ Smy — nip
di=1—qe ™, da=1—Khe ™™, qo=———, S:Q, K>
smy + my 71
my — mop
oy my

7> and y; are the conductivities of the layer and shoulders, respectively, H is
the thickness of the formation, and L is the length of the probe.

By analogy, when the length of the probe exceeds the thickness of the
layer, and the transmitter and receiver coils are located symmetrically with
respect to the layer, an expression for the field is

b=
0

2 2 2 1 2
m—s—kngJr mny 2(5 ) (1 _672am2)
2 2(1411 + mz) d2

(11.109)
[amy + (1—a)my

dmmye”

(smy + mz)zch

dm a<1

Owing to the symmetrical position of the coils, the field is defined by
three parameters:
L
2= and a=2
o 74 L

p:

First, consider the field at the low-frequency limit, when parameter
p=L/8, — 0 and the probe is located within the bed 5. Proceeding from
the approach, described in Chapter 7, we present Eq. (11.109) as a sum of
two integrals: first integral, corresponding to small values of integration
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variable m and the second integral, representing the residual part. The first
integral gives an asymptotic expression for Inby:

4/L\’
Inb* ~— —
e 3(51>

and for the quadrature component, we have

o)

Qbiz—<£)2 1_25—1 Jl—(s—l)/(s+l)e;’”‘coshamdm+1—s
0> s+1 ((S—l)/(5+1)) o—2am 2as

4L\
+ =
3<51>

It is essential that the in-phase component of the field at the low-
frequency limit coincides with the in-phase component of the field in a uni-

0

(11.110)

form medium with conductivity of the shoulders, ;. A similar result is
obtained when the source is the vertical magnetic dipole. This indicates that
surface charges, occurring at the interfaces between layer and the surround-
ing medium affect only the quadrature component of the magnetic field.
Now we present the quadrature component Qb as the sum of two terms:

Qb = Qby, + Qbs,

where
ai=(5) () (5)
w— | 5 )\ 52
522 2a 51 2a (11111)
. L
2
where
iy 1 — Be—am h
F(ﬁ,a):ﬂJ fe O i (11.112)
1—p~exp(—2am)
0
and

s—
=" —-1<p<1
p s+1 p



Induction Logging Using Transversal Coils 435

At the range of the small parameter, the component Qbj, coincides with
the vertical component Qb~ of the vertical magnetic dipole and it consists of
two terms, each depending on either conductivity shoulder y; or the bed y,.
Correspondingly, we can introduce a geometric factor for each term. In
accordance with Eq. (11.111), we define

G1:1—1/2a, G2:1/2a, G1+G2:1
and

po@L’

Qb = — r1Gi(@) +7,Ga(a)] (11.113)

The expressions for the geometric factors are the same as in the case of the
excitation of the field by a vertical magnetic dipole. The second term Qb>,
includes the function F(f, &), which depends on the ratio of the conductiv-
ities, or more precisely, on parameter . The appearance of this term can be
explained in the following way. The primary electric field gives rise to the
surface charges, whose density is

S L ySTR (11.114)
“2ms+1m ‘

o(a)

where E(a) is the magnitude of the normal component of the field, created

by the vortex field of currents and all charges, except those, located at the
point a. In this approximation, the field of electric charges and the primary
field are directly proportional to frequency. Let us present Eq. (11.112) as:

_opL?
2

Qb= [12Gs(a,s) +7,Gi(a,s)] (11.115)

where
Gi9) = 1—=——2F(4,5)
a, —1l——= 5
(e, s 0 s

If the layer resistivity exceeds that of the shoulders (s < 1), then the elec-
tric charges increase the field within the layer, and function G5 becomes
larger. In a more conductive layer the electric field of the charges reduces
the primary field, and, under certain conditions, the function G5 crosses zero
and changes sign.

Table 11.6 contains the values of the functions G+ (1/s)- G, and
F(B,a) for some values of a. It is possible to show that function F(f#,a) is
expressed through hypergeometric series »F
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Table 11.6 Maximum Values of (L/5,), for Which the Difference Between Exact and
Approximate Values Below 5%

a=4 a=8 a=16

. G . G . G
Gty F(B,a) Gt~ FB,a) Gt~ F(B,a)
~1.03 18.9 —0.520 9.998 —0.26 5.49
~0.703 6.28 ~0.351 3.64 —0.175 2.32
—0.377 2.63 —0.188 1.81 —0.094 1.41
—0.102 1.33 —0.0507 1.16 —0.0253 1.08
0.0717 0.794 0.0359 0.897 0.018 0.948
0.142 0.606 0.0718 0.802 0.0359 0.901
0.164 0.552 0.0825 0.774 0.0414 0.887
0.169 0.538 0.0854 0.767 0.0428 0.883

A\ B B Lor g
Fw””_zbam1—ﬂ 2a+12F<L1+2w2+2dﬁ>
p

(11.116)

1 1
- Fl11——2—— p

20—1 2 1( 20?20 )]
When the length of the probe is equal to the formation thickness (@ = 1),

F(f,a) is expressed through elementary function:

1 1
2 21

F(B, q) Ins (11.117)

and for the quadrature component, we have

b = — (L ’ 1y 2 (LY (11.118)
=\, 2 2—1 )2\, ‘

For the large a, function F(#,a) decreases inversely proportional to a:

1 2s
F(ﬂ,a)%; 11’154_,l

(11.119)

and the function Gj(a, s) remains positive for all values of s. With increase of
resistivity of the layer (s — 0), the term Qb3 trends to zero.

The asymptotic presentation for the field, when the formation is located
within the probe, is derived in a similar manner, and we obtain

4/L\°
Inb* =—| —
" 3<51>
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Fig. 11.10 Apparent conductivity curves. Index is y,/71.

and

Qb= (5_L2)2 (s +41)2 Jl —((s— 1)/(jffi)1;2eXp(—2fW) _g
()

The integral in this expression can be also presented using a hyperbolic

(11.120)

function. Now consider the responses of a two-coil probe placed in the mid-
dle of the bed at the range of small parameters, if @ > 2 (Fig. 11.10). The
apparent conductivity is introduced as:

Yo Qb

4] B QbOz (72)

where Qb is the quadrature component of the vertical component of
the field.

[t is natural that the influence of the surrounding medium increases with
an increase of its conductivity y; and a decrease of the thickness of the layer.
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Comparison of responses caused by the vertical and horizontal dipoles shows
that the influence of a more conductive surrounding medium on the fields is
practically the same. If the layer is more conductive, the influence of the
shoulder is more pronounced in the case of transversal dipoles and is caused
by the influence of the electrical charges. This can be seen in Fig. 11.10
where apparent conductivity curve does not reach an asymptotic value of
1 even for the thick layers and conductivity contrast y, /y; = 128. As the fre-
quency increases, the skin effect becomes more pronounced, causing
reduced influence of the surrounding medium.

Consider the frequency responses of the field (Fig. 11.11). We can see
that at the low-frequency spectrum in Fig. 11.11A the secondary field is rel-
atively small. Then it increases and in the limit when the skin depth in the
layer is small, the amplitude of the secondary field approaches to that of the
primary field.

Like in the case of the vertical magnetic dipole, the phase shift of the sec-
ondary field at the range of small parameter is —z/2 (Fig. 11.11B).

Now let us consider the influence of relatively thin layers (¢ < 1). At
the low-frequency limit we present a field as the sum of two terms: a
field in a uniform medium with the conductivity of the surrounding
medium and the part of the field that takes into account the influence

of the bed:

L L\’
Qbi: Qb;x —|+{=) Ga,s) (11.121)
01 oy
Here
4 < —m _1
Go(a, s) = ——— ZJ ‘ 5 dm+a(5 )+1
(1 + 5) <s— l) 2
01+ e—2am
s+1

The latter coincides with Eq. (11.120) in the range of small parameters
(L/8< 1), and for certain combinations of & and s, it is valid for a wider
range of parameters (L/6). Table 11.7 provides the maximum values of
(L/687), for which the difference of the quadrature components obtained
from the exact solution and the approximate formula Eq. (11.121) does
not exceed 5%.

These data demonstrate how the maximal value of parameter L/d;
increases as parameter  decreases. If a thin layer has a relatively high resis-
tivity or conductivity, the range of application of Eq. (11.121) is restricted to
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Fig.11.11 (A) Frequency responses of amplitude H/L=+/2. Curve index is y./y;.
(B) Frequency responses of the phase. Curve index is y,/y;.

smaller values of L/§;. When s approaches unity, the maximum value of

parameter L/8; increases. Let us analyze the field at the low-frequency limit

when the thickness of the layer is sufficiently small. By expanding the

denominator of the integrand in Eq. (11.121) by powers of a, we obtain
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Table 11.7 Maximum of Parameter (L/5,), for Which the Difference Between Exact and
Approximate Quadrature Components Below 5%

o 1 1 1 11
a 128 64 32 16 4 2 2 8 16 32 64
a_i 0.05 01 015 03 04 06 08 03 02 02 0.15
16
0{:1 0.03 007 01 02 04 06 06 02 01 01 0.07
8

Qb;=_<£2> o+ 1) J S_I:XPEJrl;;iZm(l—Zam)

(11.122)
L\ a(s—1) L a(s—1)
+| = — | |texpt- Ei(—t)+
(5) = () o)
where
2 —
=2 Ei(—t)=—c dex
a(s—1) . x+t
)
is the integral exponential function. As is known:
, . , 1 1Y .
Ei(—t) — Int if t—0 and Ei(—t) — —e PR if t— o0

For illustration, consider two extreme cases: s<< 1 and s>> 1, which cor-
respond to either a very conductive or a very resistive thin layer,
respectively.

Case 1: Very conductive thin layer (s> 1)

If parameter s3> 1, then ¢ & 2 /as. Using the asymptotic value of function
Ei(—t) for t< 1, provided that s>>2/a, instead of Eq. (11.122), we obtain

Q= (L) (B2 2 2) ek % (11.123)
————In—|~=(— if — .
51 2 2 as as 2 52 ’ 2

But, ifl<<s<2/a, then

Qb = L2(1 +“)— LY 4o LY Tl (11.124)
e = 51 as 2 = 51 a 52 as 2 .
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Thus the field Qb can be presented as the sum of the field in a uniform
medium with conductivity y4, and the field due to the presence of a thin
conducting layer with conductivity y»:

I\2
Qby = Qbg(r1) + (5—> (11.125)
2
Case 2: Very resistive thin layer (s<<1)

For the parameter t we have t=2s/a. If s<a/2, then t<1 and
correspondingly:

*L25255aa L\’ (25 a
Qb* TpZs 2 O (2) (224 (11.126)
o a a 2 2 o a 2
In the case of (s> a/2), we have
Qi =— (£ 2(1 R LY L@ (LY )
51 25‘ S 2 ~ 5] 25‘ 51 '
Generalizing this expression for higher frequencies, we obtain
2
N N a (L
7
1

Thus the smaller parameters s and a/s, for higher frequencies,
Eq. (11.121) is applied.

11.9 PROFILING WITH A TWO-COIL INDUCTION PROBE
IN A MEDIUM WITH HORIZONTAL INTERFACES

Considering the profiling curves, it is appropriate to distinguish
four specific positions of the probe with respect to the interfaces
(Fig. 11.12).

Case 1: The probe is located outside the formation (Fig. 11.12A). In
accordance with the results obtained in the previous section, we have

< 2
b =0(r,) — J [(kaz—m?> Dy + %Fle’m dm  (11.129)
0
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Fig. 11.12 (A-D) Different positions of two-coil probe.
where
m qi2 —2fm
Di=——(1—c¢ !
= )
F, = —F(1 o e—Z(IVng) (1 o qlzKlze—Zamg)e—/iml
2(1 —s)m?
F=
(14’!1 + l/l/lg)(SWll + le)dl dz
my — myp smy — 3 —2am 2 —2am
K = ’ - > d - 1 - 2, d — 1 - K 2
12 i+ mo q12 sy + 115 1 q12€ 2 12€
H hy
a=—, 0<a<o0, f=—, p>1
5 p=T.b>

Case 2: The coils of the probe are located on both sides of interface.
In this case (Fig. 11.12B), we have

(o]
2
by=— J [(k%LZ — %) Dye "™ + —m;“ F4e_'”l] dm

0
m e(afﬂ) (my—my)

D= 66— (1— 1— —2fm;
4 Sm2 i ( q12)( q12¢€ )

(11.130)
F,= Fe(af/})(mlfmz) [(K12 . (J12)€_2ﬂm2 ( [1 _ e—2(a—ﬁ)m2i|

+ (1 o Klquzefzamg) (1 . e*Zﬂmg)]

0<a<oo, 0<f<a, <1
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Case 3: The probe is located within the layer.
For this probe location, we have (Fig. 11.12C)

(o]
2
b= b5 (y,) — J [(kgﬁ —%) (Dae™ + Dye™™) + %(ermz - Fge_"’z)} dm
0

D; — ﬁ@ef(afﬂ)mg (1 _ q12672ﬂmg)D3 — _ﬁqﬁefﬂfmg (l _ q12672(a7ﬂ)mz>

mo dq mo dq

F, = Fe—Z(a—ﬂ)mg [(Ku _ q12)e—2ﬁtn2 +1— Klquze—Zamg]
Fy= _F€*2ﬂmg |:(K12 _ qlz)e—Q((l—ﬁ)mz +1— K12q12€_2am2]

1<a<oo, 0<f<a—1
(11.131)

In the case of the probe in a symmetrical position with respect to the

a
boundaries f = and Eq. (11.131) coincides with Eq. (11.108).

Case 4: The layer is located between the coils of the probe.
For this location of the probe (Fig. 11.12D), we have

(o]
2
b= J ka 12— ’%) Dye ™ —%Fw”"‘ dm (11.132)

m mZea(rm —ny) (1 _ e—2amz)

(m1 + mQ)(mu + mz)

4
Dy =2 gmom) - F = 2F(1—)
(smy —my)dy

The shoulders on both sides of the layer have the same conductivity; thus
the field does not depend on position of the layer with respect to the coils.

Eqs. (11.129)—(11.132) permit calculation of the field along the trajec-
tory, which crosses the layer. Some results corresponding to the case of
the thick bed with a=H/L =4 are shown in Fig. 11.13. The apparent
conductivity is introduced as

o 01|
v2 |05.(r2) — 1|

where b (y>) is the field amplitude in the whole space with conductivity of
the bed y,. The profiling curves are plotted for the fixed values of
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Fig. 11.13 Curves of profiling for two values of parameter L/5;.

a=H/L=4and s=y,/y, =16;4. The index of curves is parameter L/§;.
The horizontal axis depicts the value of y,/y», and the vertical axis indicates
the distance from the center of the bed to the middle of the probe, expressed
in units of the layer thickness. In the middle of the bed, the apparent con-
ductivity is approaching a true conductivity of the bed. When either the
transmitter or the receiver is near the boundary of the layer, surface charges
lead to a rapid change of the field. If the distance between the layer and the
probe, located outside of the bed increases and slightly exceeds the layer
thickness, the value of the apparent conductivity y,/y, asymptotically
approaches the following limit:

Vo |bn(ri) —1]

I4) B ‘b;;x(}’z) - 1’

In the range of the small parameter, this limit is equal to y,/y>. The dis-
tance d between “horns” on the curves of profiling is related to the thickness
of the formation (i.e., d = H + L).

If conductivity of the thick layer is lower than that of the shoulders
(v, <yy,H> L), profiling curves are still indicative of the layer thickness.
But if thickness of the layer is several times less than the probe length
(H< L), the influence of the shoulder makes determining the thickness
H practically impossible, regardless of the conductivity contrast y;/y».
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Detecting and evaluating low-resistivity pay zones using conventional
induction logging tools is a major challenge in hydrocarbon exploration.
Traditional induction tools comprise transmitter and receiver sensors
whose axes are aligned parallel to the borehole. If the formation dip is
small, the induced currents flow mainly parallel to the bedding planes,
thus measuring the horizontal resistivity of the formation. However,
many geological formations exhibit resistivity anisotropy, i.e., the resistiv-
ity varies with direction. For example, in thinly laminated sand/shale
sequences, where the sand is hydrocarbon bearing, the vertical resistivity
measured perpendicular to the bedding is higher than the horizontal resis-
tivity. The low-resistivity shales dominate the horizontal resistivity,
whereas the vertical resistivity is more sensitive to the more resistive sand
layers. Induction tools with vertically oriented coils cannot accurately
detect and delineate this type of low-resistivity reservoir because the
measured resistivity will be biased toward the low-resistivity shales. To
resolve formation parameters in electrically anisotropic reservoirs, trans-
versal coils should be used. Baker Hughes Incorporated was the first ser-
vice company to build such a tool, and successfully used it to resolve an
anisotropic formation and find the relative dip of the tool with respect to
the formation. Today, all major service companies offer similar services.
In this chapter, we consider the electromagnetic field of a magnetic dipole
in the presence of uniform and horizontally layered anisotropic media.
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12.1 ANISOTROPY OF A LAYERED MEDIUM

First, suppose that a medium is an alternation of elementary isotropic
layers of two types: one has conductivity 7, and dielectric constant €; the other
has conductivity and dielectric constant y, and €,, respectively (Fig. 12.1).

Let us assume that in such an elementary layer, which is denoted by index
(1), a uniform electric field E] =E exp (—iwt) is given, and is located at the
xz plane. The current density in this layer is:

j1=nE] (12.1)

Thicknesses of the skin depths, §; and &, are assumed to be sufficiently
large such that they significantly exceed the thickness of an elementary layer
and the skin effect within these layers can be disregarded. Now, we express
E* and j* in every isotropic layer through current j;. Maxwell’s equations
result in the following conditions at the interface of the first and second
layers:

B=E

1x°

&E. —€6E =0, (12.2)

where o} is the complex amplitude of free surface charges. From the prin-
ciple of charge conservation, at the boundary between the first and the sec-
ond layer we have:

Jre —J1. = iwo, (12.3)
By eliminating o7, from Egs. (12.2), (12.3) and applying Ohm’s law, we

obtain the following expressions for the current and the field in the second
layer:

% 4
— ~ N —
z
7l 2
L; X
= oy — e

Fig. 12.1 Anisotropic layered medium.
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1 iwey
JZx_y1J1x’ Jo: = _ia)gzjlz
I4
> (12.4)
1WE
2 T 2o _®%y,
72

By analogy, from conditions on the surface between the second and third
layers, we have:

1 iwer
ok _ﬁ ok Sk 7/2 ok
J3x = yzjzx’ J3: = L iwey)2 (12.5)
73

Owing to y5 =74, €3 = €1, Eq. (12.5) becomes:
js=j;, E5=E] (12.6)

Thus, in the formation consisting of alternating thin layers of both types,
the field and current density have paired values, that is, Ef, ji, and E3, j5,
corresponding to the first and second layers. Let us consider an arbitrary layer
with the thickness D, in which the relative contribution into conductivity of
layers with conductivity y, is equal to n. Then, for average values of current

and the field, we have:

iwey
14 ==
swav\ __ _ P2 sav\ __ _ X 71 s
)= (e i )= [ 1mnen g i a2
72
and
iwey

. T—— .
Erav :.]1_9(, Efav =|1=n+un- ﬁ i 71 Jl_z
< * > 71 < - > e Y24 1WE2 1 vy

72

Defining the longitudinal y, and transversal y,, conductivities as:
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J':GV jj;m/
Ve= W’ n= Exav
X r4
we obtain:
1—nll—
Y. =71 <1 —n+mn- Q) and y, =7, il yp(a))] (12.8)
s 1—n [1 ——1p(a)):|
14)
where
1— 1WE
plw)=—t (12.9)
14

In the quasistationary approximation, dependence on the dielectric con-
stant is absent, and, consequently, expressions for transversal conductivity
and coefhicient of anisotropy A have the form:

_ 71
Y 70 (12.10)

1l—n+n-—
72

1/2 1/2
/1:<&> :[(1—n+n7’—2> (1—n+n}/—1>] (12.11)
P 71 14

Fig. 12.2 illustrates the dependence of anisotropy coefticient A on param-
eters ¥»/y1 and n.

and

In general, when the influence of displacement currents is essential,
the transversal resistivity depends on frequency. If the electric field is not
uniform and changes along the layer, we can assume that the longitudinal
conductance also is a function of frequency. Fig. 12.3 shows the influence
of displacement currents on the anisotropy coefficient 4.

If n remains constant within interval D, and the probe length is much
greater than the layer thickness, this part of a medium can be considered
as a uniform anisotropic layer with coefficient of anisotropy 4.
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12.2 ELECTROMAGNETIC FIELD OF MAGNETIC DIPOLE
IN A UNIFORM AND ANISOTROPIC MEDIUM

Let us consider a uniform anisotropic medium with the tensor of

conductivity:
v, 00
Ya=10 7 0 (12.12)
007,

An arbitrarily oriented magnetic dipole can be presented as the sum of
two dipoles, oriented vertically and horizontally. A vertical magnetic dipole
induces currents in horizontal planes, and they do not depend on the trans-
versal conductivity y,,. Features of the field in a uniform medium, caused by
the vertical dipole, were discussed in detail earlier.

Now we explore the case when the moment of the dipole is oriented
horizontally. Under such type of excitation, volume charges occur in the
anisotropic medium. In fact, by presenting the equation of the
quasistationary field div j=0 in the form:

. OE:
v divE+ (v, — }’r)ai =0
z
and using the equation:
divE = 5/80

we obtain an expression for the volume density of the charges at an arbitrary
point in a medium:

_ P\ OB s (1o L)
5—8()(1 7’;) e or 5—8()(1 /12> g (12.13)

To describe the field, we use Maxwell equations in the following form:
arl E=iwB, divE=5/¢
il . B=y puyEx, curl,B=y u\E, (12.14)
al,B=y pu,E., divB=0

Inasmuch as the volume density 6 is not zero, it is impossible to introduce
the vector potential of the electric type E = curl A,,. Thus, we let:

B=wrlA (12.15)
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Then, from the first equation of the set (12.14), it follows that:
E=iwA —grad U (12.16)

Thus, we have for the potential A, the following equations:

0 ou
—divA — VA, =y, <ia),qux — —)

Ox Ox
9 . , ou
a—ydﬁ/A — VQAY =7 (10)/,{()Ay — W)
9 . , ouU
@d”}A - VZAZ =7 (10)/40/12 - E)
By choosing the gauge condition in the form:
divA=—y,U
we have:
V2A, + kA, =0
2A,+ kKA, =0
Vid kA, (12.17)
2 2 1\ o .
VA + kA= (1 —— | -divA
A ) 0z
where

ktz = iyt”()w’ k;21 = iymu()aL 12 = ﬁ

The behavior of the vector potential of electrical type A near the mag-
netic dipole is not known beforehand; therefore, it is appropriate to present
the magnetic dipole as a sum of two vertical and two horizontal electric
dipoles (Fig. 12.4) and find a solution for each of them.

A

Fig. 12.4 Magnetic dipole as a sum of four electric dipoles.
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The vector potential of the vertical electric dipole can be described by
only one component, A%, because, due to axial symmetry, the magnetic field
has only one component By,. In accordance with Eq. (12.17), equations for
component A% have the form:

DPAT  PAL 19PA

+ + 5=+ kA =0 12.18
ax2 8)/2 12 82‘2 n“ -z ( )

After replacing variable z with z; =4z, Eq. (12.18) coincides with the
equation for a uniform isotropic medium, therefore:
exp (ik,R.)

Al = (12.19)
R,

where
R, = (x2 + y2 +/1222)1/2

To determine the constant C, we use the expression for the potential of
the electrode in a uniform anisotropic medium:

1

1/2R*

- (12.20)
4x(y,r,)

where Iis the value of the direct current.

Assuming small size of the electrode and difterentiating Eq. (12.20) with
respect to z, we obtain an expression for the potential of the vertical electric
dipole when the distance between the electrodes Az is equal to a:

0 n 7
— __"SAz:—“UZ_f (12.21)
0= da(yy,)” R
At the same time, taking into account the gauge condition:
104,
y, 02
we have:
Crz
A== (12.22)
Ve R3

Comparing Egs. (12.19), (12.21), (12.22), we obtain the following
expression for the constant C:
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1/2
cota(r)"” _1a,
4z \y, 4n
Thus,
I ’knR*
av =10, o0 (kiR.) (12.23)
~ Arx R,

Now consider the field of a horizontal electric dipole with the moment
directed along the y-axis. We look for the solution of Eq. (12.17) assuming
that Ag =0. Then, for components Aif and A", we have:

VA + kAN =0

and

82AZ+62AQ+ 162Ag+k2Ah— - o (12.24)
Ox? oy 1 022 e 22 ) Oydz '

Let us present Aiﬁ as:

R o
Ar=¢ %: C1J mﬁe—"’*' o (mr) dm (12.25)
0 t

where m; = (m2 — k?)”z.

It is convenient to present component AZ as:

o0 8 00 F ,
A}ZI—XJ F,,(m, 2) 1(mr)dm———J Mjo(r/m’)dm (12.26)
rJo drJo m
The expression for A" is defined by conditions of excitation and the rela-
tionship between the scalar and vector potentials. Substituting Egs. (12.25),
(12.26) into Eq. (12.24), we obtain an equation for function F,,(m, z)
d°F,
yEa XmF, =sign(z) Cy (4> — 1)74’1267’""2‘

(12.27)

Here,

The solution of Eq. (12.27) is:

F,, = sign(z) Cy (¢ "Il — gmmll) (12.28)
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For z=0, function F(m) is continuous together with its first derivative.
Thus,

AZ =C stgn(z)XJ [efm”‘d — 67"1"2‘]]0(mr)dm (12.29)
rJo
or
z Az
Al = LI Z kR 22 kiR, (12.30)
N 2 |R R,

Constant C; is determined from the gauge condition and the behavior of
the field at infinity, and is equal to:

Ia

Ci=—
! 4

Thus, for a horizontal electric dipole, we have:

h __ h h
Al= (O,Ay,Az)

Here,
e
Y 4z R
(12.31)
Ah zﬁl [ieik,R_ﬂ_Zeik,,R*:|
* 4ze2|R R,

The components of the magnetic dipole, A, and A., are determined by
summation of the corresponding components of the electric dipoles:
M, 0 eikIR

1 (1) @) ©) W _20=Z°
4, _11m[Ay T4 AT 4, }_ 4m 0z R

Ar=lim [AD + 4% + 40+ 40 =

<

) Az .
(E etkrR _ _ZetknR”) , (a N 0)

R R,

My, 0 ™R M, 2
——sign(z) —
0z

Y
4r Oy R, 4rm 2

T
(12.32)

According to Egs. (12.15), (12.32), for the magnetic field along the

z-axis, we have:

B,=B.=0
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and

B* 1+ 22\ .
bt ="2=(1—ikL——kL> ek (12.33)
X N t 2/12

where
By = —pgMy/4xL’
kL <1

From Eq. (12.33) in the near zone, , we have:

2712
R i +<1 +é>ka3

2 272
or
Inb.~1+ 1+1 LY’ d Qbt L 2+ 1+1 L3(1234)
~ S+=| = n ~—— S+-|(= .
" 2 3)\s ) s 5, 23\,
where

5 =2/(ciwop)"? and 8, =2/(c,ap)"?

Thus, at the range of small parameters L/9, the quadrature component of
the field is directly proportional to the transversal conductivity y,, and the
ratio of quadrature components, corresponding to the vertical and horizon-
tal dipoles, permits determination of the anisotropy coefficient:

QY o
Qb;/z

(12.35)

Inasmuch as A > 1, the in-phase component in the anisotropic medium
(12.34) is smaller than that in the isotropic medium with conductivity, ..
For large values of the anisotropy coefficient (y, — 0), both components
of the secondary field become the same at the range of small parameter:

* * 1/L ’ :
Qb =Inb*—1==(=) if A1 (12.36)
X X 3 5t

In the wave zone, when |kL>>1|, we have:

k7 L? 1
br~— ’2 (1 + /?) exp (ik,L) (12.37)
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Fig. 12.5 Function ]b; — 1| in anisotropic whole space. Index of curves is anisotropy
coefficient.

and the influence of anisotropy decreases as 4 increases. Typical frequency
responses for the function |b:‘c — 1|, are presented in Fig. 12.5.

The curves show increased sensitivity of responses to the anisotropy
coefficient in the range of small parameter (low frequency, L/§, <0.5)

1
and 4 < 2. Generally, when condition z > 3 is met, the anisotropy coeffi-

cient can be reliably determined.
Applying the Fourier transform to Eq. (12.33), we find the transient
response of field b, when the current in the dipole is turned oft:

2 1/2 1+ 42 2
bx(t) = q)(l/l) - <;> <1 + 2—/12142) ne " /2

2 1/2 u ,
D(u) = <—> J "2 dr
7 0

1/2

where

is the probability integral, and u= L(p,y,/2t)
Table 12.1 contains the values of b, as a function of 4 and 1/u.
In the limited cases of t — 0 and t — o0, we obtain:
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Table 12.1 Dependence of b, on Anisotropy Coefficient 1

ul A=1 A=1.2 A=1.4 A=1.6 A=1.8 A=2.0
0.1 —1.0000 —1.0000 —1.0000 —1.0000  —1.0000  —1.0000
—1.0000  —1.0000 —1.0000 —1.0000 —1.0000  —1.0000
02 —0.9996 —0.9997 —0.9997 —0.9997  —0.9997  —0.9998
—0.99265 —0.9369 —0.9432 —0.9472  —0.9500 —0.9520
0.4 —0.3642 —0.4479 —0.4983 —0.5311 —0.5535 —0.5696

0.2320 0.09083 0.005718 —0.04952 —0.08739 —0.1145
0.8 0.2472 0.01382 0.07247 0.02981 0.00056 —0.02036
0.06129 0.004334 —0.03001 —0.05230 —0.06758 —0.07851
1.6 —0.05280 —0.07728  —0.09204 —0.1016  —0.1082  —0.1129
—0.08575 —0.09530  —0.1010 —0.1048  —0.1073  —0.1092
32 —0.08082 —0.08436  —0.08650  —0.08789 —0.08884 —0.08952
—0.06488 —0.06616  —0.06694E —0.06744 —0.06779 —0.06803
6.4 —0.04872 —0.04918 —0.04946  —0.04964 —0.04976 —0.04985
—0.03547 0.03564  —0.03574  —0.0358  —0.03585 —0.03588

2\
be(t)=—|— ~t+t— e i u— o0 or t—0
n 2 22

2211
b,(%—<—> <—+—2>u3 if u—0ort—
V4 6 24

Therefore, at the late stage and relatively small anisotropy coefficient, the

(12.38)

field is inversely proportional to A°.

12.3 MAGNETIC FIELD IN AN ANISOTROPIC FORMATION
OF FINITE THICKNESS

Using results obtained in the previous section, we can define the mag-
netic field in a formation with finite thickness when the medium is aniso-
tropic. The main axes of the tensor of conductivity in all three layers
coincide with the coordinate lines. Equation of interfaces: z=/h; and
z=—hy, (Fig. 12.6).

All quantities that characterize the layer are denoted by the index (2) and
quantities characterizing the medium above and beneath, by the index (1).

We assume that y(kl )= 71(12 ). In medium (2), the magnetic dipole is located at

1,
the origin of the coordinates, and its moment is oriented along the x-axis. In

accordance with Eq. (12.32), near the source, the field can be described by
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Fig. 12.6 An anisotropic layer model.

Z=—h2

the vector potential of electric type A”, which has two components: A§,0)

and AY.
Here,
ik, R 0
Q0 _HoMo O =T pMoy O J el () dm
y 47 Oz R 4r 0z ), moy
ik”n *
A(‘))*:”()Molzge R _ﬂoMO Y 3 <ieik2,R _b_zef'kz”R*> (12.39)

* 4r "0y R, 4 20z \R R,

Moy [ [kakan 2 '
__HoMoy 20 pmmadalel g gy gkl Ji(mr)dm
A r 0 may,

where
kgr = IOpyY >, k%n = IOV 2,
1/2 1/2
o= (2 = 18,)"%, = (= 13,)"
/13 =Y/ Vo> Ri =x>+ Y2 + }ézz

Potentials Ag,o)* and Ag))* satisfy the equations:

2412140 2 12\ 400) 1) 24P
V"‘k A >k:O, v+]€ A~*: 1_— /
(7 g)a =0, (7 +i)a0 = (1-5) 5o
P P 1 (12.40)
Ve ——
Ox*>  0y? /13 0z2
For potentials in a layered medium, we have:
M, [® B
Ay :ﬂ(zmojo DyJo(mr)e"=dm
M, [® _ B
Azy :Ag/O)* + /"Z ()J (Dae"™* + Dye™ %) ()(ﬂ’li’)dm (12.41)
T Jo
HoMo [© gz
e D M3z d
e L se "% o (mr)dm
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and
(V+kp)A;,=0
Also,
M,
Al = _Tho ()J Fi.(2)]1 (mr)dm
r 4 0
M (o]
A;z:A£°>*+XMJ Fo(2)]1 (mr)dm (12.42)
~ r 477: 0

o _ YHoMo [®
A = ; Zﬂ_ L F5(2)J (mr)dm

Using Eqs. (12.40)—(12.42), we obtain equations determining functions
F(2):

d°F (2

dlg ) — 4 %n 1(z)= _””mh(}wz — l)D1 M

z

F ~ < —Mmyz

dig )—/@ m3, Fo(2) = —mm (A3 — 1) (Dae"* — Dye™"™%)  (12.43)
d*F

di§2) _2'2 %n (Z) = —l’l’ll/i’l1t(ﬂ12 - 1)D4€m“Z

Taking into account the behavior of the field at infinity, we can write the
solution to the Eq. (12.43) as

>, My >
F (Z) :Alellml'“ +—'D, oM

m
. m > — >
F2 (Z) :Aze/lzﬂlg,,z + BZe*ﬂgmzn.: + ﬁ(DzeYﬂzp: _ D3€ mzr~) (1244)
m
., m .
F3 (Z) — 336713;111,% _ JD4€ M2
m

Substituting Eq. (12.44) into Eq. (12.42), we have:

M,

A>1k7:ﬂ() OXJ <A Aimy,z + @D1em1,z> 1(mr)dm

~ 4z 1) m

M,

AZNZA(N) /’l() OYJ |:A2622m2,,z+B26712mg,,z

- ~ 477: rJo

(12.45)
+%(D2 = Dy ) |y o) o

M N m >
A r 0 m
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To determine the coefficients Dy, D,, D3, D4, A1, A», Bo, B3, we use the
boundary conditions at z = /iy and z = —h,. The continuity of the tangential
components of the electric and magnetic fields results in the following rela-
tions for A}:

i} . 04y, o045,
Ay, =45, F o v it z=—h
0AF DA (12.46)
a4y =a5, —T=— i 2=y
and more complicated relations for A%
r ., 1 .
A, =A%, —divAl=—divA5, if z=—h
B Y V2
(12.47)

1 1
A=A, —divAl=—divA}, if z=h
V2 V3

Substituting Eq. (12.41) into Eq. (12.46), we obtain a system of equations
for the coefficients, D;:

D1 efm“hg — _mefmg,hg + Dzefmg,hg + Dge’”Z"”
myDye ™2 = — g e "2 + iy, Dye M2 — iy, Dyl (12.48)
D4€*mnh1 — mefmzz’ﬂ + Dzem2zh1 + D3e*?742rh1 ’
M1[D4€_m“h1 — mm2te—mg,h1 _ m2tD26m2th1 4 m2tD3e—mg,h]
Solving the system, we find:
141 6—2;112,112
—2mph 12
D :—ml e 2”—and
2 12 1— 1%26—21113,H
B 1+ 112672’112’]71
D3 = mllz(f 2mahy T 2 omH (1249)
1= Bye 2
where
My — Moy
l12 -
my + my
Now we define coefficients A and B. At 2= — h,, component A" is a
y

continuous function, and correspondingly

0A;,/0y =04, /9y

1y
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and from Eq. (12.47), we have:

OAL. OA. 045,
< __ < — S

L =Ab d S 1—
1z 2 NG o 0z 0z ( 2 Oy

, atz=—hy (12.50)

where S, = Q

Vit
By analogy, at z = hy, we have:

OA;, 045 045,

5. =A5. and S Ee Ee (1-5) By

(12.51)

Substituting Eq. (12.45) in Eqgs. (12.50), (12.51), we obtain the system of
equations for coefficients Ay, A, By, and Bs:

Al e—}q miho + mer1 e—ml,hg — szkz”l e—/lgmg,,hg _

m mpp

m2t€_m2'h2 + Aze—izmznhz

ma¢ —
+ Bzeﬂzmznhz 4 = (DQE‘ oty D3€m2’hz)
m

2
_ m _ _ _
S, (ll mi,Age Ay, hy + nitD“‘ 1111,hz> + kgte map Azl + méte mahy _)«2"’12;1

2
m
Aze—lzmznhg +/12 mQﬂBzelzmz,,hz_ 2t (Dze—mz[hg +D, emgfhg) z—m(l —St)D1 e—ﬂl“l’lz
m

Bse—llmh,lu o @D4€_m“h1 — %e—/{zmz”’ﬁ
m may

_ M2te—m21h1 +A2€/12m2n/11

+ Bzeflzmz,,h] + Moy (Dzemg,lu _ D3€7mz‘]71)
m

2

_ m _ _ _

St (—111411,1336 ﬁ] ﬂ11”h1 + 1ID4€ 11111111> _ k%te ﬂgmzﬂlﬂ _ mgte mztlh
m

2
m _
—/121’112”/126}“2”12”]1' +/12m2ﬂB2€_}‘2mz”h1 _ 2t (Dzemmhl + Dse mz:hl)
m

=—m(1— St)D46m“h1
(12.52)

Using Eq. (12.48), establishing connections between coefficients D;, the
system (12.52) can be easily reduced to the form:
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k2tk2" e*/lgmgﬂ

672“111”1121‘11 _ elgmg,,thz _ eﬂgmg,,hz B2 — hy + Sx/11 mﬂiﬂ 67/11m|/1/12A1

m2n
_AZ@e*ﬂzmznhoA 4 22 Az, o2tz __@ o Hatmahy
m m
e/hmh,h] By — e*/lgmz,ilqu _ e*izmznlh B,=— kakZ” e—ﬂzmzdﬂ
mypy, 5
5/11 Mip —/111117,,111B +/1 Moy /121112,1/11/1 l Moy e—lzmzhl B2 _ _@e—ﬂgmz,,h]
[ =
m m m m
(12.53)
From these equations, we derive:
—2A>m5, Iy
Az _ thkZVI € (1 _ W€72/11 mz;rhz)
Moy, 1 _ Lzefzﬁgmg,,H
(12.54)
—2mp,hy
B2 _ eran W e /a2 (1 . We—le mz”hl)
Moy, 1 _ L2€—222mz”H

where:
_ Sikimy, — Aamay,
Sihymy, + Aomo,

The expression for the horizontal component of magnetic field B, on the
z-axis within the layer has the form:

9y 0z ™ 4z
—g (Axd™"% + Boe ") |dm if —hy < 2 <hy (12.55)

et (Dzeﬂlz,z _ D’Se*m'_)lz)

L 0Ar 04 4+ HoMo Joo [’”2:
o L2

The derived solution can be used to study all features of the field excited
and measured by transversal dipoles. Let us consider sensitivity of the
low-frequency component Q(bz) to the anisotropy of the bed, surrounded
by isotropic shoulders. To proceed, we introduce a function rq,, which
corresponds to the ratio of the quadrature component of the field Q(b;)
in an anisotropic bed to the corresponding component in the isotropic
bed. The ratio is always equal to one when 2= Y2:/V2, =1, and decreases
with increase of ¥5,/72,. To illustrate, we consider two scenarios: a conduc-
tive layer with y,, = 0.2 (ohmm)_1 surrounded by less conductive shoulders
with 7,,=0.1(chmm)™', Fig. 12.7A, and a resistive layer with

;/Zt:().l(ohmm)_1 surrounded by the more conductive shoulders,
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Fig. 12.7 The ratio of the quadrature component of the field Q(b,) in an anisotropic bed
to the corresponding component in the isotropic bed for the case of a conductive
(A) and resistive (B) bed.

71:=0.2(ohmm) ", Fig. 12.7B. The two-coil probe with L = 1m is placed
symmetrically with respect to the boundaries and operating frequency is
10 kHz. Modeling results are presented for infinitely thick (H/L = inf),
thin (H/L=0.5), and moderately thick H/L=2.0 layers. The x-axis
depicts the ratio 4> =7,,/75,-

In the case of H/L = inf or H/L = 2.0, there is a region of ¥, /7, < 2 in
which the function rg,, in accordance with Eq. (12.34), practically linearly
drops with y,,/¥2,. With further increase of the ratio y»,/75,, the function
gy changes the sign and reaches an asymptote, exhibiting no sensitivity
to the anisotropy when 7,,/7,,>10. Of course, the thicker the layer,
the higher the sensitivity to the ratio y,,/y5,. Minimal sensitivity to the
anisotropy is observed in the thin layer, H/L = 0.5, surrounded by the more
conductive shoulders, Fig. 12.7B.
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APPENDIX

ELECTROMAGNETIC RESPONSE OF
ECCENTRED MAGNETIC DIPOLE IN
CYLINDRICALLY LAYERED MEDIA

M. Nikitenko, G.B. Itskovich

A.1 INTRODUCTION

Electromagnetic induction logging with coaxially oriented coils is
the primary method for evaluating water and hydrocarbon saturation in res-
ervoirs. Standard array-induction tools have dramatically improved induc-
tion logging by increasing the depth of investigation up to several feet
while still maintaining high vertical resolutions down to 1 ft in smooth
wellbores [1,2].

In addition, newly developed multifrequency dielectric array tools per-
mit valuable information about formation petro-physical properties by
applying assumed mixing lows to derive water saturation, water salinity,
and hydrocarbon volume. Interpretation of induction and dielectric logs rely
on sophisticated processing techniques [3], which require a tool eccentricity
[4] and radial distribution of the near-borehole geo-electrical properties of
the media to be taken into account [5,6]. This requirement motivated us to
develop a fast modeling algorithm capable of simulating tool response in
cylindrically layered media excited by an eccentred magnetic dipole.

The corresponding code must be fast enough to serve the needs of the
on-site radial inversion and permit modeling in the presence of several
radial zones with piecewise changing conductivity and dielectric constant.
In general, for this type of boundary value problems with no symmetry,
either finite difference [7-9] or a finite element method [10,11] is
employed. In [4] the integral equation and finite difference methods were
combined to find amplitudes of the azimuthal Fourier harmonics of
the quasistationary field resulting from an off-axis source exciting the
2D axially symmetric media. In Nam et al.[12] the authors introduced
an algorithm to simulate triaxial induction measurements that combines

467
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a Fourier series expansion in nonorthogonal system of coordinates with a
2D goal-oriented finite element method. In Wang et al. [13] Fourier series
expansion was used to reduce the original 3D problem to a series of inde-
pendent 2D problems that were solved semianalytically using normalized
Bessel and Hankel functions. In addition, an analytical low-frequency for-
mulation based on the generalized reflection and transmission coefficient
matrices was used to simulate and study the effect of eccentricity on induc-
tion tool responses [14].

The potential of analytical approaches is not exhausted yet. In particular,
a semianalytical treatment, presented below, leads to the ultra-fast and accu-
rate simulation of electromagnetic responses in a wide frequency range,
thereby serving the needs of induction and dielectric logging.

A.2 SOLUTION TO THE BOUNDARY VALUE PROBLEM
A.2.1 Problem Definition

Let us consider a boundary value problem of an electromagnetic field excited
by a vertical magnetic dipole in cylindrically layered medium (Fig. A.1). The
dipole is located in the first cylindrical layer (borehole) and its current is a

wt

simple harmonic function of time I(t) = Iye™"

o 'n

Fig. A.1 The formation is modeled by an arbitrary number of cylindrical layers with pre-
scribed radii r;, conductivity o;, dielectric permittivity ¢, and magnetic permeability ;.
These layers may describe the borehole, mud cake, invasion zone, and the uninvaded
formation. The tool is comprised of the eccentric magnetic dipole M, and the eccentric
dipole receivers H, located in the borehole.
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A separation of variables method is used to solve the assigned problem
[15,16]. We present electric and magnetic fields in the first layer as a sum
of a normal and anomalous field:

Ezgl +E<)
oo (A1)
H=H,;+H,

The fields E , ?11 ,Eo, 1?10 as well as fields in the jth layer Ej, ﬁ, satisfy
Maxwell equations:

rot ﬁo =7 Eo

_ _ . (A.2)
rot Eg =iwp, Hy— j*
rot FI =Y; E
b (A.3)

rot Ej = iop; H;

Here y; = 0; — iwg; is the complex conductivity; 7” = (O, 0, ]’Z‘) is the
magnetic current; j# = —iop, - M. - U(P, Py), M. =1, - S- n, are the dipole
moment; Sis the coil square; n, is the number of turns; U(P, P) is the source
function; Py is the coordinates of the source (transmitter); and P is the coor-
dinates of the observation point (receiver).

At the boundaries, tangential components of the electric and magnetic
fields are continuous and satisfy the following conditions:

(B, =—Eoln)

(A.4)

[Hy],_, =0.j=2.N

where the subscript “f” refers to the ¢- or z-component of electromagnetic
field. Square brackets in Eq. (A.4) denote the jump in a quantity across the
boundary. Egs. (A.2)—(A.4) uniquely determine an electromagnetic field at
any point of the medium.
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A.2.2 Fourier Transform

— — — —
Let us find fields E;, Hj, assuming that normal fields Ey, Hy are known.
Forward and inverse Fourier transform are determined as:

A (r, ¢, 1) = J Alr, ¢, z)e ™ d=
o (A.5)

2

A(r, ¢, 2) L J A*(r, p, )™ da.

Then, by using Egs. (A.3)—(A.5) Fourier transforms of tangential
components can be expressed through Fourier transforms of vertical com-
ponents as:

gt (s fon
g pf dr r o d¢
& 1 (. dH ipdE
— owou.— — —
¢i v biar — dep
(A.6)
o :i _Mdej_ﬁdEzj
v pf dr  r d¢
(0
I Uy
{ P drr d¢
pj2 =12+ Ief, k? = —iwp;y;. Fourier transforms of vertical components of
electric and magnetic fields follow equations:
1d ( dE} 1 dzE;. )
—r +5—— —pEL=0
rdr\ dr 2 d¢ A
(A.7)

— —p H =0
rdr ! dr 2 dg? Pits

* 2 1 *
1d<dej>+1dej ,
By applying Fourier transform (A.5) to the boundary conditions (A.4),
we receive the following conditions for tangential components at the first
boundary r =1;:
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Eij} —_ =—E

Hj} =—HY,

L r=n

L (i dHy; _iddE Y iou dHY, iddEL)\  (A.8)
2\ T g 2\ fom == =T,

- r=n

1 dE* iAdH; 1 dEY, iddHE,
pj2 Tdr o de o "y T d¢
L r=n

At the boundaries r=1r;, j=2,N we have

| =0
o™ IEN (A.9)
»; Tdr rdgp )|
1/ dEY  ipdH
2\ T ag =0
L ; r o dg -

A.2.3 Expansion in Series

Let us expand EZ, E* and E7,, EZ into a series:

/ [s9)
* ¢ oy s _
E;= E (enj cos ng + ¢, sin nqb)
n=0
[s9)

H;‘J = Z (hfy cos ngp + h sin nqﬁ)
n=0
00 B B (A.10)
B, = Z (eflo cos ng + e, sin n¢)
n=0
- — —
Hy = Z (g cos np + I sin ngp)

\ n=0

Here ¢ =¢ — ¢, is the difference between receiver and transmitter

angular coordinates (Fig. A.2).
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Fig. A.2 The polar coordinate system.

Substituting Eq. (A.10) into Egs. (A.7)—(A.9), we obtain Egs. (A.11)—
(A.13) determining unknown functions ¢;;, hy:

de£5 nz 2 C,s
rdr dr B r_2+pj ¢ =0

(A.11)
1d dhfy‘ n’ 2 i o
rdr\_ dr 2 P )T =
( s s
enj] - = "o
] =
r=n
1 dhy i, 1 dhiy, _idn (A.12)
_E <’0)ﬂj ar :FT%' r:rl— p_% ip—— i +— enO
1 def{js iAn 1 des iAn
_ . S, € — _ n )
_pjg <}/j dr + P nj)]r_rl %<71 dr + v n0>
e;j} =0
hﬂ =0
=,
1 iy idn
_z<iwﬂj J:Fge:j()] =0 (A.13)
;i dr ro .
1 [ dey idn . 0 5N
pf i dr ro B -0 J=
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A.2.4 Solution for Angular Harmonics

Solution to Eq. (A.11) is a linear combination of modified Bessel
functions[17]:

(A.14)

& = G Tu(pr) + P Kapir)
K’ =D, (pir) + Q'K (pr), Rep; >0

Applying boundary conditions E% HL| _,—0 and

—0
Ey .y Hiy o — 0, we find PiS—QZS:CNH—DZ\H—O The

remaining unknown coeflicients G, Dy j=1,N and

P, Q' j=2,N+1 can be determined through boundary conditions

(A.12), (A.13). For this purpose it is necessary to define harmonics of the

C,S

normal fields ¢, hip.

A.2.5 Determination of the Normal Field

To simplify derivation of harmonics of the normal field, the Cartesian
coordinate system is used. The point source function U(P, Py) (Eq. A.2) is
presented as U(P, Py) =8(x—x0) 8(y—yo) 8(z—=20), Po=(x0,Yy0, 20)s
P=(x,y, z). The Fourier transform with respect to all coordinates (x,y, 2)
is determined as:

¢ 0 00 ©0
f n,A J J JA X, 2 —iEx oy = "dedydz
T °°;°° (A.15)
Alx, y,2) = JA* E 17, A)e= e e dgdnd)

Applying transformation Eq. (A.15) to Eq. (A.2) and using properties
of Fourier transform and delta-function [18,19], we derive simple algebraic
expression determining the normal field:

e i€xo e~ Mo e*MZU
2 2 2
&+ +py

while the z-component of the electrical normal field is equal to zero:

+_
HZO__

- M. (A.16)

+
EzO:O
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Applying inverse Fourier transform with respect to coordinates (x, y)
we obtain Fourler transformants of magnetic field with respect to the
coordinate z:

67 MZ(\

H:o:_ o

R\/xxo +(y—y)?

In cylindrical coordinate system (Fig. A.2)

x=rcos@, y=rsing, xo=rcosd,, yo=rysing,,

R= \/,2 + 1y2 — 211y cos b

Applying an addition theorem for Bessel functions [20]:

K()(}?] R) = Io(p1 VO)KO(p] 1’) + ZZ In(p1 Vo)K”(p] i’) cos ﬂa, n<r (A.18)

n=1

we derive the following expressions for the Fourier harmonics of the
normal fields:

—idzq

e
o=~ n 'I'P%'Mz'fn(Pﬂo)Kn(pﬂ)
i, =0 (A.19)
¢0=0

where

A.2.6 Final Representation of the Magnetic Field

After taking into account Eq. (A.19), we determine C,;= D,;=0,j=1N
and Pflj = Q;U

Eq. (A.14) and rewrite Eqs. (A.12), (A.13) in the matrix form:

=0, j=2,N+1. To find nonzero coeflicients we use

WA [3, 4)(n)ws + W1, 2(n) TT= Wa(n) v
Wi(n)wj= W1 (w1, j=2, N—1 (A.20)

Wa(m)wn = Wx+1[1, 2 (e )W+ 1
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The matrix Wj(r) is defined as:

K, (pjr) ? ) L(pr) (0 )

N 0 K, (pjr 0 L (pjr A1
W= o Kio) B K or) —a L) B4 | A2
Ki(pr) @ Kilpr) o L(pr) - a Lpy)

) _“‘)_”J :Q
“ Pf = p 7 p

The following notations for the matrixes 1%/ and vectors y and IT are

introduced:
W1[3,4]: 3rd and 4th columns of I¥;;

W4[1,2]: 1st and 2nd columns of W; and
W +1[1,2]: 1st and 2nd columns of W+ 1.

~ va
— Ql{’ll — Crfll — pri]\“*— 1
l//_]: 5> ’j:27N’ 1/11: 5 l//]\"'*'l: )
C”,/ D;l fLZV +1
D, (A.22)
[ 0
Aol
Mz%In(pl V())

— .
In the expression for the right part IT the factor =% is intentionally

omitted and is taken into account later in the inverse Fourier transform

0
_ . . - HQ .
.5). After introducing vector X= , Eq. (A.20) can be rewritten as:
(A5). After introducing vector X= | ' |, Eq. (A.20) can’b t
nl
Dy,
Wi(n) X=Wa(n) y>
Wi(n)yi=Wis1 (w1, j=2,N—1 (A.23)
W]\( )V/N*WN-H[ 2] ()W
From Eq. (A.23) we obtain
X= 1y
AR ) L (A.24)
V= W (V1)W2(I”1)W2 (72)W3(}'2)"'WN (7’N)WN+1[1, 2](1’N)



476 Wafer and Waffle Processing and Manufacturing

. . . . T
Using equation for the Wronskian, the inverse matrix I, (r) is

expressed explicitly:

_ ‘ 1 -
I (pjr) %ln (pjr) 0 —gln (pjr)
j j
. 1
—%In (p,vr) I,’l (p,vr) —Eln (pjr) 0
W =pr| '
! ! —K’( ) _ﬂK . 0 lK ,
) 1) L)
j j
Tkipr) K K 0
LB ! P

(A.25)

From Egs. (A.24), (A.21), (A.25) all the unknown coefficients D;,; are
determined and Egs. (A.10), (A.14) permit the Fourier transform of the
magnetic field in the 1st layer (borehole):

[oe]
H! = ZDf“In(m r) cos ng (A.26)
n=0

Finally, we apply the inverse Fourier transform (A.5) to Egs. (A.26),
(A.17) to derive the total H. and normal field H.,, correspondingly:

M. - —
H.=H,+— J <ZD[MI,,(p1 ¥) cos n¢> cos A(z— zp)dA
r n=0
0

2

M.e kR _ R - _
¢ 1+I€1R*?<3+3k1R+(k1R)2)1|, R2:R2+(2*Z())2, Rek,>0

HZ() =— —3
2w R

(A.27)

Here we used the evenness of the integrand to reduce an integration pass
from (—o0, +o0) to (0, +o0):

J F(A) - A0 gp =2 J F(A)cosA(z— z0)dA
—0o 0



Electromagnetic Response of Eccentred Magnetic Dipole 477

A.3 NUMERICAL IMPLEMENTATION
A.3.1 Normalization

To prevent the exponential growth of modified Bessel functions I,(z),
K, (z) and thereby improve numerical stability at large arguments, we use
the following normalization:

I(2)=1,(2)-¢
(2)=1L(2) B (A28)
K,(2)=K,(z)-¢~
Matrixes from Eq. (A.24) are presented in the normalized form:
i 0 0 0
o1 0 e 0 0 21
Wj (1) =l o 0 e o0 W] (r,), j=1,N
0 O 0 e_pj’,’f
e Pili-1 0 0 0
. = 0 et 0 0
Wii1) =Wil)- 0 o ams o | /=ENTI
0 0 0 el
(A.29)

B - —
Matrixes IW;, W, contain normalized functions I,(z), K,(z) instead

of I,(z), K,(2). Then, for the product W]-(rj,l) . I/T/'Tl ((/’) and matrix 15j

we get

: s —1 = D (ri—r._
W/(Vrl)'Wj (71): 1(’1*1)'D/'Wi (fi)'epj(] i-1)
10 0 0
A 01 0 0
= 00 e—Zp](r,—r/_1) 0 , ] = Z,N
00 0 e—ij(y/._r,,] )
Denoting:
e/ 0 0 0 e 2PNH1IN 0 00
A 0 eln 0 0 ~ 0 2NN () ()
D=1 o ¢ o | Pvai= 0 0 10
0 0 0 e hn 0 0 01
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we rewrite Eq. (A.24) as

X=T- UN +1 (A.30)
where
= A1 =
X=D,' X
-~ ~ —1 - P | S ~ ~ —1 S ~
V=W, (n) Waln) D W, (r2)- Wi(r2) - D3 Wy (rv) - Wn+1(rn) - Dn+1
l/:/N+1 — o2(n=n) N (v —=rn-1) b 1IN YN

(A.31)

— —

Similarly, presenting vector Ya+1 as Yn+1 = B 1} , we derive the
2
following system of linear equations:
0 =Vup+Viy
A =Vap+Vay
- - (A.32)
M CL = Vi T Vay

Dy =Vayr + Vipys

where

2
A=¢ PN HnZ — _M:&Tn(pl 1’())67‘”] (r1—ro)
/4
From the 1st and 2nd equations of the system (A.23) we find yy, ya:

Vs
VitV —Vi2Va

Vi
YQ:A_ — —
Vi1tV — ViV

yi=-4

and the coefficient D{; is determined from the 4th equation as

Vii—VauV
D =" A= Vel 172 Now, in Eq. (A.27) the factor DjI,(p )
VitVar = ViaVar|

is of the form:

. V42V11 —VaVia- e
D L(pir) = A I,(pir)e () (A.33)
VinVa—ViVa
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Derived presentations for the matrix 17, factor D, I,,(p17), and coefficient A
are very convenient because they do not contain exponentially growing factors,
which represent a significant obstacle for the numerical implementation.

A.3.2 Convergence of Series

Convergence is reached when each of the following terms in the expansion
changes the sum by less than some predefined small number. The number of
terms varies from 1, when eccentricity is equal to zero, to a large number,
when the eccentricity approaches the borehole radius. When the transmitter
and receiver radii approach the borehole radius, convergence of the series is
very slow. In that case it is advisable to transpose integration and summation.

A.3.3 Integration

To ensure fast decay of the integrand, it is necessary to transform oscillating
factor cosA(z—zg) into a decaying factor. This can be accomplished
by integration in the plane of complex numbers A [16]. Integrand D, L,(p17)
depends on the radicals P (p/2 =1+ kf, Iel2 = —iwpy; =
—iwp;o; — w2/;]vgf, Rep; >0, Rek; > 0), which have branch points p; =0 in
the complex plane of 4. The branch points 4; = (ﬂxj, ﬂyj) are determined by

the following relationships:

2 2
w’pe; + \/(aﬂyjej) + <a),ujaj)
=Ry = —lmly = -
(A.34)
2 2
—wuE (“’2%“‘3./) + (wﬁ‘_i‘?/)

The cut, which separates Riemann surface sheets, is a part of the hyper-
bola in the complex plane 4 with the origin in the branch point:

{ 204y = wp;o;

A.35
Ay < //151. + o (A-33)

The larger dielectric permittivity €, the closer branch point to the real axis
of integration A,. For illustration purpose, the branch points and cuts are
shown in Fig. A.3.
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\g)
i g
- /g} )+a A
PO

Integration pass

Fig. A.3 Plane of complex numbers 1. Branch points 4; cuts on a Riemann surface for
two branch points, and the integration path.

The appropriate path of integration in the complex plane A avoids an
intersection with the cuts. Because the integrand in the vicinity of the
branch points is irregular, it also must avoid approaching the branch points
closely. Having that in mind, we set the following integration path.

The first part is parabola from the point A= (0, 0) to the point
Ao= (ﬂxo, /1),0), having zero derivative at Ag. The path then falls into
the two rays along the angles o with respect to the axis 4, (Fig. A.3).
The coordinate 4,9 = dj is set to be a fixed small number, while 4, is deter-
mined by the minimal distance from the branch points to the upper ray.
Let d; be the distances from the branch points to the upper ray, 4/ is the
projections of the branch points to the ray, and d,, is the minimal distance
for which the corresponding projection A7 is higher than A

d,, = min {d]]/l;j > /1),0}. Then A, is chosen such that d,, = dy,,, where

doy 18 fixed small number. The constructed integration path neither
intersects the cuts nor closely approaches the branch points.
Let us present the integral in Eq. (A.27) as a sum:

1= ‘[F(ﬂ) COSl(Z—Z())dﬂ:h +12 +I3 (A36)
0
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For the terms earlier we have

Ao
L= JF(&) cos A(z— z0)dA
0
T R 2 (7
= | FlA+ido|1—-— 1—idyy—(——1 Mz —z0)dA
J i y()( (ﬂxo 1> )]( i yoﬂxo </1x0 >>cos (z—20)

0

(A.37)
oo+ 4 ) .
L+L= [ F(2) A TR
) 2
oo + Ay
L= % F(2)é* =204z (A.38)
i
oo+ Ay
L 7% F(A)e~Me=0)g)

Integration in b is performed along the upper ray, while in I3 it is
performed along the lower ray. In that case the oscillating factor

cos A(z — zy) becomes decaying one ¢te(3=2a).
1+i-¢ i - = 7 —
L= 712 Y holz=20) J F[A+i(tga(A—Aw0) +4y0)] (e=z0) ~tea(i=4) da,
Axli
(s
1=t _ o) ealn)
B= L) [ E i iga(i— o)+ ) T )
Axo

(A.39)

Eqgs. (A.36), (A.37), (A.39) determine advanced integration in the com-
plex plane A with a rapidly decaying integrand. In the case of low frequencies
when 6> we, the branch points are close to the ray A, = A, and positioned
far from the real axis A,. In that case the integration in I; (Eq. A.37) may be
simplified and performed along the real axis 4,:
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j'ﬂ
L= J F(A)cos A(z — zp)dA (A.40)

0

where 4 is a prescribed small real number or zero. Correspondingly, the
integrals L, I; (Eq. A.39) are transformed into

0 o0

1 o 1+i-t — — T 7 —
b :5 JF(l)ed(‘_"‘)dﬂ :nga JF[;L +i. tga(ﬂ _10)] eti(ﬁ—m)e*ma(/lfl«.)dll
Ao Ao
1 T a0 1—i-¢ T - Tl gl —
=3 JF(/I)e”M‘*Z‘Jdﬂ - 712 e JF F—i-tga(A—A)]e A0 ali-) g
Ao Ao

(A.41)

A.3.4 Code Performance

Based on the described algorithm a computer 1.5D code for numerical cal-
culations was developed. The program permits arbitrary number of layers
with prescribed conductivity and dielectric constant in each layer. The per-
formance strongly depends on the value of eccentricity and the number of
cylindrical layers in the model—the greater the eccentricity and the number
of layers the more processing time is required. For the majority of practical
cases with several boundaries and dipole in the middle of the borehole, the
processing time on a 3.2-GHz processor is less than 0.1 ¢, providing results
with an error less than 0.01%. This kind of performance is essential while
solving an inversion problem, where a large number of repetitive modeling
calls are required before matching synthetic and measured data.

We verified our code versus 2.5D finite element (FE) code developed
by [10] and Commercial CST FE 3D code. A comparison example is shown
in Fig. A.4, where the green line corresponds to the 2.5D, the blue line
to the CST, and the red line to our code. For the calculations we used
Model 3 (Table A.1) and selected the following arrangements:
transmitter-receivers spacings 0.2 and 0.14 m, frequency 100 MHz. The
mismatch between 1.5D and 2.5D codes is less than 2%, while our code
is, at least, 1000 times faster. Commercial CSTFE 3D code requires about
10 min per frequency, and the mismatch with 1.5D grows up to 4% at the
extreme eccentricity value.
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Fig. A.4 Comparison between 1.5D, 2.5D, and CST codes.

Table A.1 Parameters of the Models

Model Mud Formation Borehole Radius
1 p1=0.02 ohm m p>=10 ohm m r=0.108 m
€7 =50 £ =40
2 p1=2ohmm
=70
3 p1=200 ohm m
=10

A.4 EFFECT OF ECCENTRICITY

In this section we present numerical results showing the usefulness of
the algorithm for studying the influence of eccentricity on the induction
responses. Eccentricity is defined as a displacement of the tool from the bore-
hole axis, and it 1s equal to the transmitter/receiver radius r =ry. While
induction well logging operates in the frequency range from tens of KHz
to tens of MHz, the frequency of the dielectric logging varies between tens
and hundreds of MHz.

Following we show how the eccentricity and the dielectric permittivity
affect the responses at different frequencies and conductivities of the
borehole mud.

Three benchmarks of the borehole are considered:

1. high-conductivity mud (salty or biopolymer);

2. medium-conductivity mud (fresh); and

3. low-conductivity mud (oil-based).

The selected parameters of the models are presented in Table A.1: resistiv-

ities p;=—, relative dielectric permittivities €', and borehole radius r;.
G.
j
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Relative dielectric permittivity is determined by the relationship: &; = eyée,
-9

where gy = 3TF/ m is the permittivity of free space. Magnetic permeabil-
b2

ity is equal to the permeability of free space: y; = py = 47107 H/m.

Following we present the dependence of the signals on the eccentricity
to determine cases when it significantly affects the measurements and cannot
be ignored in the processing. Variation of the signals is presented in the nor-
malized form as a ratio between signals of the eccentred and noneccentred
probes.

A.4.1 Low-Frequency Induction Logging

The measured signal is the imaginary part of magnetic field in a three-coil
array:

3
S=Im <HZ(L2) — <%> H.(L )) , where L = z — z, L, is the distance
2

between transmitter and short-spaced coil (bucking coil) and L, is the dis-
tance between transmitter and long-spaced coil (main coil); L, = 0.25, 0.5,
and 1 m, L; =0.8 Ly, frequencies 10 and 200 kHz. At these frequencies,
even for the case of low-conductive mud (Model 3) 6> we, the influence
of the dielectric permittivity is small and the field is mainly defined by the
conductivity of the media. For example, for p; =200 ohm m, 87 =10, and at
200 kHz, the estimate for we=0.0001 S/m (6 =0.005 S/m) and the condi-
tion 6> we is held.

The eccentricity must be taken into account when mud is highly con-
ductive (Fig. A.5) or when subarrays are short (Figs. A.6 and A.7). In those
cases the eccentricity should become a subject of inversion.

When the influence of the eccentricity is relatively small (10% and less),
well-known correction algorithms can be used. For example, a specific
combination of responses at two [21] or more [22] different frequencies is
less sensitive to the near-borehole zone and, in particularly, to the eccentric-
ity of the probe.

This 15 shown in A.8, where dual-frequency responses

AS=S(w) —ﬂS(a)g) for the Model 1 and different arrangements are
(O]

presented. The combination diminishes the influence of the eccentricity.
In Table A.2 we present the signal dynamic range, corresponding to the

single-frequency (third column) and dual-frequency responses (fourth col-

umn). The dynamic range is defined as a ratio of the signals at 0.09 m and
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Fig. A.5 Conductive mud, Model 1. Relative variation of the low-frequency induction

signals with eccentricity at 10 and 200 kHz.
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Fig. A.6 Moderately conductive mud, Model 2. Relative variation of the low-frequency
induction signals with eccentricity at 10 and 200 kHz.
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Fig. A.7 Resistive mud, Model 3. Relative variation of the low-frequency induction sig-
nals with eccentricity at 10 and 200 kHz.
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Fig. A.8 Conductive mud, Model 1. Eccentricity correction by the dual-frequency com-
bination at 10 and 15 kHz and at 150 and 200 kHz.

Table A.2 Dynamic Range of Single-frequency and Dual-frequency Signals
Frequencies Spacing  Single-Frequency Dual-Frequency Range

(kHz) (m) Range Range Decrease
10 0.25 22 5.2 4.2
15 0.5 2.3 1.1 2.1
1.0 1.6 1.1 1.5
150 0.25 - - -
200 0.5 3.2 1.8 1.8
1.0 2.2 1.6 1.4

0 value of eccentricity. In the last column the ratio between the third and
fourth columns demonstrates the benefit of the dual frequency.

Dual frequency effectively reduces sensitivity to the eccentricity in all
cases, except the case of a large eccentricity when the signal rapidly changes
due to zero crossing (combination of 150 and 200 kHz, 0.25-m spacing).

A.4.2 High-Frequency Induction Logging

In high-frequency induction logging, the measured values are phase differ-
ence A¢ and attenuation dA in three-coil array:

ImS 180°
A= arct —
P=arRy s x
dA = —201g|S|
H.(L HY (L ,
where S= (L) 2 2), and Hg”(kl = —iw /1080) is the magnetic

H.(Ly)/ H¥ (L)
field in the air used for the calibration. It is calculated using expression
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for the normal field H., (Eq. A.27). At the low-frequency limit the calibra-
air 3
tion factor is defined only by the spacings L, and Ly: L(LZ) = <E> . We
Har(Ly) L,
use the following arrangements: L, =0.5, 1, and 2 m; Ly = 0.8 L,; frequen-
cies 1 and 15 MHz. At the frequency of 15 MHz the parameter of formation
we=0.03 S/m is comparable with 6=0.1 S/m and the permittivity has to
be taken into account. For the low-conductive mud (Model 3) when
0=0.005S/m and the parameter we=0.0075 S/m, the influence of the
dielectric term is even more pronounced. This is especially true for shallow
subarrays, which are severally affected by the conductivity of the mud. At
the frequency of 1 MHz the influence of permittivity is negligible.

The eftect of the eccentricity on the high-frequency logging responses is
demonstrated in Figs. A.9-A.11. The long 2 m subarray is practically
unsusceptible to the eccentricity. It is interesting to see how a very conduc-
tive mud hugely attenuates the signal at the frequency of 15 MHz (Fig. A.9,
subplots on the right), making the response insensitive to all other parame-
ters including standoft. At the same time the eccentricity has to be taken into
account in the processing of the short- and medium-spacing responses
(<1 m) at relatively low frequencies (Fig. A.9, subplots on the left). When
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Fig. A.9 Conductive mud, Model 1. Relative variation of the high-frequency phase dif-
ference (upper part) and attenuation (lower part) with eccentricity at 1 and 15 MHz.
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Fig. A.11 Resistive mud, Model 3. Relative variation of the high-frequency phase differ-
ence (upper part) and attenuation (lower part) with eccentricity at 1 and 15 MHz.

the mud is medium or low conductive, the eccentricity can be neglected
regardless of the spacing (Figs. A.10 and A.11). This conclusion is in agree-
ment with observation made by [23] about the negligible effect of the eccen-
tricity in the analyzed range of resistivity contrasts. They also pointed out
that the effect increases dramatically when the contrast between mud and
formation approaches values of 10,000 and above.

A.5 CONCLUSIONS

We believe that the potential of analytical approaches is not yet
exhausted; in this study a semianalytical approach enabled us to develop very
fast code for simulation of electromagnetic responses of eccentred dipole
located in cylindrically layered media. The code permits calculations in a
wide range of frequencies, serving the needs of induction and dielectric log-
ging. For effective implementation of the algorithm we stress the importance
of a proper normalization of the integrands and the means increasing con-
vergence of the infinite series. Also, when performing integration in the
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complex plane, cautions are needed in order to avoid intersection with the
cuts located on Riemann surface.

Validation of our 1.5D code against two finite element codes, applicable
for more complex formation structures, showed superior performance of the
code in a simple cylindrically layered media.

In most cases of the low-frequency induction measurements, the influ-
ence eccentricity either can be neglected or corrected. In case of high-
frequency logging the eccentricity is the most pronounced when a short
probe is placed in a salty mud.
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electromotive force, 181
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Bessel functions, 254256, 258, 289-295
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boundary value problem, 254
in internal integral, 265-266
known expressions for, 400
properties of, 409
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charge conservation principle, 62—63
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integral equations, 233
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apparent resistivity curves on, 334f
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276f

Cauchy’s formula, 267-274
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magnetic field, 266-284, 325-333

probe displacement, 284-288, 286—288f
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Born approximation, 246247
Boundary value problem, 136
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Bessel functions, 254
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deep-reading measurements while

drilling, 347-354
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final representation of magnetic field,
474-476
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Fourier transform, 470-471
Helmbholtz’s equation, 252-254
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Maxwell’s equations, 251252
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problem definition, 468—469
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vertical magnetic dipole, 250, 251f
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Cauchy formula, 267

Charge conservation principle, 46—48
displacement currents, 61-63
quasi-stationary electromagnetic field, 48
stationary field, 48

Charge density, 53-54

Code performance, 482

Conductivity distribution, 179-180, 180f
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conservation

Convergence, 479
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Maxwell’s equations, 48, 67—69
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D
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Dipole moment, 141
magnitude of, 109
time-variable, 106f
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Doll’s range, 281
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apparent conductivity curves, 301-305,
3051
profiling curves, 306
quadrature component, 299
Duhamel’s integral, 153-156

E
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borehole, 483
conductive mud, 485-487f
effect of, 483—489
high-frequency induction logging,
486489
low-frequency induction logging,
484-486
moderately conductive mud, 485f, 488f
resistive mud, 485f, 489f
single-frequency and dual-frequency
signals, 486t
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charge density 8y, behavior of, 53-54
nonuniform medium, 50-52
quasi-stationary field, 52-53
slowly varying field, 57-58
surface distribution, 54-56
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2—4
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on plane wave (see Plane wave)
surface integral equation for
Born approximation, 246-247
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238244
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244-246
transient responses of, 158—159, 159f
Electromagnetic field, 25
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expressions for, 109, 149-153
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propagation, 63
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scalar potentials, 76
sources, 67—68, 67t
theory of, 72
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452—-459
Electromagnetic induction, 41, 43—44, 63
Electromagnetic potentials, 7578
Electromagnetic wave, propagation, 69,
96-97, 148
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Elementary ring, 174-175, 175-176f
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Euler’s formula, 78-79

F
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Fourier’s transform, 81
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Frequency asymptotics, 166—168
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349-350
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Gauss—Newton method, 376-377
Gauss’s theorem, 17-18, 46—47, 61-62
Geometrical factors
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of elementary layer, 182—184, 185f
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Levenberg-Marquardt method, 377-378
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380-383
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table-based inversion, 368-370
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H
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Helmbholtz equation, 238, 289-291
one-dimensional, 135
solution, 141-145
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High-frequency induction logging,
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Induction current in conducting ring
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expressions, 114-115
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117-122
step-function excitation, 125-128
step-function varying primary magnetic
field, 115117
strong interaction, 127, 128f
transient responses, 113-115
weak interaction, 126, 127f
Induction logging
apparent conductivity corrections
borehole, 225-226
skin effect, 222-225, 223-224f
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application, 205206
evolution, 221-222
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two-coil probe
apparent conductivity, 181-182
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174-178, 175-176f
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vertical responses of, 182—-194
In-phase components, 165, 167-168, 168f,
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Biot—Savart law, 122
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Helmbholtz’s equation, 145
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induction current in conducting ring,
118, 119f, 120-121
magnetic field, 260-265
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Integral equations
for electric field
Born approximation, 246247
cylindrically layered formation,
238244
horizontally layered formation,
244-246
hybrid method, 227228
linear approximation, 235-238
for magnetic field
borehole and layer of finite
thickness, 233
cylindrical boundaries, 231-233, 232f
horizontal bed with invasion, 233235
Integration, 479—482
Integration contour, 268
Invasion zone, 233-234

J
Jacobian matrix, 376-377
Joule’s law, 81-83

K
Kirchhoft law, 122—-123

L
Laplace’s equation, 1618, 33
Leontovich boundary condition, 352-353
Levenberg—Marquardt method, 377-378
Linear approximation

electric field, 235-236

Faradey’s law, 235236

Fredholm integral equation, 236237

Ohm’s law, 236
Logging-while-drilling (LWD)

measurements, 344

Lorentz force, 9-10

on moving circuit, 9-13
Low-frequency induction logging, 484—486

M
Magnetic dipole
in anisotropic formation of finite
thickness, 459—465
in anisotropic medium, 452—459
asymptotic expression, 396-397,
415416, 424, 431432
Bessel functions, 400
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borehole and formation, 421-422
contour integration, 408f
electromagnetic field in uniform isotropic
medium, 385-388

in far zone, 406—417
frequency responses of amplitude, 423f
geometric factors, 398
horizontal boundaries, 290f
horizontal magnetic dipole

amplitude, 389f

apparent conductivity curves, 437, 437f

borehole axis, 389f
boundary value problem, 388-395
conductive thin layer, 440
formation with two horizontal
interfaces, 432—441
frequency responses of amplitude/
phase, 438, 439f
frequency responses of field amplitude,
395f
phase of secondary field, 389f
phase responses of field, 396f
probe between the coils, 443
probe on both sides of interface, 442
probe on outside the formation,
441-442
probe within the layer, 443
resistive thin layer, 441
two-coil induction probe, profiling
with, 441-444, 442f
in-phase and quadrature components,
387, 388f
integral exponential function, 414
magnetic field, 27-30
in medium with one horizontal interface,
426432
in medium with thin layer, 290f
in medium with thin resistive cylindrical
layer, 421-426
in medium with two cylindrical
interfaces, 417—420
nonconducting medium, 106f, 108-109
normalized attenuations for three-coil
probe, 418f, 420
phase differences for three-coil probe,
418f, 420
in range of small parameter, 396—406
with sinusoidal current, 163—164

Summertield integral, 398-399
transient field in medium with cylindrical
interfaces
apparent resistivity curves, 333-337
borehole axis, early and late stage,
325-333
Fourier integral and calculation,
321-324
harmonic amplitudes, 322
transient field in uniform medium,
312-321
Biot—Savart’s law, 318
electromotive force, 321t
expressions for field, 313-314
Faraday’s law, 314
features, 314-321
field components, 317f
graphs of function, 318
in-phase component, 318
transmitter-receiver moment, 321
transient field in vertical magnetic dipole
Fourier integral, 341
layer thickness, 340-343
medium with one horizontal
boundary, 337-340
transversal dipole moment, 385-386
transversal induction probe, 386f
two-coil induction probe, 297
apparent conductivity curves,
301-305, 305f
conductive bed, 306
dependence of field on parameter
p=L/8, 297-301
in-phase and quadrature component,
298f
profiling curves for, 306-310, 307f
thick resistive bed, 308, 309f
thin conductive bed, 308, 309/
thin resistive bed, 308, 310f
in uniform medium, 141-153, 163172,
452—-459
vertical component
in the bed, 294
Bessel functions, 289-295
Helmbholtz equation, 291
magnetic field, 289-295
outside the bed, 292
thin conducting plane, 295-297
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Magnetic field, 228-229
Biot—Savart law, 5-9
on borehole axis, 266—284
change with time, 42—43
circulation, 20
complex amplitude, 144
current-carrying objects, 21-37
current filament, 22-23, 22f
due to current in cylindrical conductor,
30-32, 31f
features of, 171
induced measurements, 128—131
of infinitely long solenoid, 32-35, 32f
in-phase components, 168f
intensity, 25
in linear magnetic moment, 156f
magnetic dipole, 27-30
quadrature component of, 168f, 194
second source, 59-61
in small induction number, 257-266
surface current, 7f
system of equations, 18-21, 37
tangential component, 61
toroid, 32-33, 35-37
vector potential, 13-16, 24-27
Magnetic flux, 41-42, 105, 112, 116-117
Magnetic moment of loop, 25
Maxwell’s equation, 19-21, 67-70, 135
electromagnetic potentials, 75—78
fields E and B, 73-75
inductive electric field, 108
in integral form, 43
magnetic field, 151-152
in piecewise uniform medium, 72-73
plane wave, 95, 101
second form, 70-72, 102
sinusoidal fields, 78—-81
stationary electric field, 2
third of, 4
Maxwell’s equations, piecewise uniform
medium, 72-73
Multicoil induction probes, 204-206
application, 205-206
evolution, 221-222
geometric factor of, 206—-207
nonsymmetrical, 207
6FF40 probe, 215-221, 215f, 218f
symmetrical, 207, 207f
three coil, 208-215, 210f, 212f

N

Neumann series, 246
Nonconducting medium
field in, 153-156
magnetic dipole, 106f, 108-109
quasistationary field in, 104-110
Nonuniform medium, electric charges,
50-52
Normalization, 477—-479
Numerical implementation
code performance, 482
convergence of series, 479
integration, 479—482
normalization, 477—479

o
Ohm’s law, 2, 49, 86, 175
induction current in conducting ring,
111-112, 121
Ordinary differential equation, 113

P
Phase difference, 275-277, 276f

displacement effects, 287—288, 288f
Plane wave, 94

as function of time and distance, 136—138

models, 97-104, 98f

phase of, 100

propagation, 95-97

sinusoidal (see Sinusoidal waves)

in uniform medium, 91-104

velocity of propagation, 93-94, 94f
Poisson’s equation

vector potential, 17-18, 33
Poynting vector, 83—-85, 85f

directional energy flux density, 96
Primary magnetic field, 110, 112

sinusoidal, 117-122

step-function varying, 115-117

varies with time, 113
Probe position, 185, 186-187f, 187, 190
Propagation of plane wave, 93-97, 94f

Q

Quadrature components, 165, 167-168,
168f, 171-172, 228-230
amplitude of, 165-166
Biot—Savart law, 122
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of field approach zero, 167
Helmholtz’s equation, 145
horizontal bed with invasion, 233234
induction current in conducting ring,
118, 119f, 120-121
magnetic field, 258-259
vertical magnetic dipole, 297, 298f, 299,
301
Quasistationary approximation, 45—46, 105,
107, 109, 111, 130, 160
Quasistationary fields, 3—4, 137-138,
164-165
amplitudes, 163164
electric charges, 52-53
magnetic dipole, 106f, 108-109
in nonconducting medium, 104-110
slowly varying, 57-58
in uniform medium, 163-172

R
Radius of convergence, 120
Ramp time, 114-116
Reesistivity
horizontal resistivity, 447
low-resistivity pay zones, 447
Ring inductance, 112
Runge—Kutta method, 125-126

S
Self-inductance, 112-113
Sinusoidal fields, Maxwell’s equations,
78-81
Sinusoidal primary magnetic field, 117-122
Sinusoidal waves, 103, 165
as function of time and distance, 136—138,
137f
high frequency limit, 138-141
low frequency limit, 138—141, 141f
in uniform medium, 133-141
6FF40 focusing probe, 215-221,
218-220f
apparent conductivity, 218, 219f
borehole geometrical factor, 218, 218f
configuration, 215-216, 215f
dual induction probe, 221, 221f
electromotive force, 216
elementary layer for, 219, 220f
parameters, 216, 216¢
profiling curves, 219-221, 220f

Skin effect, 228, 281

corrections, 222225, 223-224f
Solenoids

inductive electric field of, 105-107

magnetic field, 32-35, 32f

vortex field of, 106f
Sommerfeld integral, 292
Step-functions

arbitrary and, 154f

excitation, 125—-128, 160

Heaviside step-function, 153—154

spectrum of, 149

of time, 149

varying primary magnetic field, 115-117
Stoke’s theorem, 20, 43, 60—61
Superposition of waves, 147—-148
Superposition principle, 5, 7, 22

T
Taylor’s expansion, 258
Three-coil probe, 203-204, 203f, 208
amplitude ratio, 277, 277f
approximate vs. exact solution, 275-276,
276f
attenuation, 275277, 276f, 278f
borehole geometrical factor for, 210-211,
210f
displacement effect, 286287, 286f
elementary layer for, 212-213, 212f
normalized apparent conductivity,
211-212, 211f
phase difference, 275-277, 276-278f
wave path, 272, 273f
Toroid, magnetic field, 32-33, 35-37
Transient field
in conducting medium, 157-160, 159f
deep-reading measurements while drilling
boundary condition, 352-353
boundary value problem, 347-354
finite conductivity of cylinder,
352-356
formation/pipe signals ratio using
magnetic shielding, improving,
364-365
high-frequency and early transient
stage asymptote, 355-356
homogeneous formations, 359-360,
360f
modified Bessel functions, 346
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Transient field (Continued )
pipe conductivity, increasing, 359-361
pipe signal reduction using finite size
copper shield and bucking, 361-364
spacing effect on pipe signal,
356-359
two-coil probe, 358f
uniform conducting medium, 344-347
inversion in task of geo-steering
elements of, 367-368
Gauss—Newton method, 376-377
inverse problem solution, 370-375
iterative and table-based inversion
algorithms, 379-380
Levenberg—Marquardt method,
377-378
multiparametric inversion, 375-380
parameter uncertainties, estimation,
380-383
statistical inversion for case of vertical
well, 371-373
table-based inversion, 368-370
well-and ill-posed problems, 366367
magnetic dipole in medium with
cylindrical interfaces
apparent resistivity curves, 333-337
borehole axis, early and late stage,
325-333
Fourier integral and calculation,
321-324
harmonic amplitudes, 322
magnetic dipole in uniform medium
Biot—Savart’s law, 318
electromotive force, 321t
expressions for field, 313-314
Faraday’s law, 314
features, 314-321
field components, 317f
graphs of function, 318
in-phase component, 318
transmitter-receiver moment, 321
vertical magnetic dipole
Fourier integral, 341
layer thickness, 340-343
medium with one horizontal
boundary, 337-340

Transmission line, 85-86, 85f
Transverse plane wave, 96

Trial and error method, 92
Two-coil probe
apparent conductivity, 181-182, 211f
Biot—Savart law, 279
displacement effect, 286287, 286—287f
elementary layer for, 212-213, 213f
forward problem solutions, 179-181
frequency responses
in three-layered formation, 279, 280f
in two-layered formation, 279, 280f
geometrical factor
borehole, 195-199, 199f
elementary layer, 182—184, 185f
of elementary ring, 174-178, 175-176f
layer with finite thickness, 184—188
induced currents density, 279
in-phase component, 279
with one interface, 188—189, 189f
quadrature component, 279
radial characteristics, 199-204
vertical magnetic dipole, 279
wave path, 272, 273f

U

Uniform medium

anisotropic medium, 452-459

electric charges, 49-50

magnetic dipole in, 141-153, 163-172,

452459

plane wave in, 91-104

sinusoidal plane wave in, 133—-141
Uniqueness theorem, 86—89

Vv

Vector potential
within borehole, 254-255
boundary value problem, 250
complex amplitude, 144
components of, 15
divergence and Laplacian of, 1618
expression for, 149-153
Laplace’s equation, 1618, 33
magnetic field, 13-16, 24-27
z-component of, 142-143

Velocity of propagation, 134, 140
frequency range, 139
plane wave, 93-94, 94f

sinusoidal wave, 136
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Vertical magnetic dipole
borehole axis
approximate solution validity,
274-277, 276f
Cauchy’s formula, 267-274
integration contour, deformation of,
267274, 268f
probe displacement, 284288,
286-288f
three-coil probe, 277-279, 277-278f
two-coil probe, 279-284, 280f
boundary value problem, 249254, 251f
field components, 254-257

small induction number
asymptotic expressions, of field,
265-266
in-phase component, 260-265
quadrature component, 258-259
Volume electric charges, 49

w

‘Wave equation, 94
solution to, 92-93

‘Wave path
in three-coil probe, 272, 273f
in two-coil probe, 272, 273f
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