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Preface

This second edition represents a significantly revised and improved version of the first edition,
and in many respects it is a new book. I have taught various aspects of casing design over more
than twenty years, and for the past six I taught a 5-day basic casing design course from the first
edition of this book. I felt that some changes in organization and approach would greatly enhance
its value for engineers learning casing design. Hence, the present focus is on a clear and logical
progression through the design/selection sequence and related practices followed by material on
more advanced topics of casing performance mechanics and casing in directional and horizontal
wells.

I have added some new material on loading cases and some additional perspective on approaches to
design. Especially topical is the addition of a section on casing performance in hydraulic fracturing of
horizontal wells, a relatively new application and one in which I have been consulting in the past few
years. Along these lines, I have also added a brief overview of some aspects of rock mechanics as it
relates to fracturing and horizontal wells in a separate appendix.

While the first edition contained much foundational matter such as units of measure, hydrostatics,
and so forth, it was all interspersed throughout the main body of text. That order of presentation
works well for an introduction to casing design, but once an engineer is past the fundamentals it
makes for an amount of clutter for someone wanting to refer back specifically to the design/selection
process. Consequently, I have moved most of the foundational material from the body of the text
into appendices for easy study and reference. One might question the necessity for including such
foundational material in a text like this, but having taught specific industry training courses for engineers
over the past eighteen years, I can assure you that most of this material is essential. Engineers who
approach casing design for the first time typically come from various disciplines and may or may
not have any previous exposure to solid mechanics, but more importantly, it is an inescapable fact
that we forget what we were taught if we are not using it on a regular basis. Those new to the
topic of casing design should devote serious study to these appendices, and I highly encourage all
to at least review them. In the appendices I have gone into greater depth and detail on some of
the peripheral issues of casing than might seem necessary for those whose only interest is in basic
level casing design, but I did so to enhance the value of the book as a fairly complete reference on
the topic.

I have included scant material on pipe standards and specifications, especially in regard to
connections, only what is essential to understand the process of casing design. The reasons for this
are twofold, one is that standards and specifications change periodically and a book based heavily on
them is out of date as soon as a new specification or standard is published, and the other is that most
of the meager published data on oilfield tubulars is of a nominal or minimal performance nature and
readily available elsewhere. My focus in this book is on the fundamental mechanics that will not change
over time.



xiv Preface

Finally and importantly, as with the first edition, I have tried to maintain a conversational style so
that it may be easily read and understood by those seeking self education without the necessity of an
instructor. There are many precautions and opinions sprinkled throughout, sometime homiletic in tone,
but all based in real case histories, most of which could never find their way into print. I hope these
add to the content. Overall, the reader should find this edition to be a much improved and more useful
textbook.

Ted G. Byrom
Mount Vernon, Indiana

January, 2014



Preface to the First Edition

Hardly anyone reads a Preface. Please read this one, because this book is a bit different and what is
written here is the actual introduction to the book. I never read a textbook that I really liked when I was
a student. The main reason is that most authors seemed more interested in presenting the information
with the goal of impressing colleagues rather than instructing the reader as a student of the subject.
For a long time, I thought they were so smart that they could not relate to the ordinary student. I now
know that is rarely true. You should know that I have reached a point in my career where no one is
important enough that I need to impress, and certainly no money is to be made writing a textbook. My
reason for accepting the task of writing this text is that I truly wanted to attempt to explain this subject
in an understandable manner to the many petroleum engineers who need or want to understand it but at
best received a couple of classroom lectures and a homework assignment on the subject from someone
who never designed or ran a real string of casing in his life. I was in that same position some 44 years
ago. This book is also intended for those coming into the oilfield from other disciplines and needing to
understand casing design.

This book is not written in the style of most textbooks. That is because it its main purpose is
to teach you, the reader, about casing and casing design without need of an instructor to “explain”
it to you. I would like you to read this as if you and I were sitting down together as I explain
the material to you. While some of the material requires a little formality, I have tried to put it
on a readable level that progresses through the various processes in a logical manner. I have also
tried to anticipate, pose, and answer some of the questions you might ask in the process of our
discussion.

The first five chapters of this book lay a foundation in basic casing design. It is, if you will, a recipe
book for basic casing design. It does go into some detail at times, but overall its purpose is to actually
teach an understanding of basic casing design. If you are not an engineer, and many casing strings are
designed by nonengineers, do not be discouraged by the many equations you see. The information in
this part should be sufficient to design adequate casing strings for the vast majority of the wells drilled
in the world, and although the chapter on hydrostatics contains some calculus, none of it is beyond
the capabilities of a second-year engineering student. The sixth chapter is about running and landing
casing. Most of it is common sense, but there are some practical insights that are worth the time it takes
to read.

Chapter 6 begins the discussion of slightly more advanced material. Some of this material is not
covered in universities, except on a graduate level, but I have tried to present it so that any under-
graduate engineering student should be able to understand it. The remaining chapters continue in the
same vein.

I have not tried to cover everything about casing or casing design in this book. I have never had any
aspirations of writing the definitive text on casing or any other subject, mostly because some aspects hold
no interest at all for me. I have personally run and cemented close to a couple of hundred casing strings
as a field drilling engineer, designed several hundred more, and been involved with several thousand



xvi Preface to the First Edition

casing strings over my career. These have ranged from very shallow strings to a few over 23,000 ft.
Never have I designed a string for a geothermal well, and my corrosion and sour gas experience is
limited. Consequently, little is said about those subjects in this book. There are much better sources for
that than what I could write on those particular topics.

Ted G. Byrom
Mount Vernon, Indiana

September, 2006
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ISO International Organization for Standardization
SPE Society of Petroleum Engineers
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1.1 Introduction

In this textbook, we will explore the fundamentals and practices of basic casing design with some
introduction to more advanced ideas and techniques. We will use a simple process that involves manual
calculations and graphical plots. This is the historical method of learning casing design and will instill
a depth of understanding. For the vast majority of casing strings run in the world this is still the method

Casing and Liners for Drilling and Completion. http://dx.doi.org/10.1016/B978-0-12-800570-5.00001-2
Copyright © 2015 Elsevier Inc. All rights reserved.
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Conductor 150 ft

Surface 3000 ft

Intermediate 10,500 ft

Production 14,000 ft

Figure 1.1 Casing string design for a typical well.

employed. Those engineers already well founded in the process may use more advanced techniques
and specific software. While there is some excellent software on the market that does casing design,
one cannot really learn the process using software. This is not by any means a harangue about casing
design software; some of it is excellent and quite sophisticated especially compared to the crude first
attempts that hit the market. But the unwelcome fact is that many who are using it are overwhelmed by
multipage, detailed printouts, half of which they do not even pretend to understand. And truth be told,
many of the “support” personnel experience the same problem. Information is not knowledge if you do
not understand it.

1.2 Design basics

Casing design is a bit different from most structural design processes in engineering because the
“structure” being designed is a single tubular monolith of given outside diameter primarily supported
from the top end. There is nothing to actually “design” in the conventional sense of structural
engineering. Geometrically speaking, our structure is already designed. The available tubular sizes and
strengths are standardized, so the design process maybe thought of as a two-step process:

1. Calculate the anticipated loads.
2. Selecting from the available standard tubes those with adequate strength to safely sustain those loads.

As simple as that may sound, casing design is still not a linear process. It is not a matter of calculating
the anticipated loads and then selecting the casing. The selected casing itself is part of the load. Hence,
the process must be iterated to account for that fact. Still, it is quite an easy process in the vast majority
of cases.
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The basic design/selection sequence in its iterative form might be listed in steps:
1. Determine depths and sizes of casing.
2. Determine pressure loads.
3. Apply design factors and make preliminary selection.
4. Determine axial loads and apply design factors.
5. Adjust preliminary selection for axial design loads.
6. Adjust for combined tension/collapse loading.

Some might not consider Step 1 a part of casing design, and technically that is true. That step might
be done by someone other than the casing designer and not in conjunction with the actual design process.
However, we are going to include it in our treatment because it is essential for us to understand how it
is done and how the results affect our design process.

The actual design process starts with Step 2, where we calculate the pressure loads for various
scenarios using basic hydrostatics. We do this for all the strings in the well.

In Step 3 we select the worst case pressure loading from the previous step and apply a design factor
which gives us a margin to account for uncertainty in the loads and pipe strengths. The results of that are
design pressure-load plots for each string of casing in the well. From these plots, we make preliminary
selections of casing, which will safely sustain those design loads.

Because the axial load (weight) of the string is a function of the casing itself, we must then
calculate it from the preliminary pressure-load selection. We then apply a design factor to the axial
load and check to see if our preliminary selection has sufficient axial strength. If it does, Step 4 is
complete and we skip Step 5. If it does not, then in Step 5, we must modify the preliminary selection
so that it also satisfies the axial design load. When we modify the preliminary selection, we must
recalculate the axial load for the modified string and apply our axial design factor again. We must
also check to ascertain that the modified string still meets our pressure-load design requirements. So
in this step, the process becomes iterative. It is not difficult though, because in the manual process,
it is easy to visually see the values and minimize the iterations. Seldom are more than two iterations
required.

Finally, in Step 6, we check for the effects of combined axial tension and collapse loading, often
referred to as biaxial loading. This is a critical step even in basic casing design, because tension in a
string reduces the collapse resistance of the casing. This step too may require several iterations because
any change or adjustment in the casing selection always requires that all the loads be rechecked.

For your early reference, Step 1 is covered in Chapter 2, Step 2 in Chapter 3, and Steps 3-6 in
Chapter 4. Chapter 5 covers the casing installation process, and the remainder of the chapters covers
more advanced topics.

1.3 Conventions used here

There is in the petroleum literature a virtual plethora of odd terminology, incoherent physical units,
mathematical inconsistencies, and so forth. I have tried to adhere to several principles in this book:

• A readable text
• A progressive sequence for learning and self education
• Sufficient background material in appendices
• Adherence to ISO mathematics [1] and mechanics [2] standards
• Avoidance of acronyms except for organizational names (5) and those appearing in API/ISO standards (8) that

you must necessarily understand plus only one other that is too common to not know (BOP)
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Readability is essential for self-education, and I think, one of the most important features I have
aimed for in this textbook. Perhaps I have oversimplified some concepts, but I prefer that to pedantic
gibberish and superfluous acronyms that are more confusing than educational. And if the copy editor is
successful at ironing out my convoluted sentence structure, you should find this book fairly readable.

1.3.1 Organization of book

The book is organized in a logical sequence that a beginner would follow to learn casing design, starting
with the basics and proceeding to the more advanced topics. Chapters 2–4 illustrate basic casing design
and Chapter 5 covers installation in the well. Having learned that material, the reader will have acquired
the skills necessary for a fundamental level of casing design. That is the level of most who actually
design the majority of casing strings in the world. Chapter 6 covers the details of casing strengths and
performance, and Chapter 7 covers casing in deviated and horizontal wells. That latter chapter also
contains materials on casing for hydraulic fracturing in horizontal wells.

Most of the referential and foundational materials on mechanics, hydrostatics, rock behavior, and so
forth, have been moved to separate appendices so as not to clutter the logical progression of the design
process and casing specific topics. Most of that material has been expanded in these appendices and
should serve as handy reference or refresher for those needing it. I have also added an appendix with the
most commonly used equations for easy access, rather than requiring a search through the text to locate
them. Those equations that are boxed in the text are listed in this appendix along with their respective
equation numbers from the text to facilitate locating the qualifications and discussions.

You will notice a number of redundancies in this text, and I can already imagine the number of
times a reader may say, “He already said this!” While partly the result of my writing process, I have
intentionally left some of these in place and added some. The reason is that it is seldom that anyone
would read a text like this from beginning to end. More commonly one reads selectively those topics of
concern or need, thus some of the pertinent precautions and qualifications mentioned elsewhere may be
missed. I beg your patience when you encounter these.

1.3.2 Units and math

The problem with units in oilfield technology is that there are too many systems and hybrid systems in
play, none of which use consistent units in oilfield applications. Here, I adhere to a simple underlying
principle: all physical phenomena are independent of any units used to measure them. If we use
consistent units from a coherent system, no conversion factors are necessary in properly stated physical
formulas and equations. Importantly, none of the formulas or equations in this book require conversion
factors if you use consistent units. There are no conversion factors included in any of the formulas, and
it is left to you as a properly educated engineer to know when you need them. All that said, most of the
global drilling and completion operations use the USC system (US Customary) of oilfield units, and we
will bow to that custom here because it is the system of the vast majority of readers. The fundamental
formulas will not require conversion factors, but our calculations will, and we will show them in the
examples. Units of measure, physical constants, and material properties used in this text are covered in
detail in Appendix B.

As in the first edition [3], I use specific gravity (specific density), ρ̂, (SG) for liquid density, where
specific gravity is defined as ρ̂ ≡ ρ/ρwtr, rather than the cumbersome lb/gal (ppg) of the USC system.
This is done for ease of use in any unit system, where early in their education, every engineer committed
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to memory that water density, ρwtr, is 62.34 lb/ft3, 8.33 ppg, and 1000 kg/m3. (We avoid the niceties of
temperature variation as we seldom have that data anyway.)

Throughout the petroleum literature (SPE, API, IADC, etc.), there is a virtual hodgepodge of variable
names, symbols, multiletter computer variables, mixed mode math, and grade school arithmetic, all of
which are inconsistent and quite confusing. All math here will be in strict algebraic form with single-
kernel, italicized letter/symbol variables. Nonitalicized subscripts will be used for further identification
and clarification. Italicized subscripts will denote variable descriptors rather than names. Further, I will
use mostly standard variable names from mechanics rather than from the petroleum literature as per ISO
80000-4 [2] to make this more universal for all readers. At first encounter, this may be a bit confusing
to some, but Appendix A defines all the notation and variables used, so you should not have to search
through the text to find a variable’s definition where first used. A glossary of petroleum related terms
and acronyms is also included. There are a few instances where the same symbols are necessarily used
to represent different quantities, but those are quite local and should be obvious from the context. Where
applicable to terms and abbreviations, I have adhered closely to the SPE Style Guide [4].

For those who have used the first edition of this text, I should call attention to two significant changes
in usage. As before all of our pressure loads are defined in terms of a differential pressure across the
casing wall. But in this edition, we will define that differential pressure in a single, consistent manner:

�p ≡ pi − po

⎧⎨
⎩

< 0 → collapse loading
= 0 → no differential loading
> 0 → burst loading

(1.1)

where pi and po are inside and outside pressure, respectively. This should avoid some confusion inherent
in the previous edition. The second change is in the definition of the conversion factor, gc, that converts
pounds (mass) to slugs (mass). In this edition, I use gc = 1/32.174049 slug/lb, which is the more
conventional form (though there is no standard). This is the reciprocal of the value used in the earlier
edition. More discussion on this is found in Appendix B.

Roundoff

The API rounds off pressure ratings to the nearest 10 psi, and we will follow that convention in most
of our pressure load calculations. We will use the ≈ symbol to denote where we roundoff. However,
there are a few places where we will not roundoff because intermediate results may have significance in
further calculations, and where we want to illustrate something more clearly.

1.3.3 Casing used in examples

All of the design process and calculations will be illustrated with examples. Most are based on real
wells. For the sake of simplicity and avoidance of commercialism, I limit all of the casing used in the
designs to API threaded and coupled pipe (ST&C, LT&C, and Buttress). This does not constitute a
recommendation, but utilizes the most widely used and standardized casing in the world. This book
primarily addresses the design process and the mechanics employed, so I have purposely limited
the amount of API/ISO standards covered because they can and do change periodically whereas
the fundamental mechanics do not. Furthermore, I make scant mention of proprietary casing and
connections because those standards are set by the individual manufacturer, not always readily available,
and subject to change for marketing and business-related reasons.
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1.4 Oilfield casing

Anyone reading this book is assuredlyalready familiar with the oilfield tubes (casing, tubing, drill pipe,
and line pipe) referred to as Oil Country Tubular Goods or OCTG, the standardized tubes used in
drilling, completion, and production applications. But for a refresher and consistency in our discussions,
we include this brief and basic section on oilfield casing.

The steel tubes that become a permanent part of an oil or gas well are called casing, and the tubes
that are removable, at least in theory, are referred to collectively as tubing, which are not covered in
this book. Oilfield casing is manufactured in various diameters, wall thicknesses, lengths, strengths, and
with various connections. The purpose of this text is to examine the process of selecting the type and
amount we need for specific wells. But first, a question: What purpose does casing serve in a well?
There are three:

• Maintain the structural integrity of the borehole.
• Keep formation fluids out of the borehole.
• Keep borehole fluids out of the formations.

It is as simple as that, though we could list many subcategories under each of those. Most are self-
evident. Additionally, there are some cases where the casing also serves a structural function to support
or partially support some production structure, as in water locations.

1.4.1 Setting the standards

By necessity, oilfield tubulars are standardized. Until recent times, the standards were set by the Amer-
ican Petroleum Institute (API) through various committees and work groups formed from personnel in
the industry. Now, the International Organization for Standardization (ISO) is seen as taking on that role.
Currently, most of the applicable ISO standards are merely the API standards, but that role may expand
in the future. In this text, we refer primarily to the API standards, but it should be understood that there
are generally identical standards, and in some cases, more advanced standards, under the ISO name.

It is important that some degree of uniformity and standardization is in force and that manufacturers
be held to those standards through some type of approval or licensing procedure. In times of casing
supply shortages, a number of manufacturers have entered the oilfield tubular market with substandard
products. Some of these have resulted in casing failures where no failure should have occurred. Any
casing purchased for use in oil or gas wells should meet or exceed the current standards as set for
oilfield tubulars by the API or ISO.

Some casing on the market is not covered by API or ISO standards. Some of this non-API casing
is for typical applications, some for high-pressure applications, high-temperature applications, low-
temperature applications, and some for applications in corrosive environments. Many of these types
of casing meet or exceed API standards, but one must be aware that the standards and quality control
for these types of casing are set by the manufacturer. It probably should not be mentioned in the same
paragraph with the high-quality pipe just referred to, but it should also be remembered that there are
some low-quality imitations of API products on the market as well, including some with fraudulent API
markings.

1.4.2 Manufacture of oilfield casing

There are two types of oilfield casing manufactured today: seamless and welded. Each has specific
advantages and disadvantages.
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Seamless casing

Seamless casing accounts for the greatest amount of oilfield casing in use today. Each joint is
manufactured in a pipe mill from a solid cylindrical piece of steel, called a billet. The billet is sized
so that its volume is equal to that of the joint of pipe that will be made from it. The manufacturing
process involves:

• Heating the billet to a high temperature
• Penetrating the solid billet through its length with a mandrel such that it forms a hollow cylinder
• Sizing the hollow billet with rollers and internal mandrels
• Heat treating the resulting tube
• Final sizing and straightening

The threads may be cut on the joints by the manufacturer or the plain-end tubes may be sent or sold to
other companies for threading. The most difficult aspect of the manufacture of seamless casing is that
of obtaining a uniform wall thickness. For obvious reasons, it is important that the inside of the pipe
is concentric with the outside. Most steel companies today are very good at this. A small few are not,
and which is one reason that API and ISO standards of quality were adopted. Current standards allow a
12.5% variation in wall thickness for seamless casing. The straightening process at the mill affects the
strength of the casing. In some cases, it is done with rollers when the pipe is cool and other cases when
the pipe is still hot. Seamless casing has its advantages and also a few disadvantages.

Advantages of seamless casing
• No seams to fail
• No circumferential variation of physical properties

Disadvantages of seamless casing
• Variations in wall thickness
• More expensive and difficult manufacturing process

Welded casing

The manufacturing process for welded casing is quite different from that of seamless casing. The process
also starts with a heated steel slab that is rectangular in shape rather than cylindrical. One process uses
a relatively small slab that is rolled into a flat plate and trimmed to size for a single joint of pipe. It is
then rolled into the shape of a tube, and the two edges are electrically flash welded together to form a
single tube. Another process uses electric resistance welding (ERW) as a continuous process on a long
ribbon of steel from a large coil. The first stage in this process is a milling line in the steel mill:

• A large heated slab is rolled into a long flat plate or ribbon of uniform thickness.
• Plate is rolled into a coil at the end of the milling line.

The large coils of steel “ribbon” are then sent to the second stage of the process, called a forming
line.

• Steel is rolled off the coil and the thickness is sized.
• Width is sized to give the proper diameter tube.
• Sized steel ribbon is formed into a tubular shape with rollers.
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• Seam is fused using electric induction current.
• Welding flash is removed.
• Weld is given an ultrasonic inspection.
• Seam is heat treated to normalize.
• Tube is cooled.
• Tube is externally sized with rollers.
• Full body of pipe is ultrasonically inspected.
• Tube is cut into desired lengths.
• Individual tubes are straightened with rollers.

This is the same process by which coiled tubing is manufactured, except coiled tubing is rolled onto
coils at the end of the process instead of being cut into joints. Note that, in the welding process, no filler
material is used; it is solely a matter of heat and fusion of the edges.

Welded casing has been available for many years, but there was an initial reluctance by many to use it
because of the welding process. Welding has always been a matter of quality control in all applications,
and a poor-quality weld can lead to serious failure. Today, it is both widely accepted and widely used
for almost all applications except high-pressure and/or high-temperature applications. It is not used in
the higher yield strength grades of casing.

Advantages of welded casing
• Uniform wall thickness
• Less expensive than seamless
• Easier manufacturing process
• Inspected during manufacturing process (ERW) and defective sections removed

Uniform wall thickness is very important in some applications, such as the newer expandable casing.

Disadvantages of welded casing
• High temperatures of welding process
• Possible variation of material properties caused by welding
• Possible faulty welds
• Possible susceptibility to failure in weld

Welded casing has been used for many years now. Many of the so-called disadvantages are perhaps
more a matter of perception than actuality.

Strength treatment of casing

When a cast billet or slab is formed into a tube it is done at quite high temperature. The deformation that
takes place in the forming process is in a plastic or viscoplastic regime of behavior for the steel. As it
cools, its crystalline structure begins to form. Once the crystalline structure forms or begins to form, any
additional plastic deformation to which we subject the tube will change its properties. The change may
be minor or significant, depending on the constituents of the steel, the amount of deformation, and the
temperature. Heating a tube above certain temperatures and cooling slowly allow the crystals to form
more uniformly with fewer structural imperfections, called dislocations, in the lattice structure. The
properties of the steel can be modified by the addition of certain constituents to the alloy and, to some
extent, by controlling the cooling rate. One common process for enhancing the performance properties
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of casing is to heat the tube above a certain temperature then quickly cool it by spraying it with water
or some other cool fluid to strengthen and harden it (quenching), especially near the surface. The casing
is then heated again, but to a lower temperature, and allowed to remain at that temperature for a period
of time to allow “relaxation” of the steel to some specific lower hardness and strength (tempering). This
process is called quench and temper, or QT for short, and is an inexpensive alternative to adding more
expensive alloying constituents.

Some steels are said to get “stronger” when they are deformed plastically at ambient temperatures.
This is part of the manufacturing process in some steels and is called cold working. Cold working
typically increases the steel’s yield strength; however, it does not, in general, increase the ultimate
strength. Straightening casing joints in the latter stages of the manufacturing process can also have
an effect on the properties of the tube depending on whether it is done at “cool” temperatures or
“warm” temperatures. It should be noted that any steel that is cold worked is no longer isotropic.
Its yield strength will vary depending on the direction of the loading. For example, if a tube is
cold worked by axially stretching, it may see an increase in tensile yield strength, but it will
suffer a reduction in compressive yield strength. This elastic-plastic behavior will be discussed more
fully in Appendix C.

1.4.3 Casing dimensions

Casing comes in an odd assortment of diameters ranging from 4-1/2 in. to 20 in. that may seem quite
puzzling at first encounter, e.g., 5-1/2, 7, 7-5/8, 9-5/8 and 10-3/4 in. Why such odd sizes? All we can
really say about that is that they stem from historical sizes from so far back that no one knows the
reasons for the particular sizes any longer. Some sizes became standard and some vanished. Within the
different sizes, there are also different wall thicknesses. These different diameters and wall thicknesses
were eventually standardized by the API (and now ISO). The standard sizes as well as dimensional
tolerances are set out in API Specification 5CT [5] and ISO 11960 [6].

Outside diameter

The size of casing is expressed as a nominal diameter, meaning that is the designated or theoretical
outside diameter of the pipe. API and ISO allow for some tolerance in that measurement, and the specific
tolerance differs for different size pipe. The tolerances for nonupset casing 4-1/2 in. and larger are given
as fractions of the outside diameter in Table 1.1. Note that the amount of minimum tolerance for the
outside diameter is much less than for the maximum tolerance. This is necessary to assure that standard
threads cut on the joint will be of adequate depth and height.

For upset casing, Table 1.2 shows the current API and ISO tolerances measured 5 in. or 127 mm
behind the upset.

Table 1.1 Tolerance for Non-upset
Casing Outside Diameter [5, 6]

Nominal Outside Tolerances

Diameter, do(in.) Maximum Minimum

≥ 4-1/2 +0.01do −0.005do
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Table 1.2 Tolerance for Upset Casing
Outside Diameter [5, 6]
Nominal Outside Tolerances (in.) Tolerances (mm)

Diameter, do(in.) + − + −
> 3-1/2 to 5 7/64 0.0075do 2.78 0.0075do

> 5 to 8-5/8 1/8 0.0075do 3.18 0.0075do

>8-5/8 5/32 0.0075do 3.97 0.0075do

Table 1.3 Minimum Drift Mandrel Dimensions
[5, 6]
Nominal Outside Mandrel Length Mandrel Diameter

Diameter (in.) (in.) (mm) (in.) (mm)

< 9-5/8 6 152 di − 1/8 di − 3.18
9-5/8 to 13-3/8 12 305 di − 5/32 di − 3.97
>13-3/8 12 305 di − 3/16 di − 4.76

Inside diameter and wall thickness

The inside diameter of the casing determines the wall thickness or vice versa. Rather than a specific
tolerance for the amount at which the internal diameter might exceed a nominal value, the tolerance
specified by API and ISO is given in terms of minimum wall thickness. The minimum wall thickness
is 87.5% of the nominal wall thickness. The maximum wall thickness is given in terms of the nominal
internal diameter, however. It specifies the smallest diameter and length of a cylindrical drift mandrel
that must pass through the casing (Table 1.3).

The internal diameter of casing is a critical dimension. It determines what tools and so forth may
be run through the casing. It is not uncommon to have to select a casing for a particular application
such that the drift diameter is less than the diameter of the bit normally used with that size casing, even
though the bit diameter is less than the nominal internal diameter of the pipe. In cases like this, it is a
practice to drift the casing for the actual bit diameter rather than the standard drift mandrel diameter.
This may be done with existing pipe in inventory, and those joints that will not pass the bit are culled
from the proposed string. Or it may be done at special request at the steel mill, in which case there will
be an extra cost. This procedure applies only to casing where the desired bit diameter falls between the
nominal internal diameter and the drift diameter of the casing.

Joint length

The lengths of casing joints vary. In the manufacture of seamless casing, it all depends on the size of
the billet used in the process. Usually, there is some difference in weight of the billets, and this results
in some variation in the length of the final joints. One could cut all the joints to the same length, but
that would be a needless expense and, in fact, would not be desirable. (Wire line depth correlation for
perforating and other operations in wells usually depends on an electric device to correlate the couplings
with a radioactive formation log; so if all the joints are the same length, it can cause errors in perforating
or packer setting depths.) For ERW casing, it is much easier to make all of the joints the same length,
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Table 1.4 Length Range of Casing [7]
Range 1 Range 2 Range 3

(ft) (m) (ft) (m) (ft) (m)

16-25 4.88-7.62 25-34 7.62-10.36 34-48 10.36-14.63

but there may still be some waste if that is done. Even if the joints vary in length, they need to be sorted
into some reasonable ranges of lengths for ease of handling and running in the well. Three ranges of
length are specified by API Recommended Practices 5B1 [7], Ranges 1, 2, and 3 (Table 1.4).

Most casing used today is in either Range 2 or 3, with most of that being Range 3. Range 1 is still
seen in some areas where wells are very shallow, and the small rigs that drill those wells cannot handle
longer pipe.

Weights of casing

The term casing weight refers to the linear “weight” of casing expressed as mass per unit length, such
as kg/m or lb/ft. The use of the term weight is so common that we are going to use that term for now, but
it should be understood that we are not talking about weight but linear density (mass per unit length),
and we will use the symbol ρ� to so designate. One might logically assume that the published casing
weight is determined by the density of the steel and the dimensions of the casing body. For instance,
we may have a joint of 7 in. 26 lb/ft casing and reasonably assume from that our joint actually weighs
26 lb/ft. Our assumption would be wrong. The published value is the nominal weight of the casing, not
the actual weight. For outdated reasons, the nominal weight of casing is based on a joint that is 20 ft
in length (including coupling). It includes the total weight of the plain-end pipe plus the weight of a
coupling, minus the weight of the metal cut away to make the threads on each end, and divided by 20 ft
to give the nominal weight in terms of pounds per foot (or kg/m). And the threads used in that calculation
are an obsolete thread that is no longer manufactured. In other words, casing almost never weighs the
same as its nominal weight. Fortunately, the difference is small enough that in most cases of casing
design, it is relatively insignificant. API Spec 5CT [5] has formulas for calculating the actual weight
of a joint, but it requires specification of the thread dimensions, and so forth, and we are not going to
concern ourselves with that here. One particular formula in API Spec 5CT and ISO 11960 sometimes
is useful though, and that is a formula for calculating the nominal casing weight of plain pipe without
threads or couplings:

ρ� = ρs At (1.2)

or more in the form used by the API

ρ� = ρs π (do − tw) tw or ρ� = ρs
π

4

(
d2

o − d2
i

)
(1.3)

where

ρ� = linear density (mass per unit length), plain-end “casing weight”
ρs = density of API carbon steel, 7850 kg/m3 or 490 lb/ft3

At = cross-sectional area of the tube
do = outside diameter
di = inside diameter
tw = wall thickness
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This formula (in various forms) appears in several API/ISO publications accompanied by a statement
that martensitic chromium steels (L-80, Types 9Cr and 13Cr) have densities different from carbon steels
and a correction factor of 0.989 should be applied. Interestingly though, the density of carbon steel is
nowhere to be found in those publications. The API/ISO version of the formulas contain an appropriate
factor, C, that combines the steel density, π , and a conversion factor for the dimensional units. From
these formulas, one can back out the values of steel density used, 490 lb/ft3 or 7850 kg/m3. I have cast the
formula here as to make sense of the mechanics it is supposed to portray. Here, we must use consistent
units as already mentioned. In other words, we must use the diameters and wall thickness in feet or
meters with the appropriate density value rather than inches or millimeters. We discuss consistent units
in more detail in Appendix B.

1.4.4 Casing grades

Casing is manufactured in several different grades. Grade is a term for classifying casing by strength
and metallurgical properties. Most of the grades are standardized and manufacture is licensed by the
API; a few are specific to the particular manufacturer.

API grades

The API grades of casing are manufactured under a license granted by the API. These grades must
meet the specifications listed in API Spec 5CT [5] or ISO 11960 [6]. These grades have yield strengths
ranging from 40,000 to 125,000 psi. These grades are listed in Table 1.5.

The letter designations are essentially arbitrary, although there may be some historical connotation.
The numbers following the letters are the minimum yield strengths of the metal in ksi (103 psi). The
minimum yield strength is the point at which the metal goes from elastic behavior to plastic behavior.
And it is specified as a “minimum,” meaning that all joints designated as that particular grade should
meet that minimum strength requirement, although it is allowed to be higher. We use the minimum yield

Table 1.5 API Casing Properties [5]

Grade Yield Strength (ksi) Minimum Tensile Hardness

Min. Max. Strength (ksi)a HRC HBW/HBS

H-40 40 80 60
J-55 55 80 75
K-55 55 80 95
N-80 80 110 100
M-65 65 85 85 22 235
L-80 80 95 95 23 241
C-90 90 105 100 25.4 255
C-95 95 110 105
T-95 95 110 105 25.4 255
P-110 110 140 125
Q-125 125 150 135

aA tube property, not a material property.
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strength as the design limit in most casing design. The yield strength may be higher than the minimum,
and a maximum allowable value is also listed in the table. The reason for the maximum value is to assure
that the casing sold in one particular grade category does not have tensile and hardness properties that
may be undesirable in a particular application. Some years back, it was common practice to downgrade
pipe that did not meet the minimum specifications for which it was manufactured. In other words, if
a batch of casing did not meet the minimum specifications for the grade it was intended, it could be
downgraded and sold as the next lower grade. There also were cases where one grade was sold as the
next lower grade to move it out of inventory. Some of the consequences of this practice were disastrous.
One typical example was the use of N-80 casing for tie-back strings and production strings in high-
pressure gas wells in the Gulf Coast area of the United States. Many of these wells drilled in the 1960s
used lignosulfonate drilling fluids and packer fluids, which over time degraded to form hydrogen sulfide
(H2S). As it turned out, some wells that were thought to have N-80 grade casing, actually had P-110,
and there were a number a serious casing failures caused by hydrogen embrittlement. Some of these
“N-80” casing strings had P-110 grade couplings on them, and in some wells almost every coupling
in the entire string cracked and leaked. It became standard practice (and continues) to add a biocide to
the weighted packer fluid to prevent bacterial formation of H2S, before the manufacture of controlled
hardness casing such as L-80 grade.

You will also notice in the chart that some different grades have the same minimum yield strength.
Again, this is a case where the metallurgy is different. For instance both N-80 and L-80 have a minimum
yield strength of 80,000 psi, but their other properties are different. L-80 has a maximum Rockwell
hardness value of 22 but N-80 does not. N-80 actually might be a down-rated P-110 but L-80 cannot be.
The grades with the letter designation L and C have maximum hardness limitations and are for specific
applications where H2S is present. Those hardness limits are also shown in the table.

The ultimate strength value listed is the peak strength of the casing in a uniaxial test. In other words,
the pipe body should not fail prior to that point. This value is based on tensile test samples and does
not account for things like variations in wall thickness, pitting, and so forth. It is not really possible to
predict actual failure strength, because there are too many variables, but this value essentially means that
the casing should fail at some tensile value higher than the minimum. You should clearly understand that
ultimate strength is not a material property, but is the point at which a uniaxial tensile test of a prismatic
sample exhibits its highest value. You might say it is the ultimate strength of a structural member, not
the material itself.

Also shown in the table are values for minimum elongation. This is specified as the minimum percent
a flat sample will stretch before ultimate failure. When you consider that K-55, for instance, yields at an
elongation of 0.18%, then you can imagine that nearly 20% elongation is considerable. But one should
not be misled into thinking that, if we design casing with the yield strength as a design limit, there
is necessarily a considerable additional “strength” remaining before the casing actually fails. Once the
material is loaded beyond the elastic limit (yield), the incremental stress required to stretch it to failure
is often be quite small. We discuss more on plastic material behavior in Appendix C.

Non-API grades

Non-API grades of casing are not licensed by the API and consequently do not necessarily adhere to
API or ISO specifications. This is not to imply that they are inferior, in fact, the opposite is true in
many cases. Most non-API grades are for specialized applications to meet requirements not covered in
the API or ISO specifications. Examples are high-temperature and/or high-corrosive environments and
high-collapse and high-tensile strength requirements. In these cases, one must rely on the specifications,
quality control, and reputation of the manufacturer. A particular case in point is V-150 casing with
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a minimum yield strength of 150 ksi. It sees frequent use by some companies in some high-pressure
applications but has never been adopted as an API standard. For extremely critical wells, many operators
elect to do a number of qualification tests and inspections on the specific casing that will be used in a
particular application. For instance, one operating company has invested a large amount of money and
research into qualifying connections for use in high-pressure wells [8].

It should also be mentioned again that a number of manufacturers make casing that supposedly meets
API/ISO specifications but are not licensed as such. Typically, this casing is sold below the market price
as so-called “equivalent” to API/ISO casing. While some of this pipe has been found to be acceptable,
much of it is not. This was a particular problem in the late 1970s, when the demand for casing far
exceeded the supply, and similar situations have re-occurred from time to time and likely will continue.
It is a case of “buyer beware.”

1.4.5 Connections

Many types of connections are used for casing. These are threaded connections, and there are three basic
types: coupling, integral, and weld-on.

The most common type is a threaded pipe with couplings. A plain joint of pipe is threaded externally
on both ends and an internally threaded coupling, or collar as it is sometimes called, joins the joints
together. A coupling usually is installed on one of the threaded ends of each joint after the threads are
cut. The end of the coupling that is installed at the threading facility (usually at the steel mill) is called
the mill end. The other end of the coupling typically is called the field end, since it is connected in the
field as the casing is run into the well. An integral connection is one in which one end of the pipe is
threaded externally (called the pin end) and the other end is threaded internally (called the box end). The
joints are connected by screwing the pin end of one joint into the box end of another. In most cases, an
integral connection requires that the pipe body be thicker at the ends to accommodate both internal and
external threads and still have a tensile strength reasonably close to that of the pipe body. The increased
wall thickness in this case is called an upset, and it may be an increase of the external diameter, external
upset (EU), a reduction in the internal diameter, internal upset (IU), or a combination of both (IEU).
Most integral joint casing is externally upset, so as to have a uniform internal diameter to accommodate
drilling and completion tools. Finally, the weld-on connection is one in which the threaded ends are
welded onto the pipe instead of being cut into the pipe body itself. This type of connection typically
is used for large-diameter casing (20 in. and more), where the difficulty of cutting threads on the pipe
body becomes more pronounced due to the large size and variations in uniformity of diameter and
roundness.

Of the three types of connections mentioned, there are also different ways in which threaded
connections bring about a seal. These primary sealing methods are interference and metal-to-metal seals
or combinations of both.

Interference sealing relies on the compression of the individual threads against one another to cause
a seal. Typically, this is the sealing mechanism of “V” or wedge-shaped threads that are forced tight
against one another as the connection is made. The threaded area is tapered so that the more it is made
up the greater the contact force between the threads from the circumferential stress in the pin and box.
Despite all the force though, interference alone does not cause a total seal, because there has to be some
tolerance in the thread dimensions for the connections to be made up. There is always some small gap
in the cross-sectional profile of a connection. In the case of wedge-shaped threads, there is a small gap
between the crest of one thread and the valley of the other. These connections require a thread lubricant
to fill this small gap and effect a true seal. For that reason, it is necessary to use a good quality thread
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lubricant. Another aspect of this type of seal is that the contact force must be great enough to resist any
pressure force tending to press fluids into the contact area.

Metal-to-metal seals rely on the contact of metal surfaces other than the threads to effect a seal. This
may be a tapered surface on the pin and box that contact each other in compression, a shoulder contact,
or a combination of the two. These types of seals are strictly metal-to-metal contact and do not rely on
thread lubricant to bring about the seal. For this reason, it is extremely important that the connections
are protected during handling and running to avoid damaging the seal surfaces. And, since these seals
are also dependent on the compression of the metal surfaces, the type of thread lubricant is important to
achieve the desired makeup torque.

There is a secondary type of sealing mechanism, called resilient seals or rings. Resilient seals
typically are polymer rings inserted into a special recess in the threaded area to provide additional
seals to keep gas or corrosive fluids out of the thread gaps. They usually are not considered a primary
seal but only an additional seal to improve the quality of an interference seal and a corrosion barrier for
some metal-to-metal seals.

API 8-rd connections

The most common type of casing connection in use is the API 8-rd connection, where 8-rd means
8-round or eight threads per inch and a slightly rounded profile. The profile is a V or wedge shape but
slightly rounded at the crest and valleys of the threads. There is also an API 11.5-V thread, which has
11-1/2 threads per inch and a sharp V-profile. This typically is a line pipe thread and is seldom used
in down-hole applications today. The API 8-rd connection is made in either ST&C (short thread and
coupling) or LT&C (long thread and coupling). These two threads are the workhorses of the industry
and sufficient for most normal applications. Like most connections, these are not as strong in tension
as the pipe body itself because of the reduced net cross-sectional area of the tube, resulting from the
threads being cut into the pipe body wall in the absence of an upset. These are interference-seal type
connections. The threads are wedge shaped, cut on a tapered profile, and made up until a prescribed
torque is attained. At full makeup torque, the threads do not achieve a pressure seal, because the threads
do not meet in the base of the groove, leaving two small channels at the base of the thread in both pipe
and the coupling. How then do they seal and prevent pressure leaks? They form a pressure seal with the
use of thread lubricant that fills the voids between the thread roots. The gap is very small and its length is
quite long because of the number of turns at a pitch of eight per inch, so the lubricant forms a good seal
in most cases. However, one must always use an approved thread lubricant, because an inferior one that
ages and shrinks in time and temperature eventually will leak. Although these connections often are used
in gas well applications, they generally are not recommended, because they rely on the thread lubricant
for a seal. Another precaution is, that since the threads are wedge shaped, they tend to override each
other when subjected to high tension or compression. This override mechanism is referred to as jump-
out. Because of this jump-out tendency, ST&C and LT&C connections generally are not recommended
for wells that have high bending stress caused by wellbore curvature or applications where temperature
fluctuations cause high axial tensile and compressive loads.

Other threaded and coupled connections

A number of types of threaded and coupled connections have different profiles from the API 8-rd.
Instead of wedge-shaped threads, many have a more square profile or something similar to give them
greater tensile and bending strengths. Examples of this type of thread is the Buttress (now an API
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thread), 8-Acme, and the like. These threads typically are used where higher tensile strengths are
needed in the joints. In general, they also rely on thread lubricant to form a seal and are prone to
leak in high-pressure gas applications. Most of these connections require less makeup torque than
API 8-rd connections. This is an advantage but also can be a disadvantage, because the maximum
makeup torque usually is less than that required to rotate the casing in the hole. Where rotation is
planned for cementing or orienting precut windows for multilateral wells, these types of connections
are to be avoided. Also, because the makeup torque is relatively low, most of these joints have a
“makeup mark” on the pipe. When the pipe is made up properly, the coupling edge is aligned with
the makeup mark. If the maximum torque is attained before the coupling reaches the makeup mark, it is
an indication that the thread lubricant is the wrong type, the connections have not been properly cleaned,
the pipe is not round, or the connection has been damaged. If the makeup mark is reached before the
optimum torque is achieved, that is an indication the connections are either worn or the threads were
not properly cut. Although not as common, some threaded and coupled pipe also has metal-to-metal
seals.

Integral connections

Another type of connection used for casing is one in which a metal-to-metal seal is achieved that is
independent of the threaded area. These usually are integral-type connections cut into both ends of
the pipe with no separate coupling. Some have a smooth tapered seal that seats very tightly when the
proper makeup torque is achieved, others have a shoulder type seal, and as mentioned previously, still
others have a combination of both. These types of connections give both high tensile strengths (some
greater than the pipe body itself), greater bending strengths for curved wellbores, and greater pressure
sealing for high-pressure gas wells. Some of these threads may be cut in nonupset pipe for use as liners,
typically called flush-joint connections because both the inner and outer diameters are the same in both
the tube and connection. Most integral and metal-to-metal sealing connections often are referred to as
premium connections, but this often is a misnomer. With the exception of API X-line, these should be
referred to as proprietary threads. They are patented, and their dimensions and properties are strictly
those specified by the manufacturer, even though they usually cut are on API specific tubes.

Many of the proprietary connections are designed for special applications, where the loading exceeds
typical casing design loads. High tensile loads and high pressures come to mind, but there are other
types of loading we often do not consider. One of these is high torsion. If a casing string is to be
rotated (for cementing or drilling), the frictional torque often is much higher than the recommended
maximum makeup torque of most connections. Additionally, in some wells, where temperatures cycle
significantly between flowing and shut-in times, severe compressive loading can take place. That
a particular connection may be strong in tension does not necessarily mean that it is as strong in
compression. For these applications, special connections have been designed. One proprietary thread is
of an interlocking design, so that it may used in high-torque situations, curved wellbores where bending
from borehole curvature is a possible cause of connection failure, and situations where axial compressive
loading is significant. The interlocking-type thread is somewhat unique in that it is wider at the crest
than at the base, and its width also is tapered along its length.

One should always consult the individual manufacturer for properties such as strengths and makeup
torque. Another important point is that one should follow the manufacturer’s recommendation as to
thread lubricant, as some lubricants commonly used with API 8-rd connections can result in loss of
pressure seal in some of the proprietary connections. And, on the subject of thread lubricants, it should
be mentioned that some connections are coated with special coatings at the mill to avoid the need for
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field lubrication. This is not a labor-saving process but one of avoiding possible environmental and
formation damage from conventional lubricants.

1.4.6 Strengths of casing

The strengths of the many sizes, weights, and grades of casing are given in various sources. API casing
strengths and dimensions are given in API Bulletin 5C2 [9], and formulas used for calculating those
values are given in API Bulletin 5C3 [10] or ISO 10400 [11]. These values are also published in many
other sources. We discuss in detail the formulas used to calculate casing design strengths in Chapter 6.

1.4.7 Expandable casing

Before leaving our general discussion on casing, we should mention an alternative to traditional casing
that falls outside the API and ISO notions of standardized casing. In the last decade or so, reformable
metal technology has given rise to a number of applications in the oilfield. The most significant of
these is the advent of expandable casing. Expandable casing is an ERW casing that is run into a well,
and then the diameter is expanded by a combination mechanical/hydraulic process to a larger diameter
before cementing. This gives rise to a number of options where multiple casing strings are required by
reducing hole sizes necessary and in some cases reducing the number of strings required. Expandable
casing has also been used successfully to patch areas of damaged or corroded casing. The advantages
are clearly obvious but there are some drawbacks, specifically in strengths as compared to standard API
casing. Expandable casing will be discussed in more detail in Chapter 6.

1.5 Closure

In this chapter, we described an outline of the basic casing design procedure and why it is not a linear
procedure. We also commented briefly on the organization of this text and on a few of the conventions
employed, all of which will be discussed more fully later.

While we assume a basic knowledge of casing and its usages, we covered a few of the basics of
oilfield casing. This section was not intended to be a comprehensive description of the manufacturing,
metallurgy, and specifications of casing. The interested reader should refer to other publications for
those types of information, such as the API and ISO publications mentioned in the references cited in
this chapter as well as the published information of several casing manufacturers and the manufacturers
of proprietary connections.

In Chapter 2, we will begin our casing design process where we will learn how to choose
casing depths and sizes. Then we will determine the depths and sizes of casing for an example
well. That example selection will be carried forward through the remainder of the design process in
Chapters 3 and 4.
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2.1 Introduction

Arguably the most critical step in well construction is determining the setting depths for the various
casing strings. Selecting the casing setting depths is not a part of the actual casing design process,
but setting the wrong size casing at the wrong depth can preclude the well ever reaching its objective.
Although the engineer who designs the casing strings may not be the same one who selects the depth
and sizes, we must cover the fundamental aspects of this critical process in order to fully appreciate the
actual design process. Figure 2.1 illustrates a schematic of a typical well showing four strings of casing:
conductor casing, surface casing, intermediate casing, and production casing. Why does this well require
four strings of casing? How is that determination made? How are the setting depths determined? How
are the casing sizes determined? This chapter addresses those questions.

Casing and Liners for Drilling and Completion. http://dx.doi.org/10.1016/B978-0-12-800570-5.00002-4
Copyright © 2015 Elsevier Inc. All rights reserved.
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Conductor 150 ft

Surface 3000 ft

Intermediate 10,500 ft

Production 14,000 ft

Figure 2.1 A typical casing installation.

2.2 Casing depth determination

While the depths to which the various casing strings are set are critical, those depths are determined by
a number of parameters most of which we cannot control. What are those parameters?

2.2.1 Depth selection parameters

When we make a determination of the setting depths for the various casing strings in our well, there are
several parameters that we must consider.

• Experience in an area
• Pore pressure (formation fluid pressure)
• Fracture pressure
• Borehole stability problems
• Corrosive zones
• Environmental considerations
• Regulations
• Company policy

Some of these criteria may overlap in practice. For instance, many regulations for the protection of
fresh water sources near the surface might also be considered to be environmental parameters. While
this is a text primarily about casing, two of these criteria, pore pressures and fracture pressures, are so
important that we will discuss them in a little more detail than the others in order to understand their
importance and what they represent.
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2.2.2 The experience parameter

Of all the depth selection criteria listed in the preceding text, successful experience in an area with
previous wells is unquestionably the most reliable of all. It should never be discounted out of hand in
order to try something else thought to be more “technologically advanced” or more “cost effective.”
But the risk, if any, in relying heavily on such experience is often a lack of understanding as to why
it has been so successful. Too often, blind use of such experience without understanding, can result in
something going wrong when least expected. There are always exceptions, so one should understand
why the current method has proven successful.

2.2.3 Pore pressure

All sedimentary formations contain pore spaces (voids) that are filled with fluids (gas or liquids).
Since the rock is buried, that fluid is under pressure that may vary from a simple hydrostatic column
to something near the stress caused by the weight of the overlying rock. The pore pressure dictates
our minimum mud density which must be adjusted continually in the drilling process to prevent the
formation fluids from entering the borehole. You should already be quite familiar with this topic, but a
more detailed discussion and refresher is found in Appendix E.

There are various methods for determining or estimating the magnitude of pore pressures in
boreholes, and while we cannot go into those methods, here is a brief list of some methods and sources.

• Before drilling

• Production data in area
• Direct measurements in other wells
• Log correlations
• Paleontology correlations
• Seismic correlations

• While drilling

• Shale density measurements
• Drilling rate monitoring
• Gas monitoring
• Full mud logging
• Logging while drilling (MWD)

For this text, we will assume that we already have access to reasonable pore pressure estimates for
our borehole, and after reading the above we have some fundamental understanding of what it means.
Further in-depth reading may be found in the book by Fertl [12].

2.2.4 Fracture pressure

The subject of fracture pressures for drilling mud programs and casing design can be complicated—a
lot more so than many realize. Considerable confusion as to what is actually meant by fracture pressure
adds to the complexity. A true definition of fracture pressure is the pressure at which a formation matrix
opens (fractures) to admit whole liquids through an actual crack in the matrix of the rock as opposed to
invasion through the natural porosity of the rock. This sounds straight forward, but some of the things
we often hear called fracture pressures are not true fracture pressures by that definition. In order to
better grasp the intricacies of the topic, it would serve to understand a little of the fundamentals of
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rock mechanics. These are covered in Appendix E, and it is advisable to review that material if you are
unclear about any of the following.

Sources of fracture data

There five sources commonly used for obtaining fracture data are as follows:

• Lost circulation caused inadvertent fracture in nearby wells
• Intentional fracturing during stimulation of nearby wells
• Minifracture tests
• Fracture gradient curves and correlations
• Leakoff tests
• Pressure integrity tests
• Some acoustic logging correlations

The first two of these are self-explanatory. The first may be invaluable because it typically singles
out the weakest zone in an open hole section. We also refer to this type of fracture as a drilling induced
fracture and usually it is inadvertent. The second sometimes has value for correlation purposes but is
limited in that it only applies to producing zones, and they are not usually the trouble zones unless they
are being depleted by production in nearby wells.

The third method, the minifracture test, is by far the most reliable of all the methods. It is a purposeful
and accurate test but is time consuming and expensive. Figure 2.2 illustrates an actual test using less than
5 bbl of fluid. In that test, a packer is set in the hole, usually an open hole drill stem test packer containing
a pressure recorder. Circulation fluid, usually drilling fluid, is pumped slowly into the well at a constant
rate. Point B on the chart is the maximum pressure and is the fracture pressure of the formation. The
pressure immediately drops a bit and levels off as pumping continues at the same rate. This is the fracture
propagation pressure. The fracture propagates at a lower pressure than the initial fracture pressure
because the fluid entering the fracture now acts as a wedge with a distinct mechanical advantage in
opening the fracture to allow growth at the tip. At point C on the chart, the pump is stopped and the
pressure drops sharply at first to point D then more gradually as the pressure dissipates until it reaches
the hydrostatic pressure of the fluid column where it began (slightly above the formation pore pressure).
The pressure at point D is the fracture closure pressure, and at the instant, it closes that pressure is equal
to the minimum horizontal stress component (at the borehole wall), σh, which is acting perpendicular
to the fracture walls and providing the closing force. Several points are important to mention here.
First is that the shape of the curve, especially past point C, is dependent on the permeability of the
formation and the properties of the borehole fluid. In this particular case, this test was carried out in a
shale (for a stability analysis) and with a filter-cake building drilling mud. In a permeable zone with a
clear fluid, the curve beyond point C would look identical to this picture because the pressure would
dissipate into the formation naturally through the pores. That was not the case in this test though,

t

Pore pressure

A
B
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p

Figure 2.2 A minifracture test for borehole stability analysis.
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and the observed “dissipation” behavior was achieved by opening a valve at the surface to affect a
bleed-off. Some knowledge and experience is necessary to conduct such a test. Even a poorly done test
should give an accurate fracture pressure even if the closure pressure is botched. Fortunately the fracture
closer pressure, if missed, can be easily determined by slowly reapplying pressure. The formation, once
fractured, will always reopen and take mud at the closure pressure so this can be repeated as many times
as necessary to assure success.1 Notice that I have not yet mentioned point A in this test. That is because
I am saving it for later, but for now we will say it is the point at which the pressure-volume relationship
becomes nonlinear.

In consolidated rocks with significant tensile strength, a minifracture test has the disadvantage of
being a destructive test in that once the rock is fractured it cannot sustain that pressure again in that
borehole—only the lesser fracture closure pressure. In unconsolidated or naturally fractured formations
(either macrofractures or microfractures), there are no further disadvantages because the rock had no
initial tensile strength.

The third method, fracture gradient curves and similar correlations, are most valuable and generally
reliable enough to use in casing depth determination. They are used quite successfully in many areas
and are most often the most reliable source available. However, you should be aware of something
important. These correlations are not to be used in borehole stability analyses because they are based on
a plane-strain model that assumes transverse isotropy in the horizontal stress field. Such a condition is
extremely rare in real boreholes. In other words, the foundational assumption is not correct. They often
suffice for our purposes because a correlation is built into an “effective Poisson’s ratio” rather than an
actual Poisson ratio of the rock. This is discussed in more detail in Appendix E.

Next on the list is the often used “fracture pressure” called the leakoff pressure. Generally speaking,
a leakoff pressure test as practiced is not related to actual fracture pressure except in unconsolidated
formations or those already containing natural fractures, microscopic or macroscopic. In other words,
the validity is limited to formations with no tensile strength. On the positive side, a formation with no
tensile strength is not damaged by such a test and will always open at the same pressure, so this is an
almost risk-free method to determine the maximum mud density that can be used in a borehole. The
downside is, what about a formation that does have tensile strength like that shown in Figure 2.2? Many
perform such a test and call point A the “leaf-off point” and stop the test before reaching point B. That
is okay in most cases because it is a safe point below the actual fracture pressure. Unfortunately, an
appalling amount of nonsense has been written about this point that needs debunking. Some say this is
the point at which “whole mud begins to enter the formation.” Whole mud particles cannot enter most
formations because the permeability is too low. The permeability necessary for most filter-cake building
muds to enter the formation is on the order of darcies and not millidarcies. The formation must actually
fracture for whole mud to enter. Even if the permeability is very high, most filter-cake building muds
will bridge these pores in an instant. Another popular misconception is that such a point represents
the beginning of fracture growth down the borehole wall before the fracture opens enough for mud to
enter. The reality is that a surface fracture propagating under constant applied pressure (as in this test)
propagates at the speed of a Rayleigh wave, or about 1/4 the speed of sound in the rock. So a surface
fracture in a 60-ft long borehole (the length of the test hole below the test packer in Figure 2.2) would
traverse its length in about 0.02 s. So that notion too is bunk. The only thing we can truthfully say about
point A is that it is the point at which the pressure-volume relationship becomes nonlinear. That can be
caused by a number of things, not the least of which is the all too common error of assuming that rock
behaves in a linear elastic mode all the way to failure.

1 Fracture closure pressure, as used here, means the natural pressure at which the fracture closes. This is not the same pressure
as the “fracture closure pressure” after a massive hydraulic fracture treatment in which the near borehole stress field has been
significantly affected by the treatment itself.
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Our next consideration is the pressure integrity test. This is a test performed to test a casing seat for
cement and formation integrity. It is performed after a casing string has been set and cemented in place.
Once the cement has adequately cured, the float collar, shoe track, and float shoe plus some small amount
of new formation, 30 ft±. The well then is pressured to the equivalent pressure of the maximum mud
density to be used in drilling to the next casing point. If there is a cement failure, remedial cementing
is performed. If the test fails because of formation weakness at the shoe, then that is a serious problem.
The casing string was set too high. The chances of cementing a fractured formation in an open borehole
successfully are almost nonexistent. An additional casing string will most certainly be required to reach
the objective, and unless this contingency has been planned for, then the well may have to be abandoned
because this weak zone must be isolated before achieving the higher mud densities required. All that
said, the point is that a successful integrity test does not give us a fracture pressure, and we should
not refer to it as such. It merely tells us that the formation can support a given pressure, and often that
information is sufficiently adequate for well planning. One further point might be worth mentioning here
about integrity tests. Most setting depths are adjusted to place the shoe in a stable, low-permeability
zone where possible. This is as it should be, but it calls into question many integrity tests. A casing
string set in a shale for instance, should not be integrity tested in the shale except where the permeable
formation below it is over pressured. All things being equal a permeable formation will fracture at a
lower pressure than an adjacent shale whose permeability is measured in nanodarcies. Typically, a shale
has higher values of horizontal stress than an adjacent sandstone because it tends to be more plastic in
its deformations.

Finally, relatively new to our tool box is the use of acoustic logs in determining mechanical rock
properties. Some of these techniques have unfortunately been sold beyond their actual capabilities,
but the technology is good and continues to improve. Like seismology, the technical difficulty is in
translating dynamically measured rock properties into quasistatic properties (Young’s modulus for
instance). It also requires a focused acoustic tool, rather than one that gives averaged readings. The
status is that with a given known measurement in close proximity, the ability to correlate using these
techniques is very good.

2.2.5 Other setting depth parameters

The other parameters listed previously are self-explanatory and need little elaboration. However, a few
comments may be in order.

• Experience in an area should never be casually tossed aside in favor of pore pressure and fracture pressure data.
There are usually good reasons that casing setting depths have become standardized in a particular area. Before
making any changes one should investigate those reasons thoroughly.

• Borehole stability problems exist in many areas. Casing is not the only solution in but a few cases, so all
possibilities should be evaluated.

• Regulations should never be violated. That should not have to be said, but many would be surprised to learn
how frequently violations actually occur.

Casing setting depth is determined by the requirements to maintain the integrity of the borehole and
protect the environment. Yes, it is that simple. Or perhaps we should say it is that complicated.

2.2.6 Conductor casing depth

The conductor casing is the largest diameter casing run in the well. It often serves to support the weight
of the subsequent tubes in the wellbore and also to maintain some minimal amount of borehole integrity
while drilling the surface hole for the surface casing. Individual wells may require two conductors, one a
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structural conductor to support the well head and casing and another to provide borehole integrity while
drilling the surface hole.

Conductor casing may require the drilling of a hole in the ground and cementing in place or it may
be driven into the ground with a diesel pile-driving hammer. The criteria for selecting the depth of the
conductor can be very simple or very complicated. On the simple side, we want the conductor deep
enough to prevent washing out under the rig or platform while drilling the surface hole. In most of these
cases, the first casing head is attached to the surface casing once it is in place and cemented so the
conductor serves no further purpose. For many shallow wells with hard surface soils the conductor may
be set at depths of 50 ft or so, sometimes 100 ft. On the other hand, in areas where the surface soils (or
ocean bottom) are extremely soft it may be necessary to set the conductor 200-500 ft below the surface
(or ocean bottom) just to drill the hole for the surface casing. There are some situations where the surface
formations are so incompetent or problematic that two strings of conductor casing may be required. In
other cases, the conductor casing is also a support structure for the well and must additionally support
a small platform attached to the wellhead and some minimal amount of production equipment—not as
uncommon as many might think, thousands of these type wells exist in shallow waters. While conductor
pipe is usually considered the simplest of the casing strings we will run in our well, it is often more
complicated in terms of both setting depth and design. The setting depth of conductor in many cases
must be determined by soil bearing tests and coring. This gets more into the realm of the civil engineer
than it does into the petroleum engineer’s domain. Most companies have their own specifications or they
rely on the standard practice in the area that has already proved successful.

There are unfortunately no handy formulas for determining the setting depth of conductor casing.
There are just too many variables and complexities to consider here. That probably sounds like an
avoidance of the issue, and it is. About the only guide, we can offer in the absence of soil bearing tests
similar to those performed for foundations of bridges, tall buildings, and similar structures, is to use
what has proven successful in the area. And as much as we hate to say it that brings us to a rule of
thumb.

In the absence of soil mechanics data and analysis, the only way to reliably select the depth of
conductor casing is to use the depth already proved successful in the area. In other words do what
everyone else does. The main thing is that if you do not have data to support your choice, do not attempt
to set your conductor casing at a lesser depth than is standard in an area. If it is a critical well and there
is nothing in the area, then get soil data.

2.2.7 Surface casing depth

There are a number of factors affecting the setting depth of surface casing:

• Pore pressures
• Fracture pressures
• Depth of fresh water bearing zones
• Legal regulations and requirements

Which of those do we choose? Which are the most important? The answer is almost always the one
that requires the deepest casing string. Strictly speaking from a design point of view, the first two are
the most important—they are related and are our basis for maintaining borehole integrity. We intend
that to include well safety. The last two may also be related. Protecting surface fresh water sands is
of extreme importance in populated areas and in truth it should be everywhere. Regulations require
protecting freshwater in most areas now. However, it is sometimes possible to obtain a variance from
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the regulations if the fresh water sands will be protected by the next string of casing. Damaging a fresh
water aquifer is not acceptable and carries stiff penalties in most parts of the world.

The question of regulations as already mentioned is usually a matter of protecting freshwater
aquifers, but in many cases regulations also address safety aspects of setting sufficient surface casing.
Unfortunately, regulations do not always take specific situations into account, and they may require more
casing than is really needed and sometimes less than what is needed. In those cases, it is best to consult
with regulatory agencies, as to what exceptions and variations from the regulations might be possible.

Aside from the regulations, the surface casing must allow us to drill to the next (or final) casing point
with the mud density required to contain the formation pressures encountered and not cause fracture
failure of the exposed formations near the upper part of the hole. If more than one additional string
of casing (an intermediate casing string) is required, then the two become interdependent as to setting
depths.

2.2.8 Intermediate casing depth

The most common cause for needing intermediate casing is that the borehole below the surface string
may require a mud density too high (or sometimes too low) for the formations between the final drilling
depth and the surface casing depth. A high mud density may fracture exposed weak zones or a mud
density too low may allow higher pressured zones to flow into the borehole. Additional reasons for
running intermediate casing include the presence of unstable zones and corrosive zones. Instability in
some zones, usually shales, may make it impossible to drill to total depth without isolating these zones.
The presence of corrosive zones may require isolation to protect the production string.

2.2.9 Setting depths using pore and fracture pressure

Aside from regulations and known problem zones, casing depths are typically selected using formation
pore pressure and formation fracture pressure, and that is what we will address now. The best way to
understand how these two parameters are used is to make a plot of pore pressure and fracture pressure
versus depth. Figure 2.3 is a plot of the two parameters for a simple well.

It shows a plot of the formation pore pressure versus depth on the left and the fracture pressure on
the right. Notice that the pressure is given in terms of equivalent mud density (specific gravity here)
to make the plot more easily used by drilling personnel. Drillers use plots like this to determine mud
densities required at various depths for drilling the well. The mud density must be slightly higher than
the formation pressure to prevent formation fluids from entering the borehole, and at the same time the
density must be less than the fracture pressure so that the drilling fluid does not fracture and enter the
formations. These two lines shown in the chart do not include any safety margins. Drillers typically
drill with the density slightly higher than that required to balance the formation pressures. This allows
some safety margin, especially when making trips because the action of pulling the pipe tends to cause
a negative pressure surge or a reduction in the hydrostatic pressure while the pipe is in motion.

Likewise drillers like to keep the maximum density slightly lower than the fracture pressure because
running the drill string into the hole causes positive surge pressures. We will refer to this as a fracture
margin, but in many contexts, it is referred to as a “kick margin” so that during a well-control event, the
formation is not fractured in the process of killing the well. Different companies have their own specific
policies on the values of these design margins, and it may vary with type and location of individual
wells. In Figure 2.3, we arbitrarily used a margin of 0.06 specific gravity (∼ 0.5 lb/gal or 60 kg/m3) for
both the pore pressure and fracture pressure. This is not a recommendation, but just a simplification for
illustration purposes, and we will use the same values in all our examples to avoid confusion.
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Figure 2.3 Pore and fracture pressures with margins.

We added these two safety margins to the figure, and we can see that the mud density required
to contain the pore pressure plus the safety margin at 12,000 ft is 1.4 SG, but above 1700 ft that mud
density begins to exceed the fracture margin. In other words, we cannot drill safely to 12,000 ft in the
well unless the hole is cased down to 1700 ft or more because the mud density required to contain
the pore pressure at bottom is greater than the fracture pressures at the surface (including the safety
margins). That is exactly how we determine the setting depth of the surface casing for this well.

In Figure 2.4, we start with the mud density at 12,000 ft (point a) and draw a line vertically until it
intersects the fracture margin line (point b) then horizontally to the vertical axis (point c); we can read
the setting depth of the surface casing which in this case is about 1700 ft.
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Figure 2.4 Selection of casing setting depths.
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Figure 2.5 Casing selection for example well.

That particular well requires only a surface casing string at 1700 ft and a production string at
12,000 ft. If the surface casing depth of 1700 ft meets the regulatory requirements for this well then,
our setting depth selection is complete. If the regulations require more casing, say 2500 ft, we will
simply move our surface casing depth to 2500 ft, and it will give us more safety margin in our mud
densities as far as a kick is concerned.

That is a relatively simple well. But before we dismiss it as trivial, that is exactly the circumstance
for the vast majority of all wells that have been drilled in the world. That said, we will now look at an
example in which an intermediate string is required.

EXAMPLE 2.1 Casing Depths

Using the pore pressure and fracture plot in Figure 2.5 and the same margins of 0.06 specific gravity
(∼ 0.5 ppg or 60 kg/m3), we see that the mud density of 1.83 SG required at 14,000 ft will exceed the fracture
margin at all depths above 10,500 ft. So we must set a string of casing at that depth. Moving horizontally to
the left, we see that the mud density required at 10,500 ft is 1.42 SG. This mud density will exceed the fracture
margin at all depths above 3000 ft. So 3000 ft becomes the surface casing depth.

This is a straight forward procedure, but sometimes it can be complicated by depleted zones that have
lowered pore pressure and fracture pressure but are located among normally pressured zones. In some
cases, we may have situations that require more than one intermediate casing string in which case we
typically would install a liner (usually called a drilling liner) before reaching total depth rather than a
second, full intermediate string. There are many possibilities, but that is the basic procedure.

2.3 Casing size selection

After determining the number of casing strings required and the setting depths the next step in the design
procedure is to select the sizes of casing required. What size casing and what size bits do we require?
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2.3.1 Size selection

Once the setting depths have been determined, the next step is obviously to select the sizes of the casing
strings to be set. The sizes will depend on a number of criteria, but two important things to know about
selection of casing size are as follows:

• Hole size determines casing size
• Hole size at any point in the well except the surface is determined by the previous string of casing

This means that in selecting casing size, we usually start with the casing size at the bottom of the hole
and work to the top.

The size of the last string of casing run in a well is generally determined by the type of completion
that will be employed. That decision is usually the function of an interdisciplinary team of reservoir,
production, and drilling personnel. There are numerous criteria on which this decision is based, so we
will assume for our purposes that the size of the final string is predetermined, and we will proceed from
that point. From the standpoint of drilling operations, our input into that process is to assess the risks
and allow for alternatives. For example, if we know there are serious hole stability problems in an area
and our drilling experience in the area is limited, we may be well advised to recommend a final size that
is still large enough for us to set an extra string of casing or liner and still reach the objective with a
usable size of hole for a good completion. This is a point that is unfortunately too often overlooked in
the desire to keep well costs low.

Once we know the diameter of the final string of casing or liner, the process proceeds like this:

• Determine the hole size (bit size) for the final string of casing.
• Determine what diameter casing will allow that size bit to pass through it. That is the size of the next string of

casing.
• Repeat the procedure until all of the hole sizes and casing sizes have been determined.

Many times in actual practice, casing sizes are often determined by what is readily available in some
inventory (the company’s, partner’s, or vendor’s) and the delivery times. The cost of leaving surplus
pipe in inventory or excessive delivery times often supersede any “optimum design” based strictly on
engineering calculations.

Precaution: After the casing strings have been designed be sure to check the drift diameters to be
certain that all the desired bit sizes can be accommodated.

2.3.2 Borehole size selection

What is the proper borehole size for various sizes of casing? What do we require of the borehole size?

• A borehole must be large enough for the casing to pass freely with little chance of getting stuck.
• There should be enough clearance around the casing to allow for a good cement job.
• In general, the bigger the borehole the more costly it is to drill.

There are no formulas for determining the ideal borehole size.
Selecting the borehole size is primarily based on current practices in the area or areas with similar

lithology. There are a number of charts and tables in the literature, some good for some areas, but greatly
lacking for other areas. The best advice we can offer is to use what is common practice in the area unless
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Figure 2.6 Typical bit and casing sizes for hard rock environments.

there is good reason to do otherwise. No matter what specific charts we suggest here, they going to be
wrong for some particular locale or application. That notwithstanding, here are two charts that show
some typical choices. One chart is for hard rock (Figure 2.6), and the other is for unconsolidated rock
(Figure 2.7).

These charts start with the last string of casing or liner and work downward to the first casing string
of the well. You can see on these charts that there are many options even for those situations where
the same size liner or casing is to be run. In general, hard rock offers us more choices, and clearance
between the casing and borehole wall can be less than for unconsolidated formations.

You will note in the chart for unconsolidated rock that there are still some options, but not as many.
A few may not be available even though shown on the chart. For instance on the fourth row from the top
it shows that either an 8-1/2 in. or an 8-3/4 in. bit may be used from 9-5/8 in. casing. That may be true
in some cases, but if the 9-5/8 in. casing string contains any 40 lb/ft or heavier pipe then the 8-3/4 in.
bit cannot be used. What is common practice in one area may not work in another because formation
pressures may require a heavier pipe.
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10 5/8 12 1/4 14 3/4 17 1/2

14 3/4 17 1/2 20 26

7 7/8

6 5/8

Figure 2.7 Typical bit and casing sizes for unconsolidated rock environments.

EXAMPLE 2.2 Casing Size Selection

Continuing with the same example, we looked at previously in this chapter; assume that we have determined
the following casing depths:

• Surface casing: 3000 ft
• Intermediate casing: 10,500 ft
• Production casing: 14,000 ft

The production engineers tell us they will require a production casing diameter of 7 in., so the production
casing size is determined. Assume that the well is in an area of unconsolidated formations. Use the soft
formation chart (Figure 2.7) to determine the intermediate casing size, the surface casing size, and the
conductor casing size.

• Intermediate casing: 9-5/8 in.
• Surface casing: 13-3/8 in.
• Conductor casing: 20 in.
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Although not shown in the chart as a possible path, some operators in areas where borehole stability is a
serious problem elect an alternative for 7 in. casing as follows:

• Intermediate casing: 10-3/4 in.
• Surface casing: 16 in.
• Conductor casing: 24 in.

That choice would be a case where experience in a particular area might influence the decision in order to
allow more margin for the effects of anticipated problems.

A precaution
You may note in the two charts above that more casing-borehole clearance is specified in unconsolidated
formations than in hard rock formations. Why? Most unconsolidated formations occur in newer
geological marine environments where swelling shales and high permeability zones are commonplace.
These environments are known for reduced clearance caused by the swelling shales, accumulation
of break-out and sloughing debris, as well as differential sticking tendencies in the more permeable
formations. There is sometimes a tendency for those inexperienced in these environments to assume
that these unconsolidated zones will be washed out and actually have greater clearance instead of less.
While that is definitely true through some intervals, it is not true of the entire exposed borehole. The
consequences of such an assumption is almost always disastrous.

2.3.3 Bit choices

Obviously from the above charts, we select the hole size for our particular casing and that automatically
sets our bit size too. While that is true, there is another aspect to the bit sizes that should be mentioned.
Those charts are based on the most commonly available bit sizes. There are special cases where it will be
necessary to use an unusually thick wall casing, and you find that the common bit used in that casing will
not work—the bit is too large. There are other diameters of bits available for special applications that are
not shown in these charts. In general, they tend to cost more, but the biggest problem is that often there
is a limited choice of bit types when it comes to uncommon bit sizes. For instance for one common size,
we may have a choice of 25 different tooth and hardness characteristics just from a single manufacturer,
and maybe 50-100 choices if we include all manufacturers. However, with some odd size bit, we may
be limited to a small range of tooth and hardness choices and possibly only one manufacturer. That may
be acceptable for some special cases, but it should always be considered.

Bit clearance

To determine the bit clearance, we look at the casing tables for the internal diameter and see if it is
larger than the diameter of the bit. But in the tables, we see two diameters listed. One is the nominal
internal diameter and the other is the internal drift diameter which is slightly smaller than the internal
diameter. The internal diameter is the diameter to which the tube is supposedly manufactured. Once it
has gone through the milling process, it is inspected for final diameter by passing a mandrel through it
of the diameter listed as the internal drift diameter. So its internal diameter might be the same as the
nominal internal diameter or it might be slightly smaller (or larger), but we know that it is at least as
large as the drift diameter (assuming the manufacturer does its job). We normally assume that the drift
diameter is the maximum bit diameter, we can be assured will pass through the casing. But in many
cases, bits greater than the drift diameter have been used. In that case, you must drift the casing with a
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mandrel the size of the bit first and cull out those joints that are undersized. Some steel mills will do this
for customers (usually at extra cost).

2.4 Casing string configuration

Once we determine the depths of the casing strings, we may still have several alternatives.
Figure 2.8 shows three possible configurations for our example well. The first shows a conventional

production casing string. The second shows a production liner where the intermediate string also serves
as part of the production string. The third one shows a tieback string inside the intermediate string and
connected to a liner at the bottom of the intermediate string. One can see that the second option might
save the operator money by eliminating a full production string, but why would an operator elect to
choose the third option as opposed to the first or the second? One reason might be to reduce the weight
of the final string and save money using a lower tensile strength casing. Of course that has to be more
saving than the additional cementing and equipment cost and additional rig time required. However,
here is a typical situation for choosing the third option. We are drilling a high pressure, well and the
intermediate casing is required to contain the high density mud while drilling the lower part of the hole.
In this case, suppose it takes a few weeks to drill the hole below the intermediate casing so there may
be considerable wear from the drill string on the intermediate string. This means we have to rule out
option number two because the intermediate casing may not be able to contain the pressures required of
a production string that has loss of wall thickness from the wear. In this case the first option is usually
cheaper than the third option which requires more time, more cement, and more equipment, so we still
see no reason for selecting the third option. Consider two more things though. Remember that we said
that it was a high pressure well. The operator wants to be assured that the casing above the cement does
not leak, and the best way to assure this is a hydrostatic test of the casing connections as the casing is
being run in the hole. This cannot be done with a full string of pipe because the static time required
to test each connection will probably allow the casing to become stuck before it gets to bottom. That
would then be an extremely costly situation which would require another liner of a smaller diameter

Production
casing

Production
liner

Tieback
casing

Conductor
casing

Surface
casing

Intermediate
casing

150 ft

3000 ft

10,500 ft

14,000 ft

Figure 2.8 Three possible casing configurations.
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than the production casing. So, while the third option is not common there are often very good reasons
for doing it. And further, there are many wells that require two liners instead of one, and the tieback
string is always a preferred option in that case. There are many possibilities. Well conditions and costs
dictate the actual choices. We will discuss those choices in more detail later.

2.4.1 Alternative approaches and contingencies

There are additional approaches to allow for more clearance for the casing. One method is to under ream
the open hole below the current casing string. This allows additional clearance and is a proven method
where the expense of the extra time and reaming can be justified. A similar result can be obtained with
a bicentered bit for drilling below the current string of casing. Such a bit will drill a larger diameter
hole than its nominal diameter. This technique can eliminate the extra expense of under reaming and
accomplish the same result.

Another option is the use of expandable casing. This is a relatively new technology and has proven
successful in a number of applications. The hole is typically drilled with a bicenter bit or under-reamed
to give more clearance. The casing itself is run just like a conventional liner and is expanded after it is
in place. Expandable casing will be discussed in more detail in Chapter 6.

2.5 Closure

In this chapter we have examined the procedures for selecting casing setting depths and casing sizes.
We used a plot of formation pore pressures and fracture pressures to select the setting depths. This is a
straightforward method that may appear deceptively simple. The truth is that it is not the procedure that
is complex, but the data itself for use in the plot. Often, it is not readily available nor is it totally reliable.
When this type of procedure first came into use many operators looked at it as a way to save money
by reducing the number of casing strings traditionally run in some areas. It appeared that in many
cases, it was possible to run surface casing a bit deeper and eliminate an intermediate casing string
altogether. When it worked it did save costs, but when it did not work it not only added the string that
was “eliminated” but often an additional string as well, and resulted in a very small hole size at bottom
and significant additional costs. The problem in these situations was that the data proved unreliable in
some cases and that the margins were too close for operating personnel to adhere to in others. So in all
cases, the data used in the depth selection process must be scrutinized with care. A prudent philosophy
might be stated like this:

• Exploratory wells or critical wells. Data are possibly scarce or unreliable, so allow for the unexpected with
contingencies in casing size and depths. Usually this means allowing for the possibility of running one more
casing string or liner than the plan calls for. These are not the wells where we try to save money on casing.

• Development wells. Data reliability and risks are well known. These are the wells where casing costs can be
minimized and smaller margins can be used.

No matter what method you use to determine the casing setting depth, always keep in mind that it is one
of the most critical steps in assuring a well’s success. Do not be caught in the trap of compromising the
chances of success by trying to save money by unnecessarily minimizing casing depths and sizes.
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3.1 Introduction

In this chapter, we discuss the pressure loads, collapse and burst, used in the design of casing strings.
To illustrate the process, we continue with the example selection from the previous chapter, where
we determined the setting depths and casing sizes. Here we will discuss the various types of pressure
loads and some particulars as they apply to the different types of casing strings. The actual calculations
are merely hydrostatic calculations with various combinations of fluids inside the casing and in the
annulus outside the casing. After a discussion of the pressure loads and their application to the
different casing strings, we present examples using the casing program we selected in the previous
chapter.

To determine the strength of the casing needed, we must now consider the types and magnitudes of
the loads the casing must safely bear. A number of different considerations and possibilities accompany
each string of casing run in a well. Some simple load situations suffice for most casing strings, but
often special conditions may apply to a specific well or type of well. We will discuss the types of loads
commonly used as design criteria for each type of casing string. Three basic types of loads commonly
are considered:

1. Collapse loads are differential pressure loads in which the outside pressure exceeds the inside pressure, tending
to cause the casing to collapse, �p = pi − po < 0.

2. Burst loads are differential pressure loads in which the inside pressure exceeds the outside pressure, tending to
cause the casing to rupture or burst, �p = pi − po > 0.

3. Axial loads are tension or compression loads mostly caused by gravitational and frictional forces on the pipe,
but they can also be caused by pressure and temperature changes as well as bending in curved wellbores.

The first two of those load types are dictated by well conditions and anticipated operations in the
well. They are functions of formation pore pressures, fracture pressures, drilling fluid pressures, and
cement pressures. Those are the two we cover in this chapter. For the most part, we will be working
with differential pressure loads across the casing wall, defined as the inside pressure minus the outside
pressure, �p ≡ pi − po. The third type of load, axial load, is a function of the casing selection process
itself; in other words, the axial load is a function of the weight of the casing selected. Axial loads are
covered in the next chapter.

We have used the terms, collapse and burst, rather loosely as if their meanings were obvious, but we
should clarify that now because they are somewhat misleading. Collapse is a form of radial instability
that results in radial buckling. The actual deformation referred to as collapse of the pipe is a postbuckling
event. From that, one would assume that the collapse rating of a casing is the minimum pressure at which
the instability occurs and that any small perturbation in the load, could then cause buckling followed by
actual postbuckling collapse. That is not quite the case, however. The API collapse rating is defined for
two extremes: (1) elastic stability for pipe with a relatively large diameter to wall thickness ratio, do/tw,
and (2) for thicker wall pipe with smaller do/tw ratios, the formula defines the collapse rating to the
minimum collapse pressure that will cause yield in the pipe. The burst rating is a bit easier to define; it is
the internal pressure at which the inner wall of the pipe initially yields. It is not the pressure at which the
pipe would actually rupture as one might expect from the word “burst.” We will delve into these ratings
in Chapter 6, but for now we are satisfied with knowing what the two terms mean, and that we can look
up the values in available tables.

One more clarification about pressure: We will always work in gauge pressure rather than absolute
pressure since the difference is insignificant at the magnitudes and applications we are using. When we
specify 0 psi, we mean atmospheric pressure. Further, we will not use any atmospheric gradient when
working with empty or partially empty casing.
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3.2 Pressure loads

The magnitude of the pressure loads that a particular casing string actually experiences in service for the
most part are unknown. Certainly, we can calculate the loads we are likely to encounter if all operations
are perfectly successful, but the problem is that often there are imperfections in our cementing results
or problems in our drilling operations. We almost always are able to determine loads if all is perfect,
and we can almost always determine the type of loading that would take place if things go totally
awry. But between those two situations is a great unknown. Hence, our most logical approach is to
assume the worst case that can happen, within reason, and that is the one we typically use for our casing
design. We assume that we can reasonably predict the nature of the worst case loading and calculate
its values. For now, we do not concern ourselves with the probability of such loading occurring. The
thing that we have to always keep in mind is that we cannot change our designed casing string once
it is in the ground and cemented. If that “unlikely” worst case should occur, it is too late to change
our design.

The process we now address consists of determining the types of pressure loads and the sources of
those loads. These are listed below:

Types of pressure loads
• Collapse loading
• Minimum internal pressures
• Maximum external pressures

• Burst loading
• Maximum internal pressures
• Minimum external pressures

Sources of pressure loads
• Formation fluids
• Water (fresh or salty)
• Oil
• Gas

• Drilling fluids
• Whole mud
• Mud filtrate
• Un-set cement
• Whole cement
• Cement filtrate

• Stimulation fluids
• Ocean or surface water
• Atmosphere

These are the pressure sources that contribute in various combinations to the pressure loading of
casing in wells. It is relatively easy to ascertain the internal pressures for design purposes because we
almost always know the internal fluids, at least in the design stages. The difficulty is that we seldom
know the external fluids and pressures once the casing is in the ground and cemented. It is the single
biggest problem in the pressure loading phase of casing design. All we can do is make some reasonable
assumptions, and what is reasonable to one engineer may not be reasonable to another. It can become a
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bit too subjective. The most common approach is to consider the worst case, not the most likely case.
That may seem like a case of avoidance or oversimplification. It is both, but I will repeat time and again
in this textbook: You cannot change your design once the casing is in the ground.

3.3 Gas pressure loads

Gas pressure is one of the most common loads in casing design, and we need to make a few comments. It
is often the case that we know the gas pressure at a source depth but need the value of the pressure in a gas
column at another depth. This is not the same simple hydrostatic calculation we use for incompressible
liquids because gas is compressible, and hence, its gradient is not a constant. There are a number of
approaches for calculating natural gas pressures using the ideal gas law and compressibility factors. The
compressibility factor is itself a function of temperature, pressure, and gas composition. Where the data
are available, such methods are employed. However, for our basic casing design, we are going to use
the common practice of assuming any gas encountered is pure methane whose molecular mass is 16 g
(or 16 lb when using a lb-mol) and whose compressibility factor, Z = 1 for a fairly large range. Since
methane is the least dense of the natural gas components, it gives us the most conservative results in
casing design. Many companies use it as a standard in casing design.

Fortunately, the assumption regarding the compressibility leads to a simple equation that we will use
in our basic design work:

p = p0 exp
M g (h− h0)

ZRTavg
(3.1)

where

p, p0 = pressures, pressure at h and pressure at h0, respectively

h, h0 = vertical depths, depth of interest and reference depth, respectively

M = molecular mass, 16 for methane

g = gravitational acceleration

Z = gas compressibility factor, Z ≈ 1 for methane

R = ideal gas constant, see Appendix B for appropriate values

Tavg = average absolute temperature, Tavg = (T + T0)/2

This equation is derived in Appendix D as Equation (D.16). In this equation, R = 1545 in USC units
and R = 8314 in SI units.

3.4 Collapse loading

In the case of collapse loading, our task is to determine the least amount of pressure the casing will have
inside and the maximum amount of pressure the casing will have on the outside (simultaneously at any
given stage in the operations).



Pressure load determination 39

Internal loads, collapse
• Evacuated casing (fully or partially)
• Gas
• Oil
• Freshwater
• Field saltwater or stimulation fluids
• Drilling or workover fluids
• Combinations and partial columns of these

To these we might add some applied pressure in various situations.

External loads, collapse
• Freshwater
• Saltwater
• Formation pressure
• Drilling fluid
• Cement (un-set)

3.4.1 Collapse load cases

We categorize collapse loading by operational stage such as installation, drilling, and production. We
further breakdown the operations into different events and possible occurrences that may take place
within those three operational stages.

Installation stage—collapse loads

The installation stage is the running and cementing of the casing string. It also includes postcementing
operations such as pressure testing.

Installation—running
There is only one collapse scenario in running casing and that is running an empty or partially empty
casing string. Neither is almost ever done intentionally and few designs account for it.

Installation—conventional cementing
The density of cement is almost always greater than the displacement fluid. Once the cement is in
place and the displacement and plug-bump pressure is released, this differential should not cause casing
collapse. It is imperative that this calculation be included in the design, especially when the difference
in densities is significant.

Installation—inner string cementing
Inner string cementing is a process wherein the casing is not cemented with conventional top and bottom
wiper plugs but by running a smaller diameter string (usually drill pipe) inside the casing with a seal
assembly that connects to a special float shoe on the casing. The cement is then pumped through the
inner string rather than the casing. This is especially effective in cementing large diameter pipe. It
reduces pumping time as well as reducing contamination of the cement slurry as it is pumped in the
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large diameter pipe. Inner string cementing is usually restricted to conductor and some large diameter
surface strings. The collapse situation occurs because the cement is more dense than the fluid inside the
casing which may be even less dense than the displacement fluid used in the inner string.

Drilling stage—collapse loads

Collapse during drilling is almost always caused by loss of internal pressure from lost circulation. In
some cases it can be severe enough to completely evacuate the casing.

Drilling—lost circulation, evacuated
Complete evacuation occurs when a very weak zone below the casing fractures and allows the drilling
mud to enter. The hydrostatic head is reduced and the mud level in the well drops. Continued
pumping only pumps more mud into the fractured zone and does nothing to keep the mud level
above a static equilibrium with the fractured zone. In some severe cases, the casing string may be
completely evacuated. This usually happens when drilling below surface casing, but is not unknown
with depleted zones below some intermediate strings. This is the most common case used in surface
casing design.

Drilling—lost circulation, partial evacuation
In most cases of lost circulation, the casing is not fully evacuated. With very accurate fracture data and
formation pressure data, we could calculate the level to which the drilling fluid would be in equilibrium
with a fractured formation. This is mostly wishful thinking since such accurate and reliable data are
seldom available during the design process. For surface casing, we usually design for a fully evacuated
string, but for intermediate casing, we seldom see a fully evacuated string and to design for such, might
seem a bit too conservative. In most cases of lost circulation while drilling below intermediate casing,
the most immediate concern is a kick caused by the loss of hydrostatic head. Allowing the well to
remain static is not an option, the hole should be kept full if at all possible to avoid gas from reaching
the surface. Filling with drilling mud will not work because the level will continue to fall and the mud
supply on hand will be quickly exhausted. The common procedure is to try to keep the hole full with
fresh water, or if offshore, seawater. That is what we will use in our examples.

Production stage—collapse loads

This case applies primarily to the production casing. One may not think of collapse as a possibility
during the producing life of a well. But to the contrary, it is a very real possibility, perhaps not in the
early stages but definitely in the later life of the well.

Production—evacuation
How can a production string be evacuated? More easily than many might suspect. For example, a packer
in a gas well develops a slow leak, and the packer fluid is “produced” along with the gas until it is
exhausted. Or, the perforations sand up below the packer and the flowing gas well bleeds to atmospheric
pressure. Or another, a well is stimulated and coiled tubing is run to jet the well with nitrogen. The
jetting removes all the fluid but the perforations are plugged. The nitrogen flow is stopped and bled
to zero. The casing collapses below the packer. And there are many more. These are things that are
almost never planned, but they happen frequently. A production string should always be designed for
evacuation if possible.
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Table 3.1 Summary Collapse Loading
Cases

Collapse Loading C S I P

Installation
Running, empty S S S
Cementing, post plug bump A A A A

Drilling
Lost circulation A A A
Cuttings injection S S S

Production
Evacuation S S A
Artificial lift S S
Stimulation, squeeze S A

C, conductor; S, surface; I, intermediate; P, production; A, always
applicable; S, sometimes applicable.

Production—artificial lift
Artificial lift poses similar hazards as evacuation. It is not at all uncommon to bleed off the gas
pressure from casing prior to a workover in a gas-lift well. Depending on the liquid level in the casing
a collapse situation might arise. A submersible pump could pump a well “dry” if the perforations
should plug.

Production—stimulation, squeeze
It is possible that production casing can collapse during a stimulation or squeeze cementing operation.
When a well is stimulated or squeeze cemented through perforations using a retrievable squeeze tool or
cement retainer, often times the formation must be fractured to initiate pump in. The collapse problem
arises from the fact that whenever we fracture a formation through perforations we have no idea where
the fluid is going in the annulus. We like to assume that there is good cement and the fracture takes place
in the perforations, but that is not always the case. If there is a channel such that the casing above the
packer experiences the fracture pressure it is possible that the casing could collapse above the treatment
packer or retainer. It is prudent practice to always assure that the work string annulus above the packer
is full and that some amount of pressure is applied to the annulus at the surface. This helps to prevent
collapse but also is needed to monitor the casing for work string and packer leaks, especially when
squeezing with cement. In all cases, the fluid density in the casing should be equivalent to the formation
pressure or slightly higher, so it is a matter of the maximum differential pressure between the formation
pressure and the formation fracture pressure.

A summary of collapse loading cases for the three stages of well construction is given in Table 3.1.

3.5 Burst loading

For burst loading, we seek to find the maximum internal pressure and the minimum external pressure
occurring simultaneously at any given stage of operations. In low pressure wells or wells that will not
flow, burst is seldom considered. However, one should keep in mind the possibility of a future fracture
job or high-rate stimulation that might be pumped down the production casing. In burst loading, the
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external pressure is the resisting load, and the external loading in a burst situation normally is taken to
be the lowest possible pressure externally. At the surface of the string, that pressure is taken to be zero
or atmospheric pressure. In a subsea casing string, it would be the seawater pressure at the wellhead.
The external pressures other than at the surface could be from a number of sources.

External loads, burst
• Atmospheric pressure (at surface of string)
• Seawater pressure (at surface of string)
• Freshwater
• Saltwater
• Formation pressure
• Drilling fluid

It is never acceptable to assume that hardened cement will give us support in burst, even though
it will. The problem with cement is that we have to design our string before the well is cemented. If
our cement job is near perfect, then we have additional support in those sections covered by cement.
However, if there is even a small interval where the cement is poor, then we have no support at that
interval, and there is nothing we can reasonably do to change that. Hence, we can never safely assume
that the hardened cement gives us any benefit when we are in the design stage.

Internal loads, burst
• Gas
• Oil
• Water
• Combinations of gas and liquids
• Cement (liquid)
• Pump pressure (plug bump, test pressure, stimulations)

3.5.1 Burst load cases

Burst loading can occur in all stages of well construction and production. The various cases are described
here, and they will all be illustrated in the examples later in the chapter.

Installation stage—burst loads

The installation stage is the running and cementing of the casing string. It also includes postcementing
operations such as pressure testing.

Installation—plugged float or annular bridge
During cementing, there is always the possibility that a float could plug or the annulus could bridge
while displacing the cement. Such an unanticipated event would likely be accompanied by a significant
increase in pump pressure before the cementer could become aware and shut off the pump. While this
is unlikely, it should be included in the burst cases. The worst case depends on a number of things like
the cement volumes and densities compared the annular fluid and displacement fluids. This is one of the
more complicated hydrostatic calculations and is better understood by example; hence, we will examine
this case later in this chapter in the example cases.
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Installation—plug bump
When the top wiper plug (on top of the cement) contacts the top float, it stops the displacement
circulation and an increase in pressure occurs. This is an anticipated event and the cementer applies
a predetermined additional pressure above the displacement pressure before stopping the pump. This is
referred to as the plug-bump pressure. Its purpose is to assure that the plug is indeed seated on top of
the float. Because the cement is almost always more dense than the displacement fluid, the maximum
differential pressure occurs when all the cement is displaced. Added to that differential then is the plug-
bump pressure. The magnitude of this pressure is a matter of preference, company policy, and so forth,
but it is generally on the order of 500-1500 psi depending on the casing and well conditions. And to be
candid, its actual magnitude sometimes is a result of careless monitoring of the displacement progress
and may exceed the predetermined amount. In any case, the differential burst pressure in the upper
portion of the casing can be quite significant, and this should always be a design consideration for all
conventionally cemented casing strings.

Installation—pressure test
Everyone should agree that all casing should be pressure tested once it is in place. In many areas, it
is required by regulations. Where the controversy arises pertains to when it is tested. Many operators
legitimately claim that the plug-bump pressure is the best test. If the casing holds pressure then there is
no reason for it to leak later. That is valid, but unfortunately, many regulations require a pressure test
be performed later before drilling out the floats and proceeding to drill deeper (or after 24 h or so for
production strings). Most who favor the former argue that premature pressure testing after the cement has
supposedly set can damage the cement sheath around the casing, and this is a valid point. It is especially
valid for surface casing where lower temperatures slow the cement curing process and the curing time
while installing and testing the BOP stack on the surface casing is relatively short. Waiting additional
time for cement to strengthen is expensive and too often ignored. It is not so critical on intermediate
strings where temperatures are higher, more time is required to change out the BOP stack and to
pick up a string of smaller diameter drill pipe to drill below the intermediate string. Those arguments
notwithstanding, most pressure tests are done after the cement has been placed and supposedly cured.
Our only question is, what is the fluid in the annulus? Simply put, we do not know. About the best we
can come up with is that in the worst case, it is the same as the mud the casing was run in. Assuming the
displacement fluid in the casing is the same density as original mud, then this case will give a uniform
differential pressure test to the entire casing string. Since most regulations specify a surface pressure for
the test, this is the most legitimate form of the pressure test. Changing the mud in the casing before the
test is obviously not a good idea.

Drilling stage—burst loads

There are only two general cases of burst loads that occur in the drilling stage of well construction. They
are the maximum mud density used in the casing before the next casing string is set and the pressure
from a kick.

Drilling—maximum mud density
We always know, or should know, the maximum mud density we will use in drilling below a casing string
to reach the next casing point. What we never know is the fluid in the annulus. So again we take a worst
case scenario that is within reason. For surface casing we generally assume something like freshwater
for surface casing and maybe saltwater for intermediate casing. Some would assume the mud the casing
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was run in and others might assume formation pressure. While a formation pressure gradient might
sound most reasonable, we must also consider depletion of zones covered by the casing that are being
produced in other wells. That applies mostly to production casing, but formation pressures as backup
are seldom used in most cases. For simplicity (and lack of data), most use freshwater or saltwater in
basic design and use more detailed information for critical wells.

Drilling—well kick
There are three fluids involved in kicks, singly or in combination: gas, oil, and saltwater. Of these, gas
is the most severe and dangerous. In considering kicks, we limit ourselves to surface and intermediate
casing strings, because production strings are designed as a tubing backup and that is included in the
production stage of operations. We normally assume that the kick originates at the highest pressure
zone below the casing string, and that in the worst case we have a solid column of the formation fluid
(gas, oil, or saltwater) all the way to the surface. All well-control methods are designed to prevent that,
but it happens, and when it does, it is too late to change the casing design. There are two approaches
to determine the pressure inside the casing: (1) if the pressure of the column of fluid does not exceed
the least fracture pressure in the open hole (usually near the shoe) then the pressure of that column
is calculated from the kick source zone to the surface, or (2) if the pressure of the kick fluid column
exceeds the formation fracture anywhere in the open hole, we assume the kick fluid is flowing into that
formation, and we calculate the pressures in the casing using that fracture pressure as the source zone
pressure and assume a solid column of the kick fluid from there to the surface.

As already stated, gas is the most severe of these and is usually the basis for our design. There
are, however, some areas of the world where there is no gas present, and the design is based on an
oil column. Seldom do we design for a saltwater kick, but it is a common possibility in some wells
between the surface and intermediate casing strings where there is no gas or oil. As usual, the question
of the annular fluid is the same, and again, freshwater, saltwater, or drilling mud are the common
options.

Production stage—burst loads

In the production stage of operations, the only affected string is the production string. The exception
to that would be a well that has a production liner and utilizes the intermediate string as part of the
production string. In that case, the intermediate string must meet the design criteria of both intermediate
and production casing.

Production—pressure test
In a production casing pressure test, we almost always assume the backup pressure is the mud in which
the casing was run because the test is carried out soon after cementing. If the displacement fluid inside
the casing is the same drilling fluid then the pressure test differential will be uniform from top to bottom.
If a less dense displacement fluid is used (common with some operators to enhance cement to pipe
bonding) then the test should be performed when the displacement fluid is replaced by the more dense
workover/completion fluid.

Production—tubing backup
The production casing is a pressure backup for the tubing string. Tubing strings leak, and that is a given.
Not always, but it is one of those unfortunate things we cannot predict nor always prevent. Because
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Table 3.2 Summary Burst Loading Cases

Burst Loading C S I P

Installation
Cementing, plugged float A A A A
Cementing, plug bump A A A A
Pressure test S A A A

Drilling
Max mud dens. below shoe A A A S
Gas kick (full gas col.) A A S
Oil kick (full oil col.) A A S
Salt wtr. kick (full salt wtr. col.) A A S

Production
Pressure test S A
Tubing backup S A
Tubing gas leak S A
Stimulation, squeeze S A

C, conductor; S, surface; I, intermediate; P, production; A, always
applicable; S, sometimes applicable.

the production casing does have some backup in the annulus, it does not have to have the same burst
rating as the tubing, except near the surface. What the backup fluid is, is still unknown but generally we
may use freshwater or saltwater. You must remember though that the production casing absolutely must
contain the well pressure so the worst case is mandatory here.

Production—tubing leak
One of the most severe burst loadings in a gas well results from a near-surface tubing leak. These
leaks are not at all uncommon in gas wells. Near-surface tubing corrosion from freshwater condensation
mixed with CO2 to form carbonic acid is quite common in many gas wells. Most operators monitor such
corrosion in tubing, but occasional leaks still occur. The result is that wellhead gas pressure is applied
to the top of a full column of weighted packer fluid, and the differential pressures on the casing can be
very high near the packer. Some casing designers ignore this case altogether. Some operators provide
for an emergency relief system on the annulus and/or use a reduced density packer fluid. Some elect to
purchase a very expensive casing string.

Production—stimulations, squeeze
A production string must be able to withstand stimulation and squeeze pressures. When such treatments
are performed below a retrievable packer or a drillable retainer, only the portion of casing below that tool
experiences the treatment burst pressures. On the other extreme hydraulic fracture treatments performed
without tubing in the well, subject the entire production string to the treatment pressures. The pressures
for high-rate hydraulic fracture treatments can be quite high and are often the critical case for burst
design. We will not consider this in our basic design process, but will discuss it in detail in Chapter 7.

A summary of burst loads for different casing strings during three stages of well construction is
shown in Table 3.2.
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3.6 Specific pressure loads

As we saw in Tables 3.1 and 3.2, different casing strings experience some common types of pressure
loads, but also some different types. We will now look at some of these loads as they apply to different
strings.

In all our calculations, we will be using specific gravity, ρ̂, for density values to make it easier for
those working in different unit systems, so ρ = ρ̂ ρwtr. We will consistently use a water density, ρwtr,
of 1000 kg/m3 in SI units and 8.33 ppg in USC units or 62.43 lb/ft3 should the need arise. Most of our
pressure calculations at various depths will be done using liquid gradients:

γ = g ρ = g ρ̂ ρwtr (3.2)

Using consistent units in a coherent system, e.g., SI, that is all we need. In USC units, we will need
some conversion factors, where γ will be in psi/ft (lbf/in.2/ft) and ρwtr will be in ppg (lb/gal). The
specific gravity, ρ̂, is dimensionless and independent of our choice of system. We will use water density
of 1000 kg/m3 and 8.33 ppg in all our calculations.

γ = g ρ̂ Cppg gc ρwtr = 32.14 ρ̂ (0.052)

(
1

32.14

)
(8.33) (3.3)

This is all discussed in Appendix D including derivations of the conversion factors needed for USC
units. Since g · gc ≈ 1 in all our applications, we will not show it in our numerical calculations when
using USC units.1

3.6.1 Conductor casing

Conductor casing design is to some extent different from all other casing in a well. Most of the conductor
casing is not regular API casing, some is API line pipe, but beyond 20 in. OD, none is API casing. Being
of a typically large outside diameter and relatively thin wall thickness, it generally has a low collapse
rating. When conductor is set in a drilled hole and cemented, it is usually cemented with an inner string
(drill pipe), so there is little differential collapse pressure on the casing. Only rarely is conductor casing
capable of pressure control so burst is seldom a consideration. In offshore applications where a diverter
(similar to an annular preventer) is installed, its purpose is to divert a shallow gas kick away from
the rig to provide enough time for emergency evacuation before the gas breaks through the shallow
zones outside the conductor and under the rig. Rarely can conductor hold pressure and prevent gas from
breaking through to the surface. As for tension, most conductor casing is set at such shallow depth that
tension is not a consideration either. In many land locations, conductor is set by a small rig (“rat hole”
rig) before the drilling rig arrives on location. Many offshore platforms have conductor casing installed
as part of the platform installation process, though some require an additional conductor string once
the rig is on the well. In many water locations, the conductor is driven into the earth with a diesel pile
driver hammer. Additional joints are welded to the string as it is driven until it reaches a point where each
stroke of the hammer causes negligible additional penetration. The excess and damaged top portion is cut
off with a cutting torch. There are also conductor connections (even for drive pipe) that can be installed
before the conductor joints are sent to the location, thus eliminating the time consuming welding process

1 Please note that the conversion factor, gc, does not convert g. It converts the density of water, ρwtr, from lb/gal to slug/gal. This
traditional notation often confuses. Also please note that gc in this edition is a more conventional form and is the reciprocal of
the form used in the first edition.
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on the rig. There are a number of things to consider with drive pipe such as soil adhesion, elastic response
of the pipe to the hammer, hammer sizing and so forth. Where the conductor casing supports a wellhead
and additional strings of casing there can be a considerable compressive load.

3.6.2 Surface casing

In this section, we examine the particular loads as they apply to surface casing. Typically, the loads in
surface casing are relatively low compared to other casing strings in the well, but many casing failures
occur because of under-designed surface casing.

Surface casing collapse loads

The collapse load for surface casing depends on the worst-case scenario anticipated, in which the
pressure outside the casing exceeds the internal pressure. There are a number of possibilities, but the
most commonly accepted situation assumes that the surface casing is empty inside (usually caused
by lost circulation while drilling somewhere below) and has mud pressure on the outside of the same
magnitude as when the casing was run. We can modify the internal pressure, if we have some knowledge
of the worst case of lost circulation that could be encountered and how far the drilling fluid would drop
in the surface casing should that occur. But, in the absence of such knowledge, we should assume the lost
circulation situation could be severe enough to empty the surface casing. On the outside of the surface
casing, we know the pressure when the casing is run; it is the hydrostatic pressure of the mud column.
If the cement is of greater density than the mud (and it usually is) we easily can calculate the pressure
contribution of the cement. The question is, what is the pressure after the cement hardens? We can be
fairly certain that it will not be as high as the cement pressure before it hardened, but the actual pressure
depends on the integrity of the cement job, that is, whether there are channels in the cement or some
formations are not cemented properly. Typically, a safe assumption is that the highest pressure outside
the casing after cementing is the mud pressure before cementing. It may be less, but it is unlikely to be
greater.

Another possibility is a cementing related collapse or post plug-bump collapse where the internal
pressure is released after the top wiper plug seats on the top float (plug bump). The liquid phase cement
is almost always more dense than the displacement fluid (also a good cementing practice), and the
pressure differential could cause a collapse. Such an event is rare, but should always be considered.

Typical surface casing collapse design loads
• Cementing collapse
• Severe lost circulation

Surface casing burst loads

The worst case burst load on the surface casing is based on the maximum anticipated internal pressure
and the minimum anticipated external pressure. Let us look at the external pressure first. In collapse, we
sought the maximum external pressure, now we are interested in the minimum. The minimum external
pressure is likely to occur sometime after cementing. It is believed that, when cement hardens, fluid
in the spaces where the cement has channeled or is absent often is similar in density to freshwater or
saltwater. For that reason, many assume that the minimum external pressure is equivalent to a freshwater
gradient. Some believe that a freshwater gradient is not really likely and they use the mud pressure on
the outside, just as we did in collapse. That is also a valid external load but not the most severe that
could occur.
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The internal pressure for burst is a little more complicated. If we drill a well some distance below the
surface casing, encounter a gas kick, and get a large volume of gas in the casing, then the pressures could
get quite high. However, if the pressure is very high, the formations at the bottom of the surface casing
will fracture and gas flow will go into those formations. That being the case, it does not make sense
to design a surface casing string to withstand say, 6000 psi internal pressure, if the formation below
the surface casing fractures at 3500 psi. The typical procedure for determining burst load is to assume
that the maximum internal pressure is equivalent to the fracture pressure beneath the casing shoe and
gas from that point to the surface. In cases where gas is known to not be present, we could use oil or
saltwater as the internal fluid. However, gas gives us the most critical load and should always be used
unless there is absolute certainty that no gas is present in the zones between the surface casing and the
next string of casing.

In addition, there are some other possibilities listed in Table 3.2.

Typical surface casing burst design loads
• Internal pressure—equivalent of gas kick that fractures and flows into formation(s) below the casing shoe
• External pressure—freshwater gradient

Again, we must emphasize there many possibilities and different companies have a variety of
approaches. These, however, are simple and should be safe in most cases.

Surface casing load plots
One of the easiest ways to work with casing loads is to construct a set of design load plots. The
anticipated loads, such as collapse pressures and burst pressures, are plotted graphically as pressure
versus depth. This makes it very easy to visualize the loading, rather than relying on a lot of
formulas. (We still need formulas and calculations to construct the load plots, but they require very
few calculations.)

3.6.3 Intermediate casing

The intermediate casing loading often is straightforward, like the surface casing, except that the
magnitude of the loads generally is greater. For many designs the procedure is exactly the same as
our surface casing example.

Intermediate casing collapse loads

Collapse loading in intermediate casing is not often critical, but it can be. Many companies use a mud
gradient outside the intermediate casing and no pressure on the inside. This almost always is the case if
the intermediate casing later will become part of the production string after a production liner is set. If
the intermediate casing will eventually be covered by the production casing or a tieback string, then the
issue of collapse load will be different.

Unlike the surface casing, total evacuation seldom occurs nor is even possible in most cases. With
very accurate fracture data we could predict the depth to which the fluid inside the casing would fall,
but we never have data that reliable. Often when lost circulation is experienced while drilling below
intermediate casing, it results in a kick event because of the loss of hydrostatic head. This can be a very
serious situation, and the normal procedure is to try to keep the casing full in order to better manage
the kick. Obviously, the casing cannot be kept full using drilling mud because it has already fractured a
formation and will continue to enter the fracture and the available supply on hand will exhaust quickly. It
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is possible that no liquid will stay full to the top, but safety dictates that liquid continuously be pumped
into the well to keep formation fluids, especially gas, from reaching the surface if at all possible. This
usually means pumping freshwater or seawater to achieve this end. So for our lost circulation collapse
load, we will assume the fluid inside the intermediate casing is all freshwater (seawater would be used
offshore). Again we do not know what the outside pressure is, but we may conservatively assume it is a
mud channel (which is slightly greater than formation pressures).

However, in some cases, intermediate casing is set to allow the drilling of low-pressure formations
below the casing. In those cases, it is possible that the casing could be empty or nearly so.

Intermediate casing burst loads

The typical burst load for intermediate casing is similar to that for the surface casing. It assumes
a freshwater, saltwater, or drilling mud gradient on the outside and gas pressure on the inside. The
maximum gas pressure is assumed to be a full column of gas with a pressure equal to the lesser of (1)
that attributable to the source formation, or (2) that equivalent to the lowest fracture pressure below the
casing shoe. Those are the assumptions we will employ. In addition we also consider the plug-bump
pressure and the test pressure prior to drilling out the shoe track.

In the first edition, I included a discussion of a once popular alternate approach called the “maximum
load method” developed by Prentice [13]. It is based on the fracture pressure assumption above but
allows for a partial mud column in the casing in addition to the gas. This method allows for a lower
working pressure BOP stack to be utilized in many cases and consequently results in a considerable
cost saving. While the method is sound in principle, it has two serious weaknesses. First, the well must
be shut in before gas reaches a critical depth in the casing and certainly before it reaches the surface.
Second, a functioning pump and adequate mud supply must be available to replace mud in the casing
should any migrate downward into the gas column and flow into the fracture. A failure of either of
these two would result in a surface gas pressure exceeding the working pressure of the BOP stack and
wellhead. While the method was once quite popular and successful, I believe that no prudent operator
is willing to assume such a risk in present times. Consequently, I have excluded it from this edition.

3.6.4 Production casing

As one might imagine, there are a number of different ways to consider the loads in the production
casing. One purpose of the production casing is as a backup string for the production tubing, so that
it can support the same loads as a tubing string. However, there are some major differences in the
maximum loads that a production string might encounter as compared to a tubing string. In some cases,
the collapse load might be higher, and in other cases, the burst load might be significantly higher.

Production casing collapse load

The most common approach to collapse loading in a production string is to assume that the worst
collapse scenario is one in which the casing is empty and open to the atmosphere. This is not common,
but it does happen. Another possibility is to assume that the well always has some amount of liquid or
pressure inside it, equal to the formation pressure at the time (usually taken to be the depletion pressure).
The situation for each well may be different and can be complex. One should always keep in mind that
what may actually occur in the future may be difficult to foresee. Casing often collapses during the
producing life of some wells, because later in the life of the well someone attempted some operation
that was not foreseen when the casing string was designed.
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Production casing burst loads

As far as burst is concerned, the most common procedure is to assume that the casing must withstand
the maximum shut-in formation pressure in the form of a gas column for a gas well (or oil for an oil
well) from the perforations all the way to the surface. In other words, the production casing is a backup
for the tubing as far as burst pressure is concerned. And, there are many ways in which a situation such
as that can occur. However, one other situation can be much worse, especially with a gas well. Suppose
the tubing is set in a packer and a leak develops in the tubing near the surface. There is no problem
with casing burst at the surface, because it was designed for that pressure. But, what happens down-hole
because of the gas pressure on top of the packer fluid? The burst load is much higher in a situation like
this than with a pure gas column in the casing. Designing for a case like this can lead to a very expensive
casing string. Although this particular scenario is often ignored in production casing design, it is not at
all an uncommon situation in the producing life of many gas wells. A lot of wells in the world have
pressure relief valves on the tubing or casing annulus because of this very situation; the alternative is a
possible down-hole rupture of the production casing and an underground blowout.

3.6.5 Liners and tieback strings

Liners and tieback strings are special situations; however, the approach is very similar to that of either
the intermediate or production casing. The thing that is different in the load curve for a liner or a tieback
is that the load curve is not just for the liner or tieback but for the casing in which it hangs if it is a liner
or the liner and tieback combination. Sometimes, liners must meet the requirements of two functions
(see Figure 3.1). In other words, a liner or a tieback is never designed by itself but as a contiguous part
of another string of casing. The only thing that really differs as far as the load is concerned is the tension
load, since it is a separate part of a longer string.

In the figure, we see a well with a production liner and two possibilities for final completion. On the
left, the well could be completed as is, with the production liner and the intermediate casing forming

Production
casing

Production
liner

Tieback
casing

Conductor
casing

Surface
casing

Intermediate
casing

150 ft

3000 ft

10,500 ft

14,000 ft

Figure 3.1 The example well with production liner and two completion options.
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Conductor casing
150 ft

Surface casing
3000 ft

Tieback casing

Drilling liner

Intermediate casing
10,500 ft

Production liner
14,000 ft

Figure 3.2 The example well with a drilling liner and a production liner.

the final production string. In this case, the intermediate string is designed to function as both the
intermediate string and the upper portion of the production string. In the second case, where a tieback is
run, the intermediate casing serves only as an intermediate string and the liner and the tieback together
serve as the production casing. Figure 3.2 shows another common liner situation.

In this case, there are two liners: a drilling liner and a production liner. On the left, the intermediate
casing serves its normal purpose, but it also serves as a portion of a second intermediate string in
conjunction with the liner, so both have to be designed as one string and the string has to satisfy both
functions. On the right, the drilling liner is tied back to the surface and a production liner run below it.
In a case like this, the design depends on when the tieback is run. If the tieback is run immediately after
running the drilling liner, the intermediate casing serves as intermediate only until the tieback is run,
then the drilling liner and tieback serve as a second intermediate string, and finally, in conjunction with
the production liner, they serve as a production string. If the tieback is run after the production liner
is run, then the intermediate casing has to be designed to perform its first function as well as a second
intermediate string with the drilling liner. Finally, like before, the tieback, the drilling liner, and the
production liner all function as the final production string. It may sounds more complex than it actually
is, but the only thing to keep straight is to be sure all strings are designed to meet all the required loads
to which they will be subjected in their various roles during drilling and production.

3.6.6 Other pressure loads

There is another type of pressure loading that has caused problems in wells in more recent times, and
that is collapse and/or burst resulting from thermal loading of fluids trapped in annular spaces. While
this type of loading has been common for so many years and easily dealt with in most wells, it has
become problematic more recently in subsea completions. For wells that reach the surface, it is common
practice (and should be mandatory) to install and maintain pressure gauges on all annuli at the wellhead.
If trapped pressure becomes excessive, it can be released at the surface. Not so with subsea completions
which generally have no means to monitor annular pressure nor any means of pressure release. In those
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types of wells, it is necessary to design the casing to withstand those pressures and to possibly tailor the
annular fluids to reduce expansion (not always possible). But in order to quantitatively determine the
thermal loads, it is necessary to determine the temperature which involves dynamic heat conduction
and convection modeling and knowledge of the volumetric coefficients of thermal expansion, heat
conductance, flow properties, compressibility, etc. of the annular fluid. Most of these material properties
are also temperature and pressure dependent. A number of papers have addressed this topic, and Halal
and Mitchell [14] is a good place to start.

3.7 Example well

The best way to understand the construction of the load plots is with an example. We use the depth
selection curve, Figure 2.5 that we plotted in Chapter 2 along with a linear temperature gradient
equation, T = 74+ 0.0018 h and construct a data table for our example well, Table 3.3.

3.7.1 Conductor casing example

For our example well, we will consider 20 in. conductor casing set in a drilled hole at 150 ft.

Conductor casing data
Size: 20
Depth: 150 ft
Mud density: 9.0 ppg

Cementing data
Cement to surface with 1.32 SG cement slurry, use inner string for cementing

Conductor collapse loads

Our example well is an on-shore well and the conductor will be cut off to install the casing head on
the surface casing, so it will not be subject to any significant loads. It is not uncommon to float shallow
conductor into the hole when using a small conductor rig, though not a recommended practice. The
differential pressures at thetop and bottom are

�p0 = pi − po = 0− 0 = 0
�p150 = 0− 0.052 (1.08) (8.33) (150) = −70 psi

Table 3.3 Example Well Data

Depth Fm Press Mud Dens Frac Press Frac Marg

(ft) (SG equiv) (SG) (SG equiv) (SG equiv) (◦F)

0 1.01 1.02 - - 74
3000 1.05 1.11 1.48 1.42 128

10,500 1.36 1.42 1.88 1.82 263
14,000 1.78 1.84 1.94 1.88 328
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We will use an inner string for cementing so assuming 1.32 SG cement outside and 1.08 SG mud on the
inside, the differential pressures are
�p0 = pi − po = 0− 0 = 0
�p150 = 0.052 (1.08− 1.32) (8.33) (150) = −16 psi

We are considering here fairly consolidated soils. In some near wetland areas, the soils may be almost
liquid and could exert higher pressures, but not likely in excess of 1.0 psi/ft gradient (2.31 SG), which
would give us −80 psi in the cementing calculation above. Collapse in conductor casing is uncommon
in most land wells, but is not uncommon in offshore operations. Large diameter line pipe has a greater
diameter to wall thickness ratio and generally a lower yield strength than we normally are accustomed
to and a collapsed conductor that renders a platform slot unusable is a very serious matter. Do not ignore
the collapse potential of conductor.

Conductor burst load

As we mentioned, conductor seldom provides any pressure containment other than possibly as a diverter.
So the only pressure requirement is that it should at least be as strong as the fracture pressure at the shoe
which we have no way of determining in most cases. If we make a guess that it cannot be higher than
1.0 psi/ft that gives us 150 psi for our example (it could be higher in some places).

Additional considerations

While it may appear that we just brushed through the conductor loading, we have done more than is
usually done for most on-shore applications. Where the conductor will not be supporting a wellhead,
we often depend on the pile driving company to recommend and even supply the conductor. In the
case of small specialty land rigs that routinely set conductor before the drilling rig moves on location,
the choice is sometimes nothing more than the corrugated road culvert material or whatever pipe they
can buy cheaply from a salvage supplier. And to some it might come as a surprise but there are still
a very large number of wells drilled without conductor casing at all. Where we really have to concern
ourselves with conductor casing is where it may support the wellhead (and subsequent casing strings)
and in offshore operations and other new areas where we may actually require soil boring samples and
other data for which we can justify the higher costs. In some deep water locations, the conductor is jetted
into the seabed floor rather than driven or run into a drilled hole.

3.7.2 Surface casing example

Surface casing data
Size: 13-3/8 in.
Depth: 3000 ft
Mud density at shoe ft: 1.11 SG at 3000 ft
Fracture pressure at shoe: 1.48 SG equiv. at 3000 ft
Temperatures: 74 ◦F at surface, 128 ◦F at 3000 ft
Max mud dens and temp before next casing string: 1.42 SG, 263 ◦F at 10,500 ft

Cementing data
Conventional cementing procedure. Cement to surface (required). Lead slurry: 2700 ft, 1.37 SG; tail
slurry: 300 ft, 1.85 SG. Use 50% excess on lead slurry to assure cement to surface. Displace with 1.11 SG
mud and bump plug with 500 psi above final displacement pressure.
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Preliminary calculations
We will be using gradients of the mud, water, and cement in a number of calculations, we will do those
separately here.

γwtr = 1.0 (0.052) (8.33) = 0.433 psi/ft

γmud = 1.11 (0.052) (8.33) = 0.481 psi/ft

γfrm = 1.05 (0.052) (8.33) = 0.455 psi/ft

γfrac = 1.48 (0.052) (8.33) = 0.641 psi/ft

γcmt−lead = 1.37 (0.052) (8.33) = 0.593 psi/ft

γcmt−tail = 1.85 (0.052) (8.33) = 0.801 psi/ft

γmud−max = 1.42 (0.052) (8.33) = 0.615 psi/ft

γfrm−max = 1.36 (0.052) (8.33) = 0.589 psi/ft

The two “maximum” gradients are the mud density and formation pressure at the formation at 10,500 ft
which will be part of the borehole environment before intermediate casing is set.

Cement/fracture check
Because cement density is almost always greater than mud density in surface holes, we should compare
the hydrostatic head of the cement with the fracture pressure before proceeding.

pcmt = γcmt−lead Lcmt−lead + γcmt−tail Lcmt−tail

= 0.593 (2700)+ 0.801 (300) = 1841 psi

pfrac = γfrac h = 0.641 (3000) = 1923 psi

∴ pcmt < pfrac

This is a rather narrow margin, and in practice we might consider modifying the cement program to
avoid possible lost circulation.

Surface casing collapse loads

In Table 3.1, we see there is one collapse situation in the installation stage, one in the drilling stage, and
none in the production stage of operations.

Installation—conventional cementing (post plug bump)
The only collapse situation arising from cementing is attributable to the denser cement immediately
after the plug has bumped and the internal pressure has been released, post plug-bump collapse loading
as shown in Figure 3.3a. The float acts as a check valve to prevent back flow of the cement, and there
is a pressure differential between the un-set cement in the annulus and the less dense displacement fluid
inside the casing. To calculate the cementing collapse load, we calculate the differential pressures at
the surface and at the shoe. But here, the cement gradient is not a constant; it changes at 2700 ft—
the interface between the lead slurry and the tail slurry. Consequently, a differential pressure plot will
require three points.

�p = pi − po

�p0 = 0− 0 = 0 psi



Pressure load determination 55

(a) (b)

Channel
Mud, 1.11 SG

Evacuated

3000 ft

Cmt, 1.37 SG

Cmt, 1.85 SG

Mud, 1.11 SG

3000 ft

Figure 3.3 Surface casing collapse: (a) cementing, post plug bump and (b) lost circulation, evacuated.

�p2700 = (γmud − γcmt−lead) Lcmt−lead

= (0.481− 0.593) 2700 = −302 ≈ −300 psi

�p3000 = (γmud − γcmt−tail) Lcmt−tail +�p2700

= (0.481− 0.801) 300+ (−300) = −396 ≈ −400 psi

This is an insignificant collapse load, and we need not consider it in our design. Recall from
Chapter 1 that API standards roundoff pressure ratings to the nearest 10 psi, and we will generally
follow that convention except where roundoff in intermediate results may affect subsequent calculations
significantly.

Drilling—lost circulation
The most common cause of surface casing collapse is lost circulation. The only question is as to the
degree of severity. Will the mud level fall below the surface casing shoe or will it reach equilibrium
somewhere inside the surface casing? Most of the time it is somewhere inside the surface casing,
but we seldom know where. In an area where we can establish the weakest formation pressure with
reasonable certainty, we can actually calculate the mud level in the surface casing. In absence of that
data, the safest approach is to assume it is severe enough to drop all the way below the shoe, and this
is the approach most designers use. The other question we need answered is, what kind of fluid is on
the outside? Surface casing is usually cemented to the surface, but we never rely on the cement to
keep any hydrostatic pressure off the casing. We must always assume that the cement job is a failure
or at least a partial failure and we cannot know in advance at what depths it will be a failure. The
only safe assumption we can make then is that the hydrostatic pressure on the outside of the casing is
the formation pressure or the drilling mud pressure when the casing was run. Over time it will likely
be the formation pressure, but initially there may be a long channel of drilling mud that was bypassed
by the cement slurry and still maintains near original hydrostatic mud pressure. We will always assume
then that the fluid pressure in the annulus after the cement has set is equal to the hydrostatic pressure
of the mud it was run in. We will calculate a collapse load for severe lost circulation with the surface
casing empty and the 1.11 SG drilling mud on the outside (see Figure 3.3b).



56 Casing and Liners for Drilling and Completion

Post plug-bump
c

p

d

l

Figure 3.4 Example surface casing collapse loads.

�p0 = 0− 0 = 0 psi

�p3000 = pi − po = 0− γmud h

= 0− 0.481(3000) ≈ −1440 psi

The surface casing collapse load is plotted in Figure 3.4.

Surface casing burst loads

Next, we examine the burst loads for surface casing. Table 3.2 shows three burst loads in the installation
stage and four in the drilling stage. It is seldom necessary to calculate all of these once you have done a
few. We will do all of these in the installation stage, but will do only two in the drilling stage.

Installation—cementing
Because the cement density is usually greater than the mud density, there is a possibility, though
remote, that the float could plug while cement is still inside the casing. We assume that should such
an unexpected event happen, some additional amount of pressure will be applied at the surface before
the pumps can be stopped. Few actually consider this possibility in casing design, but we will include
it here for illustrating the possibility. We have specified our cement volumes in terms of column length
in the annulus of the wellbore, so it is necessary to calculate the column length inside the casing. The
column lengths are inversely proportional to the ratio of the cross-sectional areas of the inside area to
the annular area:

k i/o = d2
bit − d2

o

d2
i

= 17.5002 − 13.3752

12.6152 = 0.800
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In this calculation, it was necessary to use an inside diameter, even though we have not yet made a
13-3/8 in. casing selection. So we used a typical inside diameter. The difference is negligible in our load
calculations because we never know the hole diameter precisely. One precaution however, this method is
not valid in inclined wellbore unless the inclination is constant throughout the interval. If the inclination
is not constant (and it seldom is), we must use the measured lengths of the columns along the wellbore
path then convert the internal length to vertical depths.

Next we calculate the lengths of the cement columns inside the casing. We are not using a proprietary
spacer here since we are cementing to the surface, and we will assume that the lead slurry acts as a
scavenger/spacer. Recall also that we are using 50% excess in our lead slurry to assure that we get cement
to the surface, so while we used 2700 ft as the column length in the annulus for previous calculations,
we must account for the excess when it is inside the casing. So let us calculate the lengths of the cement
internally.

Lcmt−lead = 0.800 (1.5) (2700) = 3240 ft

Lcmt−tail = 0.800 (300) = 240 ft

Lcmt−lead−actual = 3000− 240 = 2760 ft

We see that the excess lead slurry will actually fill the casing by itself so the worst case here is with
either the lead slurry in the casing and mud outside or the tail slurry and lead slurry inside and mud
and part of the lead slurry outside. We do not know which so we will calculate both. With only the lead
slurry inside, mud outside, and 1000 psi pump pressure, we have

�p0 = 1000− 0 = 1000 psi

�p3000 = 1000+ (0.593− 0.481) 3000 ≈ 1340 psi

If on the other hand, the tail slurry is in the casing just as we start to pump the displacement fluid we
have to determine the interface depth of the mud and lead slurry on the outside (see Figure 3.5a).

Llead−outside = [3240− (3000− 240)]
/

0.800 = 600 ft

Lmud−outside = 3000− 600 = 2400 ft

1000 psi

Mud, 1.11 SG

Cmt, 1.37 SG

Cmt, 1.85 SG

Float
  plugged

3000 ft3000 ft

(a) (b)

Water
  channel,
  1.00 SG

Gas
  injection 3000 ft

Figure 3.5 Surface casing burst: (a) cementing, float plugged and (b) gas kick.
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Now we calculate the pressure differentials at the various fluid interfaces, assume 1000 psi excess surface
pressure when the pumps are stopped.

�p0 = 1000− 0 = 1000 psi

�p240 = 1000+ (0.801− 0.481) (240) ≈ 1080 psi

�p2400 = 1000+ 0.801 (240)+ 0.593 (2400− 240)− 0.481 (2400)

≈ 1320 psi

�p3000 = 1000+ (0.801) (240)+ 0.593 (3000− 240)− 0.481 (2400)

− 0.593 (600) ≈ 1320 psi

Installation—plug bump
When the top wiper plug bumps at the float collar, the pumping pressure is increased by some amount to
assure the plug has actually seated. In our example we have chosen 500 psi as the additional plug-bump
pressure. At this point, all cement should be in the annulus, and the casing should be full of displacement
fluid. At the surface, the differential pressure is the difference between the inside and annular hydrostatic
heads plus the plug-bump pressure.

�p0 = pcmt−3000 − pdspl−3000 +�pbump

= 0.593 (2700)+ 0.801 (300)− 0.481 (3000)+ 500

≈ 900 psi

At the shoe, the differential pressure is the final surface pressure at the surface (from the previous
calculation) minus the annular hydrostatic head.

�p3000 = �p0 + pdspl−3000 − pcmt−3000

= 900+ 0.481 (3000)− 0.593 (2700)+ 0.801 (300)

≈ 500 psi

If we did this correctly, the differential pressure at the shoe is the plug-bump pressure (± some roundoff
error) because that is the differential pressure we are attempting to put on the plug to be sure it is seated.
Note that in these calculations, we are ignoring the length of the shoe track (distance between the float
collar and the float shoe—usually 60-70 ft) as being insignificant to our load calculations.

Installation—pressure test
It is customary (and often required) to pressure test casing before resuming drilling. Many regard the
plug bump as a pressure test and adjust the bump pressure accordingly. This has a definite advantage
in that a pressure test after the cement has cured involves the risk of damaging the cement sheath by
radial expansion and axial contraction of the casing if the cement has not properly cured. However, in
many areas, regulations require the test prior to resuming drilling and there is no choice. We do not
know the hydrostatic pressure outside the casing when this test is conducted. The most likely worst case
is that the cement job went badly and left a mud channel from the surface all the way to the bottom.
Assuming the test fluid in the casing is also drilling mud, then any pressure applied to the surface gives
us a constant differential test of the entire string equal to the applied surface pressure. We will assume
that here and that the 1500 psi test pressure required gives a �p = 1500 psi at all points in the surface
casing string.
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Drilling—maximum mud density
As we drill down to the next casing point (10,500 ft), we will increase the mud density up to 1.42 SG.
This does create a differential pressure on the casing though it is generally insignificant, but for
illustration, we will calculate it. Again, we have no idea what the annular pressure is but a worst case
assumption might again be a freshwater channel from top to bottom.

�p0 = 0− 0 = 0 psi

�p3000 = (γmax − γwtr) h = (0.615− 0.433) 3000 ≈ 550 psi

Drilling—gas kick
The worst case drilling burst load on surface casing usually occurs during a gas kick. Table 3.2 lists
two other possibilities: an oil kick and a saltwater kick. Oil and saltwater kicks present less severe
burst loading than gas, assuming the same formation pressure at the source of the kick. There are areas
in the world where there are no gas bearing formations, so we will also present an oil kick example for
the intermediate casing. In a gas kick, the worst case scenario is one in which gas gets all the way to
the surface. There are two possibilities: (1) the source pressure is low enough that the pressure resulting
from a full gas column does not exceed the fracture pressure of any formation below the casing shoe
(the less common of the two), and (2) the gas pressure does exceed the fracture pressure of a formation
below the shoe, and in this case, the surface pressure is that of a column of gas from the fractured zone
to the surface with the fracture pressure as the maximum pressure in the casing (the more common of
the two).

A significant difficulty in this type load calculation is determining the source pressure. Normally we
would think the highest formation pressure below the casing would be the one to use, and that is true for
an intermediate string or surface string that requires only a production string below it. In those two cases,
we know the highest pressures we will encounter. But for surface casing followed by an intermediate
casing string to be set in a pressure transition zone the kick may come from a higher pressure zone than
was planned to be cased off by the intermediate string. For example, suppose an intermediate string is
to be set in a zone with a 1.50 SG equivalent pressure. We calculate the gas pressure to the surface and
find that it does not result in fracture of any formation below the surface casing shoe. We may use that
gas pressure in calculating the surface casing burst load, and that is typical. But suppose that as we are
drilling this well, we encounter the transition zone prematurely and inadvertently drill into a zone below
it with a 1.70 SG equivalent pressure. This is not uncommon and is how many gas (and saltwater) kicks
occur. In such a case, the gas column usually fractures a formation below the surface casing shoe. Gas
flows into this zone at its fracture pressure (an underground blowout), and if the gas column does reach
the surface, its pressure is dictated by the fracture pressure of the fractured zone it is flowing into rather
than its source zone. This is generally the worst case scenario and the one we will use in our example
(see Figure 3.5b).

First we will determine if gas from the formation at 10,500 ft will fracture the formation at the casing
shoe. If not, then we will look at the formation pressures a little below 10,500 ft in case we inadvertently
drill beyond the planned casing seat because of geological uncertainty (or carelessness). Our maximum
formation pressure at 10,500 ft is 1.36 SG equivalent, and our fracture pressure at the shoe at 3000 ft is
1.88 SG equivalent.

pfrac = 0.641 (3000) ≈ 1920 psi
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That is a relatively low fracture pressure. The gas pressure at 10,500 ft is

p10500 = 0.589 (10500) ≈ 6180 psi

Using Equation (3.1), the gas pressure at the surface casing shoe is:

p3000 = 6180 exp

⎡
⎣ 16 (3000− 10500)

1545
(

460+ 128+263
2

)
⎤
⎦ ≈ 5490 psi

That exceeds the fracture pressure of 1920 psi by a considerable margin, so in this case, the formation
at the shoe will fracture and we will assume a gas column from there to the surface.

p3000 = pfrac ≈ 1920 psi

Knowing the gas pressure is 1920 psi at 3000 ft, we calculate the gas pressure at the surface:

p0 = 1920 exp

⎡
⎣ 16 (0− 3000)

1545
(

460+ 74+128
2

)
⎤
⎦ ≈ 1820 psi

This gives us a maximum surface pressure of 1820 psi and a nasty underground blowout, but the casing
and BOP are safe if we use 3000 psi rated BOP and design our surface casing accordingly. Those are the
pressures inside the surface casing, what do we use outside? At the surface, we use atmospheric pressure
which is zero for our purposes, but what fluid is in the annulus. As already discussed, the heaviest fluid
in the annulus would be our drilling mud when the casing is run. We could also use a gradient equivalent
to our formation pressure at the shoe or possibly salt water. The worst case we could have for surface
casing would be freshwater. Your company may have its own policy, but for surface casing, we will use
a freshwater density of 1.0 SG. (γwtr = 0.433).

�p0 = pi − po = 1820− 0 = 1820 psi

�p3000 = 1920− 0.433 (3000) ≈ 620 psi

So now we plot our burst load lines in Figure 3.6.

3.7.3 Intermediate casing example

The intermediate casing loading is often straight forward like the surface casing, except that the
magnitude of the loads is generally greater. In many strings of intermediate casing, the maximum
pressure from a gas kick is not sufficient to fracture any formation below the shoe, and hence, the
maximum surface pressure will be from a full column of gas.

Intermediate casing data
Size: 9-5/8 in.
Depth: 10,500 ft
Mud density at shoe ft: 1.42 SG at 10,500 ft
Fracture pressure at shoe: 1.88 SG equiv. at 10,500 ft
Temperatures: 74 ◦F at surface, 263 ◦F at 10,500 ft
Max mud dens and temp before next csg string: 1.84 SG, 326 ◦F at 10,500 ft
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Figure 3.6 Example surface casing burst loads.

Cementing data
Cement to 500 ft inside surface casing, 1000 ft tail slurry at 1.91 SG, 7000 ft lead slurry w/50% excess at
1.44 SG, 1000 ft spacer at 1.44 SG, displace plug w/1.42 SG mud, bump plug with 1000 psi above final
displacement pressure.

Preliminary calculations
Here, we calculate the gradients we will be using for the intermediate casing.

γwtr = 1.0 (0.052) (8.33) = 0.433 psi/ft

γmud = 1.42 (0.052) (8.33) = 0.615 psi/ft

γfrm = 1.36 (0.052) (8.33) = 0.589 psi/ft

γfrac = 1.88 (0.052) (8.33) = 0.814 psi/ft

γcmt−lead = 1.44 (0.052) (8.33) = 0.624 psi/ft

γcmt−tail = 1.91 (0.052) (8.33) = 0.827 psi/ft

γmud−max = 1.84 (0.052) (8.33) = 0.797 psi/ft

γfrm−max = 1.78 (0.052) (8.33) = 0.771 psi/ft

The two “maximum” gradients are the mud density and formation pressure at the formation at 14,000 ft
which will be part of the borehole environment before production casing is set.

Cement/fracture check
Cement density is almost always greater than mud density in intermediate holes, and we should compare
the hydrostatic head of the cement with the fracture pressure before proceeding. Because the cement
slurry is not designed to reach the surface, we must consider the consequences of the 50% excess in
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the lead slurry. Since the lead slurry is more dense than the drilling mud (1.44-1.42), we must assume
the greatest hydrostatic pressure would occur if the hole were perfectly in-gauge (exactly 12-1/4 in.
diameter), and the excess cement would increase the column length of the lead slurry by 50%. So instead
of a 7000-ft column, we would have 1.5(7000) = 10, 500 ft, which would fill the annulus by itself. So
if we have a 1000 ft of tail slurry, the maximum length of the lead slurry would be 10500− 1000 =
9500 ft. We now calculate the pressures.

pfrac = 0.814 (10500) ≈ 8550 psi

pmax cmt = 0.827 (1000)+ 0.624 (9500) ≈ 6760 psi

∴ pmax cmt < pfrac

Intermediate casing collapse loads

There are three collapse loads shown in Table 3.1, and they are collapse caused by the cement slurry
after the plug is bumped and the internal pressure is released, and two lost circulation scenarios. In the
drilling category, we will only need one of the lost circulation scenarios and not both.

Installation—cementing
Post plug-bump collapse is the only case we need examine for this operational stage. We already saw
in our preliminary calculations that the worst case for annular pressure is a gauge hole where the lead
slurry reaches the surface. That will be our assumption here. The fluid inside the casing is 1.42 SG
mud, and in the annulus is 1.44 SG cement from surface to 9500 ft and 1.91 SG mud from 9500 to
10,500 ft.

�p0 = pi − po = 0− 0 = 0 psi

�P9500 = (0.615− 0.624)9500 ≈ −90 psi

�p10500 = −90+ (0.615− 0.827) 1000 ≈ −300 psi

As with the surface casing, the post plug-bump collapse load is insignificant.

Drilling—lost circulation
As previously discussed, lost circulation always poses a collapse possibility for intermediate casing. We
will assume here that in the event of lost circulation, the casing will be kept full of water to avoid a
kick. Again we do not know what the outside pressure is, but we may conservatively assume it is a mud
channel (which is slightly greater than formation pressures).

In the case of freshwater in the pipe:

�p0 = 0

�p10500 = (0.433− 0.615)10500 ≈ −1910 psi

Should we prefer to assume an empty intermediate casing:

�p10500 = (0− 0.615) 10500 ≈ −6460 psi

We now plot the first two possibilities in Figure 3.7 as our collapse loads.
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Figure 3.7 Example intermediate casing collapse loads.

Intermediate casing burst loads

For the intermediate casing, we must consider three burst loads in the installation stage. In the drilling
stage, we need only calculate the cementing load and one of the three kick cases. We will calculate the
gas kick as it is the most severe, but for illustration, we will also calculate the oil kick as an example for
those who do not have gas to contend with.

Installation—conventional cementing
Again we mention that it is a rare occurrence that a float should plug with the cement still inside the
casing, but we will again illustrate the possibility.

In the intermediate casing, the installation burst possibilities are the same as in the surface casing.
First, we look at the possibility of the float plugging or the annulus packing off while the cement is still
in the casing and the cementer pumping up to 1000 psi before shutting down, and we need the ratio of
column lengths inside to outside.

ki/o = d2
bit − d2

o

d2
i

= 12.252 − 9.6252

8.6812 = 0.762

Next we calculate the lengths of the cement columns inside the casing. Recall also that we are using
50% excess in our lead slurry to assure that we get cement to the surface. While we used 7000 ft as the
column length in the annulus for previous calculations, we must account for the excess when it is inside
the casing. So let us calculate the lengths of the cement internally.

Lspac = 0.762 (1000) = 762 ft

Llead = 0.762 (1.5) (7000) = 8001 ft

Ltail = 0.762 (1000) = 762 ft
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Ltotal = 762+ 8001+ 762 = 9525 ft

Lmud = 10500− 9525 = 975 ft

There are two ways to look at this. One case would be that the spacer has reached the shoe and there
is 975 ft of displacement fluid in the casing on top of the tail slurry. The other case of 975 ft of mud
ahead of the spacer just as the last of the tail slurry is pumped into the pipe gives a greater differential
burst pressure near the surface and through the string, although there is not a significant difference. The
latter is the case we will use. With the mud ahead, spacer, lead slurry, and tail slurry just into the pipe
and 1000 psi additional pressure before the pump can be stopped we have

�p0 = 1000− 0 = 1000 psi

�p762 = 1000+ (0.827− 0.615) (762) ≈ 1160 psi

�p8763 = 1160+ (0.624− 0.615) (8001) ≈ 1230 psi

�p9525 = 1230+ (0.624− 0.615) (762) ≈ 1240 psi

�p10500 = 1240+ (0.615− 0.615) (975) ≈ 1240 psi

Installation—plug bump
Next to consider is the plug bump which is identical to the placement pressure with the addition of the
bump pressure.

�p0 = �pbump + pmax cmt 10500 − pdspl 10500

= 1000+ 0.827 (1000)+ 0.624 (9500)− 0.615 (10500) ≈ 1300 psi

�p9500 = 1300+ (0.615− 0.624) (9500) ≈ 1210 psi

�p10,500 = �pbump = 1000 psi

The final result in a plug-bump calculation should always be equal to the additional plug-bump pressure
(within some roundoff error).

Installation—test pressure
Pressure testing the casing after cement has set and before drill out with the same mud used to drill
the hole will result in a differential pressure equal to the test pressure. We will use 2500 psi as the test
pressure and no calculations are required.

After drilling a few feet below the shoe, it is usually the case with intermediate casing to perform
a shoe integrity test before weighting up the mud and drilling farther. The integrity test pressure is
equivalent to the maximum mud density that will be used in drilling below the shoe. The reason this
test is performed before weighting up the mud is so that if it will not hold the pressure, then possible
remedial steps can be taken with minimum mud loss. Otherwise if the mud had already been weighted
up to 1.84 SG, a fracture during the test would result in loss of more expensive mud and the mud density
would have to be reduced back to 1.42 SG before taking remedial steps. With a column of 1.42 SG mud,
the surface pressure necessary to test the casing to the equivalent of 1.84 at the shoe is

p0 test = (0.797− 0.615)10500 ≈ 1910 psi
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Like the casing test pressure, this pressure results in the same differential pressure all the way to bottom
since we are assuming 1.42 SG mud in the annulus after cementing. This is less than the test pressure of
2500 psi, so it is not considered in the burst loading.

Drilling—maximum mud density
The maximum mud density anticipated below 10,500 ft is 1.84 SG. We will assume that the fluid outside
the casing is a channel of 1.42 SG mud in which it was run.

�p0 = 0

�p10500 = (0.797− 0.615) 10500 ≈ 1910 psi

This is the same as the integrity test differential pressure.

Drilling—gas kick
The worst case is that of a severe kick that results in the casing being full of gas at either a pressure
attributable to the zone of the kick or the weakest fracture pressure below the shoe whichever results in
the least pressure at the surface. This is exactly the situation we examined at the surface casing though
here we have a better fix on the maximum pressure than in the surface casing application because we
plan to stop at the producing formation. (In some cases, though, there is a possibility of drilling into
higher pressures below the target zone and that must always be considered.) So for our example, we can
see that the maximum formation pressure of 1.78 SG occurs at 14,000 ft. The fracture gradient at the
10,500 ft shoe is 1.88 SG equivalent. We now calculate the formation pressure at 14,000 ft and the gas
pressure at the intermediate shoe from the formation pressure.

pfm−14000 = (0.770) 14000 = 10, 780 psi

pgas−10500 = 10, 780 exp

⎡
⎣ 16 (10500− 14000)

1545
(

460+ 263+326
2

)
⎤
⎦ ≈ 10, 270 psi

pfrac−10500 = (0.816) 10500 ≈ 8570 psi

From these calculations, we find the formation gas pressure will exceed the fracture pressure at the
shoe by about 1700 psi. We will then assume that the formation will fracture at the shoe, gas will enter
that formation and that the maximum surface pressure will be determined by the fracture pressure at the
shoe. With the fracture pressure at the shoe as the gas pressure at 10,500 ft, we can now calculate the
gas pressure at the surface.

pgas−0 = 8570 exp

⎡
⎣ 16 (0− 10500)

1545
(

460+ 74+263
2

)
⎤
⎦ ≈ 7210 psi

We have our top and bottom internal pressures. The outside pressure at the top is zero, so it remains
to determine the outside pressure at the bottom. What is the fluid outside the casing? Earlier we used the
mud in which the casing was run, 1.42 SG. When our kick occurs it is now several days (or weeks?) later.
Perhaps the annular space now has the pressure of the formations. Perhaps in setting the cement gave up
free water to form a freshwater channel. We cannot know with any degree of certainty what is behind
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the casing. Rather than debate this as many individuals and companies continue to do we will select
the worst case which is fresh water. This is a bit inconsistent with what we did with the test pressures
and shoe tests, but this one is critical and failure always has disastrous results. So, using freshwater as a
backup, the differential pressures for burst are

�p0 = 7210− 0 = 7210 psi

�p10500 = 8570− 0.433 (10500) ≈ 4020 psi

Drilling—oil kick
Some producing areas in the world do not have any potential for a gas kick but do have the possibility of
an oil kick. Almost no treatment on casing design considers an oil kick, so let us use this same example
and assume the production is oil rather than gas. Assume an oil gradient instead of gas and assume
that the oil in our well is 35 API gravity at 60 ◦F. First we will determine if the oil pressure from the
formation at 14,000 ft can cause fracture at the shoe. The average temperature of the oil from bottom to
surface is (326+ 74)/2 = 200 ◦F, and that gives us an average API gravity of approximately 46. Then
using the API formula relating specific gravity and API gravity

Specific gravity = 141.5

API Gravity+ 131.5
= 141.5

46+ 131.5
= 0.80

We can then convert that to a gradient as follows

γoil = 0.052 (0.80) (8.33) = 0.347 psi/ft

(Please note that this is all approximate, but close enough for casing design.) For a column of oil from
14,000 to 10,500 ft, the pressure at 10,500 ft would be:

poil(10500) = 10774− 0.347 (14000− 10500) ≈ 9560 psi

The oil pressure exceeds the shoe fracture pressure so the bottom pressure with oil will also be the shoe
fracture pressure, and the pressure differential at the shoe will be the same as with the gas. Using the
fracture pressure at the shoe, 8570 psi, we calculate the surface pressure differential with oil:

�p0oil = 8570− 0.347 (10500) ≈ 4930 psi

The intermediate casing burst loads are plotted in Figure 3.8.

3.7.4 Production casing example

Production casing requires some slightly different considerations from the previous strings. It serves as
a pressure backup for the tubing string and must necessarily retain its integrity for the life of the well.
Generally, no drilling will take place below it. But in cases where possible deepening at a later date may
be contemplated, then it must also be designed as an intermediate string for the deepening operations.

Production casing data
Size: 7 in.
Depth: 14,000 ft
Formation pressure at shoe: 1.78 SG equiv. at 14,000 ft
Mud density: 1.84 SG at 14,000 ft
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Figure 3.8 Example intermediate casing burst loads.

Fracture pressure at shoe: 1.94 SG equiv. at 14,000 ft
Temperature at surface and shoe: 74 ◦F, 326 ◦F
Production: gas and condensate
Completion: 2-7/8 in. tubing with wire line set packer just above perforations near bottom.

Cementing data
Cement to intermediate casing with 500 ft overlap, 1000 ft tail slurry at 1.99 SG, 3000 ft lead slurry
at 1.87 SG ppg, 1000 ft spacer (1.84 SG) and displace plug w/1.20 SG brine, bump plug with 1200 psi
above final displacement pressure. Use 25% excess on all cement.

Preliminary calculations
Here we calculate the gradients we will be using for the production casing.

γwtr = 1.0 (0.052) (8.33) = 0.433 psi/ft

γmud = 1.84 (0.052) (8.33) = 0.797 psi/ft

γfrm = 1.78 (0.052) (8.33) = 0.771 psi/ft

γfrac = 1.94 (0.052) (8.33) = 0.840 psi/ft

γcmt−lead = 1.87 (0.052) (8.33) = 0.810 psi/ft

γcmt−tail = 1.99 (0.052) (8.33) = 0.862 psi/ft

γspcr = 1.84 (0.052) (8.33) = 0.797 psi/ft

γdispl = 1.20 (0.052) (8.33) = 0.520 psi/ft
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Cement/fracture check
This conventional cementing job is designed to reach 500 ft up into the intermediate string set at
10,500 ft. It calls for 25% excess on both the lead and tail slurries. Since both are more dense than
the drilling mud, we must assume the longest possible cement columns, i.e., a gauge hole diameter. So
instead of a 3000 ft lead column, we would use 1.25(3000) = 3750 ft. Likewise with the tail slurry, we
would use 1.25(1000) = 1250 ft. We now calculate the worst case pressures.

pfrac = 0.840 (14000) ≈ 11, 760 psi

pmax cmt = 0.810 (3750)+ 0.862 (1250)+ 0.797 (14000− 3750− 1250)

≈ 11, 290 psi

∴ pmax cmt < pfrac

Production casing collapse loads

Production collapse loading is one of the most important considerations in casing design. It is not just a
matter of determining the collapse loading during initial completion and production, but designing for
the loading throughout the life of the well. The worst case of collapse loading in production casing will
seldom occur early in the life of the well but often years after the completion. A collapse of the produc-
tion casing at any point in the life of the well often results in abandonment of the well at that time.

Installation—evacuated
A string may be run empty or partially empty. If it is intentional, then the design should account for
this loading. For the most part, the only occasion to run casing empty is in the case of extended reach
and long horizontal sections where the intent is to reduce borehole friction by reducing the gravitational
contact force. Even in those cases, the entire string cannot be empty. A fully empty string will not run any
farther into a highly deviated hole than the same string fully filled because the buoyancy increase in the
lower portion is negated by the buoyancy increase of the upper portion which provides the force to push
the lower portion into the hole (see Chapter 7). If the empty string is the result of inadvertent failure
to fill the casing while running, then it is a breakdown in supervision. The case of a fully evacuated
production string during the production stage is a definite possibility and we will address it later.

Installation—cementing
The cementing collapse situation arises at post plug bump when the cement is still in liquid form
and the internal displacement pressure is from a brine displacement fluid with a lower density than
the drilling mud. The reason many operators do something similar to this on a production string
is to help assure a good bond between the casing and the cement. Once the cement is set, and
before perforating, the less dense brine is displaced with a normal density completion fluid. This
change in internal pressure increases the contact force between the casing and the cement sheath for
a better seal.

�p0 = 0 psi

�p9000 = (0.520− 0.797)9000 ≈ −2490 psi

�p12750 = −2490+ (0.520− 0.810) 3750 ≈ −3580 psi

�p14000 = −3580+ (0.520− 0.862) 1250 ≈ −4010 psi
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Production—evacuation
As explained earlier in this chapter, total evacuation of a production string during the producing life
of the well is not a rare occurrence. We are going to design for that case here. The only remaining
question is, what are the annular loads? Initially the pressure might be that of the mud in which
the casing was run, but later it will probably regress to the formation pressure. It may be neither
of those, but it should not be greater than that of the mud in which it was run.2 We do not know
when or if that regression might take place so we will elect to use the mud in which the casing
was run.

�p0 = 0 psi

�p14000 = 0− 0.797 (14000) ≈ −11, 160 psi

Production—stimulation, squeeze
We also discussed earlier the mechanism for production casing collapse during a squeeze or stimulation
treatment. We will assume that during such an event, the fluid density in the casing should be equivalent
to the formation pressure or slightly higher, so it is a matter of the maximum differential pressure
between the formation pressure and formation fracture pressure. For our example, here it is

�psqz−14000 = (0.771− 0.840)14000 ≈ −970 psi

We see that this is inconsequential compared to our conventional collapse load, and we can ignore it.
But you need to be aware of these types of operations because there can be instances where they are not
insignificant. The relevant production collapse loads are plotted in Figure 3.9.

l
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p

Figure 3.9 Example production casing collapse loads.

2 There is a possibility of trapped pressure equivalent to the cementing pressures, but these should dissipate in a relatively short
time.
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Production casing burst loads

The burst loads for production casing are a bit different for production casing as compared to
intermediate and surface casing. The cementing and plug-bump loads are similar, but the burst loads
are not governed by a well kick, but by the producing zone as a backup for the tubing should it fail.

Installation—conventional cementing
Here too, we examine the possibility of a plugged float or annulus bridge forming to stop the pumping
of the cement. Since the displacement fluid in this case is 1.20 SG brine, the greatest differential burst
pressure will occur just before the displacement fluid starts to enter the casing.

We must calculate the cement column lengths in the casing, and we begin by calculating the internal
to annular ratio assuming a gauge hole diameter.

ki/o = d2
bit − d2

o

d2
i

= 8.52 − 7.002

6.0942 = 0.626

Using this ratio, we calculate the column lengths inside the casing (including the excess as usual).

Lspacer = 0.626 (1000) = 626 ft

Llead = 0.626 (1.25) (3000) = 2348 ft

Ltail = 0.626 (1.25) (1000) = 783 ft

Lmud = 14000− 2348− 783− 626 = 10, 243 ft

Now we will calculate the differential pressures.

�p0 = 1000− 0 = 1000 psi

�p783 = 1000+ (0.862− 0.797) 783 ≈ 1050 psi

�p3131 = 1050+ (0.810− 0.797) 2348 ≈ 1080 psi

�p14000 ≈ 1080 psi

It was not necessary to calculate additional differential pressures below 3131 ft because the spacer and
mud densities inside are the same as the mud density outside so there is no change in differential pressure
from 3131 to 14,000 ft.

Now we must pose a question: Is this actually the worst case? This is how we handled it in the
previous examples, but something is different here. We are using a less dense displacement fluid. When
the lead cement reaches the float, what is the pumping pressure just before the float plugs? Is it negative
as before or is it positive?

ppump = 0.797 (14, 000)− 0.810 (2348)− 0.862 (783)− 0.520 (10, 869)

≈ 2930 psi

This amount of pressure obviously calls into question our previous calculation as the worst case of float
plugging. We must now calculate this case again using the differential pump pressure, 2930 psi, plus a
pump increase of 1000 psi prior to shut off and using the column lengths previously calculated.
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�p0 = 3930− 0 = 3930 psi

�p10869 = 3930+ (0.520− 0.797) (10869) ≈ 920 psi

�p11652 = 920+ (0.862− 0.797) 783 ≈ 970 psi

�p14000 = 970+ (0.810− 0.797) 2348 ≈ 1000 psi

This gives us a somewhat different burst profile than when displacing with the same drilling mud that
is in the annulus, and this should always be kept in mind.

Question—why did this last calculation show a differential pressure at the shoe equal to our excess
differential pressure of 1000 psi when the first calculation did not, 1080 psi? It is because we did not
take into account the fluid column differential pressure when determining the effect of the additional
1000 psi pump pressure in the first step. The differential fluid column pressure at the surface would have
been −80 psi (which would not show on a gauge) because the fluid was falling and not in equilibrium,
so our actual excess pump pressure to give us a 1000 psi differential at the shoe would have actually
been 920 psi.

Installation—plug bump
Next we calculate the plug-bump burst load. Using the maximum cement column from previously, we
calculate the surface displacement pressure when the plug reaches the top float and when the plug is
bumped with 1200 psi additional. (You will notice we have already calculated the first two quantities
below in the installation collapse loading, but we repeat them here for clarity.)

pmax cmt−14000 = 0.862 (1.25) (1000)+ 0.810 (1.25) (3000)

+ 0.797 (1000)+ 0.797 (8000) ≈ 11, 290 psi

p0 = 11290− 0.520 (14000) = 4010 psi

p0bump = 4010+ 1200 = 5210 psi

Next we calculate the differential burst pressures at the annulus density change depths at surface, 9000,
12,750, and 14,000 ft. We have already made parts of these calculations, but we will show them in full
once more.

�p0 = pi − po = 5210− 0 = 5210 psi

�p9000 = 5210+ (0.520− 0.797) 9000 ≈ 2720 psi

�p12750 = 2720+ (0.520− 0.810) 3750 ≈ 1630 psi

�p14000 = 1630+ (0.520− 0.862) 1250 ≈ 1200 psi

The final result in a plug-bump calculation should always be equal to the additional plug-bump pressure
(within some roundoff error).

A light density displacement fluid would usually be replaced by a completion fluid before pressure
testing the casing, so the pressure test would then assume both the same fluid inside and outside the
casing (remember we discount any cement support once it has set). So whatever pressure we elect for
a test pressure is uniform from top to bottom. If the well is to be stimulated through the casing the test
pressure should be equivalent to the highest stimulation pressures anticipated.
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Production—tubing backup
We consider that the packer or seal assembly might leak or fail during production, so that the packer
fluid is produced with the gas, resulting in a full column of gas in the annulus between the tubing and
production casing. This necessitates our requirement that the production casing should be designed as
a full pressure backup for the tubing. We will select our burst load line accordingly. This well will be a
gas well, and since the bottom hole formation pressure is equivalent to 1.78 SG, we can calculate a gas
pressure at the surface using methane.

pfm−14000 = (0.771)14000 ≈ 10, 790 psi

p0 = 10790 exp

⎡
⎣ 16 (0− 14000)

1545
(

460+ 74+326
2

)
⎤
⎦ = 8660 psi

What kind of fluid would we have outside the production casing? Inside the intermediate casing the
initial fluid should be drilling mud and cementing spacer. After some years, the solids may settle and
the fluid might be close to freshwater in density. What about below the intermediate casing shoe? Or
what if the cement top did not reach the intermediate shoe because of lost circulation while cementing?
We cannot know these things when designing the casing string, and we cannot change the design once
in the hole so about the worst case we can have is freshwater. With that in mind then, the differential
loading pressures are

�p0 = 8660− 0 = 8660 psi

�p14000 = 10790− 0.433 (14000) ≈ 4730 psi

That bottom pressure differential is obviously not possible at the perforations or possibly some distance
from the perforations. But we are going to assume it is a worst case for our design. Many would use a
formation pressure gradient on the outside, which is more likely in the earlier few years of the well but
unlikely if we have solids settling in the upper annulus inside the intermediate casing. Your experience
and judgment must come into play here.

In this simplified approach, we calculated a net burst pressure at the shoe and at the surface. We
connected them with a straight line. Implicit in this is the assumption that both the liquid outside the
casing and the gas or liquid inside the casing have constant densities from the shoe to the surface. For
the most part, that is reasonable for the liquids, but we know that the gas density varies with depth, since
it is temperature and pressure dependent. Our gas equation is exponential, so how does this affect our
two-point calculation? The answer, perhaps surprisingly, is not very much with methane. For a plot of
the equation used in this example using only 2 points as here and also using 140 points see Figure 3.10.
While hardly discernible on the plot, the 140-point, incremental calculation gives a value of 8637 psi
at the surface versus 8660 psi for the two-point calculation we used here. So for the purposes of basic
casing design, this nonlinearity of the gas density usually is ignored.

Production—tubing leak
We must consider one additional burst scenario here and that is one of a shallow tubing leak in a gas well.
If we have a weighted packer fluid behind the tubing and the tubing leaks at or near the surface (not the
least uncommon) then we must consider one additional burst case with well head pressure on top of the
packer fluid. Let us assume that this example has a weighted packer fluid (1.84 SG) in the tubing annulus
and the packer is just above the perforations near the bottom of the hole . The differential pressure at the
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Figure 3.10 Methane gas equation plotted with 2 points and with 140 points.

top is still 8660 psi as before. But if a near-surface tubing leak results in 8660 psi gas pressure on top of
the packer fluid, then the differential pressures at the top and bottom are now:

�p0 = 8660 psi

�p14000 = 8660+ (0.797− 0.433)14000 ≈ 13, 760 psi

Many ignore this type of event in production casing design, but it does happen and we should consider
it in our example design.

We can see that this almost triples the burst load at the bottom of the casing. This might require a
very expensive casing string, but the reality is that it is not uncommon to develop a tubing leak at or
near the surface. Could we expect to rely on the cement to resist such a burst load? Some operators do,
but it is a really bad idea for reasons we have already mentioned. This is a point where we really may
legitimately question the use of a freshwater gradient outside the pipe. For a production string, as in our
example, for an over-pressured interval at 14,000 ft and below the intermediate casing, it is a stretch of
the imagination to visualize a freshwater gradient outside the production casing. In this case, it is much
more reasonable to assume something closer to formation pressures rather than a freshwater gradient.
Let us look at a gradient equivalent to the formation pressure, 1.78 SG, behind the casing, which is
slightly less than the mud the casing was run in:

�p14000 = 8660+ (0.797− 0.771) (14000) ≈ 9020 psi

While this value is still quite high, it is about the minimum burst load we can reasonably expect if our
well develops a tubing leak at or near the surface in the early life of the well, before the zone depletes
(see Figure 3.11).

Another point that should be made, is that we used methane in our gas calculations, which is a worst-
case scenario. In an actual design for the production casing, it would be much more useful to use the
actual gas that will be produced rather than methane. That would result in lower surface pressures than
what we calculated. For our example well, we use the loads we calculated here, but the point is that,
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Figure 3.11 Example production casing burst loads.

when designing a production casing string for a gas well, we should consider the best data we have
rather than rely on the simplifications we use for designing other strings in the well.

3.8 Closure

It should be pointed out with emphasis that the loads used in this chapter are more or less typical, but
still they represent a number of simplifying assumptions. One always should evaluate the possibilities
in each individual well rather than rely on common practice. More and more often, new wells are drilled
in fields with depleted reservoirs present. This may change significantly the load curves for a particular
well, and one should always be wary of using common “recipes” for the loads in these types of wells.

Our example load plots for collapse and burst are complete. We have not mentioned load plots for
axial tension yet. That is because the well itself does not impose the axial load (discounting borehole
friction and curvature for now). The axial load is not determined until we make our preliminary selection
of pipe for the well, because it is a function of the weight of the specific pipe and the density of the
drilling fluid. We address the axial load in the next chapter, where we use these curves to arrive at basic
casing designs for all three of our example casing strings.
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4.1 Introduction

In the previous two chapters, we covered the first three steps of basic casing design:

1. Determined casing depths
2. Selected casing sizes
3. Developed pressure load plots for collapse and burst

And in this chapter, we continue the process to make our initial casing design, then refine it to account
for combined loads. Our method will proceed as follows:

• Develop design loads for collapse and burst.
• Select casing for collapse and burst design.
• Develop axial load plots.
• Develop axial design plots.
• Adjust preliminary casing selection for axial loads.
• Refine basic design/selection for combined loads.

As previously discussed, casing selection is primarily a two-step procedure when done manually.
Just like writers make a first draft then revise it to make it better, we make a preliminary casing
selection based on published strength properties of the tube then refine it, if necessary, to account
for the effects of combined loads. It is very easy to use the published values to get a preliminary
design; and when used with appropriate design factors, many of these preliminary designs become a
final design with no need for further refinement. However, the currently published values for collapse,
burst, and tension are based on tests and formulas that assume no other loads are present in the casing.
In other words, the collapse rating you see in the tables is the collapse rating with no tension in the
tube; the collapse rating is lower if the tube is in tension, but such a value does not appear in any
standard tables. We begin with the initial selection process then discuss ways to refine it for combined
loading.

In this chapter, we will take a slightly different approach from the last where we first discussed
the different types of pressure load scenarios for each type of casing, conductor, surface, intermediate
and production. All the calculations involved were basic hydrostatics, so we postponed those for the
examples near the end of the chapter. The stages of design covered in this chapter will be approached
differently. The load types and procedures will be exactly the same for all the strings except, for the
magnitudes of the worst case collapse and burst loads. The calculations involved though, will be of
several types, all best learned from examples. Therefore, we will select one of our example casing
strings and take it through the remainder of the design process. Then near the end of the chapter, we will
repeat the process for each of the other example strings. For simplicity we will select the surface casing
string as our learning example.

4.2 Design factors

A design factor1 is a margin applied to a load or structural strength to account for uncertainty as to
the load, the structural properties, or both. The way design factors were historically applied in oilfield
casing design was directly to the magnitude of the load. In years past this was also the norm in most
construction processes.

1 The old term, “safety factor,” is no longer used because of the growing malignancy of tort litigation where the connotation was
construed to mean something never intended.
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S ≥ kD L, kD > 1

In this approach S is the strength of the structure, L is the load, and kD is the design factor which is
almost always greater than unity. In this context we might call it a load design factor.

S ≥ kDL L, kDL > 1

In this case we have labeled our design factor, kDL , as a load factor. We could also use an alternative
approach with a strength design factor, kDS , as

kDSS ≥ L, kDS < 1

The two approaches are mathematically equivalent. For example, if we select a strength design factor,
kDS = 0.80 , which is akin to common oil field practice of restricting loads so that they do not exceed
80% of the yield strength of a tube, then our design criterion would look like this.

0.80 S ≥ L

This is down-rating the strength by 20%. From this we can easily see that an equivalent statement is

S ≥ 1

0.80
L = 1.25L → kDL = 1.25

Notice that on one side, we reduced the strength by 20%, but the equivalent procedure increased the load
by 25%. Although they are equivalent mathematically, there is a difference in meaning. In construction
industries and civil engineering in general, there is recognition of two distinct types of uncertainty. One
is an uncertainty in the structural strength, and the other is an uncertainty in the loads.

kDS S ≥ kDL L, kDS < 1, and kDL > 1

Here kDS accounts for possible variations and loss of the strengths of materials used in the
construction, and kDL accounts for possible overloading of the structure (which is not uncommon for
bridges, buildings, etc.). The justification for such an approach is easy to understand because the two
are not necessarily related.

For our purposes though, we will follow oilfield tradition and use a single design factor, kD. We could
use either a strength factor, kD = kDS , a load factor, kD = kDL, or a composite factor like kD = kDL/kDS
(if applied to the right hand side of the equation or the reciprocal if applied to the left). Since our collapse
and burst loads in basic casing design are usually selected to be the worst case in our simple scenarios,
it would seem to make more sense to use a strength factor rather than a load factor, and this is what
some current software does. However, for manual casing design that can lead to potential errors because
it has to be calculated for each different type of casing considered for use in the string, and you cannot
look at a strength table to spot-check for errors since the table values are never plotted graphically. We
can, however select a strength factor and “convert” it by taking the reciprocal. For example, if we want
to consider down rating the tubular strength by say 20%, then we can then use the reciprocal as a design
factor on the right-hand side of the equation and plot the design load alongside the load plot.

0.80 S ≥ L → S ≥ 1

0.80
L = 1.25 L → kD = 1.25

While this appears to make perfect sense for collapse and burst since we are dealing with fair certainty
as to the worst case loads, what about tension? Why do we use much larger design factors in tension
than in burst or collapse? If we use a 1.25 design factor in burst and collapse and a 1.6 design factor
in tension, what does that imply? Why would we down rate the material by 20% in collapse and burst,
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then 37.5% in tension? That makes no sense. In tension loading, the biggest variant is the load, not the
strength of the tube. The simple buoyed axial load does not account for friction in the borehole which
can be significant. In a highly deviated well we usually have to calculate an estimate of the friction load
(with torque and drag software), but we still apply a significant design factor because of the considerable
uncertainty. In plain speak, we do not know the actual or worst case friction load in a casing string before
the well is drilled, no matter how sophisticated the friction software we have at hand.

So in the end, the only reasonable approach is to use the approach with two design factors, one for
strength of the structure (casing string), and the other for the load uncertainty. We can combine them
into a single composite factor, and it matters not a whit which side of the equation we put it on as long
as we get the numerator and denominator correct for the side we plan to use. We are going to always
put it on the right side. We do this because it is much easier to use in a manual design procedure, and it
reduces the chance for calculation error. In other words, the design line adjacent to the load line and the
strength values of the casing come directly from the tables with no adjustment or down-rating applied.
We will use the following convention:

S ≥ kD L where kD = kDL

kDS
≥ 1 with kDL ≥ 1 and 0 < kDS ≤ 1

Now we address the actual values of the design factor. There was a time when there were some
industry recommended standards that most oil companies seemed to accept, even though almost
everyone deviated from them from time to time. Of the companies that have specific design factor
policies, few agree with each other as to what they should be. And almost no company will publish their
design factors, not because of safety issues or secrecy but because of lability issues. Here is a range of
the commonly used design factors.

• Design factor, tension: 1.6-2.0
• Design factor, collapse: 1.0-1.125
• Design factor, burst: 1.0-1.25

Table 4.1 presents a range of the commonly used design factors.
We reiterate: these are not industry standards nor are they recommendations. They are merely some

common industry values that have been used for well over sixty years in many, many casing design
applications. Your company will likely have its own design factors, and usually the design factors
will vary depending on the type of well and possibly its proximity to populated areas. You may
question the design factors of 1.0 in. the table chart which amounts to no design factor at all. Those
are sometimes used when the possibility of a worst case scenario is so extremely remote that it is
almost nonexistent. An example might be a surface casing collapse load plot that assumes the casing is
completely empty, yet no such lost circulation problem in that particular geologic area has ever occurred.
That explanation is not to justify a 1.0 design factor, but to explain why it is sometimes used by some
companies.

In some countries, Canada being an example, minimum design factors are specifically required by
regulatory agencies and also the loading requirements to which they will be applied. In such cases you

Table 4.1 Common Design
Factors, kD

Collapse Burst Tension

1.0-1.125 1.0-1.25 1.6-2.0
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Table 4.2 Minimum Design Factors for Alberta [15]

H2S pp H2S pp H2S pp CO2 pp

<0.34 kPa ≥0.34 kPa >500 kPa >2000 kPa

Collapsea 1.0 1.0 1.0 1.0
Burst 1.0 1.25 1.35 1.35
Tensionb 1.6 1.6 1.6 1.6

aCasing evacuated internally.
bNo allowance for buoyancy.

are not limited to those loads and factors. You can use more severe loading cases and higher design
factors as long as the design meets the regulatory minimum. In Alberta, Canada, where many wells
have high H2S or CO2 concentrations in the produced fluids, specific minimum design factors are
required by regulation. While these may be subject to change, they are listed in Table 4.2 where H2S and
CO2 concentrations are listed in terms of partial pressure (pp). There are provisions for using reduced
design factors in Alberta under some circumstances, where the casing to be used has met certain test
requirements. Table 4.2 shows some Alberta minimum design factors and loading conditions [15] and
is presented here as an illustration only, and you should always seek out the most current version for
actual casing design.

4.2.1 Design margin factor

When we make our final casing selection, including all adjustments and refinements, we know that some
portions of the selection strength will exceed one or two of the three design criteria (collapse, burst,
or axial) by a fairly significant amount, while very close to the design factor for the other load. For
example, one section of the casing we select based on the burst design load may far exceed our tensile
requirements. What we would like to have is some measure of how much margin we have between our
design loads and the actual strengths of the casing in our selection. This gives us a quick reference as
to which are the most critical loads in our final selection. We do this with what we will call a design
margin factor2, kM.

kM ≡ S

kD (L)
≥ 1.0 (4.1)

where, as before, kD is the design factor, S is the strength rating of the casing (collapse, burst, or tension),
and L is the load. The design margin should always have a value of 1.0 or greater, where a value of
1.0 indicates that the strength of the casing is exactly the same as the design load. A value less than
1.0 indicates the strength is less than the design load, and an error has been made in the selection. By
comparing the design margins for the different loads, one can easily see which loads are the most critical
in the string.

The design margin factor will be calculated as the very last step in our basic design procedure.

2 Some call this design margin factor a “safety factor,” but I find this somewhat confusing terminology, especially for those of my
generation who are still so accustomed to its original connotation.
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4.3 Design loads for collapse and burst

To make a preliminary selection of specific casing for a casing string, it is first necessary to apply design
factors to the collapse and burst loads. The result is called a design load, and we employ the design load
in the form of a plot or design line. The best way to illustrate the process is to use an example, and
for now we will use the example surface casing load plots we developed in the previous chapter. The
selection of design factors for this example is arbitrary, with the primary intent being that of illustrating
different possibilities. In practice, one would weigh the choice of design factors in light of company
standards, experience in an area, perceived risk, and so forth. Those are decisions we cannot examine
here.

EXAMPLE 4.1 Surface Casing Collapse and Burst Design Loads

Recall that it is 13-3/8 in. casing to be set at 3000 ft. We arbitrarily select design factors:

Collapse, kD = 1.125
Burst: kD = 1.125

First, we refer to the surface casing collapse loadplot from the previous chapter, Figure 3.4, and see that
the evacuated lost circulation collapse load is the worst case. And the following two points are plotted.

�p0 = 0 psi

�p3000 = −1440 psi

In the calculations we used a sign convention to differentiate between collapse, <0, and burst, >0. This helps
avoid confusion in the calculation stage, but for the load and design plots we will use absolute values since
the casing collapse and burst ratings are all positive values in standard tables. We multiply these two values
by our design factor to get the design collapse load.

�p0 = 1.125 |(0)| = 0 psi

�p3000 = 1.125 |(−1440)| = 1620 psi

We plot these design values on the same plot with our maximum load plot (see Figure 4.1). It is not necessary
to show both on the same plot, but it greatly aids visually in seeing the relative magnitude of the result and
also for spotting any error.

From Figure 3.6, the worst case burst load is the gas kick where the differential pressures are

�p0 = 1820 psi

�p3000 = 620 psi

We multiply these values by the burst design factor

�p0 = 1.125 (1820) ≈ 2050 psi

�p3000 = 1.125 (620) ≈ 700 psi

Likewise we plot these values with our maximum burst load (see Figure 4.2).
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Figure 4.1 Collapse design load for surface casing example.

Gas kick
Design factor, 1.125

Figure 4.2 Burst design load for surface casing example.
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4.4 Preliminary casing selection

We are now ready to select the casing that will meet our design requirements in collapse and burst. We
constructed design plots that show the specific collapse and burst requirements, but many choices of
casing meet those requirements. So what are some of the things we need to consider at this point?

We have so many variables and choices that we could spend a great deal of time discussing all
the possibilities. The most prevalent consideration is cost, or perhaps we should say minimum cost.
Minimum cost, however, can be misleading, because that does not necessarily translate to the market
price of the casing. Cost also includes logistics, transportation, availability, current inventory, and so
forth. Many considerations go into the selection process. In the examples used here, we stay with some
rather simple choices, but keep in mind that there are additional considerations.

4.4.1 Selection considerations

There are a number of considerations that come into play in making a preliminary selection of casing
to meet the calculated pressure loads. These are weight, grade, connections, design strengths, and
simplicity of the resulting string.

Weight and grade

In selecting the casing for our string, we often are presented with a choice of a particular weight and
grade of pipe versus a different weight or grade, both of which might satisfy our design. For example,
we might have a choice between 7 in. 23 lb/ft N-80 and 7 in. 26 lb/ft K-55, either of which might satisfy
a design. The most obvious selection criterion might be cost or availability, as previously mentioned,
but what else might enter into the decision? A thicker wall pipe might offer better corrosion or wear
life; hence, we might choose the thicker wall 26 lb/ft K-55. But, if it is a directional well where the pipe
is below the critical inclination angle,3 then the heavier it is, the greater the force required to push it
in the hole. In that case the 23 lb/ft N-80 might be a better choice. Also the preferred or available bit
size or completion equipment dimensions can enter into the selection process, so that one might favor a
specific limit on the internal diameter reduction of a thicker wall pipe. The choice of grade of pipe also
is significantly affected by the presence of corrosive fluids or hydrogen sulfide.

Connections

In the process of selecting casing to meet our load requirements, we are confronted with many different
types of connections. What type do we need? For most normal pressure applications, we can use standard
API ST&C or LT&C couplings; but for higher pressures and temperatures, bending in curved wellbores,
rotating torque, high-tensile loads, gas containment, and so forth, integral and proprietary connections
may be necessary. In those cases, one must refer to the proprietary manufacturer’s specifications and
recommendations. We can comment on a couple of things though. If there is considerable borehole
friction or problems with unconsolidated formations, then one should consider the use of beveled
couplings or integral connections to reduce sliding friction. These can significantly reduce frictional
drag on the casing. Another consideration is clearance problems, both in the open hole section and inside

3 The critical inclination angle, denoted αcr, is the inclination angle below which nothing will move by its own weight,
approximately 70◦±. See Chapter 7 for derivation and more details.
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of existing casing strings. In some cases, flush-joint casing might be the choice because of clearance
problems, and in other cases, special clearance couplings might be the choice. There are just too many
variables to construct a decision chart for all the different possibilities.

Design strengths

In selecting casing that meets our design requirements, we rely on published values of strengths for
the various sizes and types of casing. The source of these design strengths is API Bulletin 5C2 [9],
which essentially is a collection of tables listing the dimensions and strengths of the various sizes
and grades of API casing. The source of the strength values for these tables is the collection of
formulas published in API Bulletin 5C3 [10]. These formulas have been used for many years with good
success.

It is also necessary to specify what we mean by collapse strength and burst strength as used in this
text for basic casing design. What we call the collapse strength is listed in API Bulletin 5C2 as “Collapse
Resistance.” It is the minimum external pressure at which the pipe collapses, as calculated from formulas
in API Bulletin 5C3. It assumes no internal pressure or axial load on the pipe. The burst strength as we
use it here, is listed in API Bulletin 5C2 as “Internal Yield Pressure.” It is the internal pressure at which
the inner wall of the pipe or coupling yields, as calculated from the formulas in API Bulletin 5C3. It
is not the pressure at which the pipe actually ruptures or bursts, but we use it as the limiting pressure.
It assumes no external pressure or axial load on the pipe. These explanations will suffice for now, but
more detailed discussions are in Chapter 6.

In recent times, certain limitations have been recognized with some of the formulas of API Bulletin
5C3, and an effort is well underway to revise these in light of modern manufacturing processes and
casing requirements. Currently, in ISO/TR 10400 [11], the new formulas are published, but they are not
yet officially adopted into the API tables at the time of this writing. For now, we take all strength values
from the current API Bulletin 5C2 and formulas from API Bulletin 5C3. When or if these documents
are revised, they will not affect this basic design procedure, other than to change the published strength
values slightly. We discuss the new formulas and approaches in Chapter 6, but for now, we just mention
this to inform you that at least some of the published strength values we use are likely to change in the
future, but those changes do not affect the basic casing design procedures we use.

Simplicity—the key to success

One thing to always keep in mind about different weights and grades of pipe, as well as connections,
is that the fewer different types you have in a single string, the better. The more different types you
have, the easier it is for a mistake to occur while running it in the hole. For every point in our design
where we change from one type connection to another, we require a crossover sub or joint. In fact, if
we are prudent operators, we require two crossovers on location for each of those points, in case one
is damaged while running the casing. Not many things can be worse than running a string of 10-3/4 in.
casing to 10,000 ft and damage a crossover joint by cross-threading it when the casing is 2000 ft from
bottom. Yes, it does happen! If you do not have a spare, then you have to pull 8000 ft of 10-3/4 in. casing
out of the hole, laying it down in singles as you pull it. Another thing you will learn if you ever have
to pull casing, is that often the mill end of the coupling will back out instead of the field end, so you
need backup tong jaws that fit the coupling as opposed to the pipe body, as were used when running the
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casing. You also will discover that casing made up to the maximum recommended makeup torque often
has galled threads when it is backed out and requires that a good number of the joints be replaced. These
are things we must avoid. The casing running process with most rigs of the world is an intense and
continuous operation. To stop or interrupt the process, even momentarily, in many areas, will cause the
string to stick off bottom. Pipe is rolled off pipe racks or off-loaded from barges as it is being run into the
wellbore and usually part, if not most, of this operation occurs at night. Hence, the simpler the design,
the less is the likelihood of a costly mistake. Today, in many cases, the rig costs are so high compared
to the casing costs that there is no cost benefit to having more than one type of casing in a particular
string. In those cases, we might choose just one weight, grade, and connection that meets all the load
criteria and disregard any cost savings of multiple weights or grades as inconsequential compared to the
rig cost. This is common on many offshore wells and remote wells. However, that does not apply for
most wells drilled in the world, and we would not learn much about casing design if we were to adopt
that philosophy here.

Another point about simplicity is that the best way to let people in the field know that you are
inexperienced and have never run any casing yourself is to send a casing design and casing string to
the field that has several short sections of various weights, grades, or connections that might require
crossover joints. Most operators seldom run a section of different type of casing that is less than 1000 ft
in length and some set 2000 ft as a minimum. There is almost never any justification for running a
section less than 500 ft in length, except in short strings of conductor and surface casing. A justifiable
exception is sometimes made to use few thicker wall joints at the top of a string for wear, wellhead
support, or gauge control where that same pipe is also used in the string further down hole.

EXAMPLE 4.2 Surface Casing—Preliminary Selection

For this example, we will assume that Table 4.3 lists the 13-3/8 in. casing available in our inventory for this
particular well.

We can begin with either the burst or collapse, and it is really immaterial which we choose. For most
surface casing strings, collapse usually is more critical than burst, and the initial selection for collapse often
satisfies the requirements for burst, too. That said, we start with collapse using the design plot we previously
constructed (Figure 4.1). We typically start at the top of the design plot and the lowest collapse strength pipe
we have and see where the collapse rating of that section intersects our design line. In this case, the pipe with
the lowest collapse rating, the 54.5 lb/ft K-55 which has a collapse rating of 1130 psi, can be run to a depth
of 2100 ft before its collapse rating is exceeded on our design plot (see Figure 4.3). At that point, we go to
the casing with the next higher collapse rating; it is 61 lb/ft K-55 with a collapse rating of 1540 psi. We see
that rating is exceeded by our design plot at a depth of about 2850 ft. Then, we select the casing with the next

Table 4.3 Available 13-3/8 in. Casing for the Surface
Casing Example

Wt. ID Clps Press Int Yld Jt Strength

(lb/ft) Grade Conn. (in.) (psi) (psi) (klbf)

54.5 K-55 ST&C 12.615 1130 2730 547
61 K-55 ST&C 12.515 1540 3090 633
68 K-55 ST&C 12.415 1950 3450 718
68 N-80 ST&C 12.415 2260 5020 963
72 N-80 ST&C 12.347 2670 5380 1040
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Figure 4.3 Preliminary selection based on collapse for surface casing example.

higher collapse rating, which is 68 lb/ft K-55 with a collapse rating of 1950 psi, which exceeds our maximum
collapse design load of 1620 psi at bottom.

So our collapse design is satisfied by a string of 13-3/8 in. K-55 casing with 54.5 lb/ft from 0 to 2100 ft,
61 lb/ft from 2100 to 2850 ft, and 68 lb/ft from 2850 to 3000 ft. This string will work and probably is the least
costly string we could run using our available inventory. However, remember what we said about simplicity.
We have a 150 ft section of casing on bottom. What should we do about this? There is nothing wrong with it
as far as our design is concerned, but do we really want to send three different sections of pipe to the location,
one of which is only 150 ft in length (five joints)? No, we are going to opt for simplicity.

We have some obvious choices for simplifying this casing string. One is that we could just extend the
61 lb/ft section all the way to bottom and assume that the chances are slim that it would ever experience the
worst-case collapse load. But there is a serious problem with that approach. Suppose a joint in that casing
string happened to be defective, and actually collapsed during the drilling of this well, not in the bottom
150 ft, but somewhere above that point. It clearly is not the fault of the design, but rather, a defective joint.
Such would be clear to us as engineers, but in a litigation proceeding how clear will it be to a trial judge or
jury of peers who may not have even passed high school math. The hard fact is this: You selected a design
criteria, and you did not adhere to it. Whether or not it actually was a contributing factor to the failure may be
lost to them, along with your credibility as an engineer. This is not some remote possibility; this is the reality
of today’s world. The point here is that, if you select a design factor of 1.125 in. collapse, stay with it. Never
change your design factor for some type of convenience that is unrelated to the mechanics involved.

At this point, we elect to simplify our design by eliminating the 61 lb/ft section and using 68 lb/ft pipe
from 2100 to 3000 ft (Figure 4.3). Many operators would have just elected to run 68 lb/ft all the way from
surface to 3000 ft. That might be the best choice if the additional cost is not a consequence. Here though, we
are learning casing design, and that choice would teach us nothing.

Now that we have made our selection based on the collapse design load, we check that selection for burst
and adjust it if necessary. To do this, we plot the burst ratings of our selected casing string on the burst load
chart (see Figure 4.4). We see that the burst rating of the casing string exceeds the burst design at all points.
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f

Figure 4.4 Preliminary collapse selection compared to burst design for surface casing example.

It is typical that a surface casing sting that meets the collapse requirement also meets or exceeds the burst
requirements without necessity of modification, but sometimes it does not. In any case, we always check it to
be sure.

This concludes the preliminary selection process. Once we conclude this step, we can determine the
weight of the string and the axial loads.

4.5 Axial loads and design plot

We did not consider axial loads at the time we made our collapse and burst load plots for the simple
reason that we cannot know the axial loads until we know the weight of the casing. Therefore, we
selected casing that would satisfy our design parameters for both collapse and burst, and having made
that preliminary selection, we now determine the axial loads and possibly adjust our selection if the
axial loads are too great for the casing we selected for collapse and burst.

There are four sources of axial load (tension or compression) in a casing string:

• Gravitational forces (weight and buoyancy)
• Borehole friction
• Bending
• Temperature changes

The axial load in a casing string at any point from gravity or weight is a function of the buoyancy of the
drilling fluid and the inclination of the wellbore. The borehole friction is a function of gravity, buoyancy,
borehole inclination, and curvature, and also the axial load in the pipe. In the case of a curved wellbore,
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the axial load is a function of the friction, but the friction itself is also a function of the axial load; in
other words, they are not independent of each other. We are not going to address directional wells or
borehole friction at this time but will discuss them in Chapter 7.

There are a number of considerations when it comes to determining the design criteria for axially
loaded casing. Here are a few questions we might have:

• Weight of casing—in air or buoyed weight?
• Borehole friction—how much?
• Design factors—an over-pull margin or a design factor?

We discuss these in the following sections.

4.5.1 Axial load considerations

We have postponed any detailed discussion of axial load until now. As already mentioned, we cannot
calculate axial loads until we have a preliminary selection for which to make the calculations.

Weight of casing

When we work with casing in a wellbore, we must consider its weight and the amount of tension in the
string from that weight. What measure do we use for the weight? Do we use the weight of the casing in
air or the buoyed weight of the casing in the drilling fluid in the hole? As hard as it may be to believe,
this question has no universally accepted answer in oilfield practice today. Many use the weight in air,
claiming that it gives an extra margin of safety. Others say the buoyed weight is more realistic. We prefer
the buoyed weight, but will illustrate both methods.

Borehole friction

We know that there is friction in a wellbore, and as we move the pipe, the friction increases or decreases
the axial load in the casing, depending on whether the pipe motion is up or down. In directional wells, we
have software that can predict the friction with reasonable accuracy while we are in the design process.
For “vertical” wells, we know there is some amount of friction, but we have no means of calculating
it, unless we assume some wellbore path and use software as we would for a directional well. We
can measure the pickup and slack-off weight while drilling the well, whether it is a vertical well or a
directional well. The problem with this is that we usually have to design and purchase the casing string
far in advance of the time when we can measure the actual friction in a particular well. Also, the friction
load we measure with the drill string is not the same as the friction load the casing string experiences.
For most near-vertical wells, we do not consider the friction specifically, but we allow for it with a design
factor. That is one reason the design factor for the axial load is usually larger than the design factors for
collapse or burst. We have a much better chance of predicting the worst-case loading for collapse and
burst than in tension. At least, we have a better chance when we are sitting in an office several months
before the well is drilled. We discuss borehole friction in much more detail in Chapter 7, but for now,
we assume we can avoid estimating it if we select an appropriate design factor.

Axial load design factors

When it comes to the tensile design of casing, there are two schools of thought. One is to use a design
factor, say 1.6, and the other is to use a specified amount of over-pull, say 100,000 lbf. It is quite common
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to use both and say that the design should incorporate whichever one leads to the strongest design. In
cases where the design factor results in the higher value, that usually is the case only near the surface
and the over-pull is greater near the bottom.

The significance of the design factor or over-pull is especially critical in casing design, because of
the borehole friction and the fact that its magnitude generally is not known when the casing string is
designed. Friction force opposes the motion of the pipe, so we might think that it is of little significance
in the design, since it reduces the axial tension only as the casing is run into the well. While that is true,
there are two other considerations. One is that, if we intend to reciprocate the casing during cementing
(as is desirable for a good primary cement job), then the friction increases the axial tensile load when the
pipe is in an upward motion. The second, and extremely important, consideration is that, if a problem
is encountered in running the casing, the casing string may have to be pulled out of the hole before
reaching bottom. While this is rare, it does happen. So the design factor or over-pull must account for
the fact that the casing might be subjected to the full amount of friction in an upward motion. That is
one reason for the popularity of an over-pull margin rather than a typical design factor. It is easier for
the driller if he knows that he can safely pull a certain amount, say, 100,000 lbf, above the weight of the
casing string, and this margin is a constant for the entire string.

4.5.2 Types of axial loads

We consider three forms of axial load. Each has its particular use, but not necessarily in casing design.
The three forms are:

• The unbuoyed axial load is simply the weight of the casing string in air. (Remember we do not consider “air” as
having any mass or buoyancy in our design process.)

• The effective axial load is determined from Archimedes’ principle, which gives us the total buoyed weight, but
does not give us any information about the axial load within the casing string itself.

• The true axial load is determined from the actual gravitational hydrostatic forces acting on the tube and is valid
for all bodies.

The first of these was a common approach for many years because of its simplicity and additional
design margin, but it is a load the casing never experiences in the borehole. The second is very
common and is probably used more when buoyancy is considered than the true axial load. It is simple
to calculate, but it is problematic in that it is a fictitious load that is only correct at the top of the
casing string. The third is the actual load in the casing, and unfortunately, a bit more tedious to
calculate.

The buoyed weight of the casing in drilling fluid is the most realistic approach for designing casing
to withstand axial loads. It is the true axial load that we will use for our designs in the examples.

Unbuoyed Axial Load
The unbuoyed weight of a casing string, or the “weight in air” as it is often called, is simply

w = g ρ� L (4.2)

If we chose to use the weight of the casing in air, the design process is quite simple. The drawback
to the approach is that it often leads to an over design of the string, since the casing is never
actually suspended in air. While the weight in air approach was quite common at one time, it is
less favored by most operators today. However, it is still the method required by regulation in some
locales.
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Effective Axial Load
The effective axial load as we define it, is calculated using Archimedes’ principle, in that the buoyant
force is equal to the weight of a fluid displaced by the submerged portion of a body. For convenience we
use a buoyancy factor, kb, based on the density difference between that of the body and the fluid. The
buoyancy factor multiplied by the weight of the casing in air gives the buoyed weight of the casing.

w̄ = kb (g ρ� L) (4.3)

The buoyancy factor is calculated as

kb = 1− ρmud

ρsteel
(4.4)

and is explained in more detail in Appendix A (Equation (D.19)) if you are not already familiar with the
topic.

We will not use the effective axial load here, but to calculate the effective axial load at any point we
could use the following procedure:

F̂j = g kb

j∑
i=1

ρ� i Li (4.5)

where we sum the buoyed weights of each section up to the top of some section, j, and for the total
buoyed weight of a string with n sections we just set j = n and sum over the entire string.

As already stated, the effective axial load is a fictitious load except for a single point in a casing
string, the very top of the string. Why does anyone use it then? Most likely because it is so simple,
but more disturbingly is the possibility they do not understand what it is. As to its simplicity, yes, but
consider a case where the fluid inside the casing is different from the fluid in the annulus. How does
that affect our simple buoyancy factor equation above? Clearly stated, the effective axial load is of no
use in determining the axial load in casing design because it does not give us the axial load! That said,
does the effective axial load have any use at all? The answer to that is emphatically, yes. It is used in
determining the point of neutral stability for lateral buckling in tubular strings. It has been used correctly
for many years in calculating the length of drill collars needed to prevent lateral buckling in drill pipe.
We will discuss lateral buckling in Chapter 6, and again, see Appendix A for more detailed discussion
on buoyancy.

True Axial Load
The term, true axial load, is redundant, but we use it anyway to differentiate from the effective axial load
which is so pervasively present in oilfield usage. The true axial load is the actual axial load in the buoyed
pipe. More specifically it is the axial component of the weight of the pipe less the force from hydrostatic
pressure acting on the net cross-sectional areas of the pipe that are perpendicular to the longitudinal axis
of the pipe (discounting friction forces for now). It can be a tedious calculation when done manually, but
is easily programmed into a spreadsheet or some such software. Two things are important to remember
when doing the calculations:

1. Always work with vertical depths, never measured depths. The gravitational force, mg, is vertical, so the axial
load is affected only by the axial components of its weight and hydrostatic forces (neglecting friction for now,
see Chapter 7).

2. Two calculations are necessary at every point where the pipe cross-sectional area changes—one just below the
change and one just above the change. The pressure at that point will cause a discontinuity shift in the axial load
plot.
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Calculating true axial load

Calculating the true axial load is a process of determining the buoying forces from pressure acting
on cross-sectional areas of the casing where those buoying forces act upon the unbuoyed weight of
the casing string. Those buoyancy points occur at the bottom of the casing string and at any point
in the string where the internal diameter changes (the outside diameter is a constant in all but a few
rare tapered string applications). But do not be misled into thinking that all these buoyant forces are in
the opposite direction to the gravitational forces. Whenever the internal diameter of a section is greater
than the section below it (very common) the pressure force (“buoyant”?) is downward and adding to the
gravitational force.

The formulas and procedure for calculating true axial load are developed in Appendix A and will be
illustrated with an example in the next section.

F↓j = −p0A0 + p1A1 +
j∑

i=2

pi (Ai − Ai−1)+
j−1∑
i=1

wiLi j = 1, . . . , n (4.6)

F↑j = −p0A0 + p1A1 +
j∑

i=2

pi (Ai − Ai−1)+
j∑

i=1

wiLi, j = 1, . . . , n (4.7)

where

j = section number where forces are being calculated in step

n = total number of sections in string

i = node number, section number (starting at bottom with node and section 1)

A0 = total cross-sectional area of casing at bottom, 0.25πd2
o

Ai = internal cross-sectional area of casing in section i, 0.25πd2
i

p0 = pressure outside casing at bottom of string

pi = pressure inside casing at node i

wi = unbuoyed linear weight of casing in section i (w = g ρ�)

Li = vertical length of section i

F↓j = axial force in the bottom of section j

F↑j = axial force in the top of section j

Note: Mathematically, the convention is that when a summation index, i, is initially greater than
the summation limit, j or j− 1, then the summation is zero. And in a case where j− 1 < 0, then the
summation is zero. This is standard in mathematics, but be cautioned that this is not always consistent
in some programming languages.

While those formulas lend themselves easily to programming, they are a bit confusing if doing the
calculations manually because they separate the bottom and top loads of each section and calculate them
separately. When doing the calculations manually we prefer to do them sequentially without having to
repeat so many of the calculations in the summations.
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Here is a simple procedure for manual calculation of the true axial load:

1. Calculate the cross-sectional areas: A0, A1, . . . , An.
2. Calculate the unbuoyed weight of each section: Wi = wiLi.
3. Calculate the pressure at each node: p0, p1, p2, . . . , pn , pn+1.
4. Starting at the bottom, calculate the force at the bottom of section 1, F↓1 , then the top of section 1, F↑1 , bottom

of section 2, F↓2 , top of section 2, F↑2 , etc.

The procedure would then go in sequence as follows:

F↓1 = −p0A0 + p1A1

F↑1 = F↓1 +W1

F↓2 = F↑1 + p2 (A2 − A1)

F↑2 = F↓2 +W2

...

F↓j = F↑j−1 + pj
(
Aj − Aj−1

)
(4.8)

F↑j = F↓j +Wj (4.9)

...

F↓n = F↑n−1 + pn (An − An−1)

F↑n = F↓n +Wn

Notice that we always start at the bottom of the casing string. That is because the pressure at a node
has no effect on the forces below it.

Before we leave this section, it may or may not be obvious to you that since both the true axial load
and the effective axial load are the same at the surface, they must be somehow related. They are. The
relationship between the true axial load, F, and the effective axial load, F̂, is given by

F = F̂ − (Aopo − Aipi) (4.10)

where Ao and Ai are the outside and inside cross-sectional areas of the casing, respectively, and po and pi
are the outside and inside pressures, respectively. You can see from this relationship that at the surface,
where po = pi = 0, then F = F̂ as we would expect. In fact, from this relationship you may see an easier
way to calculate the true axial load. Calculate the effective axial load first, and then use the above to
adjust it to the true axial load. There will however, be a small (but insignificant) difference in the results
of the two methods. The difference arises from the fact that the API linear density (“weight”) of the
casing is the nominal density and not the actual density.

4.5.3 Axial load cases

Similar to the collapse and burst loads there are more than one case for axial load in the well construction
process. The two cases we always check occur in the installation stage of operations. There are some
special cases that occur in the production stage that involve high pressure stimulations and thermal
effects. These last two will not be included in our basic design, but will be discussed in Chapters 6 and 7
in the appropriate context. The axial load cases are shown in Table 4.4
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Table 4.4 Summary Axial
Loading Cases

Axial Loading C S I P

Installation
Running A A A A
Plug bump A A A A

Production
Stimulation S S
Thermal effects S S

C, conductor; S, surface; I, intermediate; P,
production; A, always applicable; S, sometimes
applicable.

The axial calculation methods in the previous section are the bases of both cases. The running case
is exactly the calculation in the previous section. In the running case, p1 = p0 because the fluid inside
is usually equal to the fluid in the annulus. Also in the running case, the surface pressure is zero so
pn+1 = 0.

The plug-bump case differs in that p1 = p0 because of the difference between the hydrostatic head of
the annular and internal columns, and with the addition of the additional pump pressures for displace-
ment and plug bump. Likewise pn+1 = 0 because the surface pressure is the differential displacement
pressure plus the additional plug-bump differential. These pressures are already determined in the burst
load calculations and are then included in pressure calculations for substitution into Equations (4.6)
and (4.7).

We will now show examples using the surface casing we previously selected to meet the collapse and
burst designs.

EXAMPLE 4.3 Surface Casing Example—Axial Load, Running Case

Referring to Figure 4.5, we calculate the forces as before. For example

F↓1 = force at the bottom of section 1

F↑1 = force at the top of section 1

So, the force at the top of section 1 is equal to the force at the bottom of section 1 plus the weight of section 1:

F↑1 = F↓1 +W1

To make it easier we will calculate all of the cross-sectional areas first.

A0 = (π/4)(13.375)2 = 140.500 in2

A1 = (π/4)(12.415)2 = 121.055 in2

A2 = (π/4)(12.615)2 = 124.987 in2

Then the section weights:

W1 = 68(900) = 61, 200 lbf
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Figure 4.5 Example surface casing schematic.

W2 = 54.5(2100) = 114, 450 lbf

And the nodal pressures:

p0 = 0.052(1.11)(8.33)(3000) = 1440 psi

p1 = 0.052(1.11)(8.33)(3000) = 1440 psi

p2 = 0.052(1.11)(8.33)(2100) = 1010 psi

Calculate the true axial load at the bottom of each section and at the top of the well using Equations (4.8)
and (4.9). Since the fluid inside and outside are the same the pressure at the shoe is the same inside and outside.

F↓1 = −p0A0 + p1A1 = 1440 (−140.500 + 121.055) = −28, 000 lbf

F↑1 = F↓1 +W1 = −28000 + 61200 = 33, 200 lbf

F↓2 = F↑1 + p1 (A2 − A1) = 33200 + 1010 (124.987 − 121.055) = 37, 170 lbf

F↑2 = F↓2 +W2 = 37170 + 114450 = 151, 620 lbf

Before proceeding we will now calculate the unbuoyed axial load and the effective axial load for
comparison. We will not use those loads in our design, but it is important to see how they compare.

EXAMPLE 4.4 Surface Casing—Unbuoyed and Effective Axial Loads

There are two sections of casing in the surface string, 900 ft of 68 lb/ft on bottom and 2100 ft of 54.5 lb/ft
casing on top. The mud density is 1.11 SG.

The unbuoyed axial casing load is

F3000 = 0

F2100 = 68 (900) = 61, 200 lbf
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F0 = 61200 + 54.5 (2100) = 175, 650 lbf

Recall that in USC units g · gc ≈ 1. Had we been working in SI units, g would have appeared in the
calculation.

The effective axial load is calculated with a buoyancy factor:

kb = 1− ρmud

ρsteel
= 1− 1.11 (62.34)

490
= 0.873

The effective axial load is obtained by multiplying the unbuoyed axial load by the buoyancy factor:

F3000 = 0

F2100 = 0.873 (68) (900) = 53, 430 lbf

F0 = 53430 + 0.873 (54.5) (2100) = 153, 340 lbf

See Figure 4.6 for a comparison of the unbuoyed and effective axial loads with the true axial load.
Note that the effective axial load is the same as the unbuoyed load at bottom, 0 lbf, and roughly the same
as the true axial load at the top. If our theory is correct they should give exactly the same results at the
top, but here we see they do not. There is a difference of 1690 lbf as calculated. Roundoff error? No,
roundoff plays a small part, but the significant reason is that the nominal weight of the casing is not the
actual weight, and it affects these calculations differently.

Note the true axial load plot on the left. It actually is in compression at the bottom, because of
the hydrostatic pressure on the cross-sectional area of the tube at the bottom. Note also that, as you
move up the plot from bottom to 2100 ft, the plot shifts slightly. That is because of the difference in
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Figure 4.6 Surface casing example: comparison of types of load calculation methods.
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cross-sectional area of the 54.5 lb/ft and the 68 lb/ft casing at that point. The tension increases, meaning
that the net hydrostatic force is acting downward, because the internal diameter of the 68 lb/ft casing
below is smaller than the internal diameter of the 54.5 lb/ft pipe above. (Had the heavier pipe been on
top, the plot would have shifted in the opposite direction.) It is important to note: The pressure acting at
the point of change in cross-sectional area has no effect on the axial load in the casing below that point,
only on the casing above that point.

Another thing to note about these plots is that the unbuoyed load plot essentially parallels the true
load plot, except for the change in cross-sectional area. It is much easier to calculate manually, since
there are no differences in cross-sectional areas and hydrostatic pressures to consider. That is why, in
the past, many used this as the basis for their design (along with an appropriate design factor). And, as
stated previously, many still use it, especially when doing manual calculations for calculating the axial
load. Some also justify its use by stating that, since we do not know the magnitude of borehole friction
in the well when we are designing the casing string, the axial load in air is a safer approach.

Next we will calculate the plug-bump case of axial loading, again using the surface casing as an
example.

EXAMPLE 4.5 Surface Casing Example—Axial Load, Plug-Bump Case

The casing sizes and depths will be exactly the same as the previous example. The pressures will however, be
different because of the different fluids in the annulus and inside the casing, the displacement pressure, and
the differential plug-bump pressure. These pressures were all calculated in the previous chapter and are:

p0 = 1840 psi
p1 = p0 + 500 = 2340 psi
p3 = 900 psi (0 psi in previous example)

The only pressure calculation we must make is

p2 = 900+ 0.052 (1.11) (8.33) (2100) = 1910 psi

Now we have all the data to make the true axial load calculations.

F↓1 = −p0A0 + p1A1 = −1840 (140.500) + 2340 (121.055) = 24, 750 lbf

F↑1 = F↓1 +W1 = 24750 + 61200 = 85, 950 lbf

F↓2 = F↑1 + p1 (A2 − A1) = 85950 + 1910 (124.987 − 121.055) = 93, 460 lbf

F↑2 = F↓2 +W2 = 93460 + 114450 = 207, 910 lbf

As you might expect, the axial load is greater during plug bump. This is often the case and points out the
necessity to calculate the tension in plug bump.

We will use only the true axial loads in our design. We now plot both the running case and the plug-
bump case (see Figure 4.7). Obviously the plug-bump case is the more severe loading for this casing
string.

Before continuing we need to cover one more case, not critical to our axial design but of some
significance when we discuss combined loading. This case might be called the post plug-bump axial
load. The cement is in place and the bump pressure is released. It is identical to the running case except
now the external fluid contains cement.
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Figure 4.7 Axial loads for surface casing example.

EXAMPLE 4.6 Surface Casing Example—Axial Load, Post Plug Bump

In this example the internal pressure has been released and the casing is buoyed on the outside by cement and
mud (or in this particular example, all cement). The only variable that differs here is the outside pressure at
the shoe. Now p0 = 1840 psi as in the last example, and all the internal pressures are the same as the running
case.

F↓1 = −p0A0 + p1A1 = −1840 (140.500) + 1440 (121.055) = −84,200 lbf

F↑1 = F↓1 +W1 = −84200 + 61200 = −23,000 lbf

F↓2 = F↑1 + p1 (A2 − A1) = −23000 + 1010 (124.987 − 121.055)

= −19,030 lbf

F↑2 = F↓2 +W2 = −19030 + 114450 = 95,420 lbf

4.5.4 Axial design loads

After calculating the axial loads, we next develop a design load plot. We previously discussed two
possibilities, a design factor and an over-pull margin. We could use either, or possibly both. For example,
we might select both an axial load design factor of 1.6 and an over-pull margin of 100,000 lbf for
instance. Figure 4.8 shows those two criteria applied to the surface casing true axial load previously
calculated.
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Figure 4.8 Example surface casing design loads.

In axial loading, the design factor is a bit different from collapse and burst loading. The latter two
of these design loads assume a static environment where the worst case loads are accounted for. Is that
true of the axial load? What if we cannot get the casing to bottom and have to pull it out of the hole?
Most would say that is accounted for when we use a larger design factor. But is that correct? Notice that
an axial design factor has a decreasing margin with depth and gives no margin at all near bottom. That
is fine for a static casing string where tension is minimal near bottom, but if we should have to pull it
out of the hole before cementing, there is no tensile margin in the lower part of the design load. But
that may not be the case if we have to move the pipe upward, even for reciprocation while cementing.
Most drillers know that there is a predetermined amount above the weight of a drill string that they can
safely apply should the drill string become stuck. This is called an over-pull margin and 100,000 lbf
seems to be a most common value. When it comes to reciprocating casing while cementing, almost no
one on location has any idea of the safe limit above the string weight. The over-pull margin is uniform
from bottom to top, and that is why many prefer it to the axial design factor. Most casing strings that
are adequate in severe collapse loading near bottom tend to have sufficient joint strength too, but this is
something to keep in mind. For our axial designs we are going to consider both a design factor and an
over-pull margin. The axial selection will be based on the more critical of the two.

In this case, the design factor of 1.6 is less than the 100,000 lbf over-pull except near the surface,
so we use both as the design lines. In Figure 4.9, we plot the casing we already selected to meet the
collapse and burst requirements, and we find that it easily exceeds the tension requirements also. This is
fairly typical of many surface strings, but the tensile design should always be checked to be certain.

At this point we might consider our surface casing design complete, and for many this might be true.
However, we are going to add one more step to our design process. We are going to consider the effect
of tension in the string and how it reduces the collapse resistance.
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Figure 4.9 Burst preliminary selection compared to axial design loads for surface casing example.

4.6 Collapse with axial loads

All casing is loaded with a combination of loads, such as tension, internal pressure, and external
pressure. The significance of this is that, in the case of combined loads, the table values we used for
collapse, burst, and tension are not valid. For instance, the collapse value of the 13-3/8 in. 54.5 lb/ft K-55
casing was listed as 1130 psi. But that value is valid only if there is no axial tension or compression in
the casing. In the presence of tension, the collapse value is lower, and in the presence of compression,
the collapse value may be higher. So we look at combined loads as they apply to axial tension and
collapse to determine whether or not we need to refine our casing design.

The combined loads of tension and collapse in casing is often referred to as biaxial loading, usually
meaning a combination of axial tension and collapse loads. This implies that the loading is on only two
of the principal axes of the casing which is not true. All casing in a borehole is always loaded on all three
principal axes: the radial, tangential, and longitudinal axes. What the term refers to is a simplification of
three-dimensional loading into a two-dimensional case for ease of handling. The application in casing
design is called biaxial design and it works sufficiently well for most basic applications. In fact, it works
so well that few have ever seen need to go to anything more sophisticated. We will discuss all this in
detail in Chapter 6, and for now we will use a two-dimensional simplification here.

4.6.1 Combined loads

Casing designs for many wells ignore altogether the effects of combined loads, and many operators have
never suffered any consequences for having done so. There are two reasons that the deleterious effects
are rarely seen. First, a large-enough design factor in collapse has been used, so that combined loading
effects are never seen. Second, and most prevalent, is that the actual loads on the casing strings have
been lower than the worst-case design loads. However, casing failures from combined loading do occur.
And, when they happen, the consequences are serious to the extent that the well may be lost.
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The subject of combined loading is a bit complicated, and there are several approaches that work.
We will delay any discussion on the topic until Chapter 6, but we need some tool now that we can use
for basic casing design. So for now, we introduce a simple and useful equation for use in calculating the
reduction in collapse rating caused by axial tension. Again, we will leave any explanation and discussion
for Chapter 6.

kclps =
√

1− 3

4

(
F

At Y

)2

− 1

2

(
F

AtY

)
(4.11)

where kclps is a collapse rating reduction factor at a point in tension, F is the axial tension at that point,
At is the cross-sectional area of the tube, and Y is the yield strength of the tube.

Where do we apply this formula? The answer may seem obvious: any point where a casing
strength line intercepts the collapse design line in our collapse charts. The next question is whether
or not the casing is in tension at that point. If no, then there is no need to consider that point,
but if yes, then there is definitely going to be a reduction in the collapse rating. For example, our
surface casing collapse design plot with preliminary selection shows such a point at 2100 ft (see
Figure 4.3).

The next step is to determine whether or not the casing is in tension at that point, and if so, how much.
And here is where a dilemma arises: which axial load curve do we use? If you have never considered
this, you are far from alone. Combined loads are almost never a combination of the worst case design
loads because these never occur at the same time. In our surface casing example, the worst case collapse
load which is the one we must consider, occurs during a serious lost circulation event while drilling
and after the surface casing is cemented. What is the tensile load in the pipe then? We do not know!
We calculated three load cases: running, plug bump, and post plug bump. If our borehole was perfectly
vertical and the surface casing is concentric to the borehole, then the answer is easy—the post plug-
bump load. But we know such a configuration is not possible in reality; the casing does contact the
borehole wall, and there is friction. Realistically, all three of our axial load cases are hypothetical and
may never actually exist.

We could make legitimate arguments for a number of scenarios. In an ideal vertical well with no
friction, we could list the sequence like this:

• Prior to cementing, the casing is in the running state.
• At plug bump the casing has been stretched by the pressure and is in the plug-bump state.
• As soon as the pressure is released, casing contracts into the post plug-bump state.

That would suggest the post plug-bump curve as the logical choice, and referring to Figure 4.10 we see
that the critical collapse point is actually in compression and no adjustment is needed. But if we consider
friction (and we must) the sequence may be quite different:

• While cementing we reciprocate the pipe with enough movement at the surface to assure the entire string moves
up and down.

• Reciprocation almost always ends on a down-stroke so that the cementing head is at its lowest position where it
was installed. Much of the lower casing is most likely in compression.

• Did reciprocation cease before or after plug bump?
• If before plug bump, was the plug-bump pressure significant enough to overcome frictional resistance and

actually stretch the casing into the calculated plug-bump state?
• If after plug bump, then the calculated plug-bump pressure has no significance in the later collapse loading.

• If casing was actually stretched into the plug-bump state, is the cement buoyancy and tension in the casing (from
the plug bump) sufficient to contract the pipe into the calculated post plug-bump state?
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Figure 4.10 Three buoyed axial load cases for example surface casing.

For the most part these questions are unanswerable. For many years most casing strings were
designed using the unbuoyed axial load and the worst case collapse case as the combined loads. It
worked well and still does, but perhaps it also results in over-design. For our examples, I will use the
running case of the true axial load (buoyed), but it is up to you or your company policy as to what you
will use in your designs.

EXAMPLE 4.7 Surface Casing Example—Combined Collapse and Tension

From Figures 4.3 and 4.10 and Table 4.3 we get our data:

h = 2100 ft

pclps = 1130 psi

F = 37,160 lbf

Y = 55,000 psi

At = 0.25π
(

13.3752 − 12.6152
)
= 15.513 in2

Substituting into Equation (4.11)

kclps =
√

1− 3

4

(
F

At Y

)2

− 1

2
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F
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)

=
√

1− 3

4

(
37160

15.513 (55000)

)2
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2

(
37160

15.513 (55000)

)
= 0.9775
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Now we calculate the reduced collapse strength of the casing:

p̃clps = 0.9775 (1130) = 1105 psi

Obviously now our setting depth of 2100 ft for the top section will not meet our design requirements. What
we require is a design margin factor of 1.00 or higher (recall kM = p̃clps/(kD�p). In our case, kD�p = 1130
from our design line, and

kM = 1105

1130
= 0.98 < 1.00

So to meet our design requirements for collapse we will have to adjust our selection by moving the bottom
of the 54.5 lb/ft section to a shallower depth to reduce the collapse load on the bottom of the section. For this
example, we will move the bottom of the section up to 2000 ft. This is just a guess, and we will examine a
better method later. At 2000 ft our collapse design load is 1080 psi. But something else occurs when we make
this adjustment; we reduced the collapse load, but we had to lengthen the bottom section and the result is an
increase in tension. This is the nature of the process. We must also recalculate the axial load for the change,
and this is where a spreadsheet or some other program can be very useful. We are not going to show the
calculations, but the axial tension at 2000 ft is 43,770 lbf and

kclps =
√

1− 3

4

(
43770

15.513 (55000)

)2

− 1

2

(
43770

15.513 (55000)

)
= 0.9734

The increased tension reduces the collapse rating a bit more.

p̃clps = 0.9734 (1130) = 1100 psi

but

kM = 1100

1080
= 1.02 > 1.00

Our adjustment was successful.

You may question why we used the collapse design load and the axial load rather than the axial
design load. Keep in mind that we are working with the collapse design in this process. The axial design
load applies only to the axial design, and is not relevant to the collapse design.

4.7 Example well

In this section, we will finalize our basic casing design for all four of our example strings. We used the
surface string as an example throughout this chapter so we will not repeat those calculations, but we will
do the conductor, intermediate, and production strings through the entire sequence.

4.7.1 Conductor casing example

From the previous chapter we determined that our maximum collapse load might be as high as 70 psi
and possibly 80 psi. The worst burst load we estimated to be about 150 psi. The lowest grade of 20 in.
API line pipe is Schedule 10 grade A with a 0.25 in. wall thickness. It is pressure tested to 600 psi so it
is more than adequate for burst. API does not give a collapse rating for line pipe, but we can calculate
it from API formulas (in Chapter 6) and it is 94 psi. This gives us a design factor of 1.18 which should
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be sufficient. But since there is considerable uncertainty in our loading we might opt for a Schedule 20
grade A with a calculated collapse pressure of 320 psi. If we consider casing instead of line pipe, the
lightest API 20 in. casing is 94 lb/ft H-40 which has a collapse rating of 520 psi. For some operators,
this might be preferable to line pipe.

4.7.2 Surface casing example

We have used our surface casing as an example so far in this chapter and will not repeat those
calculations here, but we will now calculate the design margins for this string.

Surface Casing—Design Margin Factors
Recall that we defined the design margin as the strength of the actual casing selected divided by the
design load (kD· Load). The actual loads were not necessarily calculated at all the depths that we need
to check, but we can either get the values from our load plots or we may easily calculate them from the
calculated end points using a linear interpolation since our load lines are all linear. Remember too that
we adjusted the section depths for combined collapse and tension so the depth of the top section is not
the same as our initial selection. Here I have calculated the load values rather than try to read them from
the load plots. We will begin with the collapse design and show the calculation results in a tabular form
(Table 4.5).

The depths listed in the table are at the bottom of each section where the maximum collapse loading
occurs. Next we calculate the design margins for burst (Table 4.6). In these calculations the largest burst
load is at the top of each section so the depths in our table will be at the top of each section, rather than
at the bottom as in the collapse loading.

Finally, we calculate the axial design margin (Table 4.7). Here too, the maximum axial load is at the
top of each section and in this example the over-pull margin was greater than the design factor at both
points.

This completes our basic surface casing design. We have designed for collapse, burst and axial
loading. Additionally we have accounted for a reduction in collapse resistance caused by tension. The
final design is summarized in Table 4.8.

Table 4.5 Surface Casing Collapse Design Margin
Factors

Depth Strength Load Design

Section (ft) (psi) (psi) kD (psi) kM

2 2000 1130 960 1.125 1080 1.05
1 3000 1950 1440 1.125 1620 1.20

Table 4.6 Surface Casing Burst Design Margin
Factors

Depth Strength Load Design

Section (ft) (psi) (psi) kD (psi) kM

2 0 2730 1820 1.125 2050 1.33
1 2000 3450 800 1.125 900 3.83
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Table 4.7 Surface Casing Axial Design Margin Factors

Depth Strength Load kD or Design

Section (ft) (klbf) (klbf) Over-pull (klbf) kM

2 0 547 209 100 309 1.77
1 2000 718 93 100 193 3.72

Table 4.8 Example 13-3/8 in. Surface Casing Design Summary

Design Margin, kM

Depth ID Wt.

Section (ft) (in.) (lb/ft) Grade Conn. Clps Brst Axial

2 2000 12.615 54.5 K-55 ST&C 1.05 1.33 1.77
1 3000 12.415 68 K-55 ST&C 1.20 3.83 3.72

Mud density: 1.11 SG.
Design factors, kD: 1.125 (clps and brst), 1.6 or 100,000 OP (axial).

4.7.3 Intermediate casing example

We follow exactly the same procedure here as with the surface casing. For this example, we will use the
following design factors:

• Collapse: 1.125
• Burst: 1.20
• Axial: 1.6 or 100,000 lbf over-pull (whichever is greater)

Intermediate casing example—collapse and burst design loads

From the pressure loads we calculated in Chapter 3, we will now apply the design factors for collapse
and burst to give us the pressure design loads.

Intermediate Casing Example—Collapse Design Load
From Chapter 3 the collapse pressures for the intermediate casing are:

�p0 = 0

�p10500 = 1910 psi

Applying the design factor, kD = 1.125, we calculate the collapse design load at the shoe as

�p10500 = 1.125 (1910) = 2150 psi

We plot the collapse design in Figure 4.11.

Intermediate Casing Example—Burst Design Load
Again referring to the pressure loads calculated in Chapter 3 the burst loads are:

�p0 = 7210 psi

�p10500 = 4020 psi
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Figure 4.11 Collapse design load for intermediate casing example.

The design burst load is then

�p0 = 1.20 (7210) ≈ 8650 psi

�p10500 = 1.20 (4020) ≈ 4820 psi

Figure 4.12 is a plot of the intermediate casing burst design load.

Intermediate casing example—preliminary selection

We assume that we have available the 9-5/8 in. casing of Table 4.9 in our inventory for use in this well.
Note that, since we elected to drill an 8-1/2 in. hole from the bottom of the intermediate casing

to total depth, we may have a problem with some of the casing in this inventory. If we use any
53.5 lb/ft casing in the intermediate string, it must be specially drifted for an 8-1/2 in. bit. The 58.4 lb/ft
casing cannot be used at all unless we use a smaller bit, and we do not consider that an option for
our well.

In a precursory examination of the available pipe and the loads, we can see almost immediately
that the collapse loading is very small, and the weakest pipe in our inventory easily could sustain the
maximum collapse load. We also note that the burst load is relatively high and the first three items in
our inventory will not even sustain the burst load at the bottom of the string, where the burst load is
the lowest. Therefore, it looks like the best place to start the selection is with the burst design, and that
is fairly typical of intermediate strings run to protect lower-pressured formations from higher pressures
below. In the cases where the intermediate casing is run to protect low-pressure formations below, we
would probably start with the collapse selection first. Again, it really makes no difference whether we
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Figure 4.12 Burst design load for intermediate casing example.

Table 4.9 Available 9-5/8 in. Casing for the Intermediate Casing
Example

Wt. ID Drift Clps Press Int Yld Jt Strength

(lb/ft) Grade Conn. (in.) (in.) (psi) (psi) (klbf)

36 K-55 ST&C 8.921 8.765 2020 3520 423
40 K-55 ST&C 8.835 8.679 2570 3950 486
40 K-55 LT&C 8.835 8.679 2570 3950 561
40 N-80 LT&C 8.835 8.679 3090 5750 737
43.5 N-80 LT&C 8.755 8.599 3810 6330 825
47 N-80 LT&C 8.681 8.525 4750 6870 905
53.5 N-80 LT&C 8.535a 8.379 6620 7930 1062
58.4 N-80 LT&C 8.435b 8.279 7890 8650 1167
43.5 P-110 LT&C 8.755 8.599 4420 8700 1105
47 P-110 LT&C 8.681 8.525 5300 9440 1213
53.5 P-110 LT&C 8.535a 8.379 7950 10,900 1422

aDrift ID is less than bit diameter.
bNominal ID is less than bit diameter.
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Figure 4.13 Preliminary selection for burst for intermediate casing example.

start with the collapse or burst selection, but if we start with the most critical one first it usually results
in less revision.

Intermediate Casing Example—Burst Selection
We start our burst selection at the top of the string and plot the various sections as to their burst ratings
onto the design plot, see Figure 4.13.

While the selection process was done graphically in that figure, you should also understand how it is
done with calculations. Most of the depths and pressures I use in this and other examples are calculated
rather than read from the small graphs used as illustrations in this text.4 The calculations are easy to
do since our design load lines are linear. The only precaution I would advise, is to be careful about
roundoff if you do this manually. It is easy to accumulate roundoff errors such that when you calculate
your design margin later, it may be slightly less than 1.00 at some critical points. A spreadsheet does
not roundoff internally to the same degree, but only in the displayed results, hence it may give different
answers from manual calculations rounded off at each step.

Calculating Burst Selection Depths
The burst pressures are:

�p0 = 8650 psi

�p10500 = 4820 psi

4 Full-size graphs on sheets such as 8.5× 11 in. or A-4 are read with sufficient accuracy, but not these small versions, so I have
calculated the values to keep the examples more accurate for our purposes.
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Calculate pressure gradient:

γ = �p

�h
= 4820− 8650

10500− 0
= −0.36476 psi/ft

The pressure, p, at any depth, h, may be calculated from the linear equation

p = p0 + γ h (4.12)

In our application for selecting depths for particular types of casing where p is the burst pressure rating
of the pipe, pbrst, we rearrange Equation (4.12) to calculate the depth at which the design pressure is
equal to the burst pressure rating of the casing:

h = 1

γ
(pbrst − p0) (4.13)

For our example, we will set this up in tabular form as you can easily do with a spreadsheet to do any
number of these calculations (see Table 4.10).

In this selection, we selected some 40 lb/ft N-80, 43.5 lb/ft N-80, 47 lb/ft N-80, and 53.5 lb/ft N-80,
and 43.5 lb/ft P-110 casing in the string (refer back to Figure 4.13). This might constitute an optimum
design from an engineering point of view, but do we really want to run something like this in our well?
There is also a problem with this selection in that the drift diameter is less than the 8-1/2" bits we plan
to use in drilling below it. So if we stay with this selection, the 53.5 lb/ft pipe must be specially drifted
to be sure that an 8-1/2 in. bit will pass through it. What if it will not pass through enough pipe in our
inventory to fill out this section? We would then extend the 43.5 lb/ft P-110 from top to 5200 ft. And
that brings up another point. If this well is in a hard rock area, where we will be drilling for a long time
below the intermediate casing, do we think that the 43.5 lb/ft pipe has enough wall thickness to sustain
the wear caused by the rotating tool joints and still maintain sufficient burst resistance. This is not an
easy question to answer, but is quite typical, because wear often is a problem with intermediate strings,
and the worst wear often occurs nearer the surface than further down-hole. We discuss wear later in
Chapter 7 and bring it up at this point only because this is the kind of question that often arises with
intermediate casing.

There are a number of alternatives to this selection that would simplify the string considerably and
reduce the chances for errors on location in running a string with five different sections. A simple
alternative is to run only 43.5 lb/ft casing giving us a single wall thickness in our string. We initially

Table 4.10 Calculated Tops of Intermediate
Casing for Burst

Internal Yield, Section Top,

Casing pbrst (psi) h (ft)a

9-5/8 43.5 lb/ft P-110 8700 -
9-5/8 53.5 lb/ft N-80 7930 1974
9-5/8 47 lb/ft N-80 6870 4880
9-5/8 43.5 lb/ft N-80 6330 6360
9-5/8 40 lb/ft N-80 5750 7950

ah = (pbrst − p0)/γ = (pbrst − 8650)/(−0.36476).



108 Casing and Liners for Drilling and Completion

Burst pressure load, Dp (psi)
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Figure 4.14 Alternate preliminary burst selection for intermediate casing example.

assumed that this well is being drilled in soft formations and we will only drill 3500 ft below this casing
string. It should drill fairly rapidly, but always keep in mind the caveat about wear we mentioned above
when making a choice like this. The simpler selection is shown in Figure 4.14.

A quick check shows that all the casing we selected easily exceeds the collapse design requirements,
so we will not plot that.

Intermediate casing—axial load

Now that we have our preliminary intermediate casing selection, we can calculate the axial loads. This
is greatly simplified in this case because even though we have two sections, they both have the same
wall thickness.

Preliminary Axial Calculations

A0 = (π/4) (9.625)2 = 72.760 in2

A1 = (π/4) (8.755)2 = 60.201 in2

W1 = w1 L1 = 43.5 (10500) = 456,750 lbf

Installation—Axial Running Case
Calculate the pressure inside and outside the shoe.



Design loads and casing selection 109

p0 = 0.052 (1.42) (8.33) (10500) = 6458 psi

p1 = p0 = 6458 psi

Calculate the sectional forces.

F↓1 = −p0A0 + p1A1 = 6458 (60.201− 72.760) = −81,110 lbf

F↑1 = F↓1 +W1 = −81110+ 456750 = 375,640 lbf

Installation—Axial Plug-Bump Case
Calculate the annular cement pressure and the internal pressure at the shoe.

p0 = 0.052 (8.33) [(1.91) (1000)+ (1.44) (9500)] = 6753 psi

p1 = 6753+ 1000 = 7753 psi

Calculate the sectional forces.

F↓1 = −p0A0 + p1A1 = −6753 (72.760)+ 7753 (60.201)

= −24,610 lbf

F↑1 = F↓1 +W1 = −24610+ 456750 = 432,140 lbf

The plug-bump load is obviously the greater, so we will plot it and use our design factor of 1.6 and
an over-pull to get the axial design load, see Figure 4.15.

Next we check to see hour preliminary burst selection compares to our tension design in Figure 4.16.
We can see that it easily satisfies the axial load requirements.

Intermediate casing—combined load adjustments

We now check our intermediate string to see if any adjustments are required for combined loading.
Referring to Figure 4.17 we see that the collapse values are far exceeded by the casing collapse ratings,
so there is no need for a tension/collapse check on the intermediate string.

Intermediate casing—design margin factors

Recall that we defined the design margin as the strength of the actual casing selected divided by the
design load (kD· Load). The actual loads were not necessarily calculated at all depths that we need to
check, but we can either get the values from our load plots or we may easily calculate them from the
calculated end points using a linear interpolation since our load lines are all linear. Here I have calculated
the load values rather than try to read them from the load plots.

The depths listed in Table 4.11 are at the bottom of each section where the maximum collapse loading
occurs. Next we calculate the design margins for burst (Table 4.12). In these calculations the largest burst
load is at the top of each section so the depths in our table will be at the top of each section, rather than
at the bottom in the collapse loading.
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Figure 4.15 Axial design loads for intermediate casing example.
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Figure 4.16 Preliminary selection, axial strength for intermediate casing example.
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Collapse pressure load, |Dp| (psi)
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Figure 4.17 Preliminary selection, collapse strength for intermediate casing example.

Table 4.11 Intermediate Casing Collapse Design
Margin Factors

Depth Strength Load Design

Section (ft) (psi) (psi) kD (psi) kM

2 6360 4420 1157 1.125 1300 3.40
1 10,500 3810 1910 1.125 2150 1.77

Table 4.12 Intermediate Casing Burst Design Margin
Factors

Depth Strength Load Design

Section (ft) (psi) (psi) kD (psi) kM

2 0 8700 7210 1.20 8650 1.01
1 6360 6330 5278 1.20 6330 1.00

Finally we calculate the axial design margin (Table 4.13). Here too, the maximum axial load is at the
top of each section and in this example the over-pull margin was greater than the design factor at both
points.

This completes our basic intermediate casing design. We made our preliminary selection based on
the burst design load, and that selection also satisfies the collapse and axial design loads. Additionally
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Table 4.13 Intermediate Casing Axial Design Margin
Factors

Depth Strength Load kD or Design

Section (ft) (klbf) (klbf) Over-pull (klbf) kM

2 0 1105 427 100 527 2.10
1 6360 825 150 100 250 3.30

Table 4.14 Example 9-5/8 in. Intermediate Casing Design
Summary

Design Margin, kM

Depth ID Wt.

Section (ft) (in.) (lb/ft) Grade Conn. Clps Brst Axial

2 6360 8.755 43.5 P-110 LT&C 3.40 1.01 2.10
1 10,500 8.755 43.5 N-80 LT&C 1.77 1.00 3.30

Mud density: 1.42 SG.
Design factors, kD: 1.125 clps, 1.20 brst, 1.6 or 100,000 OP (axial).

we found that no correction for a reduction in collapse resistance caused by tension was necessary. The
final design is summarized in Table 4.14.

4.7.4 Production casing example

Finally, we come to the production casing, which is the last casing string in our example. We expect
that it should be capable of containing full well pressure throughout the producing life of the well. It
should not collapse if the well becomes depleted significantly or during any operations conducted in
the wellbore during work overs or stimulations. For the 7 in. production casing at 14,000 ft, we use the
following design factors:

• Collapse: 1.125
• Burst: 1.20
• Axial: 1.6 or 100,000 lbf over-pull

We apply the collapse design factor to our collapse load to get the collapse design

�p14000 = 1.125 (11160) ≈ 12,560 psi

and plot the results on our load plot, Figure 4.18
Then the burst design:

�p0 = 1.2 (8660) ≈ 10,390 psi

�p14000 = 1.2 (4730) ≈ 5680 psi

which is plotted in Figure 4.19:
Note that we did not use the burst load plot we generated assuming a near surface tubing leak. In

practice, we might have chosen that load plot, even though it is not common practice in most designs.
We should also note that the inventory of available casing will not suffice for that load case, and we
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Collapse pressure load, |Dp| (psi)
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Figure 4.18 Collapse design load for example production casing.
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Figure 4.19 Burst design load for example production casing.
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Table 4.15 Available 7 in. Casing for the Production Casing
Example

Wt. ID Drift Clps Press Int Yld Jt Strength

(lb/ft) Grade Conn. (in.) (in.) (psi) (psi) (klbf)

26 N-80 LT & C 6.276 6.151 5410 7240 519
29 N-80 LT & C 6.184 6.059 7030 8160 597
32 N-80 LT & C 6.094 5.969 8600 9060 672
35 N-80 LT & C 6.004 5.879 10,180 9240 746
38 N-80 LT & C 5.920 5.795 11,390 9240 814
26 P-110 LT & C 6.276 6.151 6230 9960 693
29 P-110 LT & C 6.184 6.059 8530 11,220 797
32 P-110 LT & C 6.094 5.969 10,780 12,460 897
35 P-110 LT & C 6.004 5.879 13,030 12,700 996

would have to opt for higher strength casing with proprietary connections. Given an adequate inventory
for selection the design is quite simple. However, we do not choose that load case here because some
very important points in this example would not be illustrated had we done so, and the purpose of this
example is to illustrate as many points as possible.

Now that we generated the design plots for collapse and burst it is time to begin selecting specific
casing for the example well.

Table 4.15 shows the 7 in. casing available to us for this production string.
We will start with the collapse load for the evacuated production string. We know that the

burst design load will require higher pressures near the surface, so we stop our collapse selection
at about the halfway point. This selection shown in Figure 4.20 will meet our collapse design
requirements.

We then continue with the burst selection by plotting the preliminary selection for collapse with the
burst design curves (plotting the burst strengths now) and continuing with the upper portion to meet
the burst design requirements. Figure 4.21 shows the results. Though this might be the lowest cost
selection (in some cases), it is not a good design as it contains too many sections. We see that there is
a section of 29 lb/ft pipe in the middle of the section that should definitely be eliminated. The modified
selection is shown in Figure 4.22. In practice we might want to simplify this design further, but we
are going to leave it as it is so that we can see how to deal with the combined collapse and tensile
loads.

Production casing example—axial loads

Next we check the axial loading for the various cases (Figure 4.23).

• Installation—running
• Inside: mud, 1.84 SG
• Outside: mud, 1.84 SG

• Installation—plug bump
• Inside: 1.20 SG + 1200 psi above differential displacement pressure
• Outside: tail slurry 1.99 SG (1000 ft + 25%), lead slurry 1.91 SG (3000 ft + 35%), spacer and mud 1.84 SG



Design loads and casing selection 115

Collapse pressure load, |Dp| (psi)
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Figure 4.20 Preliminary selection based on collapse design for example production casing.
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Figure 4.21 Preliminary selection for burst and collapse designs for example production casing.



116 Casing and Liners for Drilling and Completion

Burst pressure load, Dp (psi)
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Figure 4.22 Alternate burst and collapse preliminary selection for example production casing.
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Figure 4.23 Axial schematic for example production string.

Preliminary Calculations
• Cross-sectional areas

A0 = (π/4) (7.000)2 = 38.485 in2

A1 = (π/4) (6.004)2 = 28.312 in2
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A2 = (π/4) (6.094)2 = 29.167 in2

A3 = (π/4) (6.184)2 = 30.035 in2

• Section weights

W1 = w1 L1 = 35 (1979) = 69, 265 lbf

W2 = w2 L2 = 32 (8067) = 258, 144 lbf

W3 = w3 L3 = 29 (3954) = 114, 666 lbf

Running Case
• Calculate pressures

p0 = p1 = 0.052 (1.84) (8.33) (14000) = 11,158 psi

p2 = 0.052 (1.84) (8.33) (12021) = 9581 psi

p3 = 0.052 (1.84) (8.33) (3954) = 3151 psi

• Calculate section forces

F↓1 = −p0A0 + p1A1 = 11158 (−38.485 + 28.312)

= −113,510 lbf

F↑1 = F↓1 +W1 = −113510 + 69265 = −44, 245 lbf

F↓2 = F↑1 + p2 (A2 − A1) = −44245+
9581 (29.167 − 28.312)

= −36,053 lbf

F↑2 = F↓2 +W2 = −36053 + 258144 = 222,091 lbf

F↓3 = F↑2 + p3 (A3 − A2) = 222091+
3151 (30.035 − 29.167)

= 224,826 lbf

F↑3 = F↓3 +W3 = 224826 + 114666 = 339,492 lbf

Plug-Bump Case
• Calculate pressures

p0 = 0.052 (8.33) [(1.99) (1250)+ (1.87) (3750) + (1.84) (9000)]

= 11,288 psi

p1 = 11,288+ 1200 = 12,488 psi

p2 = 12488 − 0.052 (8.33) (1.20) (14000 − 12021)

= 11,459 psi

p3 = 12488 − 0.052 (8.33) (1.20) (14000 − 3954)

= 7266 psi
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• Calculate section forces

F↓1 = −p0A0 + p1A1 = −11288 (38.485) + 12488 (28.312)

= −80,858 lbf

F↑1 = F↓1 +W1 = −80858 + 69265 = −11,593 lbf

F↓2 = F↑1 + p2 (A2 − A1) = −11593 + 11459 (29.167 − 28.312)

= −1796 lbf

F↑2 = F↓2 +W2 = −1796 + 258144 = 256,348 lbf

F↓3 = F↑2 + p3 (A3 − A2) = 256348 + 7266 (30.035 − 29.167)

= 262,655 lbf

F↑3 = F↓3 +W3 = 262655 + 114666 = 377,321 lbf

The plug-bump load is the highest (Figure 4.24) so we will apply the design factors to it and then
check our burst/collapse selection to see if it is adequate in axial load design.

For the production casing example, we use the true axial load in the plug-bump stage in 1.82 SG mud
and a design factor of 1.6 or 100,000 lbf over-pull. Then we plot these on in Figure 4.25 for designing
the tension.

As can be seen in Figure 4.26, we are fortunate that the string we selected for collapse and burst also
meets the design load for tension. While this is often the case with higher pressures, the general case is
that deeper wells with lower pressures require adjustment of the preliminary selection for tension. This
selection is adequate as is. Now we will check the effect of the axial loads on collapse.

Axial load, F (100 lbf)

   
V

er
tic

al
 d

ep
th

, h
 (

ft)

-

10,000

12,000

14,000

True axial load
Plug-bump axial load

Figure 4.24 Axial loads for example production casing.
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Figure 4.25 Axial design load for example production casing.
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Figure 4.26 Preliminary selection axial strength and axial design for example production casing.
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Production casing—combined loading

Examining our collapse design plot with the casing selection (Figure 4.20), we see that there are
possibly two critical points (where the casing collapse rating intercepts the design line). These occur
at 12,021 ft and 9590 ft. At 12,021 ft the casing is actually in axial compression. This will tend to
increase the collapse resistance (though we seldom make any adjustments for that since it is a benefit).
At 9590 ft, however, there is a tensile load of 41,739 lbf. and the collapse design load is 8600 psi While
we could read an adequate value from a large size plot, this value was calculated from the slope of
the load curve for this example, rather than read from the small plot in this text. We employ the
same simple formula used for the surface casing (Equation (4.11)) to calculate the reduced collapse
value.

kclps =
√

1− 3

4

(
F

At Y

)2

− 1

2

(
F

AtY

)

=
√

1− 3

4

(
41739

9.317 (80000)

)2

− 1

2

(
41739

9.317 (80000)

)
= 0.971

The reduced collapse rating of the 32 lb/ft N-80 section is

p̃clps = kclps pclps = 0.971 (8600) = 8351 psi

and the design margin is

kM = 8351

8600
= 0.971 < 1.00

which requires that we adjust our collapse selection.
We will try what we did for the surface casing and raise the section bottom to 9500 ft. The tension

value at 9500 ft will be greater than at 9590 ft, but we will not have to recalculate the axial load curve
because both this section and the one below it have the same wall thickness so the axial load line will
not change. And furthermore, the axial load gradient is 32 lbf/ft (the linear weight of the casing) so it is
easy to calculate the tension value at any point in this section, F = 41,379+ 32(90) = 44,619 lbf. The
collapse design load at 9500 ft is 8519 psi.

kclps =
√

1− 3

4

(
44619

9.317 (80000)

)2

− 1

2

(
44619

9.317 (80000)

)
= 0.969

The reduced collapse rating of the 32 lb/ft N-80 section is

p̃clps = kclps pclps = 0.969 (8600) = 8333 psi

and the design margin is

kM = 8333

8519
= 0.978 < 1.00

which still does not meet our requirements.
We will try a 200 ft move this time so that the bottom of the N-80 section is at 9300 ft. The tension is

50,659 lbf and the collapse design load is 8340 psi.
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kclps =
√

1− 3

4

(
50659

9.317 (80000)

)2

− 1

2

(
50659

9.317 (80000)

)
= 0.964

The reduced collapse rating of the 32 lb/ft N-80 section is

p̃clps = kclps pclps = 0.964 (8600) = 8290 psi

and the design margin is

kM = 8290

8340
= 0.994 < 1.00

We are getting closer, but we are still not there. We can keep guessing and get close in a couple of more
steps, but this is a tedious process, and we have enough data now that we can use a numerical iterative
technique like a secant method, or we can use a graphical method.

Suppose we say our calculation process here is some function of the depth, h, that we will call f (h),
where if we select the correct value of h, then our design margin factor will be equal to 1.00. So we say
f (h) = 1.00 or f (h)− 1.00 = 0. So we seek a depth, h, such that

y = f (h)− 1 = 0

We already have calculated three points (two would have sufficed) so let’s stop and plot them.

y1 = f (h1)− 1 = f (9590)− 1.000 = 0.971− 1.000 = −0.029

y2 = f (h2)− 1 = f (9500)− 1.000 = 0.978− 1.000 = −0.022

y3 = f (h3)− 1 = f (9300)− 1.000 = 0.994− 1.000 = −0.006

We plot these points and extrapolate to y = 0 and read the value of h that will satisfy our function.
We can see in Figure 4.27. We see that a depth of 9220 ft should be the correct adjusted depth, so we
will check it. At 9220 ft the tension is 53,219 lbf, and the collapse design load is 8269 psi.

kclps =
√

1− 3

4

(
53219

9.317 (80000)

)2

− 1

2

(
53219

9.317 (80000)

)
= 0.962

The reduced collapse rating of the 32 lb/ft N-80 section is

p̃clps = kclps pclps = 0.962 (8600) = 8273 psi

and the design margin is

kM = 8273

8269
= 1.00

This interpolated depth is correct.

Production casing—design margin factors

Finally we calculate the design margin factors and summarize the results. Note that we did change the
depth of the bottom of section 3 to account for the combined load effects.

The depths listed in Table 4.16 are at the bottom of each section where the maximum collapse loading
occurs.
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Figure 4.27 Collapse/tension interpolation.

Next, we calculate the design margins for burst. In these calculations the largest burst load is at the
top of each section so the depths in Table 4.17 are at the top of each section, rather than at the bottom
as in the collapse loading.

Finally, we calculate the axial design margin. Here too, the maximum axial load is at the top of each
section, and in this example the over-pull margin was greater than the design factor at both points (see
Table 4.18).

This completes our basic production casing design. We made our preliminary selection based on
both the collapse and the burst design loads, and that selection also satisfies the axial design loads.
Additionally we found it necessary to apply a correction for a reduction in collapse resistance caused by
tension. The final design is summarized in Table 4.19. Remember that in this table, the collapse margin
is calculated at the bottom of each section (the depth shown in the table), but the burst and axial margins

Table 4.16 Production Casing Collapse Design Margin
Factors

Depth Strength Load Design

Section (ft) (psi) (psi) kD (psi) kM

4 3954 8530 3152 1.125 3546 2.41
3 9220 8273a 7350 1.125 8269 1.00
2 12,021 10,780 9582 1.125 10,780 1.00
1 14,000 13,030 11,160 1.125 12,555 1.04

aReduced collapse for tension.
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Table 4.17 Production Casing Burst Design Margin
Factors

Depth Strength Load Design

Section (ft) (psi) (psi) kD (psi) kM

4 0 11220 8660 1.20 10,392 1.08
3 3954 9060 7550 1.20 9060 1.00
2 9220 12,460 6072 1.20 7286 1.71
1 12,021 12,700 5286 1.20 6340 2.00

Table 4.18 Production Casing Axial Design Margin
Factors

Depth Strength Load kD or Design

Section (ft) (klbf) (klbf) Over-pull (klbf) kM

4 0 797 377 1.6 603 1.32
3 3954 672 256 1.6 410 1.64
2 9220 897 89 100 189 4.75
1 12,021 996 −12 100 88 11.32

Table 4.19 Example 7 in. Production Casing Design
Summary

Design Margin, kM

Depth ID Wt.

Section (ft) (in.) (lb/ft) Grade Conn. Clps Brst Axial

4 3954 6.184 29 P-110 LT&C 2.41 1.08 1.32
3 9220 6.094 32 N-80 LT&C 1.00 1.00 1.64
2 12,021 6.094 32 P-110 LT&C 1.00 1.71 4.75
1 14,000 6.004 35 P-110 LT&C 1.04 2.00 11.32

Mud density: 1.84 SG.
Design factors, kD: 1.125 clps, 1.20 brst, 1.6 or 100,000 OP (axial).

are calculated at the top of each section (which is the bottom of the next higher section as shown in the
depth column).

4.8 Additional considerations

Generally, cost is the overriding factor in deciding which type of casing to select when several types of
casing satisfy the load requirements of the design. Obviously, we could select a string of some weight
of P-110 grade pipe that might meet all our design criteria easily. However, the cost of such a string
would far exceed that of a string made up of several weights of N-80, K-55, and even some P-110, if
required. For the designs in this chapter, our basic premise was to try to select the lowest grade first,
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then the lowest weight, because that is how costs tend to run. We also tended to stay away from the
heaviest weight in any grade, since that usually is a special item, not readily available and often with
too small an internal diameter to use common bit and tool sizes. Market costs vary considerably, and we
do not attempt to put casing costs into our examples here, but in general, the lower the grade, the lower
is the cost. The other thing that complicates the cost picture is the inventory status within a company
and the availability of certain weights and grades. It may be more costly to purchase some K-55 casing
than to use some N-80 already owned by the company or the company’s partners in some joint venture.
These considerations may override what we tend to call an optimum design based on a common scale
of prices.

One important point that we have not discussed that should be mentioned here is the depth selections
that appear in our designs. Casing does not come in lengths that are readily arranged to satisfy our exact
design depths. Each section is always going to be a little shorter or longer than our design specifications.
And to add to that uncertainty, the pipe as purchased is tallied in a pipe yard “threads-on” and usually
with the protectors on also. Further the tally process is typically somewhat sloppy.5 Once the pipe is
on location, and tallied accurately, the rig supervisor is going to have to “fit” the pipe on location to
the design. In all likely hood he or she will not have any idea as to whether it is better to make a
particular section a little longer or a little shorter in length than the design. The truth is that it should
be inconsequential, as long as the difference is not more than the length of a joint. But sometimes the
measurement differences between what is shipped and what is on location require a bigger difference.
We can alleviate this problem by adjusting our design to make it easier in the field, and here is where the
design margin factors can help us. For example, look at our final design summary for the 7 in. production
casing (Table 4.19) keeping in mind that the collapse design margin factor is calculated at the bottom
of each section and the burst and axial design factors are calculated at the top of each section. We can
see the bottom of section 2 has a design margin factor of 1.00 at its bottom at 12,021. We could easily
raise the bottom of that section to an even 12,000 ft or even higher thus raising the margin a little and
also giving the field supervisor a round number to aim for with the casing on location. But, if we raise
the bottom of section 2 it will also raise the top of section 1. The burst and axial margins at the top of
section 1 will then be reduced slightly, but they are 2.00 and 11.34, respectively, so a small reduction
is of no consequence. There are any number of adjustments we might make, but the result is that we
essentially have to do the selection process all over from the beginning to avoid confusion.

Table 4.20 shows a possible conservative revision to allow flexibility in the field for fitting the casing
on hand to the design. Essentially, this was a reworking of the entire selection procedure from the start.

Table 4.20 Example 7 in. Production Casing Design
Summary—Alternate Field Design

Design Margin, kM

Depth ID Wt.

Section (ft) (in.) (lb/ft) Grade Conn. Clps Brst Axial

4 4500 6.184 29 P-110 LT&C 2.11 1.08 1.32
3 9100 6.094 32 N-80 LT&C 1.01 1.02 1.75
2 11,800 6.094 32 P-110 LT&C 1.02 1.70 4.67
1 14,000 6.004 35 P-110 LT&C 1.04 1.98 10.06

Mud Density: 1.84 SG.
Design factors, kD: 1.125 clps, 1.20 brst, 1.6 or 100,000 OP (axial).

5 Believe me on this issue. I worked in a pipe yard one summer as a teenage truck swamper.
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I added 2% to the design factors (except at the surface and bottom depths which are fixed) and rounded
the results to an even 100 ft, always favoring the conservative direction. It still required a combined load
adjustment to the bottom of section 3 which calculated exactly at 9200 ft, but I raised that to 9100 ft
to allow more flexibility at the rig site. This may seem a pointless exercise if you are satisfied that any
field variation in “fitting” the actual casing to your design is not a significant concern. This step does
go beyond normal practice, and few would ever go to the trouble. It is not an engineering consideration
except in a most critical well, but depending on your professional situation, it can be a liability issue. If
you are employed by a substantial company, it is probably a waste of time, but if you are a consultant
or with a small organization, you soon learn that being right can still cost you a considerable amount in
attorney fees just to prove it.

4.9 Closure

In the basic designs for surface casing, intermediate casing, and production casing that we just examined,
we used a variety of design factors. Typically, a company has a set of design criteria for a specific area
or field or even one used company wide and stays with those criteria for all designs.

Another point we should make is that we selected from our inventory of pipe without explanation as
to why we chose one as opposed to another. Many possible combinations would work just as well as the
selections we made. In general, the choice between two different types of casing for a particular section
is based on

• Cost
• Availability
• Simplicity of design
• Minimum number of crossovers
• Wear considerations
• Weight in highly deviated or horizontal wells

The basic casing design process we considered so far in this text is adequate for the vast majority of all
wells drilled in the world every year. What we presented was more or less a method for basic casing
design. Also, we briefly covered some aspects of combined loading with little explanation. Again, the
reason was to give the reader who has made it thus far through this text the ability to do basic casing
design. We could have gone a bit further and also included some simple formulas for curved wellbores,
but at some point, we have to stop and say that we have covered an adequate amount for basic casing
design and some additional topics will require a better understanding of the underlying principles.
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5.1 Introduction

Many of the problems that occur with casing are not problems with design, but problems with handling
and running practices. Some companies have specific running practices, but they vary little from the
basics. Several things must be kept in mind when transporting, handling, and running casing. Most fall
in the category of common sense.

5.2 Transport and handling

Transport of casing is truly one of the most important of all casing handling processes, yet it is seldom
given due consideration. Ordinarily, it is just assumed that this requires no attention as those who are
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doing it know what they are doing. Anyone who has ever worked in a pipe yard, boat dock, loaded a
truck or boat would find such an assumption laughable. Therefore, it is essential here to suggest some
guidelines.

5.2.1 Transport to location

Some casing gets damaged on the way to the location and on the location prior to running. There is no
good reason for this to happen as often as it does. It is something that almost always could be avoided,
but it still happens from time to time. Whether casing is loaded on trucks, boats, or barges, it must be
adequately protected. This means not only care in handling while transferring from racks to trucks, to
boat, to rig, all joints should have thread protectors in place and no cables or hooks should be used that
can cause damage to the protectors or the pipe. On racks, trucks, or boats the casing should be placed
carefully with wood stripping between layers. The casing should be secured so that it cannot move
during transport, and strapping is preferable to steel chains.

5.2.2 Handling on location

Once the casing is on location it is off-loaded from trucks onto pipe racks or off work boats or barges
onto the rig itself. In some cases rack capacity is limited, and the casing must remain on barges and
be transferred to the rig as it is being run. Whatever the procedure, it is imperative that the casing be
subjected to as little transfer as possible so as to reduce the chances for damage. All transfer must be
done using good practices to prevent damage to the casing. Another important consideration is that the
final transfer, whether to the racks or onto a barge must be done so that the casing is in the proper
sequence in which it will be run into the hole. It is not acceptable to try to swap the order of pipe on the
racks during the running process. Such an endeavor will most likely lead to errors. All transfers must
be considered when the pipe is loaded at the pipe yard. For instance if the casing must be loaded onto
trucks for transport to a dock, loaded directly from the trucks onto work boats, and then off-loaded onto
the rig, all of these transfers must be taken into account so that the order of the pipe does not have to be
shuffled at the rig. There is usually too little rack space on most offshore rigs to do this, and it is much
easier to do it in a pipe yard when the pipe is loaded the first time.

Whether or not a company requires some type of electro-magnetic inspection on location is a matter
of policy and the type of well that is being drilled. However, there are several things that are essential:

• Casing should be drifted on location to be sure that no damage has caused a reduction of the internal diameter,
and also to be sure that nothing is lodged inside the pipe (it happens).

• The thread protectors should be removed and the threads cleaned with a solvent to remove any unknown type of
lubricant on the threads.

• The cleaned threads should be visually inspected.
• In offshore locations where bare metal rusts in a matter of minutes, the threads should be lubricated as soon as

they are inspected with the same lubricant that will be used when the string is run in the hole.
• In most cases, the protectors on the pin end should be cleaned and reinstalled.
• Do not place any type of equipment, such as casing spiders or tongs, on top of the casing that is on the pipe

racks. This is not always possible on many small offshore rigs, but it is a bad practice that should be avoided.

5.3 Pipe measurements

One of the most critical aspects of running casing is the pipe tally or pipe measurement. The importance
of this simple task cannot be overemphasized. The success of the entire well depends on it being
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done correctly. So, who is responsible for the measurements, the rig crew? Absolutely not! The
final responsibility of the pipe measurements is with the operator’s representative on location, and
who is in charge of the well. If the operator’s representative does not personally do the physical
measurement, then he or she should at the very minimum witness and record a duplicate of the
measurement. There is no excuse for botching this simple procedure, yet it continues to happen all
too often.

As to the actual measurement procedure, there are many variations on how and when to do it. Most
often, it is done when the pipe is off-loaded at the rig onto the rig pipe racks. The best methods involve
removing the protectors (from both ends) and numbering each joint with a paint type marker (not
chalk) that will remain on the pipe until it goes in the hole. After a layer of pipe is measured and
before it is covered with another layer, the recorded measurements should be inspected to ascertain
that the joint numbers of the first and last casing joints on the layer correspond to the numbers of the
recorded measurements. Then the measurements should be reviewed for any joints whose lengths vary
significantly from the others. If a short or long joint is spotted in the tally, then that joint should be
physically checked on the rack to be sure the recorded value is not a mistake. Most practical systems
involve recording the joint measurements in a tally book or on some form that lists the joints in groups
of 10. As the total length of each group is summed, the total length for each 10-joint group will be ten
times the average length of joint in that group. If a mistake has been made in the measurements or in the
addition, it is often easy to spot using that method.

Accuracy is essential in pipe measurements, but it is incredible as to how often so little at-
tention is given to this phase of the process. Whatever system you use, it should be simple and
consistent. The final responsibility for an accurate tally lies with the company representative on the
location—not the roughnecks or roustabouts. One more time; there is no excuse for an incorrect
casing tally!

5.4 Wrong casing?

Everyone who is involved in casing design and installation should be aware of an insidious mishap that
does occur. Sometimes a joint (or more) of the wrong type gets into a sting of casing. Unfortunately,
it is not usually discovered until it is too late—after the casing has been run and cemented. Such
occurrences are always attributed to human error. But what is not always understood, is that it is
not always a random error. For instance, a pipe yard loading-crew accidentally drops a joint of
casing, damaging the threads. That is a random accident. They then “correct” this random accident
by taking a replacement joint from another rack making sure that they picked one with the same
color coupling! Even when we think we take great care, things can mysteriously go wrong. One
such instance involved an intermediate string for a critical well with high H2S content. The operator
sent an engineer to the steel mill to witness the rolling, testing, and inspection of the string. He
also stayed to witness the loading of the string onto barges at the mill, and met the barges at the
destination port to witness the off-loading onto reserved pipe racks in the pipe yard, and later the
loading onto trucks to the rig. On location the pipe was drifted, run, and cemented. Later during the
drilling process the operator ran a wire-line caliper to monitor any wear in the casing. And what did
they find? One joint in that string was the wrong wall thickness (one size less than all the rest)! Where
did it come from? That was never solved, but the point here is that the most sophisticated design ever
done is useless if this sort of mistake happens in the field. The casing process is always more than the
design.
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5.5 Crossover joints and subs

When the pipe is measured, that is the time to check all of the crossover joints (if any are required) as
to correct threads and placement in the string on the racks or in a separate location where they can be
added to the string when needed. Be sure the crossovers are included in the tally. There should be at least
one spare for each different type of crossover used—you cannot wait for a replacement if one should
be damaged during the running process. Crossovers for proprietary connections should be cut only by
a machine shop or manufacturer licensed to cut that specific thread. The legal issue is one thing, but an
improperly cut thread can cause failure of the string.

Crossover subs or couplings for API ST&C and LT&C threads need special comment. A short pin
will make up into a long coupling, so no crossover is normally required when ST&C is run above
LT&C. The reverse is not true, because a long pin will not make up properly into a short coupling. Some
operators get around this crossover issue by purchasing an LT&C coupling and sending it to the rig as a
crossover. The idea is that, when it comes time to make up the LT&C pipe into the top of the ST&C, the
short coupling will be removed and the long coupling installed on the short pin. That sounds easy, but it
is a poor practice. It often comes as a surprise that the short coupling may not back off easily. We cannot
predict the torque required to remove a coupling that was installed at the mill. It may come off easily if
the pipe is relatively new, but if the pipe has been sitting on a rack in the hot sun for two or three years it
might require so much torque that the threads are galled and ruined in the removal process. This is not
uncommon. It is also not uncommon to see a rig crew use a cutting torch to heat or even cut a coupling
to get it off. So it is far better to have a dedicated crossover joint or sub (and a spare) for each place one
is needed. The cost saved by purchasing an LT&C coupling for a crossover is miniscule compared to
the potential cost if something goes wrong.

5.6 Running casing

The running procedures are important, not only for the success of the well, but also for personnel
safety. Many injuries occur during the running process because of the relatively large size and
weight of the casing, the length of the joints, and the unfamiliarity of regular drilling crews with the
procedures. For those fortunate enough to work on rigs that have automated pipe handling systems,
it may seem hard to imagine the crude casing running procedures that are common to many drilling
operations.

The running procedure itself must be looked upon as a critical operation in the well. It should not
be hurried, but should be smooth and efficient as far as time is concerned. Typically, the worst thing
that can happen during the running procedure (aside from personnel injury) is to have to stop for some
reason. In many parts of the world, it might be possible to stop the operation for several hours or even a
day without sticking the casing. In other parts of the world, if the operation is stopped for half an hour,
the casing will never be moved again. For that reason, all of the equipment must be in good working
order and a certain amount of redundancy is desirable.

5.6.1 Getting the casing to the rig floor

Usually the pin protectors are removed before the pipe is picked up to the V-door of the rig, so as not to
slow the make-up process on the rig floor. In this case, the pin should be protected with a quick-release
type rubber protector during this time and until it is up on the rig floor ready to stab.
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5.6.2 Stabbing process

The stabbing process (fitting the pin of a new joint into the box of the previous joint to begin the makeup
process) is critical to prevent damage to the casing. All rigs do not have or use adjustable stabbing
boards. It is still quite common to see jury-rigged stabbing boards that are nothing more than some
2′′ × 8′′ boards tied to derrick cross members. Where available, there are mechanical stabbing arms
that can greatly ease the stabbing process. These aids are not available in many locales, so whatever
means are employed, it is important that they allow for accurate stabbing of the joints to prevent thread
damage. In some cases, this means shelter from winds that can cause difficulty and misalignment. Some
proprietary connections require clamp-on stabbing guides to protect sealing surfaces and threads during
the stabbing process. Where such guides are recommended, they should always be used.

5.6.3 Filling casing

In general, the casing should be filled with mud as it is being run into the well. An adequate fill line
should be rigged up to assure that the filling operation will not slow the running process. In any event,
you should visually assure the casing is full at least every few joints, even if it means slowing the running
process until you see the mud at the surface inside the casing. It is especially important to be sure that
the first joints of casing run are full because of the buoyancy effect if they are empty. If the first joints
of casing are empty they may actually begin to float or at least lag behind the elevators as they go in
the hole. This is a recipe for disaster because some casing tools with integral slips may actually open
without a load and allow the casing to fall to bottom. It has happened.

Some companies use self-fill or differential-fill type float equipment to aid or replace the surface fill
procedure. Where it works, it is fine, but when it does fail (and it sometimes does) it can cause serious
problems if you are not aware that it has failed and is not allowing fluid into the casing. Casing collapse
can result. Another objection that many operators have with this type of equipment is that it may allow
hole debris to enter the casing at the bottom. Once on bottom and circulation is initiated, it may plug
the float equipment, and there is no way to circulate it out short of running pipe inside the casing to
the float to clean it out. If debris should remain in the casing after circulation and is pushed down to
the float collar with the bottom cement wiper plug and plugs the float, then one is left in the precarious
position of having all the cement inside the casing and no way to pump it in either direction. Self-fill
or differential-fill float equipment has been most successful in hard rock areas, and it has failed mostly
in areas of unconsolidated formations. If you use such equipment, just be aware of the possibilities for
failure—it is much safer to fill from the surface.

5.6.4 Makeup torque

All connections should be made up to the proper specified torque while running. Most casing crews have
all the standard torque values, but it is good practice to check and be sure that everyone is in agreement.
There are different types of thread lubricant available for environmental considerations, high pressures
and temperatures, and many have different frictional resistance. The correct type of thread lubricant and
clean threads are essential for getting the correct amount of torque and seal. For critical applications
there are special services that measure both torque and the number of revolutions of the pipe to be sure
that the maximum torque did not occur before the coupling was fully made up.

Another point about proper torque is its measurement. The torque of a typical casing tong is measured
with a hydraulic transducer in the tong line. In other words it actually measures tension in the tong line



132 Casing and Liners for Drilling and Completion

and not torque. The torque gauge is calibrated such that it multiplies the length of the tong arm times the
tension in the tong line to give the torque. That only works correctly if the tong line is perpendicular to
the tong arm when the torque measurement is made. If the angle is more or less than 90◦, then the actual
torque will be less than that shown on the gauge. A few degrees is not going to make an appreciable
difference, but it is not uncommon to see casing tongs rigged up with a considerable deviation from the
proper 90◦.

One last but most important point about make-up: The best casing design with the best quality pipe
can fail if the casing is not properly made up on the rig.

5.6.5 Thread locking

One of the true disasters associated with casing is the disengagement of the bottom joint (or several
joints) after the casing has been cemented and operations have resumed to drill out the cement inside
the casing. The torque from the rotating bit drilling out the cement and float equipment in the bottom two
joints starts to turn the casing, and the bottom joint(s) back out at a connection. Once this happens, there
is usually no remedy; the hole has been junked and must be abandoned. This is slightly more prevalent
with the trend to use PDC bits rather than roller bits in drilling out the floats and cement because of
higher torque values. The reason that this sort of thing happens is not the bit, but that the cement around
the bottom joints is incompetent, usually because has not yet reached a satisfactory strength. It happens
most often on surface casing, where the temperature at the shoe is relatively low, and the cement does
not set as fast as expected, or the operator is in a hurry to start drilling and does not allow sufficient time
for the cement to set. While those are cementing issues which we will not cover here, there steps that
can be taken in the running process of the casing to prevent such an event.

Most operators secure the connections on the bottom joints up to one joint above the float collar to
prevent accidental back off of the casing while drilling out cement. There are chemical kits consisting
primarily of a thermoset polymer used to “glue” the connections. The resin and hardener are mixed and
applied in place of thread lubricant to the cleaned connections on the float equipment and bottom joints.
There are a couple of problems associated with such a practice. One is that most use the compound only
on the field make-up part of the connection. They assume that the mill end will not back off. This is
a poor practice. If you are going to use the locking compound you should remove the couplings and
“lock” all the threads, not just the field threads. (The mill ends might best be treated in a pipe yard prior
to shipping to the rig.) The second problem is that, if something goes wrong and the casing string has to
be pulled back out of the hole before reaching bottom, those connections cannot be easily broken out.
That presents something of a dilemma in that if you do it you are safe from backing off the pipe, but if
you have to pull the pipe you cannot easily undo it. You actually can heat the pipe with a welding torch
to a temperature where the polymer will break down and the pipe can be backed out. But those joints
should be replaced and not run back in the hole. An alternate procedure to the tread locking compound
is that of tack welding the couplings on the lower joints. This was common practice for many years
before the polymer compounds were available and is still common in some areas. However, welding on
casing couplings can lead to serious problems and should be avoided at least for couplings with higher
yield strengths than K-55.

When is thread locking necessary? As already mentioned, the cause of casing back-off while drilling
float equipment is almost always caused by drilling out before the cement has had sufficient time
to harden. Hence, the risk of a joint backing off is most acute on the surface casing or a cemented
conductor casing because the temperatures are relatively low and the cement sets relatively slowly. In
the case of deeper intermediate strings the issue is less critical because the temperatures are higher
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and it often takes much longer to change out BOPs, drill strings, and other equipment in order to
resume drilling below the intermediate casing. In the case of stage cementing equipment, there is little
need to lock the threads of the stage tools. For a joint to back-off at a stage tool, the joints below it
must also rotate, and this is almost impossible for a stage tool that is a few thousand feet above the
casing shoe.

5.6.6 Casing handling tools

A wide variety of elevator and spider assemblies are available to run casing. Some elevators are called
square shouldered (see Figure 5.1a). They have no slip elements. Instead, they have an internal diameter
that will fit around the casing body but is too small for a coupling to pass through; they are hinge
opening. The spider may be similar to the elevator and hinged or large enough for the coupling to
pass through with some type of slip assembly built in, or there may be just a simple set of manual
slips.

Elevators and spiders increase in sophistication from there. We assume that anyone who runs casing
knows to select an elevator and spider combination of sufficient strength to suspend the casing safely.
There is one important point to make in this regard though. The elevator and spiders normally used to
run heavy casing strings (see Figure 5.1b and c) are rated at 500 tons (1,000,000 lbf) or even 1000 tons
(2,000,000 lbf) and have an internal slip assembly that is either manually activated with an external lever
or is air or hydraulically actuated.

These are very good tools for the purpose of running heavy strings of casing. The problem is that
even a heavy string of casing is not “heavy” when it starts in the hole. The efficiency and ease with
which the manual lever operates the slips is such that it is possible for someone on the rig floor to
easily open the slips even with a few hundred feet of casing suspended in the spider. A similar problem
can occur when the pipe is in the elevator and an obstruction is hit, causing the load on the elevator to
momentarily ease so that the slips jump open. The result in either case is a portion of a casing string
dropping in the hole and going to bottom. For this reason, it is often preferred to start a long string of
casing in the hole with lower weight capacity rated tools, then switching over to the 500 ton tools when
the casing is at the bottom of the surface casing or some other point where the running process can be
paused to switch the elevator and spider. The possibility of such an event may sound remote, but there

(a) (b) (c)

Stabbing
guide Rotary

table

Figure 5.1 Casing tools: (a) wrap-around square-shouldered elevator, (b) slip-type casing elevator with stabbing
guide, and (c) slip-type casing spider.



134 Casing and Liners for Drilling and Completion

are a number of these instances in many companies’ annals of bad events. In one case a casing crew
member slipped and fell against the release lever on a spider and dropped 400 ft of 13 3/8′′ casing to
the bottom of a 5000 ft well. In another case, the crew was not filling the 7 5/8′′ casing properly, and as
the driller lowered the casing, it was buoyed enough so that it did not descend at the same rate as the
elevator. The elevator slips opened. No one realized the elevator slips were open until the driller stopped
the elevator above the spider and the casing kept on going right through the spider before anyone had
time to react. Approximately 1100 ft of 7 5/8′′ casing fell 12,000 ft before it stopped. The well had to be
sidetracked.

One additional point about casing tools: a spare elevator/spider combination should be on the rig in
case there is a problem with the primary tools. There will not be time to order a replacement if one fails.

5.6.7 Running casing in the hole

There several considerations to keep in mind while actually running casing. These include the running
speed, getting casing all the way to bottom, what to do if it does not get to bottom, and whether or not
to tag the bottom of the hole with the casing or stop just above bottom.

Running speed

Running casing is an intense operation; in cases where differential sticking is likely, it is even more
so. There is often the temptation to run it too fast. But because casing is of a larger diameter than the
drill string, the annular clearance is smaller, and the displacement and surge pressures in the annulus are
usually higher that when running a drill string in the hole. If a formation is fractured during the running
process, then the tendency to differentially stick the casing off bottom is increased, and the chances of
getting a good cement job are usually decreased considerably depending on where the fracture occurs.
There are formulas for calculating surge pressures. Almost no one ever uses them. A sure way to get into
trouble running casing is to rely on some dubious value of the fracture pressure from some unknown
source and a formula that may or may not model the actual mud rheology and hole conditions. A rule
of thumb is that casing should be run in the hole at a slower rate than the drill string. Another is to
observe the delay and rate at which the mud spills over the bell nipple, and if there is a noticeable delay
between the rate of displacement and the mud being displaced from the borehole, then the casing is
being run too fast for that particular mud. It is mostly a matter of experience and the known conditions
of the specific borehole. The point here is: Do not attempt to run the casing too fast; it is not a race.

Getting casing to bottom

What should we do if the casing will not go to the bottom? When this happens (and it sometimes does)
there is a tough decision to make. Should we rig up to circulate and try to wash past an obstruction or
should we start out of the hole immediately? There are no firm rules on this because there are so many
variables. In many places it is possible to install a circulating head (or top drive) and wash through an
obstruction. In other situations where differential sticking is prevalent the act of turning on the pump to
circulate is the equivalent of saying, “This is where I want to stick my casing string.” You cannot rotate
a casing string to free it like drill pipe.

One should always decide before starting in the hole what the risks are, and what the decision will be
should something stop the casing from going to bottom. It is much easier to make such a tough decision
before starting in the hole than when a problem arises during the running process.
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Tagging bottom

We might also mention the issue of tagging the bottom of the hole with the casing. Some say that it
should not be done because it can possibly plug the float shoe or even stick the casing in cuttings or fill
on bottom. There is legitimacy to this line of thinking. Others do routinely tag bottom to verify their
pipe measurements. I was schooled in the “do not tag bottom” discipline and never had a problem, but
I have seen a couple of cases where followers of that mode of thinking set the production casing shoe
above the bottom of the pay, and that can also be problematic.

In recent years it has become common practice when setting liners in Level 4 multi-lateral wells
(where the upper portion of the cemented liner is washed over and milled out flush with the junction)
to tag bottom as a depth reference so as to avoid cementing the liner with a coupling in the window. If
a liner coupling (or any liner connection) is in the window when the liner is cemented, the coupling or
connection will be partially milled in the wash-over operation. The result is a loose section of milled
pipe above the connection as well as a loose, partial coupling in the wellbore. Do not make the foolish
assumption that the cement will hold it in place. Lateral wellbores have been lost to re-entry in such
cases.

Another important point along these lines: We hate to admit that it happens, but sometimes we find
that the casing stops 42 ft from bottom, or maybe even 83 ft, or some such multiple of the pipe length
range being used. This sort of thing happens too often, and the embarrassment of having made a mistake
in the tally or joint count is only secondary to the reality that it could also end your current employment.
Check your records quickly and make your decision, because the result of trying to wash pipe to bottom
that is already on bottom may only compound your problems.

5.6.8 Highly deviated wells

Directional and highly deviated wells pose a special set of conditions. borehole friction may be quite
high, and borehole stability problems may complicate the situation even further. Unlike most nearly
vertical wells, the hookload does not always increase as the casing nears bottom. It often decreases as
more casing enters the highly deviated portion and must be pushed in the hole (see Figure 5.2).

Obviously if the hookload goes to zero, we have nothing more to push the casing with, and the casing
will go no further. (A top drive rig will allow us to add additional force, but it may not be enough either.)
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Figure 5.2 Decreasing hook load as casing is run into highly deviated wells.
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If it is not on bottom, then our only hope is to be able to pull it out of the hole. Will our design allow the
casing to be pulled out of the hole with the amount of borehole friction that is in this well? It is essential
in highly deviated wells that we incorporate borehole friction into our design and running procedures.
We will discuss borehole friction in Chapter 7.

5.7 Cementing

Cementing is a totally separate topic from this textbook, but it is a critical phase of well construction
and is closely related to casing design as we have already seen in our basic design process. Therefore, it
is necessary that we mention a few relevant points, since a bad cement job can render the entire casing
process utterly useless.

While cements and cementing is a complex technological discipline in itself, there are two simple,
but fundamental rules that are crucial to successful cementing:

• Get the mud out.
• Use ample cement.

Those may seem overly simplistic, but they summarize succinctly the requirements of a successful
cement job. Accomplishing the first is the crucial requirement of primary cementing, and we will discuss
that in more detail. The second tells us that cement is cheap compared to the consequences of a bad
cement job, so do not skimp on the amount of cement you use, that is, more is usually better in most
cases.

5.7.1 Mud removal

Casing is run into a borehole that is filled with drilling mud which has remained more or less static
for a number of hours. Most drilling fluids begin to gel or become more viscous in the borehole
with time. As the casing is run some of the mud is displaced by the casing. This displaced mud is
usually the less viscous mud. Once the casing is in place it is mostly in contact with the wall of the
borehole, that is it is eccentric to the borehole. The circulating velocity is the slowest where the casing
is closest to (or touching) the borehole wall, making mud removal difficult in that area. The gelled
mud must be removed in order to get a successful primary cement job. Here are some of the necessary
steps:

• High circulation rates (but below fracture pressure)
• Pipe movement (rotation or reciprocation) and with scratchers where possible
• Pipe centralization (minimum of 70% of concentric clearance)
• Adequate precirculation prior to starting cement into casing (minimum of two hole volumes)
• No delay between precirculation and starting cement into casing
• Adequate preflush contact time (rule of thumb: 10 minutes minimum)

For horizontal wells where pipe movement is usually not possible we add two more.

• Remove all cuttings from horizontal lateral
• 0% free water in cement slurry

Of course, there are many other considerations as to cement type and chemistry, rheology, formation
lithology, cement/mud/spacer/preflush compatibility, and so forth, but this listing covers the mechanical
aspects associated with the casing string.
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Once the casing string is on bottom, a cementing head is placed on top, and the well is precirculated
prior to starting the cement into the casing. This step is of considerable importance in removing gelled
mud. Scratchers can aid in this removal by breaking up the gelled mud for easier removal by circulation.
Contrary to common belief, it is not the filter cake that must be removed, but the gelled mud. This
circulation is done at high circulation rates, but below the fracture pressure of any exposed formations.
A minimum volume of two hole volumes (sans casing) is required, and some companies require 2.5
hole volumes. Very important: start the cement immediately after the precirculation because the mud
will start to gel again as soon as circulation stops. Precirculation and cement pumping should be a
continuous operation if possible.

In the areas where bonding is critical centralizers are run to better center the pipe so that all
the gelled mud is displaced and a uniform cement sheath around the casing is assured. Cementing
companies recommend that adequate centralizer spacing should give a minimum of 70% of the
concentric clearance, between casing and the hole, minimum clearance = 0.7(rhole − rcsg). The closer
the casing is to the borehole wall, the less likely the gelled mud in that area will be removed because
the least resistant flow path is on the side with the greatest clearance. A concentric profile provides the
maximum resistance to annular flow, and therefore, the greatest efficiency in removing the gelled mud.
Figure 5.3a shows typical poor results in a well where casing is not centralized and the gelled mud was
not sufficiently removed.

Pipe movement (reciprocation and/or rotation) is very effective in aiding the removal of the gelled
mud. The difficulties associated with pipe movement involve a number of considerations. Which is
more effective, rotation or reciprocation? The consensus favors rotation. Rotation is frequently used
for relatively short liners with integral, shouldered connections. The limitation in all cases is that the
rotating torque must not exceed the maximum makeup torque of the liner connections. Because of
the liner hanger, reciprocation is not recommended; one does not want to reciprocate a liner only
to find out that the hanger will not set once the cement is in place. So, given that rotation is best,
where does that leave us with a long casing string? In general, we do not ever attempt to rotate a
full casing string because the torque required to rotate a full string far exceeds the maximum makeup
torque of most coupled connections, for example, ST&C, LT&C, Buttress. Reciprocation is the only
alternative, and this must be taken into account in the axial design. In a vertical well, we generally
use a sufficient design factor to account for some amount of friction in picking up the casing on the
up-stroke, but in a deviated well the friction can be significant and must be accounted for separately
(see Chapter 7).

(a) (b)
Filter cake

Gelled mud
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Water or mud channel

Cuttings bed

Figure 5.3 Poor cementing: (a) un-centralized vertical well and (b) un-centralized horizontal lateral with poor
cuttings removal.
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Horizontal wells exhibit additional complications because drilled cuttings are more difficult to
remove. The casing tends to lie on the bottom of the borehole in the cuttings bed, and since the
pipe is even harder to move because of friction, movement is often ignored. Shown in Figure 5.3b
is a typical result in a horizontal lateral where cuttings were not sufficiently removed, the casing was
not centralized, and was not moved during cementing. It also illustrates another common problem in
cementing a horizontal lateral as a mud or water channel has formed along the top of borehole because
of too much free water in the cement slurry.

5.8 Landing practices

There is no standard practice for landing casing after it has been cemented. It is assumed that the casing
is now fixed at the top of the cement. (The fixed point is often referred to as the freeze point). The
casing above the freeze point can actually buckle laterally and even into a spiral or helix because of
its weight, the weight of the fluids inside, and/or a change in temperature. Only in rare cases would
this buckling actually result in damage to the casing because the relatively small annular clearance
limits the severity of the postbuckling displacements, but it could cause wear problems in intermediate
casing strings where drilling will continue below. In production strings it may cause difficulty in running
production equipment. As already mentioned, the severity of the postbuckled deformation is limited by
the clearance between the casing and borehole wall which is normally relatively small, but it can be
considerable in a washed out area. We will discuss lateral buckling in Chapter 6.

Four landing procedures are common and were once mentioned as recommended practices in a
number of publications (but no longer). Roughly they are as follows:

• Land the casing with the same load on the wellhead as the hook load after cementing.
• Land the casing with tension at the top of the cement which is assumed to be the freeze point.
• Land the casing with the neutral point (axial tension/compression) at the freeze point.
• Land the casing with compression at the freeze point.

You can see that some of those are in opposition (the second and last), and none are in agreement.
There are operating companies that have selected one of these (with possible variations) and are adamant
that theirs is the best method to use. One problem with all this is that, once the casing is on bottom and
cemented, we are not really certain what happens down hole when we land (or hang) the casing at the
surface. Is the freeze point at the top of the cement or is the pipe stuck somewhere above the top of the
cement? Do we even know where the top of the cement is? In some cases there is a limitation on what
the wellhead equipment can support. There is also the question of the type of hanger used—a slip-type
hanger gives us considerable flexibility (if we can get it down into the casing head properly) whereas a
mandrel-type hanger cannot be adjusted once the pipe is on bottom or cemented.

It is generally agreed by most operators though that the casing should not buckle above the freeze
point. That means that the effective axial load should be in tension if at all possible everywhere above
the freeze point. Do not be misled into using the true axial load, the neutral point for buckling is the
point where the effective axial load is equal to zero. Anything above that point should have an effective
tensile load. (You learned to calculate the effective load in Chapter 4 so it should be no problem for
you.) If the casing will be heated by circulating or by produced fluids you should take into account that
the heat will expand the casing and reduce the tension, and possibly even put part of the noncemented
casing in compression. (Temperature effects are covered in Chapter 6.) If you are using a mandrel-type
hanger instead of a slip type, and in many situations you have no choice, then there is no way to adjust



Installing casing 139

the axial load above the top of the cement after it has set. In that case you should, if possible, design
the cementing job such that the cement top is well above the neutral point. You may also be able to
rotate the pipe while cementing or before cementing. This will serve to allow the pipe to overcome
any residual frictional force from going in the hole and work the neutral point to the shoe (except
in horizontal wells). However, before you elect to rotate the casing you must be sure that the torque
required for rotation does not exceed that maximum recommended make-up torque of the casing con-
nections. It usually does exceed the maximum for 8-rd couplings and many other non-shouldered type
connections.

One significant problem, as far as lateral casing buckling, is concerned is hole washout and bad
cement or no cement in those washed out intervals. In the presence of heated circulating fluid or
produced fluids, buckling in this interval can occur. That is not a landing problem, but rather, it is a
cementing problem that must be addressed. Along these same lines is the presence of a stage tool in a
casing string. Often a stage tool will be used some distance above the top of the lower stage of cement.
This means that there is an unsupported section of casing that is fixed at both ends (at the stage tool and
at the top of the lower stage cement), and a significant rise in temperature can cause lateral buckling of
the casing in that unsupported interval.

5.8.1 Maximum hanging weight

There are limits on the amount of weight that may be hung on a casing hanger:

• Tensile strength of the casing string
• Maximum support strength of wellhead and support casing
• Support rating of the casing hanger
• Collapse rating of the top casing joint when using slip-type hanger

The first limitation in the above list is a matter of proper casing design such that if tension above
the string weight is to be applied (e.g., preventing thermal buckling), the additional tension must be
included in the design loads. The second item is a matter of structural integrity of the supporting casings
or platform and is beyond the scope of our discussion. The third item applies primarily to slip-type
hangers, and one need refer to the hanger manufacturer’s rating for the particular hanger to be used.
There is also the case of weight and wellhead pressures exceeding the rating of the casing head such
that the hanger actually causes the head to expand, but that is rare and most wellhead manufacturers have
eliminated those problems from their equipment. The last item concerning the collapse load of a slip-
type hanger on casing can sometimes be a serious problem for heavy strings of casing (see Figure 5.4).
The weight of the casing forces the slip segments downward which in turn imposes a radial, compressive
force on the outside of the casing in the slip area. Such a force can exceed the collapse resistance of the
casing.

A simple formula can be used to estimate the collapse load imposed by a slip-type casing hanger.

phgr = kD
W

Aslip tan φ
(5.1)

where

phgr = external casing pressure from hanger

kD = design factor

W = hanging weight of casing
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Figure 5.4 Slip-type casing hanger.

Aslip = apparent gross contact area of slips

φ = taper of slips and hanger (measured from vertical)

To be as consistent as possible, the pressure load from this equation should be compared to the combined
tension-collapse pressure rating of the casing. As to the design factor it is a matter of company policy,
but a commonly used design factor is 2.0.

EXAMPLE 5.1 Slip Hanger Collapse Load

From our continuing example the 7′′ production casing has the following data:

• Buoyed casing string weight at surface: 339,000 lbf
• Type of 7′′ casing at surface: 29 lb/ft, P-110
• Nominal collapse rating: 8530 psi
• Hanger taper: 25◦
• Hanger slip length: 10 in.

Using a design factor of 2.0, determine if the entire buoyed weight of the string can be hung on the hanger.
The reduced collapse rating of the casing with 339,000 lbf tension is: 7271 psi1

phngr = 2.0
339,000

π (7) (10) tan 25
= 6612 psi

This value is well below the reduced tension-collapse rating of the casing.

In this example, case the casing may be hung safely with the full buoyed weight on the hanger
without danger of collapse. Whenever doing this type of calculation it is important to know whether the

1 As calculated from the traditional API method in the next chapter.
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angle of the slip segments is measured from the horizontal or vertical. If the angle is measured from the
horizontal it must be subtracted from 90◦ before using in this formula. It is also important to compare
to the reduced collapse rating of the casing rather than the published nominal collapse rating, though
many assume the design factor of 2.0 is sufficient to ignore the combined collapse/tension effect.

5.9 Closure and commentary

This chapter closes out the casing design and installation portion of this textbook, and from here on the
topics become considerably more technical in nature though still sprinkled with a lot of precautions,
suggestions, and opinions based on experience and case histories, most too sensitive to ever see
publication. But before moving on there are some things that need to be said, and maybe best said
in anecdotal form since written documentation will never see the light of day.

Casing strings fail, but it least they do not fail too often. By far the most common cause of casing
failure is corrosion. In fact, I can safely state that corrosion causes more casing failures than all the rest
combined. That is a topic we do not cover in this textbook because there are many sources available. So
what are the other causes?

Over the last 55 years I have supervised on-site the running of casing strings that number into the
hundreds in my earlier years. I have designed, checked, and approved designs for casing strings that
number well into the thousands. And having spent most of those years in drilling and completion
operations, I have been involved directly, indirectly, or peripherally with numbers into the tens of
thousands. I am not trying to impress anyone with my long experience because there are many who
have had considerably more. The reason I mention this at all is to emphasize a point: in all those casing
strings, I have seen only one that failed because of a bad casing design!2 What does this say? I will
not attempt to answer that, but offer the two most plausible reasons. Either the design process is so
easy everyone can do it correctly, or on the other hand, perhaps we are over designing all our casing
strings.

So if the design process, which is the technical emphasis of this textbook, seems to work okay, what
are the problems? They are many and varied, but most distill down to some human link in the chain of
events that failed, inadvertently, carelessly, intentionally or out of laziness or ignorance. Even a defective
joint of casing can in effect be attributed to someone not doing their job properly.

The most common and serious casing problem I have witnessed over the years (aside from corrosion)
is the backing off of the shoe track of surface casing while drilling out. It is not a life endangering event
but a costly one. In all but one case it resulted in abandonment of the well. This event is always a
result human error (though we like to claim otherwise, especially if we are personally responsible). It
comes down to two things: not properly thread locking the joints in the shoe track and/or drilling out
prematurely. Interestingly, all of these I have personally seen involved H-40 grade casing. That may
have other implications because that also means they were relatively shallow casing strings and it is
unlikely that the cement had properly cured before drilling took place.

This type of problem is also often exacerbated by a purely non-technical issue. Many wells in North
America for instance, are drilled under a “footage” contract, meaning the drilling contractor is paid
X dollars per foot drilled down to the intermediate casing point or total depth. The contractor makes

2 It was a production string that collapsed around a tubing string as in Figure 6.5c, when the string became partially evacuated.
It failed because the designer did not take into account the combined effects of tension/collapse, either through omission or
ignorance of the method.
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his money in the upper part of the hole where the drilling is fast and easy. Waiting for cement to cure
sufficiently is costing him money while none is being earned since no drilling is taking place. Most
drilling contracts specify a minimum waiting time for cement to cure, but some do not. And when they
do, it is often some standard clause that has not been reevaluated in years (if ever) let alone adapted to
a particular well or field area. If the operator has no representative on location (and many do not for
a footage contract), the waiting time may get shaved a bit. I once had a client who contracted several
shallow wells, and typically saw no need for the expense of having a representative on location. The
wells were drilled under a footage contract and required only 500 ft of surface casing. I will not detail
the resulting problems here, but the contractor had zero hours waiting on cement. Why? Because he did
not cement the surface casing. He wrapped the bottom joints with large diameter hemp rope that swelled
in the drilling fluid and held the surface casing in place for the three days it took to drill to total depth.
Illegal? Yes. Was any of this on the drilling report? No, it reported a conventional cement job and 8 h
waiting on cement. A rare occurrence? Sadly, no.

Another casing problem I have seen frequently also involves shallow wells and H-40 grade surface
casing. The number of shallow wells drilled in North America with 8-5/8 in. surface casing and 4-1/2 in.
production casing is in the hundreds of thousands at minimum. Most of these use H-40 surface casing
with a threaded casing head on top. The problem? Not uncommonly, the casing head and BOP stack
breaks off the casing at the threads. It is caused by a combination of a poorly stabilized BOP stack,
vibrations, settling of the soil beneath the substructure, and so on. The kinds of things that do not
normally occur with bigger rigs, but are common to these necessarily low cost operations. Almost all
occur in 28 lb/ft H-40 8-5/8 in. casing. It is the minimum weight in that grade and definitely meets the
design requirements for these casing strings. The solution is easy and is 100% successful everywhere I
have seen it applied—put two joints of 32 lb/ft casing in the top of the string. It works. This is one of
those quirks in casing design that we learn from practice, and unfortunately this particular one seems to
be learned and relearned time and again. I have seen this one result in expensive forensic failure analysis
and even lawsuits (to no avail), while the solution is trivial.

Though I have seen a number of tensile failures in tubing, I have seen only one tensile failure in casing
in the form we would normally expect. Five others were from the cyclic pressures and temperatures of
hydraulic fracturing in horizontal wells as discussed in Chapter 7. Those resulted from coupling leaks
and subsequent erosion but the fracture fluid through the leaks. Though the final failure was in axial
tension, I cannot call those true axial failures in the normal sense.

The one axial casing failure I did experience (on a telephone with the on-site drilling foreman) was
almost bizarre. A production string of 4-1/2 in. H-40 grade casing was run in a shallow well. It was
to be a pumping well, and this was the same type casing that had been run in hundreds of wells in
the same field. The cement was being displaced, and just as the top wiper plug landed on the float
collar, circulation was lost. The drilling fluid level and cement in the annulus fell rapidly. It fell, and
it continued to fall. Then suddenly, the casing parted at the first connection below the elevator. A big
surprise. A check of its rated joint strength showed that it certainly had enough tensile strength to be
suspended in air all the way to total depth without failure, but the failure occurred because it did not
have enough strength to be suspended in air and full of water. The water could not fall out the bottom
because of the seated wiper plug. At the time I thought there was nothing we could have done once the
annulus fluid started to fall. But I was wrong about that, there was something we could have done had
we anticipated such an event. And probably we should have anticipated it since the producing zone was
mostly depleted. Do you see what it was? At least we were able to secure the top of the parted casing
and complete the well normally. This was an unusual case to be sure, but also it is a reminder that casing
design should not become routine even for shallow wells. Oh yes, what could we have done to prevent
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the failure? We could have immediately lowered the casing and set it on bottom to relieve the tension—a
contingency we later adopted for such instances.

You may have noticed that much of what I have said here involves shallow wells. I started my career
drilling relatively deep high pressure gas wells, where considerable effort and care was put into casing
design and related practice. Consequently, I encountered few casing problems. It was not until much later
when I began working more frequently with shallow wells and older wells that I began to experience
real casing problems. Too often it is the routine, the normal, the shallow wells that seem to bite your
professional ego the hardest. This is complacency, avoid it.

Running casing is as important as the casing design itself. If the casing is damaged or it does not
reach bottom, the success of the entire well is jeopardized. We have looked at some practical aspects in
this chapter, and I hope that these may be of use to you. There is much that could have been discussed,
but we covered the essence.

This chapter concludes what might be called the basics of casing design and practices. It has been
presented as something of a “recipe” for casing design. Though some of the issues were discussed
in detail, little was said about where the strength ratings come from, and what their limitations are.
The remaining chapters of this text will examine the mechanics of casing and special conditions and
applications in more detail.
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6.1 Introduction

The first four chaptersof this text were written to provide a basic foundation in casing design. They
more or less constitute a recipe, if you will, for basic casing design. That “recipe” should be adequate
for designing casing strings for the vast majority of wells drilled in the world. One need not be an
engineer to do it successfully, and it is hoped that the preceding chapters were enlightening to those
who are not. Beginning with this chapter, we abandon the recipe. From here on, we address a number
of topics considered more advanced. The intent here is not to try to teach a method for designing
casing for critical wells but to help one understand the principles involved. More and more, we rely on
software to do casing design. On the one hand, that is good, because it allows us to make sophisticated
calculations and adjustments that require an excessive amount of time if done manually, and which
few are actually trained to do in practice. On the other hand, we have people using software to
design casing for real wells who are clue-less as to what the software is doing and what the results
mean. This is not an exaggeration. In this chapter, we examine some of the topics that may fill a
few gaps in the education of many drilling engineers in regard to casing design. The purpose here
is to impart a degree of understanding of some of the concepts and terminology for more advanced
topics concerning casing and its use. This chapter begins with a brief discussion of design methods
and then looks at some of the concepts of solid mechanics as applied to casing and oilfield tubulars in
general. We then address the design performance of casing for collapse loading, burst loading, axial
loading, and the all important combined loading. Additionally we will briefly cover lateral buckling,
dynamic loading, and thermal effects, and we will end the chapter with a brief discussion of expandable
casing.

In this chapter we will make use of the concepts of solid mechanics covered in Appendix C. If you
are not familiar with that topic or need a refresher, I strongly recommend that you review it before
delving into the material that follows. If you are not already thoroughly familiar with the von Mises
yield criterion, you must definitely read that section (C.6.3) of the appendix before proceeding.

6.2 Structural design

The design of structures is almost as old as humanity itself. Whether the first “structures” were for
shelter, tools, or weapons, the design process from its primitive beginnings has been around a long time.
Almost everything we see each day is a structure of some sort. Casing also is a structure, though we
may not often think of it in that context. It is a containment structure for the most part, and the design
procedures we use are similar in many respects to those of more complex structures.
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6.2.1 Deterministic and probabilistic design

There are two general approaches to designing casing or any type of structure. One is a deterministic
design method, the process with which we are most familiar. We use published values for the
minimum strengths and performance properties of the materials, load scenarios based on observed and
hypothetical criteria, and a set of formulas to calculate structural performance with those loads. Then
we specify the types and sizes of structural materials required to safely sustain the loads. This is the
method used for the design of most common static structures, such as bridges, skyscrapers, television
transmission towers, drilling rig masts, and even oilfield casing strings. The other general approach is
a probability-based design method, in which we use statistical test data for the strengths and properties
of actual materials and probabilistic loading scenarios. This approach often is used in the design of
structures subject to dynamic and cyclic loading such as airframes, turbine blades, and so forth, where
fatigue failure is a significant or dominant factor. The probabilistic design criteria in these types of
structures may also be weighted on the consequences of structural failure. In other words, the critical
strengths and loads often are based on things like risk to human life, property value, the environment, and
so forth. An example would be the blade of a gas turbine operating in some remote oilfield location as
opposed to a jet engine turbine blade on an aircraft flying human passengers across a continent: in other
words, a 0.1% probability of failure in 10,000 h of service may be acceptable for the remote oilfield gas
turbine, but that same failure probability in an aircraft engine design would likely have aircraft falling
out of the sky almost daily, and that is not acceptable. This method can also be applied to static type
structures: we see an example of this in the oil field in the design of pipelines, where the published
standards for strength often are based on the human population density in the vicinity of the pipeline. A
probability-based design must account for the consequences of failure in addition to the probability of a
failure. And, to do that, one must have reliable limit data on actual materials or components to work with
rather than some limit set by manufacturing standards that allow considerable tolerance. Obviously, the
better data we have, the better both methods work, but it is especially important in probability-based
design if any significant savings is to be realized.

6.2.2 Design limits

One thing we must get very clear in our heads is that, when we design a casing string (or any other type
of structure for that matter), we are not attempting to predict failure. Predicting actual failure is near
impossible, even when we have the most complete data we can imagine1: in the case of oilfield tubes
and borehole conditions, predicting failure is impossible. So our goal is to select some design limits and
select our casing such that the anticipated loads do not exceed those limits. Calculating design limits
and predicting failure are separate and distinct processes.

A design limit is naturally linked to some strength property of the structural member, which is a tube
in our case. Since we already stated that we cannot predict actual failure of the tube, there must be some
other property of the tube that we can reliably predict or calculate. The historic design limit for casing,
as well as most structures in the world, is the elastic yield point: the stress at which a material goes from
elastic behavior to plastic behavior. The elastic yield point or yield stress (sometimes referred to as the
yield strength) of a metal such as steel is well defined and relatively easy to determine experimentally.
What we never know, however, is the actual yield stress of a particular joint of casing. The only value

1 If you doubt this, think of the “precision” shear pins used in the oilfield tools and designed to shear at a specified load. How
many times have you seen one shear at exactly the specified load?
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we have to work with is called a minimum yield stress, also which is not a material property. In other
words, a joint of casing with a specified minimum yield stress (strength) is sold with the manufacturer’s
assurance that it will not yield at a lesser value. It may yield at a higher value (also limited by an upper
value in most cases), so the only value we have to work with is the minimum yield stress, which may or
may not be the actual yield stress.

We can (and sometimes do) design beyond the yield stress in some cases of structural design, but
working within the plastic regime is quite complex and generally avoided in all but the simplest cases.
These usually are cases in which part of the material body or structure remains elastic and the design
limit might be selected as the point at which the entire body reaches the yield point (or possibly some
point before that state is reached) assuming that no critical members of the structure actually fail before
that point is reached. These types of design limits typically are one-time limits and do not consider the
effects of cyclical loading (which changes the yield stress value). An example is the new ISO formula
proposed for ductile rupture of casing, which we discuss later in this chapter. The only cyclical loading
in the plastic regime for oilfield tubulars is in coiled tubing, and we all know (or should know) that
coiled tubing has a very short service lifespan because of the cyclic loading in the plastic regime.

6.2.3 Design comments

It is not likely in the near future that more than a small number of companies will be doing probability-
based casing designs for more than a relatively few critical wells, as compared to the number of wells
drilled in the world each year. Those companies doing this work have their own expertise and criteria
for risk, and those criteria cannot necessarily carry over to other companies. For instance, years ago
with the advent of tubing-less completions, many looked at it as a way to save money. If you drilled a
lot of these wells, you could save a sizeable amount of money. To be sure, there were failures, and the
inexpensive wells completed with 2-3/8 in. tubing/casing could not be effectively worked over with the
equipment of the day. The larger companies accepted this risk, and the frequency of failed wells (which
were usually plugged as expendable) was within reason. But, for a small operator that had only one well
or two, a failure sometimes was cause for bankruptcy. That is not acceptable from the small operator’s
perspective. However, that said, the one benefit of the trend toward probabilistic casing design that every
operator, big or small, has realized is a decided improvement in the design formulas and the ways in
which certain variations in casing tolerances can be measured and accounted for, even in deterministic
design. And even what we call a deterministic design is based on some probabilities of certain critical
loading occurrences and possible failures of casing to meet minimum standards. The difference is that,
in deterministic design, we do not attempt to quantify those probabilities (see Klever and Tallin [16]).

One last comment should be made. A common mistake is to think that a deterministic design gives us
a 100% safe structure at a higher cost, and a probabilistic design gives us a more cost-effective structure
but at a slightly greater risk. While that may be true in some particular cases, it is not true in general.
In fact, many of the probability-based designs are safer than some deterministic designs. Both methods
have their place and applications.

6.3 Mechanics of tubes

Casing is a tube. A tube may serve as a beam, a column, a pressure vessel, or any combination of the
three from the standpoint of mechanics. A casing string, to some extent, is all of those. The stress in a
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Figure 6.1 Cylindrical coordinate system for a tube, and stress component directions on tube body.

tube is of particular interest to us in light of the yield strength we just discussed, since that is what we
need to know to determine if the tube is in an elastic range or not. We are fortunate in many respects
that a tube is a fairly easy structure to analyze in an elastic state. In general, we need be concerned with
only four stress components for our applications:

• Axial stress
• Radial stress
• Tangential stress
• Torsional stress

To understand these stress components, we first need a convenient coordinate system. One that fits our
needs quite well is a circular cylindrical coordinate system, as shown in Figure 6.1, which also shows
the first three stress components listed above.

There are three orthogonal coordinate axes, as with a Cartesian coordinate system. The axial coordi-
nate, z, runs along the central axis of the tube; the radial coordinate, r, that runs from the central axis
out in any direction; and the tangential coordinate, θ , which is an angular measure about the central
axis as measured from some arbitrary reference point. The main difference between this and a Cartesian
coordinate system is that two of the coordinate measures are in standard length units and one is an
angular measure. Hence, the physical meaning of θ is not the same as z or r. The measure of physical
distance in the θ coordinate is rθ . This is a right-hand coordinate system, but it is oriented so that
the axial coordinate, z, is in a downward direction. This is intentional so that the z-axis corresponds to
the vertical depth (in a well), and furthermore, the compass azimuth (when viewed from above) and the
conventional angles of trigonometric functions rotate in the same direction.

6.3.1 Axial stress

The axial stress in a straight tube is merely the axial load divided by the cross-sectional area of the tube:

σz = Fz

At
= Fz

π
(
r2

o − r2
i

) = Fz
π
4

(
d2

o − d2
i }
) (6.1)

where

σz = axial load stress component

Fz = axial load

ro, ri = pipe radius, outside and inside walls, respectively

do, di = pipe diameter, outside and inside walls, respectively
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We always assume that the pipe is straight and stress free before it is run in a well. If the pipe is in
a curved bore hole, there will be additional stresses in the axial direction from bending, which we will
discuss later.

6.3.2 Radial and tangential stress

We should all be thankful to Lamé, who in 1852, worked out the elastic stress solutions in tubes because
of internal and external pressure. His solutions for the axial stress resulting from pressure depend on
whether the tubes are open on the ends, capped on the ends, or the ends are free or fixed (plane strain).
The Lamé solutions for the stress components attributable to pressure are

σr = r2
i r2
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0 open ends, one or both free ends, one or both

ν (�σθ +�σr) open or capped ends fixed ends, both

(6.4)

where the non-subscripted r is the radius at any point in the wall of the pipe. Please note that although
the equations for σr and σθ may appear identical, they are not; the second equation has a negative sign
in front of the first term. Another important point concerns the change in axial stress caused by pressure
(Equation (6.4)). Casing in a well is already in a state of axial stress and is subjected to hydrostatic
pressure. You must be careful with this equation because it accounts for change in axial stress caused
by change in pressure from some reference state. Capped-end conditions affect casing only when one
end of the casing is free to move. When casing is run in a well, the only time the capped-end condition
normally applies is when the top wiper plug is bumped during cementing. After that, the casing is fixed
at the top by the wellhead and below by cement. If you want to consider the wellhead a cap, then you
must also consider that, for it to move enough to cause an axial stress change in the casing string, it
must move every tubular string in the well that is attached to the wellhead, some of which are cemented
to the surface. (Some thermal wells allow for wellhead movement.) The second term in the numerator
of the capped-end formula is for external pressure that acts on the capped free end, pressure that may
or may not be present. Post plug bump is a case in point here. If the ends are fixed, you must know
if they were fixed before the pressure change was applied or afterward because the fixed-end axial
stress equation is only valid for changes in the axial stress from pressure applied after the ends are
fixed.

The general Lamé formulas are useful as they are stated above, but as it turns out we are seldom
interested in the stress at various points within the wall of the cylinder, because the maximum stress
always is at one of the walls if there is pressure. Which one? It is not intuitive, but whether the greater
pressure is internal or external, yield always occurs at the inner wall first! (Work it out, if you do not
believe it.) If we substitute ri in place of r to get the Lamé solutions at the inner wall, we find they are
greatly simplified:
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σr = −pi (6.5)
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The axial stress change is unchanged from in Equation (6.4). The sum of the radial and tangential
stress in that equation is a stress invariant through the wall of the tube, so it does not matter if they
are calculated at the inner wall or outer wall, so long as both are calculated at the same place. One
more caveat: often you may see the tangential stress equation without the second term in the numerator.
That is typical of pressure vessels where there is no external pressure. Many use that form and use the
difference between the internal and external pressure as the internal pressure. Don’t do that! Yes, it gives
close results, but it is a sloppy practice.

There are times when we might need to calculate the radial and tangential stress at the outer wall. In
bending and torsion, the tube yields first at the outer wall, so if we are checking for yield in these cases
where pressure is also present, we may want to check both the inner and outer walls. The radial and
tangential stress components at the outer wall are

σr = −po (6.7)
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Lamé solutions and yield

Here is an important point illustrated in Figure 6.2 that concerns location of initial yield from pressure: if
we apply pressure to casing internally until it yields, will it yield first at the inner wall or the outer wall?
Similarly, if we apply pressure to casing externally until it yields, will it yield first at the inner wall or
the outer wall? These are not such simple questions as one might think, and the answers are important
to know. Despite any apparent simplicity, the answer is that it makes no difference as to whether the
pressure causing yield is internal or external, the casing will always yield first at the inner wall. This is
not intuitive, and if you would like some practice with the Lamé equations you might work this out as an
exercise.

The Lamé solutions are extremely useful, but we must be very careful to not use them beyond the
yield point. Remember that these are elasticity solutions based on linear elastic material behavior. They
are not valid beyond the yield point. If you use them to calculate the stress components for use in the
von Mises yield criterion, and the result is greater than the yield, then the calculated stress component

po

pi

Figure 6.2 Internal and external pressure increasing to yield stress in casing.
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Figure 6.3 Internal pressure causing yield in a fixed-end casing.

values are quantitatively meaningless. In that case, they will tell you only that the initial yield has been
exceeded, but not by how much. This is illustrated in Figure 6.3 where we have calculated the yield
measure, Ψ , using the Lamé elastic solutions at the inner and outer walls of a tube of the dimensions of
7 in. 23 lb/ft casing with a yield stress of 80,000 psi. We also calculated and plotted the distortional
energy density,

√
3J2, using elastic-plastic theory.2 Two things are important in this figure. One is

that yield occurs first at the inner wall causing the distortional energy density to become nonlinear
with respect to the internal pressure, and though the outer wall does not yield until sometime later, the
distortional energy density becomes nonlinear well before it actually yields. The second thing to note is
that once the yield point is reached at the inner wall, the elastic values of the yield, Ψ , calculated with
the Lamé equations become meaningless because the material is no longer elastic. See Appendix C for
a discussion on plasticity and an example of a similar analysis with different end conditions.

6.3.3 Torsion

We do not often rotate casing in a borehole. It does help in attaining a good primary cement job, but often
the friction in the borehole is such that the torque required to rotate the casing exceeds the maximum
recommended makeup torque of the connections such as ST&C, LT&C, buttress, and so on. However,
many times, liners are rotated while cementing and casing can be rotated with some proprietary
connections or special stop rings inserted to prevent over-makeup of non-shouldered connections, like
buttress, ST&C, or LT&C. The equation for the shear stress from torsion in a pipe body is given by

σrθ = 2 r Tq

π
(
r4

o − r4
i

) (6.9)

2 The elastic-plastic constitutive equation used in this example is not that of an API steel, but a piecewise linear approximation of
a strain hardening steel with a yield stress of 80,000 psi.
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rk
ro

Figure 6.4 Simple planar bending of tube.

where r = ro to calculate the shear stress at the outer wall where it is a maximum or r = ri at the inner
wall. The torque (rotational moment) in the casing is Tq and it must be in consistent units. In oilfield units
it usually is in lbf ft and it must be multiplied by 12 to change it to lbf in. to be consistent with the radii
units. In SI units, the torque will be in Joules (N m) so the radii must be in meters so that the stress will be
in Pa.

6.3.4 Bending stress

The bending of casing in curved wellbores is discussed in detail in Chapter 7 and derived in Appendix C,
so all we present here is a formula for planar bending stress that refers to Figure 6.4:

σb = ±E
r

rκ

(6.10)

The radius of the pipe is r = ro at the outside wall where the bending stress is a maximum, and r = ri if
it is desired to calculate the bending stress at the inner wall. The radius of the wellbore curvature is rκ .
It must be in the same units as the radius of the pipe. The bending stress component has a plus sign on
the convex side of its curvature as that portion is in tension. On the concave side, it is negative because
it is in compression.

The bending stress component is added to the axial stress for determining yield, but it should be
remembered that the bending stress is a maximum only along a line running parallel to the central axis
in the plane of curvature on the convex side and the concave side. The values calculated in the bending
equation are not the bending stress at other points around the circumference of the tube.

6.4 Casing performance for design

In earlier chapters, we took the published values of casing strengths at face value. In this section, we
examine some of the formulas from which those strengths are calculated. What are the bases of these
formulas? What are their limitation? Are there better formulas or methods? We will address those
questions and then look at combined loading and its effects. We will also look at lateral instability
(buckling) and the effects of temperature on casing design.

Reiterating what was previously mentioned, we cannot actually predict failure of a joint of casing,
and we do not seek a to do so. What we are interested in is a value we can use as a design limit.



154 Casing and Liners for Drilling and Completion

A particular joint of casing may fail at that limit or it may not; the important consideration is that it
does not fail before that limit point. Historically, yield strength has been used as a design limit, and that
continues. However, some of the formulas used in the past were based on some simplifying assumptions
and tests that did not realistically model actual loading. For example, the API collapse formulas are
based on collapse tests on short samples of casing, and it has been found that joint length plays a part
in collapse, i.e., end conditions affect the collapse of short tubes. So, much of what is covered in this
part of the chapter might be characterized as design strength formulas and calculations. Most are still
based on yield strength or test data. While it may be perfectly acceptable to use conservative formulas
in the vast majority of wells drilled in the world, there are deeper, high-pressure, high-temperature wells
where such conservative formulas might greatly increase well costs by requiring much higher strengths
than is necessary or even available. We examine the current formulas and discuss some of the changes.

6.4.1 Tensile design strength

Casing failure in tension is not common. When it does occur it usually occurs at a connection, and
the connection is usually ST&C or LT&C. The failure in those types of connections usually is a
result of pull-out rather than fracture of the casing body. In some cases, the pull-out is the result of
a split coupling caused by hydrogen embrittlement or over-torque during makeup. As far as tensile
strength of casing is concerned, it is specified in two ways by the API and ISO, pipe body yield and
joint strength. The first is the value of the pipe body yield strength exclusive of threads, expressed as
axial tension (or compression) rather than axial stress, and the second is the value of the connection
strength, which always refers to tension and not compression. The pipe body yield values use the
minimum yield strength as the design strength limit. The joint strength is based on the minimum
value from formulas that use the minimum ultimate strength and the yield strength separately or in
combination.

Pipe body yield

Pipe body strength at yield is the yield stress of the metal multiplied by the specified cross-sectional
area of the tube.

Fmax = Y At (6.11)

where

Fmax = pipe body strength at yield

Y = uniaxial yield strength of pipe

At = cross-sectional area of tube, π
(

r2
o − r2

i

)
For example, the pipe body yield for 7 in. 23 lb/ft N-80 casing is

Fmax = 80000 (π/4)
(

7.0002 − 6.3662
)
= 532, 000 lbf

which is the value shown in the published tables. This value is valid for either tension or compression.
For ST&C and LT&C couplings, the strength of the connection usually is less than that of the pipe body.
For instance, for the above 7 in. 23 lbf/ft N-80 casing with LT&C connections, the joint strength rating
is 442,000 lbf, or about 17% less than the pipe body yield, so one must be aware that the joint strength
is usually the lesser of the two.
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Joint strength

Joint strength is usually the yield strength of a casing connection in tension; however, formulas also
are available for the fracture strength of connections, although they are not used often in casing design.
The calculation of joint strength depends on the specific type of coupling and includes things such
as the makeup length of the threads, the cross-sectional area of the tube under the last full thread,
and so forth. Furthermore, the formulas have been adjusted to fit actual tests with various samples of
casing connections. The resulting formulas for ST&C, LT&C, buttress, and extreme-line are listed in
API 5C3 and ISO/TR 10400. Additionally, one must refer to API 5B to get some of the necessary
thread dimensions for use in the formulas. Proprietary thread manufacturers, in general, do not publish
their formulas but only the connection strength values. For those reasons, we do not include any joint
strength formulas here. Almost no one actually uses them, since the results are published in many tables.
The thing we must point out as a precautionary note is that one should always check both the body
strength and connection strength for any casing design. And remember, the strength of connections in
compression is not addressed by API standards.

6.4.2 Burst design strength

The traditional API formula for what we commonly refer to as burst is not actually a formula for burst
or pipe rupture but a yield formula for internal pressure. It is based on a thin-wall tube that assumes
yield takes place across the entire wall thickness at a single pressure. It also includes a design factor to
account for the 12.5% variation in wall thickness allowed by API casing specifications (API Spec 5C2
or ISO 11960). The result is a formula for the internal yield pressure:

p = 0.875 Y
do − di

do
(6.12)

This formula known as the Barlow formula was derived from three-dimensional shell theory
assumptions and is adequate for basic casing design, but it leaves a lot to be desired. For one thing,
it assumes that yield occurs throughout the pipe wall at the same time, which it does not. What is lost by
the assumption of a thin-wall cylinder with a uniform stress throughout the wall of the cylinder? We can
use the Lamé elastic formulas along with a yield criterion to determine the yield at the inner wall for a
thick-wall tube and compare the results. In the absence of any axial load or axial constraints, that is, the
pipe is free to move axially and the ends are not capped, the Lamé formulas give the stress components
at the inner wall as

σr = −pi (6.13)

σθ = pi
(
r2
o + r2

i

)− 2por2
o(

r2
o − r2

i

) (6.14)

In absence of axial stress, at internal yield, the following holds for the von Mises yield criterion:
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]} 1
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(6.15)

If the external pressure is zero, that is, po = 0, then we can solve this equation for the internal pressure
at yield in terms of the yield strength of the pipe and the internal and external diameter of the pipe. The
result is
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This equation is the thick-wall equivalent of Equation (6.12), except it does not account for a
tolerance in the wall thickness. The wall thickness is accounted for in ISO 10400 by calculating an
internal diameter based on the tolerance in the wall thickness such that, for this equation,

d̃i ≡ do − 0.875 (do − di) (6.17)

This definition uses the standard API tolerance; however, other values could be used for specific
situations where the actual tolerance is known as opposed to the specified maximum tolerance
of 12.5%.

EXAMPLE 6.1 Comparison of Burst Equations

Using 7 in. 26 lbf/ft P-110 casing in this example, the Barlow (Equation (6.12)), gives an internal pressure at
internal yield

p = 0.875 Y
do − di

do
= 0.875 (110000)

7.000 − 6.276

7.000
≈ 9960 psi

whereas Equation (6.16) using Lamé’s pressure equation and von Mises yield criterion gives

d̃i = do − 0.875 (do − di) = 7.000 − 0.875 (7− 6.276) = 6.367 in.

pi = Y
d2

o − d̃2
i√

3d4
o − d̃4

i

= 110000
7.0002 − 6.3672√

3 (7.000)4 + 6.3674
≈ 9900 psi

From this example we see that there is only a slight difference in the two. The formula based on thick-
wall tubes will usually be slightly conservative. The problem with the API Barlow formula, though, is
that it is valid only if the pipe has no axial stress. It also assumes that any external pressure can be
accounted for by subtracting it from the internal pressure and using the difference, �p = pi − po, as the
internal pressure (as long as �p > 0). Some do the same thing with the Lamé formula for tangential
stress, which is not good practice, because it does not give the same result as when both internal and
external pressures are used.

Ductile rupture formula

The current ISO/TR 10400 [11] includes new formulas for ductile rupture as differentiated from
internal yield. Few, if any, oilfield tubulars actually fail in rupture when the internal wall surface
reaches the yield point, which is the basis for the conventional API/ISO formulas for “burst” or,
more correctly, internal yield. If the material were perfectly plastic, it would quickly yield all the
way through the wall thickness as the pressure is increased and rupture, but that is not the way most
oilfield tubulars behave (coiled tubing excepted). Unless they are very brittle, they are made of a strain-
hardening material, so that once the yield stress has been exceeded, the stress still increases before
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ultimate failure occurs, as discussed in Appendix C. The recent ISO formulas take that into account
by actually modeling the material behavior in the plastic regime. In addition, certain defect sizes are
taken into account, so that the pipe may more realistically model actual casing. Even fracture growth is
considered.

To use these formulas, one must have more specific data than is conventionally published. In
particular, one needs inspection results for the casing to be used or at least have a specific inspection in
mind and know that casing not meeting those standards will be culled from this particular application.
We are going to present only some basics of the formulas here, but before using these formulas,
one should definitely read the discussion in ISO/TR 10400 (Appendix B) and some of the associated
references. The primary ductile rupture formula in ISO/TR 10400 includes a capped-end effect such that
the internal pressure generates an axial stress from the pressure effect on the end caps. For a capped-
end effect to be realized, one end of the tube must be free to move in relation to the other end, so that
the axial stress is a function of the internal pressure. This almost never happens with casing in a well
except in the plug-bump case, since one end of the casing is cemented (fixed) and the other attached
to a wellhead. Unless the wellhead is free to move, the capped-end effect does not occur. One could
argue that the wellhead may move, but its movement is considerably restricted by the other strings of
pipe also attached to the wellhead, in addition to the fact that the conductor and surface casing are
usually cemented at the surface. For casing, the pressure effects are almost always those of fixed ends
not capped ends. That being said then, the ISO design formula for the internal pressure at ductile rupture
with capped ends is

p = 2k1U
t̃w − k2 δ

do − t̃w + k2δ
(6.18)

where

p = internal pressure at ductile rupture

U = minimum tensile strength of casing

do = outside diameter of casing

t̃w = reduced wall thickness from the tolerance, e.g., (0.875 tw)

k1 =
[(

1

2

)n+1

+
(

1√
3

)n+1
]
= correction factor

k2 = burst strength factor, 1.0 for Q&T or 13Cr steels,

default 2.0 for others not specifically measured

δ = depth of imperfection in wall thickness

n = dimensionless hardening index for true stress/strain

curve from uniaxial tensile test

This formula is called a design formula, which calculates rupture assuming certain minimum values
for the quantities in the formula, such as the minimum tensile strength. This is derived from a limit
state formula, which predicts rupture for a specific sample where the quantities just listed are known
exactly for that sample. Some of these quantities can be calculated from measurements or tests. Table 6.1
suggests values for the hardening index, n, in the absence of actual test data. A hardening index, as used
here, is a means of approximating a uniaxial stress-strain curve for a particular material, with a curve fit
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Table 6.1 ISO Suggested
Hardening Index
Values [11]

API Grade Hardening Index, n

H-40 0.14
J-55 0.12
K-55 0.12
M-65 0.12
N-80 0.10
L-80 0.10
C-90 0.10
C-95 0.09
T-95 0.09
P-110 0.08
Q-125 0.07

to an idealized material, such as a Ramberg-Osgood material [17], or a Ludwik power-law material [18].
No conversion factors are required if you use consistent units.

We use this formula to determine the ductile rupture pressure for the same casing in the previous
example.

EXAMPLE 6.2 Ductile Rupture Formula

Using the same casing as in the previous example and assuming our casing inspection rejects all defects in
excess of 5% of the wall thickness, we determine the variable quantities for use in equation (P-110 casing has
a minimum ultimate tensile strength of 125,000 psi):

t̃w = 0.875 tw = 0.875 (0.362) = 0.317 in.

For the hardening index, we use n = 0.08 for P-110 (Table 6.1) and calculate the correction factor:

k1 =
[(

1

2

)n+1

+
(

1√
3

)n+1
]

=
[(

1

2

)0.08+1

+
(

1√
3

)0.08+1
]
= 1.026

The maximum allowable depth of the wall thickness defect in the selected casing is

δ = 0.05 (0.362) = 0.0181 in.

For the burst strength factor we use 2.0, the default value. We substitute these values into Equation (6.18):

p = 2k1U
t̃w − k2 δ

do − t̃w + k2δ

= 2 (1.026) (125000)
0.317− 1.0 (0.0181)

7− 0.317 + 1.0 (0.0181)
≈ 11, 440 psi
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We can see that this value is about 14% higher than the current API formula in the previous example.
Part of this is attributable to the capped-end effect. As we will later see with the von Mises yield criterion,
internal yield is higher in the presence of axial tension, which is what we have with a capped-end effect.

An additional ISO ductile rupture formula accounts for external pressure and arbitrary axial loading.
It is a nonlinear limit state formula, see ISO10400/TR [11] pages 25-30. One difficulty with that formula
is that for a fixed end tube such as casing cemented at the bottom and fixed to a wellhead at the top,
the axial load is not a constant, but is a function of the pressure as in the Lamé formula for fixed ends,
σz = σz 0ν(�σr +�σθ ), Equation (6.4). But beyond the yield point, σr and σθ are elastic-plastic stress
components, not proportional to the pressure, as in the capped end case. Finally though, one should
note that the ductile rupture formulas take into account material behavior in a plastic regime. In our
discussion on plastic behavior in Appendix C, we pointed out that materials become history dependent
in this regime, so these formulas are valid only if the loading exceeds the yield stress and proceeds
to rupture. If the loading stops once yield has been exceeded but short of the rupture value, then the
formulas are valid for subsequent loading only if the loading path is exactly the same as before, once the
new yield value is exceeded. Therefore, the use of the ductile rupture formulas is a highly questionable
endeavor, especially for cyclic loading in casing beyond the yield point. At least in my opinion and
experience with plasticity [19].

Coupling performance with internal pressure

In some configurations, casing couplings will yield before the pipe body or will leak at a lesser internal
pressure than that which will yield the pipe body. There are formulas in ISO 10400 to calculate these
values for API round thread and buttress threads. It is rare that anyone ever needs to use these formulas
because the values are listed in the tables of casing properties in API 5C2. Because of this and the need
to refer to actual thread specifications, I do not include them here. The important point to remember
is that in some casing the coupling is weaker than the pipe body in internal yield and/or leak pressure
rating.

6.4.3 Collapse design strength

Casing collapse is actually two phenomena (1) an instability (radial buckling), and (2) collapse (post-
buckling). The collapse rating of casing usually (but not always) refers to the pressure at which the
pipe becomes radially unstable and the actual collapse is the behavior after the instability is reached
and usually takes place at a lower pressure than the buckling pressure. Casing collapse possibly is the
most common type of failure after corrosion and wear. There have been cases of collapse resulting from
defective casing joints, but the cause often is one of not accounting for the actual collapse load on the
casing. This is especially true where the casing is in tension and subjected to a collapse load. Perfectly
round casing with a uniform wall thickness is quite resistant to collapse pressure. If there is a variation
in the wall thickness because of eccentricity or defects, the cross section is ovalized, or the collapse
loading is other than hydrostatic pressure (e.g., borehole stability problems), then failure from collapse
usually occurs at lesser loads. The typical post-buckling collapse mode is shown if Figure 6.5a where
the casing tends to flatten in cross section. Collapse also depends on outside support of the casing (see
Figure 6.5b) in that casing with little outside clearance or partially supported by cement may begin
to collapse into the configuration illustrated or the partial support may prevent total collapse. Another
mode (Figure 6.5c) is common in production casing where tubing is present.
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(a)

(c)

(b)

Figure 6.5 Common collapse modes: (a) unsupported collapse, (b) partially supported collapse (e.g., cement or
coupling), and (c) unsupported collapse with tubing inside.

Sometimes partially collapsed casing may be restored with an internal casing roller, but fully
collapsed casing, is usually a total loss. It may be possible to mill out, and sometimes even recover, a
collapsed portion of the casing. When a tube begins to buckle in collapse (collapse is a form of buckling),
the buckle propagates along the tube at a much lower pressure than what caused the initial collapse. The
buckle propagation pressure may be on the order of 60 – 65% of the initial collapse pressure if the casing
is unsupported. For an undersea, welded pipeline, the entire line may collapse because of a defect in one
joint. For this reason, many undersea pipelines now include rings, called buckle arrestors, welded to the
pipe at various intervals so that, if a collapse should occur, it will not propagate the full length of the
submerged pipeline.

Fortunately, in a casing string, a hydrostatic-induced collapse typically is limited to one joint,
because as the buckle propagates, it usually stops at a coupling. In the case of a threaded cou-
pling, the propagation stops because the collapse of the pipe inside a coupling does not transfer
the load to the other pin inside the coupling. It also opens the interior of the casing to external
pressure, so that the pressure differential is relieved. In the latter case, it becomes what is known
as a wet buckle, and it tends to stop at that point. In the case of integral joints, the propagating
buckle usually is stopped by the increased thickness of the pipe upset. In that case, the upset serves
as a “buckle arrestor.” In the case of flush joint casing, the buckle might continue to propagate until
the pressure differential is less than the buckle propagation pressure, or it may stop if it becomes
a wet buckle from an opening at one of the collapsed connections. An extreme example is coiled
tubing that has no connections; if it collapses, the buckle propagates until the pressure differential
is less than the propagation pressure. There are formulas for collapse strength but not for buckle
propagation. Buckles have been observed to propagate at pressures of about 65% or so of the initial
collapse pressure (see Yeh and Kyriakides [20]; Kyriakides, Babcock, and Elyada [21]; Chater and
Hutchinson [22]). For an exhaustive treatment see also the excellent book on offshore pipelines by
Kyriakides [23].

Interestingly the case of casing collapsed around tubing is often one of the easiest to repair because
maximum dimension of the collapsed casing is less than the ID of the un-collapsed casing. The tubing
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itself is almost never collapsed and provides a passage through the collapsed casing for a chemical
cutter, can be easily cut internally itself, and provides a smooth internal surface for a spear. Since the
maximum dimension of the collapsed casing is less than the un-collapsed casing it can be retrieved once
cut free.

Traditional API collapse formula

The API formula for collapse is not a single formula, but rather four:

• Yield strength collapse formula
• Plastic collapse formula
• Transition collapse formula
• Elastic collapse formula

Each formula has a range for which it is valid, depending on the yield strength of the material and the
ratio of the outside diameter to the wall thickness.

Yield collapse formula

pYC = 2Y

[
(do/tw)− 1

(do/tw)2

]
(6.19)

Valid range:

(do/tw) ≤ A− 2+
√

(A− 2)2 + 8 (B+ C/Y)

2 (B+ C/Y)
(6.20)

Plastic collapse formula

pPC = Y

[
A

(do/tw)
− B

]
− C (6.21)

Valid range:

A− 2+
√

(A− 2)2 + 8 (B+ C/Y)

2 (B+ C/Y)
< (do/tw) ≤ Y (A− F)

C+ Y (B− G)
(6.22)

Transition collapse formula

pTC = Y

[
F

(do/tw)
−G

]
(6.23)
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Valid range:

Y (A− F)

C + Y (B− G)
< (do/tw) ≤ 2+ B/A

3B/A
(6.24)

Elastic collapse formula

pEC = 46.95× 106

(do/tw) [(do/tw)− 1]2 (6.25)

Valid range:

(do/tw) >
2+ B/A

3B/A
(6.26)

where

do = outside diameter

tw = nominal wall thickness

Y = yield stress of pipe

pYC = collapse pressure, yield pressure formula

pPC = collapse pressure, plastic formula

pTC = collapse pressure, transition formula

pEC = collapse pressure, elastic formula

As with most API formulas, the units are not consistent, so for USC units with dimensions in inches
and psi the API constants in those formulas are calculated with:

A = 2.8762+ 0.10679× 10−5Y + 0.21301× 10−10Y2 − 0.53132× 10−16Y3

B = 0.026233+ 0.50609× 10−6Y

C = −465.93+ 0.030867Y − 0.10483× 10−7Y2 + 0.36989× 10−13Y3

F =
46.95× 106

[
3B/A

2+ (B/A)

]3

Y

[
3B/A

2+ (B/A)
− (B/A)

][
1− 3B/A

2+ (B/A)

]2

G = FB/A

(6.27)

For SI units, where yield stress is in MPa and diameter in mm, the collapse formulas and range
formulas are the same, but the API constants are calculated from the following formulas:
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A = 2.8762+ 0.15489× 10−3Y + 0.44809× 10−6Y2 − 0.16211× 10−9Y3

B = 0.026233+ 0.73402× 10−4Y

C = −3.2125+ 0.030867Y − 0.15204× 10−5Y2 + 0.77810× 10−9Y3

F =
3.237× 105

[
3B/A

2+ (B/A)

]3

Y

[
3B/A

2+ (B/A)
− (B/A)

][
1− 3B/A

2+ (B/A)

]2

G = FB/A

(6.28)

Numerical values of the constants are listed in tables in API 5C3 and elsewhere. They are of little use
though, because the values calculated with those constants are already published in API 5C2 and many
other sources. However, when one finds it necessary to calculate collapse for some casing not having a
standard yield value (the only time one would need the values of the constants), the table values of the
constants are of no use.

One of the tedious tasks in using these equations for manual calculations is the process of calculating
the API constants and then going through the range formulas in order to determine which collapse
formula to use. It is easy to program this process in a spreadsheet, but there is another way to do this.
A useful chart (see Figure 6.6) can be used instead, without calculating any of the constants. Once the
correct formula is determined from the chart, then one need calculate only those API constants appearing
in that formula. The API range formulas are only valid for API yield values from 40,000 to 125,000 psi.
These range formulas result from curve-fitting of data, and they behave quite badly outside the range of

Figure 6.6 Valid range for API collapse formulas.
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API yield values, especially in the low range below 40,000 psi. In other words, do not extrapolate these
curves outside the yield value range shown in the figure.

The yield collapse formula is based on the external pressure that causes yield to occur at the inner
wall of the casing, so that the yield strength is the design limit. Usually, the pipe will not collapse at
that pressure. The elastic collapse formula is based on elastic stability and does not depend on the yield
strength of the casing. The plastic collapse and the transition collapse formulas are based on tests done
on casing samples, and the formulas essentially are curves fitted to the test results. The end of each range
for the various formulas is the intersection of the curves for each formula.

Improved collapse formula

There are difficulties with the traditional API collapse formulas other than that they are not valid for
collapse in combination with tension; for instance, only the elastic collapse formula is valid in tension.
Also, the collapse tests on which they were based were performed with very short sections of casing, and
work done in recent years has shown that the values in those tests were affected by the end conditions. In
the more recent ISO/TR 10400 standard, a new approach is recommended. The new formulas are based
on work originally done by Tamano, Mimaki, and Yanagimoto [24] and recently published by Klever
and Tamano [25]. The full formula contains terms for inclusion of defects, ovality, eccentricity, and so
forth. Although not yet accepted universally, it is an improvement on the traditional API formulas, plus
it has the advantage of being able to include known data about the specific pipe for a casing string and
can be used in probabilistic casing design methods. The formula essentially contains a yield collapse
formula and an elastic collapse formula and accounts for the transition between those two:

pclps =
pelas + pyld −

[(
pelas − pyld

)2 + 4pelaspyldHt

] 1
2

2 (1−Ht)
(6.29)

where

pelas = 0.825 (2E)(
1− ν2

) ( do
tw

)(
do
tw
− 1
)2 (6.30)

is the elastic collapse portion, and

pyld = 2kyY

(
tw
do

)(
1+ tw

2do

)
(6.31)

is the yield collapse portion.
In these formulas, ky is a bias factor for yield collapse, and Ht is a decrement factor for the transition

region between elastic and plastic collapse. These values can be determined from actual tests of the
casing to be used or one can use the default values in the tables of ISO/TR 10400, as shown in
Table 6.2.

These results from this method will vary slightly from the values calculated with the traditional
formulas from API 5C3. The new method is considered to be more accurate.

The procedure for calculating reduced tension/collapse using this method is much easier than the
traditional API method. We will show examples of both methods of collapse combined with tension
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Table 6.2 Collapse Yield-Bias and Transition-Decrement
Factors from ISO 10400 [11]

Cold Rotary Straightened Hot Rotary Straightened

API Grade Ht kt Ht kt

H-40 0.164 0.910 n/a n/a
J-55 0.164 0.890 n/a n/a
K-55 0.164 0.890 n/a n/a
M-65 0.164 0.880 n/a n/a
L-80 0.164 0.855 0.104 0.865
L-80 9Cr 0.164 0.830 n/a n/a
L80 13Cr 0.164 0.830 n/a n/a
N-80 as rolled 0.164 0.870 n/a n/a
N-80 Q&T 0.164 0.870 0.104 0.870
C-90 n/a n/a 0.104 0.850
C-95 0.164 0.840 0.104 0.855
T-95 n/a n/a 0.104 0.855
P-110 0.164 0.855 0.104 0.855
Q-125 n/a n/a 0.104 0.850

later in this chapter, but for now, we look at an example of a collapse calculation with the new formula
in the absence of tension.

EXAMPLE 6.3 Using the Improved Collapse Formulas

We apply these new formulas to determine the collapse rating of 7 in. 32 lb/ft N-80 casing. We calculate the
wall thickness first:

tw = 1

2
(do − di) = 1

2
(7.000− 6.094) = 0.453 in

Next, we calculate the elastic collapse using Equation (6.30):

pelas = 0.825 (2E)(
1− ν2

) ( do
tw

) (
do
tw
− 1
)2

= 0.825 (2)
(
30× 106

)
(
1− 0.282) ( 7.000

0.453

)(
7.000
0.453 − 1

)2

= 16, 641 psi

then, the yield collapse, using Equation (6.31):

pyld = 2kyY

(
tw
do

)(
1+ tw

2do

)

= 2 (0.870) (80000)

(
0.453

7.000

)(
1+ 0.453

2 (7.000)

)

= 9300 psi
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Now, we use these values in Equation (6.29) to calculate the collapse rating of the casing:

pclps =
pelas + pyld −

[(
pelas − pyld

)2 + 4pelaspyldHt

] 1
2

2 (1− Ht)

= 16641 + 9300− [(16641 − 9300)2 + 4 (16641) (9300) (0.164)
] 1

2

2 (1− 0.164)

≈ 8060 psi

This is the value of collapse we would read from a table that uses the proposed new collapse formula
(recall that API rounds values to the nearest 10 psi). It is a bit lower than the current published value
of 8600 psi calculated using the current API formulas. Partly, this reflects that many of the early API
tests used short tube samples, which generally gave higher collapse values. Also, the new formula
distinguishes between cold and hot rotary straightened pipe. We used the cold value here, but N-80
is one grade that is straightened by either method.

6.5 Combined loading

Almost always, casing is subjected to some type of combined loading. Here are the most common
individual types:

• Tensile and compressive loads attributable to gravitational forces, borehole friction, hydrostatic forces, and
bending forces

• Collapse and burst loads from hydrostatic pressures
• Torsion loads from borehole friction

There are various ways to calculate a design limit for combined loading. Most of them work, but some
are quite misleading and can cause serious problems if one does not understand the limitations. We are
going to look at a simple method that has been around for more than 150 years and in publication
for almost 100 years. It has proven effective throughout all those years in all engineering design
applications.

6.5.1 A yield-based approach

As we have already stated we generally use the yield strength (elastic limit) as our design limit. So, what
we would like to have is some method of quantifying the combined loads into a single value to compare
with some simple strength or stress value for the material of the tube. For example, if Y is the yield stress
determined from a uniaxial test and Ψ represents the combined load, we might compare them thus:

Y > Ψ → no yield (6.32)

Y ≤ Ψ → yield (6.33)

where Ψ is a yield measure as defined in Appendix C. This is exactly what we looked at with the von
Mises yield criterion previously. The only practical difficulty we have at this point is that casing loads
generally are known in terms of axial force, pressure (internal and external), and possibly torque. We
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need stress values for the von Mises yield criterion. We make use of the Lamé formulas for those stress
components. The yield-based approach is best illustrated by an example.

EXAMPLE 6.4 Combined Loads in a Yield-Based Approach

Suppose we have a point in a casing string where the internal pressure is 4000 psi, the external pressure is
4000 psi, and the true tension in the pipe at this point is 160,000 lbf. Our casing is 7 in. 23 lb/ft, K-55. It has
an internal diameter of 6.366 in. We increase the pressure at the surface to 4000 psi to test it for a planned
stimulation; the internal pressure at our point of interest will be 8000 psi. Will the pipe yield under this load?

First of all, we want to determine where the pipe will yield first, at the inner wall or the outer wall. Internal
or external pressure always causes yield at the inner wall first, as mentioned previously. We have no bending
or torque in the pipe, which always causes yield at the outer wall first. So, we require the yield condition at
the inner wall. Second is that the test pressure of 4000 psi is applied after the casing is cemented and hung off
at the surface (i.e., the ends are fixed), so we must account for the effect of that pressure change on the axial
stress.

Determine the axial stress before the pressure test:

σz0 =
Fz

At
= 160000

π
4

(
7.002 − 6.3662

) = 24, 040 psi

Determine the radial stress before the pressure test using the Lamé equation for the inner wall
(Equation (6.5)):

σr0 = −pi = −4000 psi

Determine the radial stress when the test pressure is applied:

σr = −8000 psi

Determine the tangential stress before pressure test using the Lamé equation for the inner wall
(Equation (6.6)):

σθ0 =
pi
(
r2

o + r2
i

)− 2por2
o(

r2
o − r2

i

)

= 4000
[
(7/2)2 + (6.366/2)2]− 2 (4000) (7/2)2

(7/2)2 − (6.366/2)2

= −4000 psi

Determine the tangential stress when the test pressure is applied:

σθ = 8000
[
(7/2)2 + (6.366/2)2

]− 2 (4000) (7/2)2

(7/2)2 − (6.366/2)2 = 38, 260 psi

Determine the incremental radial and tangential stress from the test pressure:

�σr = σr − σr0 = −8000 − (−4000) = −4000 psi

�σθ = σθ − σθ0 = 38260 − (−4000) = 42, 260 psi
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Then, using the Lamé equation for fixed end tubes (Equation (6.4)), calculate the change in axial stress
caused by the test pressure:

�σz = ν (�σθ +�σr) = 0.28 (42260 − 4000) = 10, 710 psi

The axial stress including the test pressure effects is

σz = σz0 +�σz = 24040 + 10710 = 34, 750 psi

Now, using the three stress components calculated in the presence of the test pressure, we want to determine
whether or not yield will occur. Since there is no torsion, these values are principal stress components and may
be plugged directly in to the von Mises yield formula:

Ψ =
{

1

2

[
(σθ − σr)

2 + (σr − σz)
2 + (σz − σθ )

2
]} 1

2

Ψ =
{

1

2

[
(38260 + 8000)2 + (−8000 − 34750)2 + (34750 − 38260)2

]} 1
2

Ψ = 44, 610 psi

Finally, check the yield condition:

Y = 55, 000 psi

Ψ = 44, 610 psi

Y > Ψ → no yield

In this case, there is no yield. The combined load in this example is approximately 90% of the yield
strength of the pipe. Questions might arise: How close to the yield strength would we design if we were
aware of these calculations? What would be a reasonable limit? What are the recommended design
factors for combined loading? Those are good questions, and there are no standard answers. Some
operators would go up to 80% of the yield in a case like this, which would amount to a design factor
of 1.25. That might be acceptable for a one-time occurrence, where the specifics are known in detail.
If we were spot checking a conventional casing design for a well that had not been drilled, we might
want to think again. In those cases, our confidence level might be somewhat less, so we might set a 1.6
design factor as an absolute minimum. You are on your own in this area, unless your company has some
particular policy.

One other caveat about using yield stress as a limiting point in combined loading is that it does not
account for collapse at loads lower than the yield strength of the casing. You should always check the
collapse using the combined load collapse formulas of API or ISO, which are covered in the next two
sections.

6.5.2 A simplified method

There is a very simple method for adjusting casing to account for combined tension/collapse loads. It
has been used by a number of operating companies for many years, and when combined with design
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Figure 6.7 The two-dimensional von Mises yield criterion.

factors, it has proven workable for most normal vertical wells. It has its basis in a more theoretical
context but has been simplified for easy use. Some would say it is oversimplified and that is an accurate
statement, because it departs from theory and the results tend to be somewhat conservative. It is based
on a 2D plot of the von Mises yield criterion where it intercepts the σθ − σz principal stress plane (see
Figure 6.7).

Here is how the method works: We take the tension load of the casing at the point of interest, and
divide it by the joint tensile strength of the casing to get a decimal fraction. Then, we then locate that
point on the horizontal tension/compression axis. From there, we go down vertically to the point of
intersection with the ellipse. From that intersection, we go left horizontally to the vertical burst/collapse
axis and read the collapse fraction. We multiply the collapse rating of the pipe by that fraction. That
gives us a reduced collapse rating of the casing under that amount of tensile load.

EXAMPLE 6.5 Simplified Tension/Collapse Adjustment

• Joint tensile strength = 547,000 lbf
• API collapse rating = 1130 psi
• Tensile load = 61,200 lbf

We determine the fraction of tensile load to the tensile strength:

61200

547000
≈ 0.1

We go to the positive 0.1 point on the horizontal axis, down to the intersection with the ellipse, then
horizontally to the vertical axis, where we read a value of 0.94. We multiply the collapse rating by this fraction
to get a reduced collapse rating:

0.94 (1130) ≈ 1060 pasi

This value of 1060 psi is taken to be the reduced collapse rating at that point. If our design plot has a higher
value, then we must adjust our casing string accordingly.
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The chart in this method is based on a yield criterion for steel known as the von Mises yield criterion,
which we discuss in detail in Appendix C. A formula can be derived from the plot for the quadrant
concerning tension and collapse:

kclps =
√

1− 0.75k2
tens − 0.5ktens (6.34)

where

kclps = fraction of collapse rating, i.e., p̃clps/pclps (reduced clps /clps rating)

ktens = fraction of tensile rating, i.e., F/Ftens (tens load/joint tens strength)

To calculate the reduced collapse pressure of casing with axial tension, the factor calculated in
Equation (6.34) is multiplied by the published collapse pressure (without tension):

p̃clps = kclps pclps (6.35)

This method should be used with caution: perhaps I should not even include it here, but it has been
in common use for many years by many people for non-critical wells and with success. It is not the
API method for calculating tension/collapse combined loads, nor is it the improved method of the ISO.
It might be called a quick-and-dirty method that proved successful in many normal pressured wells all
over the world before the days of electronic calculators and computers. While that approach is simple
in its graphical form, it is not as well accepted if one is actually going to do the calculations. The reason
for this is that the graph is based on stresses rather than loads and joint strength. The joint strength of a
tube in tension is based on the connection strength rather than the cross-sectional area of the tube itself.

I have intentionally presented the 2D von Mises yield criterion in Figure 6.7 in a format too small for
use because I do not want you to use this method. If you are intent on using it however, you can plot a
larger one for yourself using Equation (6.38).

You may also note that the chart in this procedure shows a reduction of burst strength in axial
compression. Additionally, it shows an increase in collapse strength in axial compression and an increase
in burst strength in axial tension. While this is true, almost no one uses a simple chart like this for those
cases in practice. Increases in burst or collapse resistance from axial loads are seldom considered in basic
casing design. Likewise, a case of reduced burst, which almost always results from axial compression
from thermal expansion, is not considered using such a simple method. These types of combined loads
are generally considered only in more-advanced designs and more-sophisticated methods are used rather
than reading simple values from a chart like this. We discuss those issues later.

6.5.3 Improved simplified method

A more consistent way of expressing the reduced collapse fraction based on stresses is as follows:

kclps =
√

1− 0.75

(
F

AtY

)2

− 0.5
F

AtY
(6.36)

where

Y = yield strength

F = axial load

At = cross-sectional area of tube body
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and the reduced collapse rating is calculated with Equation (6.35). This is the formula we used in
Chapter 4. A similar approach was proposed by Wescott, Dunlop, and Kimler [26] that attempts to
account for the difference in the thickness of the tube body and the area under the threads. Their
formula is

kclps =
√

1− 0.932

(
F

AtY

)2

− 0.26
F

AtY
(6.37)

where the variables are the same as in Equation (6.36).

EXAMPLE 6.6 Simple Formulas for Reduced Collapse

Using Equation (6.34) in our previous example, we get the same conservative collapse value we got from the
plot in Figure 6.7 (assuming we can read the graph accurately):

kclps =
√

1− 0.75f 2
tens − 0.5ftens

=
√

1− 0.75

(
61200

547000

)2

− 0.5

(
61200

547000

)
= 0.939

p̃cpls = kclpspclps = 0.939 (1130) ≈ 1060 psi

If, instead, we use Equation (6.36) for this example, we get a slightly higher value for the reduced collapse:

kclps =
√√√√1− 0.75

(
61200

π
4

(
13.3752 − 12.6152

)
(55000)

)2

− 0.5

(
61200

π
4

(
13.3752 − 12.6152

)
(55000)

)
= 0.962

p̃clps = kclps pclps = 0.962 (1130) ≈ 1090 psi

Using Equation (6.37) we get

kclps =
√

1− 0.932

(
61200

547000

)2

− 0.26

(
61200

547000

)
= 0.965

p̃clps = 0.965 (1130) ≈ 1090 psi

The difference in the last two equations in that example is that Equation (6.36) is based on the von
Mises ellipse:

x2 − xy+ y2 = 1 (6.38)
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and Equation (6.37) is a modified version that uses the axial load and the joint strength as developed by
Wescott et al. [26], based on the ellipse:

x2 − 0.52xy+ y2 = 1 (6.39)

The axial stress formula (6.36) has been used for many years with success and generally is preferable
to the conservative method of Equation (6.34). Recall that Equation (6.36) is the one we used in our
example designs in Chapter 4, and it also appears in the minimum casing design requirements of the
AEUB as the preferred formula [15]. The second formula (6.37) currently appears in the catalog of a
major casing manufacturer and has seen many years of use. It might appear that the differences between
these formulas are a bit trivial, but since they appear in various sources, usually without explanation, my
purpose here has been to explain the differences.

6.5.4 Traditional API method

Because collapse is a stability and post-buckling event, we cannot use a strictly yield based ap-
proach like we considered earlier. However, since a yield value appears in three of the four API
collapse formulas (elastic collapse is not affected by yield strength), yield certainly plays a role in
collapse.

The traditional API method for calculating the effects of combined loads has a basis in the von
Mises yield criterion, and the method is published in API Bulletin 5C3. The reason it is referred
to here as the “traditional” API method is because it may be phased out with the adoption of the
newer ISO/TR 10400 standards. But, as of this writing, the traditional method has not been officially
replaced.

We will derive and show the equations for this method, but the method may be summarized as
follows: The API method uses the fractional axial stress, σz/Y, to calculate a fractional tangential stress,
σθ , using an equation for the lower right-hand quadrant of the 2D plot of the von Mises yield criterion
(see Figure 6.7). This method assumes the radial stress, σr, from internal pressure is negligible, so
that the tangential stress, σθ represents the yield strength in collapse. The fractional tangential stress is
then multiplied by the original uniaxial yield strength of the pipe to give us a “reduced” yield value.
This reduced yield value is then substituted into one of the four API collapse formulas to calculate
the reduced collapse rating of the pipe. Although this method is not especially good engineering, it is
preferable to the previous simplified methods. It is extremely important to understand though, that the
presence of tension does not actually reduce the yield strength of the tube, but merely moves the loading
stress to a different position on the yield criterion curve so that we are using a different value from that
of the uniaxial yield. This value is referred to as a “reduced” yield because all the off-axis values on the
yield curve in the lower right-hand quadrant of the Figure 6.7 are less than unity.

Earlier in this chapter, we used a 2D version of the von Mises yield surface (Equation (6.36)). That
is where the traditional API-based approach begins. The von Mises yield surface in two dimensions is

σ1 − σ2

Y
= σ3 − σ2

2Y
±
√

1− 3(σ3 − σ2)
2

4Y2
(6.40)

where σ1, σ2, and σ3 are the three principal stress components. In the absence of shear components,
such as torsion, the three principal stress components are σθ , σr, σz and we may substitute them into
Equation (6.40) to get a convenient form for our use:
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σθ − σr

Y
= σz − σr

2Y
±
√

1− 3(σz − σr)
2

4Y2 (6.41)

We purposely set the stress components in that order, so that the radial stress is the one we want to
subtract from the other components. The radial stress is the negative value of the internal pressure
(recall that yield from internal or external pressure always occurs at the inner wall first). If it is zero, we
can leave it out, but in any event, we should know its value, so for now we rewrite it with the internal
pressure:

σθ + pi

Y
= σz + pi

2Y
±
√

1− 3(σz + pi)
2

4Y2 (6.42)

Plotted it is an ellipse exactly like Figure 6.7 except−pi is substituted for σr and the terms, (σθ − σr)

and (σz − σr), become (σθ + pi) and (σz + pi), respectively.
Now, here is how API uses this 2D formulation. API assumes that the tangential stress becomes an

effective yield stress for collapse. So, we define an effective yield stress in collapse as

Ỹ ≡ −σθ (6.43)

We may rewrite Equation (6.42), adjusting the signs to account for the fact that the tangential stress is
compressive (negative) in a collapse situation:

Ỹ = Y

√
1− 3

4

(
σz + pi

Y

)2

+ pi − σz

2
(6.44)

This is essentially the API formula, except the API version assumes that the internal pressure is
negligible or zero and, hence, uses the following formula:

Ỹ = Y

√
1− 3

4

(σz

Y

)2 − σz

2
(6.45)

This formula is used to calculate a reduced yield value, Ỹ. That reduced yield value then is used in
the appropriate API collapse formula, from the earlier section on API collapse, to determine the reduced
collapse value caused by the tension.

EXAMPLE 6.7 Traditional API Method

Using data from the production casing example in Chapter 4: 7 in. 32 lb/ft N-80 casing (ID = 6.094 in.) and
an axial load at the bottom of that section of 41,739 lbf, we want to determine the reduced collapse strength
of the casing.3 The published API collapse value with no tension is 8600 psi.

We calculate the reduced yield using Equation (6.45):

Ỹ = 80000

√√√√1− 3
4

(
41739

π
4

(
7.0002 − 6.0942) (80000)

)2

3 Normally we would roundoff such a value, but we use the same value as in the example production casing so as to compare
results of the various methods.



174 Casing and Liners for Drilling and Completion

− 1

2

[
41739

π
4

(
7.0002 − 6.0942

)
]

= 77, 666 psi

We now must determine which API collapse formula to use. To do that, we need the value of do/tw:

do

tw
= do

0.5 (do − di)
= 7.000

0.5 (7.000− 6.094)
= 7.000

0.453
= 15.453

We also need the API formula constants at the reduced yield strength. Without showing the calculations, we
calculate them from the formulas shown in the section on API collapse formulas (6.27):

A = 3.062736

B = 0.065539

C = 1885.482

F = 1.993754

G = 0.042664

We start with the range limit for yield collapse and Equation (6.20) using those constants and do/tw =
15.453:

(do/tw) ≤ 3.062736 − 2

2 (0.065539 + 1885.482/77666)

+
√

(3.062736 − 2)2 + 8 (0.065539 + 1885.482/77666)

2 (0.065539 + 1885.482/77664)

= 13.127

We see that our value of do/tw is greater than that, so we must then check the formula for the upper range
formula for plastic collapse formula which is Equation (6.22):

(do/tw) ≤ 77666 (3.062736 − 1.993754)

1885.482 + 77666 (0.065539 − 0.042664)
= 22.769

Our do/tw is within the range of the plastic collapse formula, so we use Equation (6.21) to calculate the
reduced collapse strength of the casing:

p̃PC = 77666

[
3.062736

15.453
− 0.065539

]
− 1885.482 ≈ 8420 psi

This shows a reduction of 180 psi in the collapse resistance of the casing in tension. It is not much in
this case, but it might put our design below the minimum design factor, in which case, we might have to
adjust the design to compensate.

So far we have only accounted for collapse pressure in the form of a differential pressure, but the
magnitude of the internal pressure does have some effect in combined loading. The traditional API
method does account for this in the form of a correction for the presence of internal pressure.

p̃clps = preduced + pi

(
1− 2tw

do

)
(6.46)
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It should be noted that the inclusion of internal pressure in our combined loading for collapse means
that to use differential pressures as we did in our basic collapse load plots and design procedure we
must subtract the internal pressure from the results of Equation (6.46). This complicates the basic design
procedure somewhat. In the previous example, we did not add a pressure correction for internal pressure
and use the actual external pressure as the collapse pressure, since our example production casing was
designed assuming no internal pressure. But we will now illustrate a case where there is internal pressure
in the following example.

EXAMPLE 6.8 Internal Pressure in API Traditional Method

In the case of the 7 in. 32 lb/ft production casing in the previous example, we examined the reduction in
collapse resistance at a point where the tension was 41,739 lbf. In Chapter 4, we compared the reduced collapse
pressure to the differential collapse pressure to adjust for combined loading using Equation (6.36), and made
design adjustments accordingly. In that case the casing was evacuated so there was no concern for any internal
pressure. But for this example let us assume that there is an internal pressure from, say a brine workover fluid,
and the internal pressure is 3000 psi. What is our reduced collapse pressure in this case?

Just as in the previous example we use Equation (6.45) to calculate a reduced yield and then the plastic
collapse formula to get a reduced collapse pressure of 8420 psi as compared to 8600 psi with no axial load.
Then we substitute into Equation (6.46) as the preduced value:

p̃clps = 8420+ 3000

(
1− 2 (0.453)

7.000

)
≈ 11, 030 psi

This is the reduced collapse pressure with an internal pressure of 3000 psi. For comparison let us look at the
differential load pressures with no internal pressure and with the 3000 psi internal pressure.

1) �pclps = pi − po = 0− 8420 = −8420 psi

2) �pclps = pi − po = 3000 − 11030 = −8030 psi

What this illustrates is that the presence of internal pressure actually reduces the differential collapse
resistance of the casing a bit further. Most casing designs do not account for this. However, in most cases,
the presence of internal pressure reduces the magnitude of the differential loading so the additional
reduction in collapse resistance may not be significant.

The necessity of determining which API collapse formula is applicable, as well as calculating the API
constants for those formulas makes this a tedious process when done manually. In the case of standard
yield strengths, like 80,000 psi, for instance, there are tables in API 5C3 and ISO/TR 10400 specifying
the values of the five constants, but for our case of a yield of 77,664 psi, a nonstandard yield value, all
the constants must be calculated. There are five constants in all, though only two appear in the transition
collapse formula. In this case, all five had to be calculated to determine the correct formula to use. One
can easily program the API method into a spreadsheet and avoid the tedium and inherent errors in doing
the calculations manually.

The current API method does not account for combined loads in combination with burst. It is seldom
considered in casing design, but when it is, the yield-based approach is used because burst is not a
stability type event like collapse.

6.5.5 The API traditional method with tables

One need not do the preceding calculations to use the traditional API method. Tables published in API
Bulletin 5C2 allow one to look up the reduced collapse value directly. For instance, in the example, we
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could use Table 4 in API 5C2 [9]. It is in terms of axial stress rather than axial load, but it also gives
the cross-sectional area of the tube to make the axial stress calculation easier if you have not already
calculated it.

σz = 41739/9.317 = 4480 psi

The table gives the collapse pressure corresponding to axial stress in 5000 psi increments, so for zero
axial stress, the collapse pressure is 8610 psi, and at 5000 psi axial stress, the collapse value is 8400 psi.
We may do a linear interpolation for 4480 psi axial load and get a collapse value of 8420 psi (rounded
to nearest 10 psi) which is the value we got with the traditional API calculation method.4 If you do not
have a spreadsheet programmed for the API method, it is much easier to use Table 4 in API Bulletin
5C2.

6.5.6 Improved API/ISO-based approach

The proposed new API/ISO formula for combined tension and compression begins something like the
current API method as far as calculating a reduced collapse strength, in that it first uses an equation to
calculate a reduced yield value. The equation for calculating the reduced yield is

Ỹ = 1

2

(√
4Y2 − 3(σz)

2 − σz

)
(6.47)

It is the same as the equation we used to calculate the reduced yield strength in the current API method
with no internal pressure (Equation (6.45)) although in a slightly different form. The reduced yield from
this formula then is used in Equation (6.31) to calculate a reduced yield collapse, which then is used
in Equation (6.29) along with the elastic collapse from Equation (6.30) to calculate a reduced collapse
strength without internal pressure. If there is internal pressure, then a correction using Equation (6.46)
may be added. This internal pressure correction is called a simplified method in ISO/TR 10400 and gives
results to an accuracy of ±5% when 0 ≤ σz/Y ≤ 0.4. Outside that range, one should refer to ISO/TR
10400 for the more rigorous internal pressure correction method (currently listed in Appendix H of ISO
10400 [11]). This is an iterative solution technique.

EXAMPLE 6.9 Improved API/ISO Collapse Formula

We apply these new formulas to determine the reduced collapse rating of the 7 in. casing in the previous
examples. In Section 6.4.3 we calculated the wall thickness (0.453 in.) and the collapse value without tension,
which was 8060 psi, so we do not repeat those.

Now, we use an axial tension of 41,739 lbf to determine the reduced yield using Equation (6.47):

Ỹ = 1

2

⎛
⎝
√

4Y2 − 3

(
Fz

At

)2

− Fz

At

⎞
⎠

4 If you noticed, we used a collapse value of 8600 psi in all our design calculations which is the value listed in the main tables
of API 5C2. However, in Table 4 as mentioned above, it is listed as 8610 psi. The API formulas give a value of almost exactly
8605 psi depending on the precision of your calculating device. So this apparently accounts for why it is rounded to two different
values in the main tables and Table 4 of API 5C2.
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= 1

2

⎛
⎜⎝
√√√√4(80000)2 − 3

(
41739

π
4

(
72 − 6.0942)

)2

− 41739
π
4

(
72 − 6.0942)

⎞
⎟⎠

= 77, 666 psi

Note again that this is exactly the reduced yield value we calculated using the traditional API method in the
earlier example. This method differs from the traditional method in the manner in which the reduced yield is
used once calculated. The reduced yield value is then used in Equation (6.29). We may use the elastic collapse
value of 16,641 psi that we calculated in Section 6.4.3 with Equation (6.30) because it is independent of yield
strength, but we must re-calculate a reduced yield collapse value using Equation (6.31).

p̃yld = 2kyY

(
tw
do

)(
1+ tw

2do

)

= 2 (0.870) (77666)

(
0.453

7

)(
1+ 0.453

2 (7)

)

= 9028 psi

Now, we plug this value and the elastic collapse value into Equation (6.29):

pclps =
pelas + pyld −

[(
pelas − pyld

)2 + 4pelaspyldHt

] 1
2

2 (1− Ht)

= 16641 + 9028 − [(16641 − 9028)2 + 4 (16641) (9028) (0.164)
] 1

2

2 (1− 0.164)

≈ 7870 psi

The traditional API method gives a reduction of 180 psi from the published API collapse value of
8600 psi. This formula gives a reduction of 730 psi, from the published API collapse value. However,
if one calculates the collapse value without tension using the improved formulas, the unloaded collapse
value is 8060 psi, so this example is a reduction of 190 psi. The question is really whether the unloaded
collapse value is 8600 psi as per the traditional API formulas or 8060 psi as given by the improved
formulas. From the discussions in ISO/TR 10400 and the notes leading to the improved formulas, it
would appear to favor the new formulas. All indications are that the newer formulas are better, but until
the old ones are declared obsolete they will still be used by many.

6.6 Lateral buckling

Much has been written over the years about lateral buckling of oilfield tubulars. Some of it has been
good, some a bit misinformed, and some even has been ludicrous. Lateral buckling is called columnar
buckling in most areas of structural engineering, but lateral buckling of oilfield tubulars differs from
the common concepts of columnar buckling as it is understood by most structural engineers. In most
structural applications where gravity is considered, the load on the column is at the top of the column
as opposed to the bottom as in our case. In those cases, gravitational forces tend to contribute to the
tendency of a column to buckle. In the case of oilfield tubulars, the loading is a bit different. Usually,
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the top of the column (casing or tubing) is fixed and the buckling load is caused by a reactive force on
the bottom. The reactive force is caused by the weight of some portion of the column resting on bottom,
some pressure force on the bottom, or a combination of both. Many refer to lateral buckling of casing
as simply buckling. However, collapse is a form of buckling called radial buckling. There is also axial
buckling, in which the casing is crushed in an axial direction. And, we could include torsional buckling.
This section is about lateral buckling. Lateral buckling occurs when the casing becomes unstable and
displaces laterally disproportionately to the magnitude of a very small lateral force.

6.6.1 Stability

The best way to visualize the concept of stability is with a simple and commonly used illustration.
In Figure 6.8, three balls are in equilibrium on three surfaces. In case (a), a ball rests at the low
point on a concave surface. The ball is in static equilibrium; in other words, it will not move unless
some force is applied to it. If we nudge the ball with some small force, it will move slightly then
return to its original position as soon as the small force, called a perturbation, is removed. Also note
that to move it further from its initial position requires an increasing force the farther it is moved.
This ball is in a state of stable equilibrium. In case (b), the ball rests on a flat horizontal surface.
It is also in a state of static equilibrium. If a small force is applied, the ball will move. It will
continue to move with no requirement that the force be increased as in the first case. It will stop
when the force is removed, or if its environment is frictionless, it will continue to move at constant
velocity until another force is applied to stop it or it falls off the edge of the surface. It will not
return to its original position, however. We call this case conditionally stable equilibrium or sometimes
neutrally stable equilibrium. The third case, (c), also is in static equilibrium, though, from a practical
standpoint, we might have a bit of trouble comprehending how someone could get a ball to balance
on the high point of convex surface. Nevertheless, it is easy to understand that, if we apply even the
smallest of perturbations to this ball, it will roll off the surface. Once it starts to move, no additional
force is required to keep it rolling away from its static equilibrium point. We call this condition
unstable equilibrium. This last condition is the type of instability that concerns us with buckling of
casing.

How does lateral buckling occur? If you consider the type of lateral or columnar buckling shown in
most engineering texts, you will see something like Figure 6.9a.

Typically, these are weight-less columns with a vertical load applied at the top and the bottom either
hinged or fixed. The initial buckling mode is in the form of a single curve. Other modes are possible
(usually at higher loads), leading to sinusoidal-type configurations with an increasing number of nodes.
These additional nodes are mostly theoretical, because once the column buckles into a single curve, the
other modes are not possible unless some constraints are applied. A perfect beam with a perfectly applied
axial load (as is the case of our mathematical models) never buckles laterally unless some perturbation

(a) (b) (c)

Figure 6.8 Equilibrium states: (a) stable, (b) neutrally stable, and (c) unstable.
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(a) (b)

R = F + W R

F F = W − R

Figure 6.9 Lateral buckling: (a) typical structural column and (b) casing in borehole.

is applied. In other words, we could keep applying a load until the column yields in compression and
deforms axially in a plastic regime, until it is just a lump of metal on the ground. For instance, the
equation5 for the elongation or compression of an elastic tube is

�L = 2F + w L2

2π
(
r2

o − r2
i

)
E

(6.48)

Nowhere in that equation is any allowance for lateral buckling, because there is no inherent instability
in the formula itself. Lateral buckling has to be determined in other ways. As to casing in a wellbore,
it usually is fixed on bottom with cement and has lateral constraint in the form of a borehole wall,
Figure 6.9b. Buckling in this case is affected by the weight of the casing, and we see that only the lower
part of the casing is buckled, because the buckling is caused by axial compression at the bottom from the
weight of the casing. As the distance from the bottom increases, the axial compression decreases. When
casing buckles in this manner, it initially may be in the shape of a sinusoidal curve, with decreasing
frequency as the distance from the bottom increases, until a point is reached where there is no buckling.
It may be even more extreme and form a helical shape in the wellbore, with decreasing pitch as the
distance from bottom increases.

It would seem intuitive, then, that for lateral buckling to occur in casing, it would have to be caused
by a compressive load and some small perturbation. For many years, it was assumed that, if casing was
hung in tension throughout the full string or at least the portion of the string above the top of the cement,
then lateral buckling could not occur. That sounds intuitively simple, and that was the assumption up
until papers by Lubinski [27] and by Klinkenberg [28] and several discussions of those papers.

The Woods stability model

In 1951, in a discussion of the paper by Klinkenberg [28], Henry Woods [29] presented an example
illustrating the buckling neutral point in a simple way that became something of a classic. It essentially
showed that, contrary to popular intuition, lateral buckling could occur in casing in tension (under certain

5 See Appendix C for derivation.
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pressure conditions). Much of what had been done previously was based on intuition combined with an
unfortunate lack of understanding of hydrostatics.

Woods, however, based his analysis on the theory of elastic stability, using a thought experiment
with a weight-less tube in a hypothetical test chamber. The model as Woods set it up illustrates his point
quite well, but it has been criticized because it does not model something that can occur in reality, even
under the most ideal of conditions. I have modified his thought experiment to one that more realistically
models an actual wellbore situation. This modified version gives exactly the same results and is perhaps
more realistic in terms of our experience with casing in boreholes, see Figure 6.10. A weight-less tube
is installed in a pressure test chamber, fixed at the lower end, and free at the upper end. While the upper
end is free to move, it is closed internally with a frictionless pressure seal that does not move. There
is also a frictionless pressure seal on the outside of the tube, between the upper chamber and lower
chamber. The lower chamber, representing a wellbore annulus, has a pressure po, and inside the tube the
pressure is pi. The top chamber is open to the atmosphere, and the tube is held in tension at the top by a
suspended weight, W. The tube is long enough that its stiffness against bending is negligible. Also, the
chambers are large enough that the pressures in the lower chamber remains constant. Woods then said,
if one could apply a small lateral force to the tube in the large chamber such that the tube would deflect
laterally by a small amount, then the top of the tube would slide downward some small amount δL. And
the suspended weight would rise by the same displacement, δL. The following volume changes would
occur:

δVo = −πr2
o δL

δVi = πr2
i δL

po

pi

W

Figure 6.10 A modified Woods model.
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Since pressure is in each of the places where volume changes occur, a change in potential energy in
each place is equal to the change in volume times the pressure, and the total change in potential energy,
δΠ is given by

δΠ = δVopo + δVipi + δL W

δΠ = πr2
oδLpo − πr2

i δLpi + δL W

The last term is the force, W, acting on the tube. We may express it in terms of axial stress as

W = Atσz = π
(

r2
o − r2

i

)
σz

We can substitute the axial stress into the equation:

δΠ = πr2
oδLpo − πr2

i δLpi + π
(

r2
o − r2

i

)
δL σz

For this system to remain stable, the change in potential energy must be zero or positive:

πr2
oδLpo − πr2

i δLpi + π
(

r2
o − r2

i

)
δL σz ≥ 0

σz ≥ πr2
i pi − πr2

opo

π
(
r2

o − r2
i

)
We could then write the stability condition in a number of ways, four of which follow:

σz ≥ Aipi − Aopo

Ao − Ai
(6.49)

σz ≥ ri2pi − r2
opo

r2
o − r2

i

(6.50)

Fz ≥ Aipi − Aopo (6.51)

σz ≥ 1

2
(σθ + σr) (6.52)

The last version was derived using the Lamé formulas. Recall that the sum of the tangential stress
and the radial stress is constant through the wall of the pipe, so it makes no difference whether they are
calculated at the inner or outer wall, as long as both are calculated at the same point.

What Woods’s model illustrates is the difference between the change in potential energy by a slight
increase in the internal volume of the tube and slight decrease in the annular volume in addition to
mechanical work done on the weight. If the deflection results in an increase in potential energy, then
the tube is stable, whereas if it results in a decrease in potential energy, then it is unstable. If there
is no change in potential energy, then it is conditionally stable. Obviously, if the internal pressure is



182 Casing and Liners for Drilling and Completion

sufficiently greater than the external pressure, then the system is unstable, even when the axial stress is
positive or in tension. Likewise, with a sufficiently higher external pressure, the system is stable when
the axial stress is compressive. This particular article by Woods turned around a lot of thinking about
landing practices for casing. His results have been generally accepted.

One of the most important concepts to come from the Woods’ model is the concept of the neutral
point as to lateral buckling. One interesting aspect of the equilibrium points derived from this model
is in Equation (6.51). That might look vaguely similar to something we saw in Chapter 4, where we
examined the relationship between the true and effective axial loads. If we rearrange it slightly, it shows
that, at the neutral point,

Fz + (Aopo − Aipi) = 0 (6.53)

Now, it should look familiar, because the left-hand side is exactly the effective load. So, at the neutral
point for lateral buckling,

F̂z = Fz + (Aopo − Aipi) = 0 (6.54)

stating that the effective axial load is zero at the buckling neutral point. It can be seen that the condition
of stability is exactly the same as the neutral point of an effective load curve calculated using a buoyancy
factor as opposed to a true axial load curve. The neutral point in buckling is the point at which the
effective load curve goes from compression to tension; that is, the point where the effective load is zero.
If the pipe is off bottom, then the neutral point is at the bottom of the string, and no amount of hydrostatic
pressure can cause the string to buckle as long as its effective density (the pipe and its contents if closed
ended) is greater than the fluid it is in. Such was the basis for determining the length of the drill collars
necessary in a bottom hole assembly to prevent lateral buckling of the drill pipe while rotating—a mode
that leads to early failure in drill pipe. The simple formula

LDCAt (ρsteel − ρfluid) g = Wbit

equates the buoyed weight of drill collars of length, LDC and cross-sectional area, At to the desired weigh
on the bit, Wbit. We can regroup the equation as

LDC (Atρsteel)

(
1− ρfluid

ρsteel

)
g = Wbit

where the first term in parentheses is the linear density of the drill collars and the second term in
parentheses you will recognize as the buoyancy factor so

LDC ρl kb g = Wbit

and rearranging to solve for the length of the drill collar assembly

LDC = Wbit

ρl kb g
(6.55)

Standard practice called for two or three additional collars so that the neutral point was always within

the drill collar string and not in the drill pipe at any time while rotating.
This simple formula worked well for many years, and still does because it is correct. Unfortunately,

the consequences of this stability issue got lost for some in the 1960s, when some erroneously thought
the transition point from axial compression to axial tension (the true axial load as calculated in
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Chapter 3) should be the criterion instead. Only in an unbuoyed system where they are identical, is that
true. There was no change in drill string failure rate by going to the true axial load which always required
more drill collars, but at least it was a boon to rental tool companies. If one bought into that erroneous
notion, then one would require drill collars even for rotating drill pipe off bottom since it is always in
axial compression near the bottom of the string without drill collars. This of course, was ludicrous and
fortunately most began to see that. The issue here is one of stability and not axial compression. Sadly
that fact is still lost on many who should know better, and is still found in places from which it should
have long since been purged.

Somewhat related to that error was also a notion that “drill pipe tool joints are not designed to drill in
compression.” That was nonsense back then, and is patently obvious today as we drill horizontal wells
with drill pipe in compression all the time. Apparently this thinking arose from the fact that drilling
with drill pipe in compression caused premature failure in the connections where the failure rate in
drill collars in compression was much less. But even early on, when that view was widely held, many
small drill collars had exactly the same connections as some drill pipe. The only difference was that
some of the drill collar connections had a small relief area between the last thread and the connection
shoulder whereas drill pipe tool joints usually did not. This allows more flexing in the connection with
less fatigue failure, and that in itself is a clue to the reality of the problem. What seems to have gotten
lost in all of this, both then and even now, is that all pipe (drill pipe, drill collars, tubing, and casing)
that is in the unstable region will likely buckle laterally.6 With the exception of tubing, the buckling
itself is seldom a problem. It is the rotation while in the buckled configuration that causes the serious
issues, especially in drill pipe. Contrary to what was a popular opinion for so long is that drill collars
buckle too. The difference between drill pipe and drill collar buckling is the severity of the bending in
the buckled configuration—slight for drill collars and more severe for drill pipe.

Here are some things you should understand about lateral buckling.

• Lateral buckling is a stability phenomenon.
• All pipe below the neutral point as determined with Equations (6.49)–(6.52) is unstable—always assume that it

will buckle.
• The severity of buckling in drill pipe is greater than that of drill collars because of the respective clearance in

the borehole.
• Lateral buckling itself seldom causes pipe failure.
• It is the rotation while in the buckled configuration that causes premature failure, not the buckling itself.
• Considerable care is taken in proper makeup torque with drill collars, but such is seldom the case with drill pipe.

Lateral stability is important in all phases of drilling and completions and often seems to be one of
the least well understood. Having covered possibly more than enough on stability, we now turn to how
it affects casing.

6.6.2 Lateral buckling of casing

As previously stated, lateral buckling of tubulars in wells has been a considerable topic for many years.
It is quite a bit different from the structural engineer’s typical columnar buckling, in that it is constrained
by the walls of a bore hole. Possibly even more significant is that the buckling load is caused by a relative
displacement from the bottom of the suspended column, and the resultant force at the bottom of the
column is caused by both gravity and the elastic resistance of the column acting in the same direction.

6 We are discussing vertical boreholes for now and will address inclined wellbores later.
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Very little in typical columnar buckling of structures applies globally to a casing string because of the
nature of the loading and the post-buckling constraints, but they are quite similar locally where we
ignore the effects of gravity except in the form of an axial load.

Like most buckling, lateral buckling has bifurcation points into different modes. Few slender stand-
alone structural columns ever reach a second bifurcation point because post-buckling deformation does
not allow for it. Lateral buckling of tubes in wellbores does often result in additional bifurcations into
additional modes. The first mode of lateral buckling is something like a single curve, which may become
sinusoidal because of the borehole constraints and end conditions. In its most severe mode though, it
becomes helical in shape. Most of us have seen a permanent helix in a recovered tubing string, work
string, or tail pipe that was compressed beyond its yield strength.

For purposes of analysis we may (and do) idealize the post-buckling configuration as sinusoidal
or helical locally, but because of the nature of the loading in a borehole, the configuration cannot be
perfectly sinusoidal nor perfectly helical on a larger scale. The situation is even more complicated in
an inclined wellbore (and all are inclined to some degree) because the constraint is not only curved
axially, but also radially, and there is a definite gravitational force component transverse to the constraint
(borehole) axis.

For the most part, buckling of casing in wellbores is not the problem it is with tubing or drill pipe.
The primary reason for this is that the clearance between casing and the borehole wall is relatively
small in most wells. So, even when it is buckled, the degree of buckling is so small in most cases that
there are few serious consequences. If the buckling is severe enough, the casing actually could yield or
fail. This is rare and almost always a consequence of some geotectonic activity, like subsidence, fault
movement, and so forth. And, severe cases do happen with large temperature fluctuations. Less severe
cases of buckling can have serious consequences too. One is the possibility of extensive casing wear in
an intermediate string while drilling to the next casing point. Another is the difficulty of running and
retrieving completion equipment in a buckled production string. So, for these reasons, we try to avoid
any lateral buckling in casing. If we are using a slip-type casing hanger, we have some control over
the final axial load in the non-cemented portion of the casing string. We may even be able to take into
account possible thermal expansion and design our casing such that we can pull enough tension to avoid
buckling. If we are using a mandrel-type hanger, there is not much we can do other than to try to support
the casing with cement. When the top wiper plug is bumped at the end of the cement job and internal
pressure is released, we have to live with whatever axial stress is in the non-cemented portion. The final
motion with a mandrel hanger is always downward.

One of the most insidious forms of buckling can occur in a cemented section where there is
an interval of bad cement and we have no means of controlling the axial load in the casing, no
matter what type of hanger we have at the surface. Serious problems have arisen when casing in
one of these sections of an intermediate string experiences increased temperatures from drilling and
circulation in higher-temperature zones below the intermediate casing, as is discussed later in this
chapter.

I end this part of the discussion with a comment about helical post-buckling. Most of the papers on
the subject are based on experiments with rods under axial compression in tubes to simulate pipe inside
a borehole. Mathematically, they are modeled as one-dimensional, two-point boundary value problems
with a single degree of translational freedom at each boundary, one of which is static, and the other
subjected to an axial load. There are three rotational degrees of freedom at each end as being understood
but not constrained. In none of the early papers or experiments is torsion considered, and in fact some
have mentioned that torsion is of no significance. It is interesting that in none of those rod experiments
are any rotational degrees of freedom considered, especially rotation about the axial coordinate. So how
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is torsion ruled out other than by intuition? What is the perturbation that causes the tube to bifurcate
into a helix rather than another sinusoidal mode? Here is something we should understand about a helix:
a straight rod (or tube) forced axially into a helix will require a rotation (twist) of 2π radians for each
cycle of the helix if it is to be torsion free. If one end of the tube is not allowed to rotate freely with
respect to the other end then there will be torsion in the tube. Likewise, when a helical buckle is released
by pulling tension in the pipe, a full 2π rotation of the tube is required for each cycle of the helix if it
is to be torsion free.7 Logically one would assume from this that a right-hand rotation of a drill string
at the surface and drag on a bit at the bottom would enhance the tendency for pipe to buckle somewhat
helically (with a left-hand pitch) as a first mode rather than sinusoidally, yet torsion is not included in
our basic buckling formulas. Why not? Any helically buckled tube that makes contact with a borehole
or casing wall will have friction that will affect the freedom to rotate as helical pitch changes, and
torsion will become a factor in the pitch of the helix and the stress state of the tube. So? I am posturing
intuitively here, and have no intent or desire for getting personally involved in tubular buckling analysis.
I mention all this to perhaps give you pause for thought.

Buckling in a vertical wellbore

The published work on buckling of vertical structural columns could fill a small library. As interesting
as all that may be to some, it is of little practical consequence in casing design for reasons already
mentioned. That is why this is the shortest section in this book. Seldom are real wellbores vertical. If
you do have a near-vertical wellbore and the effective load is in compression, assume the casing will
buckle; you do not need a formula.

Buckling in an inclined wellbore

It is a bit more difficult for casing to buckle in an inclined wellbore, because gravity tends to hold it to
the low side of the bore hole. It can start to move away from the low side, but the farther it moves, the
more it has to move up the side of the wellbore. In one sense, it is like the ball resting in the low point
of a concave surface in Figure 6.8, but that analogy is only for visualizing the gravitational effect; it
does not tell us much about buckling. Here is a formula for buckling in a straight but inclined wellbore
(Dawson and Paslay [30]):

Fcrit = 2

√
4EI g kb ρ� sin α

�r
(6.56)

where

Fcrit = critical axial buckling force

ρ� = linear density of casing

kb = buoyancy factor

�r = concentric radial clearance between pipe and hole (rh − ro)

g = local acceleration of gravity

7 Any cowboy who has ever thrown a lasso or rig hand who has pulled a coiled water hose knows this intuitively.
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E = Young’s elastic modulus

I = second area moment of tube cross section

α = borehole inclination angle

Commonly we see this equation with the buoyed linear weight, w̄, where w̄ = g kb ρ�, but this time I
have included all the terms for clarity. One particular reason for this is that for close to 17 years, almost
everywhere it was published in USC units, the buoyed linear weight, w̄, is stated in lbf/ft and all other
length units in inches in the notation tables at the end of those papers, even in the original paper. To
be fair, I can verify that the calculations in the original paper were definitely done correctly, and it is
only the notation table at the end that is erroneous. It appears that the calculations in most of the other
papers were done correctly also. In practice though, that has not always been the case, because many
have taken the formula as stated in those papers and used it without noticing the inconsistency (and I
include myself). While the error is a small careless error that was repeated without discernment, it is no
small error if you do not make this correction in your calculations. The correct critical buckling load is
about 70% less than the load calculated using the wrong units as stated in those papers. So, if you use
USC units, you should ignore the units given in those papers and use consistent units.

Of particular note regarding this equation is that as the inclination angle goes to zero (vertical
wellbore), the critical buckling load in this formula also goes to zero, implying that any compression
in a vertical well will cause buckling. We are using buoyed weight in this formula so the equation is
referring to the actual stability point, and as stated in the previous section on vertical wellbores, if the
effective axial load is zero or less then assume that the pipe will buckle. It is not necessary to switch
to a different formula as the inclination angle approaches zero as some recommend. From a practical
viewpoint, this is the only formula needed for a straight section of borehole whether vertical or inclined.

This formula works pretty well for casing, but it does not take into account any wellbore curvature.
Wellbore curvature was considered by He and Kyllingstad [31] and then later by Mitchell [32] in the
course of resolving differing published formulations. This is Mitchell’s solution:

Fcrit = 2 E I rκ

�r

⎡
⎣1+

√
1+ g kbρ� �r r2

κ sin ᾱ

EI

⎤
⎦ (6.57)

where ᾱ is the average inclination angle over the short interval being considered. Later, Mitchell
advanced his study to include the effects of couplings. In that paper [33], he recommended that the
radial clearance be calculated with the coupling radius as opposed to the pipe body radius; that is,
�r = rh − rcpl.

One should remember that all lateral buckling formulas are approximate, at the very best. Some
have sweeping assumptions that may or may not be realistic. The two just discussed have been used
extensively, and they are reasonable. They do not account for the effects of torsion, connections, and
so forth. Mitchell continues to work in the area of tubular buckling in wellbores and has taken some
of those things into account. For anyone interested in the subject, his papers on the subject are a good
source.

6.6.3 Axial buckling of casing

Axial buckling of casing may be described as a crushing or collapsing effect in the longitudinal axial
direction of the tube. It is usually characterized as a composite of faceted triangular faces and folds in
its configuration. It can also take the form similar to that of a bellows in some thin wall configurations.
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It always involves yield of the material. True axial buckling of casing is rare. When it does occur, such
buckling is usually in conjunction with lateral buckling or bending in the presence of high axial loads.
There are structural formulas for axial buckling, but in the case of casing, it is so rare that we typically
consider compressive axial yield or lateral buckling criteria as limits instead.

6.7 Dynamic effects in casing

The effects of motion is not generally considered in casing design because for the most part casing
is in a quasi-static mode. The exception occurs when casing is lowered into the hole where there is a
sequence of motion states: a static state, an acceleration state, a constant velocity state (more or less),
a de-acceleration state, and then another static state. This cycle is repeated for each joint in the string.
The dynamic states in this cycle are relatively benign as far as inertial forces are concerned and are
usually ignored. The initial acceleration is gravitational and relatively small. The constant velocity is
also relatively small on the order of a few feet per second. The only significant inertial force comes
from the de-acceleration at the end of each cycle. Obviously the longer the casing string, the more
significant the force. Drillers intuitively understand this and can even feel it in the brake lever and actual
rig floor motion. They can, and usually do, monitor the magnitude of the force on the weight indicator.
In other words, these natural dynamic effects are almost never a problem, and hence, they are seldom
ever considered in design of the string except in very deep wells.

There is one dynamic event that is not routine and is sometimes considered, and that is the emergency
stop. It may be intentional with the sudden application of the brake or unintentional with a premature
setting of the slips while the pipe is still in motion. The latter of those two is obviously the most drastic
and severe load generator. There is a sudden change in momentum and also a shock impulse. Both
deserve examination.

6.7.1 Inertial load

Inertial loading of casing strings occurs when we initiate motion and cease motion. Each happens
once for each joint added to the casing string. There is also the possibility of an inadvertent change
in momentum caused by hitting an obstruction in the borehole or setting the spider slips while the
casing is still in motion. It is Newton’s second law in practice:

F = ṗ = ṁu̇+mü (6.58)

where force is equal to the time rate of change of momentum. And in our case where mass is constant
and we consider only one dimension,

F = mü (6.59)

The fundamental equation of structural dynamics is an expansion of that equation which I have
rearranged from the traditional form so that you might easily see that it is the same equation with more
force terms (still in one-dimensional form).

ku+ cu̇+ f = mü (6.60)

Forces are on the left and acceleration on the right. The first term, is an elastic force proportional
to displacement (or deformation). The second term is called a damping term that is proportional to
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the velocity. The third term does not normally appear, and it is a forcing function, which I have
added here to account for forces independent of displacement or velocity. Most structural dynamics
analyses are based on this equation. It does have a serious flaw in that almost nowhere is damping
force linearly proportional to the velocity, but it is part of the classical method because it lends to
closed form solutions of the equation not otherwise possible, and to some extent it is accurate enough
for rudimentary analysis. It the case of a casing string that term would be insignificant compared to
frictional damping and friction damping which would be accounted for in the third term. But in a
curved borehole it would be much more complicated as the contact force is a function of all the other
terms.

That is all fundamental and easily understood. The question is how do we apply that to casing design?
And additionally, should we even consider it in casing design? Almost no one considers inertial forces
in casing design. The only way to properly do an inertial force analysis would be with an explicit type
finite element analysis, which should include borehole friction. That is beyond what we can address
here. However, many who do choose to include dynamic effects, usually employ the rigid body shock
load addressed in the next section rather than any consideration of inertial forces.

6.7.2 Shock load

There is a popular formula that has found its way into some casing design contexts that seems to be used
frequently without much due consideration. It is

�σ = u̇
√

E ρ (6.61)

where �σ is the impulse change in axial stress, u̇ is the relative velocity of the pipe in relation
to some stationary, rigid object impacted, E is Young’s modulus, and ρ is the density of the steel.
This formula is usually presented in oilfield context complete with a value for

√
E/ρ lumped in with

several conversion factors into a single numerical value I will denote as C for now. So the formula is
presented as

�σ = Cu̇

with little or no explanation given as to what C is. Whether or not you or your company choose to use
it is immaterial here, but if we do choose to use it, we should understand it and be able to explain why
we use it. The derivation by Timoshenko [34] is as good as any and it comes from a thought experiment
in which there is an impact of a rigid body on the end of a static elastic bar suspended horizontally (so
that gravity plays no role). The velocity, u̇, in the equation is the velocity of the rigid body. The other
assumption is that a flat face of the rigid body impacts the end face of the bar perfectly across its surface.
Although Timoshenko used a solid bar, the equation is equally valid for a prismatic tube.

If we consider USC units where E = 30× 106 lbf/in2, ρ = 490 lb/ft3, and velocity, u̇ in ft/s, then
C ≈ 1780 with �σ in psi. In consistent SI units, E = 2.068× 1011 Pa and ρ = 7850 kg/m3, then C =
4.029× 107 and neither contains nor requires any unit conversion factors.

Now we examine this equation. Notice in particular that mass, m, of neither the tube nor the rigid
body is present, so an inertial force, ṗ, is not included. This is a purely theoretical impulse load only, and
it does not account for any inertial force. The result is a compressive elastic wave propagating down the
length of the tube. If the other end of the tube is free, the impulse will reflect and travel back through the
length of the tube as a tensile wave of equal magnitude (in theory). We could in a thought experiment
imagine a negative impact on the end and generate a tensile impulse wave at impact similar to suddenly
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setting slips on a moving joint of casing. Or we could assume a situation where the bottom of the casing
strikes a ledge or bridge while being run in the hole, thus generating a compressive wave. The equation
will work either way. In theory such a shock wave can propagate the length of the tube and reflect back
and forth for an infinite length of time. If an end is free it reflects back as an opposite type of wave,
that is, a tensile wave reflects back as a compressive wave and vice versa. If an end is fixed it reflects
back in the same mode, a tensile wave reflects back as a tensile wave and a compressive wave as a
compressive wave.

The speed at which casing is lowered into a borehole is relatively slow, say on the order of 5-8 ft/s.
Let us look at casing being lowered at 8 ft/s and apply the formula.

�σ = 1780 (8) = 14, 240 psi

That would likely represent a worst case scenario and is not an alarming number. It is about 18% of
the yield of N-80 casing and would likely be compensated for in a design factor if ignored completely.
In almost all cases where the spider slips are prematurely set, the casing is almost already stopped, so
the speed would be much slower. The impulse formula gives results that we can reasonably accept and
possibly that is why its use is seldom questioned.

That being understood, let us examine another case that is not so intuitively reasonable. Suppose
we have a rigid plate attached to one end of a joint of casing that is suspended horizontally as in
Timoshenko’s derivation. Now we have an archer with a modern compound bow who releases a rigid-
tipped arrow at 300 ft/s that passes internally through the length of the joint striking the rigid plate at the
other end. Bam! The impulse, �σ , is 534,000 psi! That is about 6.7 times the minimum yield strength
of N-80 casing and almost 5 times the minimum ultimate strength. Can such an event cause the casing
to actually part in tension? Perhaps now, this equation does not appear so reasonable as before when it
gave results we could easily accept.

In the real world, there is no such thing as a rigid body nor an instantaneous transfer of force as in
the theoretical model. It just cannot happen. Any rig floor hand can tell you that a rotary table (or rig
floor) is not a rigid body because it definitely moves any time you set the weight of pipe in the slips.
Furthermore, in a borehole, an elastic wave attenuates fairly rapidly because of the viscous borehole
fluids, frictional contact with the borehole wall, and the presence of non-uniformly spaced couplings.
The reflection of such a wave at the end is almost nil except in very short lengths of pipe. If this were
not the case, the problem of real-time telemetry from down-hole tools would have been laid to rest over
decades ago. The shock load from premature setting of slips is an impact loading between two elastic
bodies, not an elastic body and a rigid body. The choice to use or not use this formula is entirely yours.

6.8 Thermal effects

So far we have not discussed temperature and how it affects casing design, except in brief. We now look
at two aspects of temperature effects on casing, its magnitude and the change in magnitude.

6.8.1 Temperature and material properties

An engineering rule of thumb in most structural applications is that we do not consider temperature
effects on the properties of many structural metals until the temperature exceeds 50% of the melting
temperature of the metal; that is, T ≥ 0.5Tm. Most casing applications easily fall below that point. Steel
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properties do vary with temperature and naturally they are dependent on the alloy composition. There are
no API standards or open source data for API tubulars, but like all steels, there is some effect. How much
effect is open to question. Some discussion and charts were published by Holliday [35] as examples.
They indicate that most grades retain about 90% of their yield up to around 700 ◦F (∼ 370 ◦C). There is
no universally accepted threshold temperature at which one should start down-rating the yield strength
from temperature, although some companies definitely have their own standards. I am not about to
recommend a threshold temperature, but certainly at some point, one might consider reducing the yield
value of casing to around 90% or so.

Geothermal and steam injection wells, for instance, not only have high temperature environments but
also large changes in temperature. Those high-temperature environments are not considered here.

6.8.2 Temperature changes

The thermal consideration in most casing design is not the actual temperature per se but the change in
temperature. Temperature change causes casing to expand or contract. When casing is run in the hole, the
mud has been in a static condition for several hours before the casing reaches bottom. The temperature
of the mud may or may not be close to an equilibrium state, depending on how long circulation has been
static, but in most wells it is relatively close to static equilibrium (or more accurately, a steady state in the
earth’s natural heat flux). Once casing is on the bottom and circulation begins, the temperature profile
moves further away from the static thermal equilibrium state again. Much depends on the difference
between the surface and down-hole temperatures, circulation rates, circulation time, and so forth. As
circulation continues, the lower part of the hole normally is cooled below its static temperature and the
upper part of the hole is warmed above its static temperature. Once cement is in place and circulation
ceases, temperatures begin to return to the static thermal equilibrium state. We do not know how close to
the static profile the temperature is when the cement sets. There may be some added axial compressive
stress in the lower part of the casing as it warms, and there may be added tensile stress in the upper
portion of the well as it cools. This amount of stress generally is ignored in most casing design, and in
most cases, it likely is nowhere near any critical value. But when we start to produce the well, the casing
is exposed to a different thermal profile than it experienced before. Now, fluids from the formation travel
up the hole and warm the upper part of the casing. No cooler fluids circulate downward from the surface
to offset the warming. More of the casing in the upper part of the hole expands, and the axial stress
change is toward compression. Whether it actually goes into compression or not depends on how much
tension was in the pipe initially and how much the temperature is increased.

We can show the effects of temperature change on uniaxial stress in casing with a 1D, thermoelastic
version of Hooke’s law:

σ = σ0 + E ε − E αT �T (6.62)

where

σ = uniaxial stress

σ0 = initial stress (before deformation or temperature change)

E = Young’s elastic modulus (material dependent)

ε = uniaxial strain (change in length/original length)

αT = coefficient of linear thermal expansion (material dependent)

�T = Tt − T0 = change in temperature from initial state to some time, t
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ΔT

(a) (b)

Figure 6.11 Thermal effects: (a) suspended tube and (b) constrained tube.

In general, both the elastic modulus and the coefficient of thermal expansion are functions of
temperature, but within a limited range, they are sufficiently constant that we assume them to be so
here. With that assumption, this equation looks straightforward, and it is.

The simplicity of that equation can be misleading because temperature effects are not always
intuitive. For instance, we can say that a temperature change can cause a strain without causing a stress,
and it can also cause a stress without a strain.

Look at the vertical tube in Figure 6.11a. A metal tube (or casing string) is suspended from the top
end and free at the lower end. If we heat that tube by some amount, �T, then it will expand and get
longer; that is, we induced a thermal strain in the tube. But, have we changed the stress? No, we have
not. In this case, the total positive uniaxial strain we might measure is equal to the thermal strain; that
is, ε = αT �T, so the stress in the bar at any point has not changed, it still is equal to the initial stress,
σ0, which in this example is the body force of gravity.

Now examine the tube in Figure 6.11b. This tube is constrained at both ends. If we apply the same
temperature change to this tube, it tries to expand, but it cannot (we will assume it does not buckle
laterally). The tube has not gotten longer, so we have not caused any strain; that is, ε = 0. But, have we
changed the stress in this bar? Absolutely. We changed it by the amount, −E αT �T, a negative value,
since the change in stress is compressive. What we see here is that the product of the coefficient of
thermal expansion and the change in temperature, αT �T, is something like an “effective strain.” If we
substitute values into the uniaxial thermoelastic Hooke’s law we can calculate the change in axial stress
in casing with fixed ends (as in Figure 6.11b) in USC units as

�σ =
(

30× 106
)(

6.9× 10−6
)

�T

�σ = 207 psi/◦F (6.63)

and in SI units

�σ =
(

206.8× 106
)(

12.42× 10−6
)

�T

�σ = 2568 Pa/◦C (6.64)
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In the uniaxial case, it was relatively simple, and we can use this simple equation to calculate changes
in axial stress in casing if we know the magnitude and the end conditions. It begins to get a bit more
complicated in three dimensions:

σij = σ0 ij + Cijkl εkl − δij
E

1− 2ν
αT �T (6.65)

If you are familiar with index notation, this will make sense to you, if not please refer to Appendix C.
We are not going to use this equation, but I show it for reference because you need to see that the 1D
form (Equation (6.62)) does not simply translate into 2D and 3D applications. The temperature terms
only apply in the three coordinate axes directions. For composite materials, this gets much more difficult,
in that the thermal coefficient is not necessarily the same in all directions nor is the elastic modulus. One
additional thing we might mention so that you do not go through life thinking that things are too simple.
In the unconstrained bar, we said no stress is caused by heating the bar. That is true only if the bar is
thin and heated slowly and uniformly, so that the temperature is always uniform throughout the bar. If it
is thick and we heat it rapidly and/or locally, then we induce some amount of stress within the bar until
the temperature becomes uniform throughout.8

One of the important points that come out of thermoelasticity is that we are dealing with
changes in stress and strain. Too often undergraduate engineers are taught Hooke’s law (in one
dimension) as

σ = E ε

and left at that. Most applications assume an initial stress-free state, but you should always think of
Hooke’s law should as

σ = σ0 + E ε

because nothing in a wellbore is stress free.
In casing design, thermal effects usually lead to a situation of compression (note the negative sign

in the Hooke’s constitutive equation). That is something we are not accustomed to seeing in basic
casing design, except in bending and borehole friction in inclined wells, which we cover in the next
chapter. To determine the thermal effects in casing, we must know a number of things that we do not
consider in most wells. The major thing we need to know, obviously, is the change in temperature.
This can be measured in actual wells, but we also can use a heat transfer software model to estimate
it. We must also know if the casing is free to move or not, and this we often do not know and cannot
determine except at the wellhead and top of cement (where we assume it is not free to move). We
already covered the effect of pressure changes on axial stress when the pipe is constrained at the
ends, and we might have to incorporate that into our thermal stress calculations, too. The best way
to illustrate the thermal stress is with examples, where we can see the assumptions we must make along
the way and how we might decide the question as to what additional data we require for a particular
application.

EXAMPLE 6.10 Thermal Effects on an Unbuoyed Casing String

Referring to Figure 6.11b, assume that, initially, the tube is at a constant temperature throughout its length.
Let us also assume that it is hanging by its own unbuoyed weight before the lower end was constrained. Its

8 In some hypersonic flight vehicles, localized heating can occur so rapidly that inertial forces are generated that can cause yielding
even in an unconstrained tube like Figure 6.11a.
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cross-sectional area is 7.55 in.2, its linear density 26 lb/ft, and its total length is 10,000 ft (it is 7 in. casing).
We will assume a coefficient of linear thermal expansion of 6.9× 10−6/◦F. The tensile force at the top is

F0 = g ρ� h = 26 (10000) = 260, 000 lbf

and, at the bottom, it is zero. If we set our z-coordinate axis at the top with a positive direction downward,
then the axial stress at any point is

σz = F0

At
−
(

ρ�

At

)
z

where At is the cross-sectional area of the bar (or tube). Now, if we apply a constant temperature change to
this bar, we can calculate the axial stress at any point by

σz = σ0 + E (εz − αT �T) = F0

At
−
(

ρ�

At

)
z− E αT �T

since εz = 0 , because the bar is constrained. If we change to temperature in the bar by increasing it 100 ◦F,
the axial stress at the top is

σz = Fo

At
−
(

w

At

)
z− E αT �T

= 260000

7.55
− 26

7.55
(0)− 30× 106

(
6.9× 10−6

)
100

≈ 13, 700 psi

At the bottom, the axial stress is

σz = Fo

At
−
(

w

At

)
z− E αT �T

= 260000

7.55
− 26

7.55
(10000)− 30× 106

(
6.9× 10−6

)
100

≈ −20, 700 psi

The bar is in compression at the bottom and in tension at the surface, although the tension at the top now
is less than before the temperature change.

Let us now look at another example, this one in a wellbore.

EXAMPLE 6.11 Thermal Effects on Hanging Weight

Suppose we have a well with a string of 7 in. 26 lb/ft L-80 casing in a vertical well. The top of the cement is at
10,000 ft, and the well is perforated in a zone at 14,000 ft. After the cement sets, the hook load is 275,000 lbf,
and we calculate the true axial load at the top of the cement is 13,000 lbf. We pull an additional 50,000 lbf
on the casing above its hook weight and set it in a slip-type hanger. We run a shut-in temperature survey in
the well and find the temperature at the top of the cement is 220 ◦F and its gradient is linear to a surface
temperature of 70 ◦F; that is, T = 70− 0.015h, where h is the vertical depth. Below that point, we find that
the formations are much hotter, and the temperature at 14,000 ft is 370 ◦F. To keep this simple, let us say
that our heat transfer model predicts that, with the anticipated production rate, the heat transfer will reach
a near steady state with a temperature increase of 150 ◦F uniformly along the casing string. We ignore any
stresses caused by any temperature change between the time the cement set and the temperature survey was
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run and any effects from the possible expansion of fluids in the annulus outside the 7 in. casing, although
expansion of trapped fluids is not something we can ignore in many cases (see Halal and Mitchell [14]).
We also assume that the pipe stays straight and does not buckle. The cross-sectional area of our casing
is 7.55 in.2.

We would like to determine the following.

• The axial stress in the casing at the top of the cement
• The axial stress in the casing at the surface
• The amount of tension at the surface to avoid any compression in the casing from the temperature increase

during production

Since the casing is constrained at the top and the bottom (wellhead and cement), there is no axial strain from
the change in temperature. Assuming a coefficient of linear thermal expansion of 6.9× 10−6/◦F, the axial
stress at the top is

σz = σo − EαT �T

= 275000 + 50000

7.55
− 30× 106

(
6.9× 10−6

)
150

≈ 12, 000 psi

and, at the top of the cement, it is

σz = σo − EαT �T

= 13000 + 50000

7.55
− 30× 106

(
6.9× 10−6

)
150

≈ −23, 000 psi

The top of the casing is still in tension, but the bottom is in compression. What is the magnitude of the
compressive force at the bottom?

Fz = σz At = −23000 (7.55) ≈ −173, 600 lbf

Suppose we are concerned about buckling. What amount of tension should we pull so that the casing does
not go into compression at the top of the cement with this amount of temperature change?

Fz + 13000

7.55
− 30× 106

(
6.9× 10−6

)
150 = 0

Fz ≈ 221, 000 lbf (additional at the bottom)

Fz = 275000 + 221000 = 496, 000 lbf (total hanging weight at surface)

Assuming we use proprietary couplings with a higher tensile strength, the pipe body yield of this
casing is only 604,000 lbf, leaving us with a tensile design factor of about 1.22, which is very low. If we
down-rate the yield to 90%, as mentioned earlier, then we must look at other options. Additionally, we
must consider whether our wellhead and conductor would support that amount of weight. We actually
might have to live with some amount of buckling in the lower section of this casing string. In that
case, we also have to determine the limit of our connections in compression near the bottom. There



Casing performance 195

are no formulas for determining the compression strength of API connections. Some manufacturers of
proprietary connections have compression strength data for their couplings, although that information
usually is not published. See Jellison and Brock [36] for a discussion of connections in compression.
An alternative approach would be to bring the cement higher to a point where the casing tension is
greater, but one also must consider that cemented casing is not necessarily immune to coupling failure
in compression with large temperature increases.

The preceding is a simple calculation, and you will note, we made a lot of simplifying assumptions.
We did not consider any inclination and friction in the bore hole that would resist pipe motion, and we
assumed that the temperature change would be constant along the entire length of the string. However,
we can use simple calculations like that to spot-check thermal stresses at various points to determine if
we need a more in-depth investigation.

One particular thermal problem has occurred in a number of cases of intermediate casing strings
where abnormally high temperatures are encountered when drilling below the intermediate string. It
involves a cemented intermediate string through a washed out interval of the borehole where the casing
is virtually un-cemented, but the casing on either side of that interval is securely cemented. When the
higher temperature zones below the casing are being drilled the circulating temperature in the casing
increases markedly. At some point the casing in the un-cemented interval buckles laterally. Any damage
from the buckle is not necessarily critical or even noted, but as drilling continues a hole is worn in the
casing fairly quickly. Let us look at an example of this.

EXAMPLE 6.12 Thermal Buckling

Referring to the constrained bar in Figure 6.11b and assume it is 7-5/8 in. casing with an ID of 6.875 in. We
will assume the un-cemented interval is 50 ft in length and for our purposes we will assume the axial load in
this section of casing is negligible for now. First of all we need a buckling formula, and we will use an Euler
column formula for fixed ends (cemented in our case):

Fcr = 4π2EI

L2

We calculate the axial second area moment

I = Ia = π

64

(
d4

o − d4
i

)
= π

64

(
7.6254 − 6.8754

)
= 56.269 in4.

then the critical buckling force is

Fcr = 4π2EI

L2 = 4π2
(
30× 106

)
(56.269)

[12 (50)]2 = 185, 118 lbf

This force will give us an axial stress of

σz = F

At
= 4 (185118)

π
(
7.6252 − 6.8752

) = 21, 674 psi

Now, how much change in temperature is required to give us a compressive stress of 21,674 psi? From

Equation (6.63) we determine that the constrained thermal stress is 207 psi/◦F.

�T = 21674

207
= 105 ◦F
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Figure 6.12 Thermal buckling as a function of free pipe length and temperature increase, 7-5/8 in. 29.7 lb/ft
casing.

We could repeat this calculation and make a chart for this particular 7-5/8 in. casing as to free length and
temperature change (Figure 6.12).

There is much more we could say about thermal effects, but in general we do not know the
temperatures very accurately unless the well has been static for some period of time. A circulating
or flowing well is a forced convection heat exchanger and, the time for the temperature to equalize to
the steady state geothermal normal is usually unknown for most wells.

6.9 Expandable casing

Two problems with casing sizes sometimes arise in the drilling of wells, both of which can increase the
well costs and possibly prevent a well from reaching its objective:

• Unanticipated conditions that require an additional casing string of casing after the well has been started.
• Known conditions that require multiple casing strings for a well before it has been started.

In the first case, the sizes and depths already are selected, and one or more strings may be set before the
need for an additional string arises. Unexpected borehole stability or pressure problems may require an
additional string that was not originally planned for. Another problem of similar nature is the possibility
that a planned casing string may stick before reaching its planned depth and thereby necessitate an
additional string. In these cases, an additional casing string or liner must be set and the final casing
string at total depth will be smaller than desired, unless some contingency was included in the original
plan to allow for such an event. The second case is becoming more common in some areas, especially
where depleted zones may be present. Typically, we think in terms of a surface string, an intermediate
string, and a production string, possibly with a liner somewhere in that mix, but basically three or four
strings. Occasionally, we may even find it necessary to run five or six strings, counting liners. In recent
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times, however, we are seeing wells that require 7 or even as many as 10 strings of casing to reach an
objective. A conventional approach to this problem requires some very large boreholes and large casing
sizes to reach the total depth with a final casing string size that allows for adequate production. In each
of these cases, size and clearance become serious problems.

One answer to these problems is expandable casing. This is a type of casing with connections that
can be run through conventional casing (or other expandable casing) then expanded to a larger diameter
than a conventional string run through that same size pipe. While this is a relatively new technology, it
has seen some good success in numerous applications. However, it is not necessarily a panacea, as there
are drawbacks, too.

6.9.1 Expandable pipe

Expandable casing is not your typical casing product. First of all, it must be ductile enough that it can
be expanded without rupturing and still have sufficient strength to function properly. We discuss plastic
material behavior in Appendix C, so we do not rehash that here, but this is exactly the type of material
behavior involved in the expansion process. Consequently, it does not come in standard API grades,
weights, and so forth. Likewise, there are no published standards of performance properties but rather
those are set by the manufacturer. Most expandable pipe is not seamless pipe, since the wall thickness
has to be much more uniform than most seamless pipe. It is manufactured from flat plate steel that has
been precisely rolled to be within close tolerances. Seamless pipe can be used and is being used in some
expandable applications, but the wall thickness must be very carefully rolled to within close tolerances.
You can imagine the results of the expansion process if the wall thickness is not uniform before the
expansion begins; most of the expansion will take place in the portions where the wall thickness is
the thinnest. Additionally, the connections must be expanded, since it must be run as individual joints.
When you consider the amount of expansion of the pipe body and the threaded connections, you come
to appreciate the technology of the process, in that it is not nearly as simple as it might first appear.
Obviously, for the performance properties of the expanded pipe to be reasonable, the expansion process
must be uniform.

6.9.2 Expansion process

Two basic processes are used for expanding pipe, and they essentially are the same two processes
that have been around since the early 1960s when the first internal casing patches were introduced.
Of course, they have seen considerable improvement since that introduction. One process involves
a swaging operation in that an internal swaging mandrel is run with the expandable casing, and it
expands the pipe from the bottom up as it is pushed or pulled through the tube. This typically is a
hydraulic process. The other process employs a roller-type device that expands the casing from the
top down, using a tapered device with rollers that expand the casing as the device is rotated with a
work string. One thing that must be kept in mind, though, is the elastic unloading discussed previously
about elastic-plastic behavior. If we expand a tube plastically, it always exhibits some amount of elastic
shrinking from its plastic state when unloading. This means that it has to be expanded to a slightly
larger diameter than its final diameter to account for the elastic unloading once the expansion tool is
removed.

The swaging process uses a mandrel with a circular cross section that is in the bottom of the
expandable casing as it is run. The mandrel can be either a solid piece or of a type that allows for
retraction and retrieval through a smaller diameter. In its expanded position, it is pumped and/or pulled
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through the casing from the bottom upward and expands the casing as it moves upward (Figure 6.13).
This may be accomplished hydraulically, with a mechanical pulling force, or a combination of both, as
long as the casing is not allowed to move as it is being expanded. It is a positive type of expansion, in that,
for the mandrel to pass through, the casing must expand to the diameter of the mandrel. Advantages of
this process are that it imparts a true hoop stress (uniform tangential stress) to the casing being expanded.
If the wall thickness of the casing is uniform and the material is isotropic, then the hoop stress is truly
uniform around the circumference. The expanded tube should be round. A perceived disadvantage is
that the swaging process induces an axial stress in the pipe as it is being pumped or drawn through the
pipe. Whether or not this is an actual disadvantage seems to be more of a marketing argument than a
technical one. Usually a special coating is applied internally to reduce the friction. If the mandrel is a
one-piece device and for some reason it cannot be pulled through the entire expandable casing, then it
cannot be removed unless it can be milled up. This was always an argument against the earlier mandrel-
type casing patch tool, yet it was the only truly successful one on the market. Again, marketing forces
played a dominant role in that discussion too. This may not be a problem with retractable-type mandrels,
though they lack the simplicity of a single piece mandrel.

The roller-type process was in use long before the expandable casing patch was introduced in the
1960s. It traditionally was used to try to restore partially collapsed casing. The roller process is simple, in
that the process starts from the top and expands the casing as it is rotated downward into the expandable
or collapsed pipe. It has the advantage that it can be removed at any time, replaced, and then resume
the operation where it stopped. The historic problem with rollers is that they do not work very well, at
least in the fixed version. A roller device does not induce true uniform hoop stress in a tube, because
it contacts the casing at only a finite number of points, usually three or four. The old roller-type casing
patches typically failed because they never were round in cross section once expanded, since the rollers
had only three contact points. Expanders with four rollers were introduced and had better success than
three rollers but still never were as successful as the swage-type process. The use of casing rollers to
restore partially collapsed casing historically enjoyed limited success primarily because of the point
contact with the casing wall and the elastic unloading between contact points. It is an inferior process
for longer sections of expandable casing.

6.9.3 Well applications

At the beginning, we mentioned the unanticipated well problem as a possible application for expandable
casing. For someone who has been involved in drilling operations for a period of time, this usually is
the first application that comes to mind. Expandable casing could be used in such an application as
a temporary means of getting past some troublesome zone. Originally, the availability and lead time
required for the expandable pipe to be a readily available solution for this type of problem was limited.
The expandable casing had to be ordered and available as a backup for a particular well before the
actual need arose. This changed in time and is not so critical a limitation now. Another drawback to
expandable casing as an unplanned contingency string is the cementing issue. If the expandable string is
to be reliably cemented, then the hole in which it is to be placed must be either under-reamed to a larger
diameter than the bit that will pass through the casing above it or it must be drilled initially to a larger
diameter as with a bi-center bit. These are not necessarily amenable to unanticipated situations that may
arise and require an additional casing string. As it currently stands, expandable casing is a planned part
of the casing program and for that application, it has proven quite successful.

The cementing process in regard to expandable casing is a bit different from conventional casing
cementing. The usual procedure is to displace the cement prior to expanding the casing. This requires
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Figure 6.13 Schematic of a mandrel-type casing expansion tool.

that the casing expansion be completed before the cement begins to harden. The expandable casing can
be reciprocated and even rotated during the displacement process prior to expansion, so in that respect, it
is no less effective than a conventional liner cementing job. The biggest differences may be the cement
near the top of the liner and whether or not one wants cement in the annulus above the liner before
the expansion process begins. As the casing is expanded, the mud and cement in the annulus must
be displaced somewhere, and it goes into the annulus between the running string and the previously
set casing. If cement actually is displaced into this space above the expandable liner, then there is a
considerable discomfort factor until the expansion is complete and this cement can be circulated out
of the wellbore. For the most part though, since the expandable casing is used for a temporary drilling
liner, it is not critical to have cement all the way to the top of the liner. Most expandable casing is run
as a liner and the final part of the expansion process is the expansion of the overlap in which some type
of elastomer seals on the outside of the expandable casing seal against the casing through which it has



200 Casing and Liners for Drilling and Completion

been run. Once that seal has been established there is no way to displace cement into the annulus short
of perforating and squeezing, so the seal itself must be considered adequate.

6.9.4 Collapse considerations

The collapse rating of expandable casing is usually less than what one is accustomed to in similar sizes
of conventional casing. This is mostly because of the thinner wall of the expanded tubes as compared to
API tubes. The thinner wall is the tradeoff we accept for the larger internal diameter which is the primary
reason we choose the expandable tube. In the discussion on plasticity, we mentioned that a material that
strain hardens in plastic tension may gain yield strength in that direction, but in the process, it loses yield
strength in compression. Also, if the casing wall does not expand uniformly, then the collapse strength
is less than if it had expanded uniformly. With conventional casing, we can inspect its wall thickness and
eccentricity before it is run in the hole. With expandable casing, there is no way to know with certainty
the final wall thickness and any eccentricity until after it is in the hole and expanded. Since it has been
cold-worked, it has different material properties and is no longer isotropic.

The most noted change is in the collapse strength. It has been suggested that one could use the
traditional API formulas with the post-expansion diameter and reduced wall thickness, both of which
can be reliably predicted, along with the pre-expansion API grade to calculate a post-expansion collapse
value. Such a procedure will not work, because the pre-expansion yield value is no longer valid. The
pipe has not only been expanded radially, but has undergone a bending cycle around the nose of the
mandrel all the while in a state of axial tension. It is no longer isotropic and the yield surface size
and location relative to the original σ1 = σ2 = σ3 axis are not known. In short, we do not know what
the post-expansion collapse value is and we have no formula from which to calculate it. Some recent
investigations in this area has been done by Klever [37], but we are still far from having a reliable
method.

Consequently, the most obvious practical application for expandable casing is as an intermediate
string or a drilling liner that eventually will be cased with conventional casing. This is no insignificant
niche, and in those applications, it can be invaluable. In Chapter 3 we used a total evacuation scenario
for production casing collapse load. We would not attempt this with expandable casing. This is
not to say that it cannot be used as a production liner at all, but to do so requires considerable
forethought as to the pressure environment throughout the life of the well so that severe evacuation never
occurs.

The significant advantage of expandable casing is illustrated in Figure 6.14 which shows a
conventional casing program for a particular application along with an alternative utilizing expandable
casing. The advantage of expandable casing in the well plan is readily apparent, in that the total depth
now can be reached with the same size conventional casing on bottom and smaller casing at shallow
depths. There are several possible variations. While this may not be applicable for the most common
wells drilled in the world, it represents a considerable advantage in those costly wells that do fall outside
the common category.

6.10 Closure

We covered a lot of ground in this chapter. Some topics we covered in more detail than others. This is
not to slight any particular topic, but the material in this chapter in conjunction with Appendix C easily
could constitute a separate book. In the next chapter, we look at inclined and curved wellbores. Much of
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Figure 6.14 Well schematic (a) conventional and (b) expandable casing.

what was covered in this chapter and the previous one will carry over into it and will be further explained
as to how it applies in those circumstances.

We have barely scratched the surface of mechanics of tubes, but we have gone far beyond
what most petroleum engineers and engineers coming into drilling and completion engineering from
other disciplines, such as electrical or chemical engineering, normally have been exposed to at an
undergraduate level. This should help you understand much of what is written in the literature on the
behavior of casing. Some of the terminology appearing in the petroleum literature is a bit convoluted
at times, but most of it represents the honest efforts of those dedicated to trying to solve the problems
of casing loading and design. I strongly encourage you to study Appendix C as a foundation and a
supplement to this chapter.

The formulas and methods we have discussed in this chapter and elsewhere are sound and adequate
for design of off-the-rack API casing. Because of the fairly wide variations in manufacturing tolerances
allowed by API and the limited properties data published for such casing, these formulas necessarily lead
to conservative designs in most cases. With stricter manufacturing control and an availability of more
specific property data on specific batches of casing, we can certainly do better designs for critical wells.
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7.1 Introduction

Many wells drilled each year are directional wells, and an increasing number of those are horizontal
wells. In one sense, all wells are inclined to some degree, and the phenomena we are about to discuss
affect them too, even though we usually ignore them when it comes to casing design for “vertical” wells.
We are now ready to consider wells in which these phenomena cannot be ignored. What are they? There
are principally two: borehole friction and borehole curvature.

Simply put, borehole friction affects the axial load in casing by resisting its motion. An upward
motion of the casing increases the tension, and a downward motion decreases the tension. If the casing
is rotated, this too adds a torsion load to the casing—something we never consider in basic casing
design. Borehole curvature causes bending stresses in casing. Historically, this stress was ignored in
most casing designs, until horizontal wells began being drilled. Even then, it is surprising how many
casing strings are still designed for horizontal wells that do not take bending into account, possibly
because the bending-stress magnitude is not understood to be significant. For example, a string of 7
in. K-55 casing run through the build section of a medium-radius well with a radius of curvature of
400 ft will have a bending stress amounting to near 40% of its yield strength, and that does not account
for additional stress from friction, gravity, or pressure. Bending stress is not insignificant in horizontal
wells.

In this chapter, we look at borehole friction and curvature and their effects on casing design. We also
consider combined loads in directional wells with some examples of how we do the calculations.

7.2 Borehole path

Before we get into the effects of friction and curvature in boreholes, we should examine the
borehole path, or more specifically, how it is quantified. The basic measurement tools for determining
the borehole path are an inclinometer for measuring the borehole inclination (the deviation angle, α,
of the borehole from vertical), a magnetic compass for measuring the borehole direction (azimuth
angle, β, from magnetic north), and the drill pipe measurements for determining the length, �s, along
the borehole path between directional survey points. The resulting data defines a spatial direction vector
at each survey point using α and β. The drill pipe measurement, �s, is the distance between two of the
vectors as measured along the borehole path between them. Contrary to what is often assumed, that is
not enough information to specify the location of a second survey point even when the first of the two
is known exactly.

This is not like plotting points on a Cartesian coordinate system because we do not know the
coordinates of the second vector. All we know is the distance from the first point as measured along the
borehole path. Mathematically, the second point could be anywhere within a sphere of radius, r = �s.
Considering an actual drilling assembly, we know that is not the case since there is a limit to how much
such an assembly will flex, but we also know that the greater the value of �s, the greater the uncertainty.
This brings us to the crux of all directional calculation methods: we must always assume that we know
the shape of the borehole path between survey points.

There are a number of calculation methods that have seen use, each differing by the assumptions
made as to the shape of that path. Earlier methods assumed segmented straight-line paths averaged
between survey points. Everyone knew straight-line segments were not as accurate as curved segments,
but these were almost essential assumptions because even those methods required trig tables and a
mechanical or electric-mechanical calculator which were adding machines with the capability to also
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multiply and divide. Slide rules had trig functions, but did not have nearly the precision required. As
digital computers and hand-held electronic calculators came along it became possible to consider curved
borehole paths which is where we are today. Before you dismiss all the older methods out of hand, you
should realize that as �s is decreased in size (number of survey points in a given interval increased) all
of the methods then and now converge to the same result.

The method used almost exclusively today is known as the minimum curvature method as proposed
by Taylor and Mason [38] in 1972. They arrived at their method by minimizing a quadratic curve that
would give the minimum path length between two survey points and having the same vector directions
as the survey vectors at the two ends. Their result is that the borehole path between two survey points
is approximated by a segment of a circle in a plane. The details of Taylor’s and Mason’s minimum
curvature method are presented in Appendix E. Additionally a borehole path interpolation scheme based
on the minimum curvature method is presented for more accurate calculation of contact force for use in
borehole friction and casing wear calculations.

Possibly the most serious limitation on mechanics of tubes in boreholes is the lack of accurate data
on borehole geometry. No one really believes that a borehole path calculated by the minimum curvature
method with survey points spaced 90 ft or more apart is very accurate. The single biggest problem
with this and all methods of this type is that all errors and inaccuracies are cumulative. The location
of each survey point is calculated from the location of the previous survey point and every error and
inaccuracy carries over to the next survey. Hence we have what is called a cone of uncertainty that
increases in radius with depth, see Wolff and De Wardt [39]. We do not know where the wellbore is,
but we can reasonably assume that it is somewhere in that cone. With the digital instruments of today
we can eliminate reader error, but there is still inherent inaccuracy in the measurements themselves. We
typically assume that a gyroscopic survey instrument run on wireline is more accurate than a magnetic
instrument run on drill pipe. True, the gyroscopic instruments are more precise, but the real question is,
are the results more accurate? We do not know because we do not have a way to compare them—we do
not have a well in which we know with certainty the location of the bottom of the hole.1 Think about
it. I hate to dispel another common misconception, and that is that wireline depth measurements are
more accurate than drill pipe depth measurements. No. The opposite is true, if the drill pipe is measured
accurately in tension in the elevators while tripping into the hole. Wireline takes a different path through
a borehole than drill pipe; it takes all the shortcuts, the shortest route. Accelerometer tests have shown
that down-hole wireline tools do not necessarily move at the same speed as the depth counter on the
surface reel, and in fact there are times when they are not even moving in the same direction. And you
will not likely find that in print. My point here is to make you aware that to some extent, many of our
analyses that depend on borehole geometry are only precise as academic exercises, but they are still
useful approximations in our applications.

7.3 Borehole friction

Friction is a resistance to motion between two bodies or media. We all studied it in basic physics or
engineering courses and learned a so-called friction law for rigid bodies. It is not a law of physics at all,
but you might not guess that from the way it is often presented in basic physics texts. Friction is quite
complex by its very nature, and the simple friction relationship most of us learned does not hold up well

1 Actually there was one. It was drilled near the Grand Canyon in the USA and intersected the canyon wall, so its location was
determined precisely. I know of no other.
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in many real-life situations. However, it is a simple relationship, and it works well enough for numerous
practical applications, ours included.

7.3.1 The Amontons-Coulomb friction relationship

The simple friction relationship is often referred to as the Coulomb friction law or a bit more accurately
as the Amontons-Coulomb friction law. It was originally the outcome of two postulates by Amontons
in 1699 and has been understood in its present form since about 1790, when Coulomb added a third
postulate to it.

• Frictional force is proportional to the weight of the body being moved (Amontons, 1699).
• Frictional force is independent of the apparent contact area (Amontons, 1699).
• Frictional resistance is independent of the sliding velocity (Coulomb, 1790).

That is the simple friction relationship we all learned and is stated mathematically as

F ≤ μ N (7.1)

It says that the frictional force, F, is less than or equal to a friction factor, μ, multiplied by the normal
contact force, N, normal meaning perpendicular to the contact surface. The relationship is necessarily
an inequality, because the product of the friction factor and the normal contact force is equal to the
frictional force only when the force opposite the friction force is equal to or greater than that product.
In other words, if the force applied to generate motion of a body is less than μN, then the frictional
force is equal to the applied force and not that product. Once the body is in motion, the friction force is
equal to μN and independent of the applied force, as long as the motion is sustained. In 1699, Amontons
considered objects sliding on a level surface, so he used weight instead of contact force in his postulate.

What are the assumptions in that relationship? There are several, and they often are not mentioned in
basic texts.

• The contact surfaces are smooth.
• The contact surfaces are dry (uh, oh!).
• The contact surfaces do not deform.
• The friction factor is a constant, that is, not affected by the heat generated.

We could add more, but that about covers the areas of our interest. We should discuss these limitations
briefly.

When we require that the surfaces are smooth, we are talking about a matter of scale. On
a microscopic scale, even smooth surfaces are not what we would consider smooth. There are
numerous asperities that are elastically deformed, plastically deformed, fractured, melted, fused, and
so forth, as two surfaces slide relative to one another. But these microscopic asperities are small
compared to the entire surface area, and the distribution of the asperities on the smooth surfaces is
relatively uniform. Casing sliding in a borehole is generally on a scale that allows the use of such a
relationship.

What about deformation of the contact surfaces? Suppose we have a string of casing with LT&C
couplings and a string of identical-weight casing with tapered integral connections. Which is going to
slide in the hole (or out of the hole) easier? No question about it, the casing with the tapered connections
will slide easier than the casing with the square shouldered couplings, even though both may have
identical contact force. The friction relationship does not account for couplings gouging a borehole
wall. But again, that is a matter of scale, since a long string of casing has many connections (asperities?)
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of uniform size. Their gross effect might be legitimately included in a friction factor. In other words,
the coupling shape can be accounted for by the friction factor if we are considering numerous joints of
casing.

What can we say about the effects of lubrication? Can the Amontons-Coulomb dry-friction
relationship work for lubricated surfaces? In general, the answer is no, but again it depends on scale and
the accuracy desired. If the lubrication is consistent, the dry-friction relationship can give reasonably
practical results. By consistent, we mean that the friction factor does not vary significantly with contact
force. The walls of a borehole usually are coated with a filter cake and the borehole contains some type
of liquid drilling fluid. This provides considerable lubrication as the casing slides along the borehole
wall. If the casing couplings scrape the filter cake off portions of the wall as it slides, that changes the
friction factor; in other words, the friction factor may increase in those areas. Another thing that may
happen is that, with removal of some of the filter cake, the casing in contact with permeable formations
may tend to be forced harder against the wall from the difference in hydrostatic pressure in the borehole
and formation pore spaces. In this case, the contact force has increased. We may reasonably account
for some of these things by lumping all we do not know into some average friction factor. The one
inconsistency we may encounter, though, is that the friction factor may vary with pipe diameter, weight,
coupling shape, and so forth. This brings up a question of terminology.

Is such a composite factor as we just described, a friction coefficient in the sense of the Amontons-
Coulomb relationship or is it something else that we might refer to as a friction factor? Is such a
distinction really necessary? We could argue those points either way (and some do). Our use here is
more as a composite (or catch-all) factor and we are going to use the term, friction factor, and the
variable name, μ, in our borehole friction discussion. Just keep in mind that μ, as we use it, is not a
value that you can look up in some table in a handbook on friction.

The single question that most often arises about the Amontons-Coulomb relationship concerns the
postulate that the frictional force does not depend on the apparent area of contact. If that is true, then
why do racing cars have wide tires rather than narrow? The simple answer is that the postulate is true,
but racing tires are much more complicated. Briefly, the crux of the matter is the last qualification
mentioned, the one regarding heat. For the most part, a narrow tire of the same composition gives the
same frictional resistance on a given race car as a wide one—at low speeds. At high speeds, several
things come into play, and heat is a major one. Wide tires distribute the heat over a larger area, and
the heat is dissipated to the atmosphere more quickly. There is also the matter of wear or ablation of
the tire. A narrow tire with a much smaller area of compound in contact with the track wears in its
radial dimension much faster than a wider tire. In fact, a narrow tire might make only a few laps before
it would have to be replaced. On a wet track, racers have to switch to grooved tires, which actually
reduce the contact area. This is a matter of hydrodynamics, where the narrower contact areas tend to cut
through the lubricating layer of water, whereas the slick tires tend to “float” on top of it. That is totally
off the subject at hand, but it comes up in almost every discussion of the Amontons-Coulomb friction
relationship, so that is why we address it. Still on the issue of heat, a good example of a breakdown
of the simple friction relationship is automobile brakes. This is a practical example of heat affecting
the friction factor significantly. Brakes are said to “fade” when they get hot, in other words the friction
factor is reduced with heat. That is true in most cases of friction. Fortunately, we generally need not
be concerned about the heat of friction affecting the motion of casing in a bore hole. However, it can
significantly affect casing wear from internal drill pipe rotation.

Most of the preceding discussion on the limitations of the Amontons-Coulomb friction relationship
has to do with linearity. In other words, the assumption of the relationship is that the friction factor is a
constant. As long as the friction factor is not a function of the contact force, Equation (7.1) is simple and
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easy to use. Also, linearity means that if we change our mud properties to reduce the friction factor by
25%, for instance, then we also reduce the frictional force by 25%. Likewise, if we reduce the contact
force by some amount, we also reduce the friction force by the same amount. Or, if we change our casing
design by increasing the wall thickness of the casing in a horizontal section of a well, we increase the
friction force in that part of the hole proportionally.

Before we leave this friction relationship, there is one other important point to cover that relates
to casing design. When most of us learned the simple version of friction, we were taught that two
friction factors apply to a particular problem, a static friction factor, μs, being the larger, and a kinetic
(or dynamic) friction factor which we label simply, μ, without subscript because it is the only one of
interest in our applications.

That means the force to initiate motion is greater than the force required to sustain the motion once
initiated. Which do we use for casing design? It might seem obvious that a static friction factor is more
realistic, since motion of the pipe ceases and initiates for each connection made up in the casing string.
This might not seem worth the concern, if we are considering the running process, but if we are going to
reciprocate the casing while cementing or if we encounter an obstruction in the bore hole before reaching
bottom and have to pull the casing out of the hole, it may be a serious concern. The caveat about static
friction factors is that they are problematic except for rigid bodies. We see an example of that on the rig
weight indicator all the time. When pipe is picked up off bottom we see the weight indicator increase
gradually until some maximum point is reached, then it drops back to a slightly lower value. That pretty
much seems to confirm what we have been taught about static and kinetic friction factors, but reconsider
what we actually observe. When the driller starts to pick up the pipe, we see it moving through the rotary
as the weight indicator reading increases. Some of the pipe already is moving before we reach the peak
load. And, before the final peak is reached, a lot of the pipe is moving. The pipe is not a rigid body
like the simple objects we encountered in basic friction applications. Once the entire string of pipe is in
motion, the situation is fairly simple, since it is moving more or less as a rigid body and an approximate
kinetic friction factor pretty well predicts the resistance to motion. But, what about the initiation stage?
What is going on there? Obviously, if some of the pipe is in motion, we cannot assume a single static
friction factor and apply it to the entire string. This brings up a basic flaw in the Amontons-Coulomb
friction relationship as a step-function. Suppose we have a rigid body with a total weight, W, resting on
a flat surface, as in Figure 7.1. We apply a gradually increasing force, P, to the body, and the friction
force, F, resists any motion.

As P increases so does the value of F, which is equal to P, until it reaches its maximum value,
P = F = μs W. As P continues to increase, the value of the friction force decreases suddenly to its
maximum dynamic value of F = μW. It remains at that value as long as P ≥ F = μ W. This is shown
in Figure 7.2.

Once motion is initiated and P = F = μ W, the motion is quasi-static. If P > F = μ W then the
motion is characterized by Newton’s second law, P− μ W = m ü.

W
P

F

Figure 7.1 A rigid body of weight, W, at rest on a flat surface.
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F

P

Figure 7.2 Static friction force increases until motion is initiated, then changes to a kinetic friction force.

An extensible body, however, does not behave like that. Suppose now, we model the same rigid body
with four pieces instead of one and connect them with massless springs to simulate elastic extensibility.
The total weight is the same, W, but each segment now weighs one fourth the total, W/4. This is
illustrated in Figure 7.3.

We stipulate that initially the segments are all static, and there is no load in the connecting springs. In
this case, as we apply a force, P, we see that initially the only body acted on until motion is initiated is the
one on the left. No force is transmitted to the next segment until the first one moves. As the static friction
in the first segment is overcome, the friction force drops back to the kinetic value. As we continue to
increase the force, P, the same thing takes place successively in each of the other segments, but when
the final segment is set in motion the total difference between the maximum static friction force and
the maximum dynamic friction force is only one-fourth that of the previous rigid body example. The
friction force for the segmented example is shown in Figure 7.4.

Now, suppose we divide the body into an infinite number of segments attached by massless springs.
We could say that the difference between the static friction and dynamic friction disappears altogether,

P

F

W/4 W/4 W/4W/4

Figure 7.3 Extensible body model.

F

P

Figure 7.4 Friction force in a segmented body.
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and it does, at least in this model. However, some would argue that the weight of each segment goes to
zero; and while that argument may at first seem valid, it does not affect the limit. Since the static friction
factor is greater than the kinetic friction factor, we can show the friction force at any time as the sum of
the segments in motion times the kinetic friction factor plus the weight of one static segment times the
static friction factor.

μ < μs → F = μ
W

n
(n− i)+ μs

W

n
(7.2)

where n is the total number of segments, n− i is the number of segments in motion, and i is the current
number of static segments. We can take the limit of the friction force as the number of segments goes to
infinity:

lim
n→∞F = μ W lim

n→∞

(
n− i

n

)
+ μs lim

n→∞
(w

n

)
(7.3)

lim
n→∞F = μ W (1)+ μs (0) (7.4)

lim
n→∞F = μ W (7.5)

That may be a bit over simplified, but what we have shown is that, for an extensible body, a static
friction factor does not exist in the context of the linear Amontons-Coulomb friction relationship. This is
not to say that a static friction factor does not exist even though all bodies are extensible to some degree,
but that there are serious deficiencies in the linear Amontons-Coulomb friction relationship in regard to
extensible bodies. It also points out that, for casing in a borehole, we cannot assume some value for a
static friction factor, as with a rigid body, and use it for predicting the initiating force with any degree
of accuracy.

So, as to calculating casing loads with friction, we are pretty comfortable with a kinetic friction
factor. We know that it will take more force to initiate motion, but to determine a static friction factor for
a particular well is not addressed because it is not possible. All we can truthfully say is that we require
some amount of force greater than the kinetic friction force to initiate motion in a casing string that
has come to rest. Another thing that we may notice in many boreholes is that the initiating force often
increases with time. That usually is a sign of differential sticking, which in terms of friction translates
into increased contact force rather than a different friction factor. In many such cases, the friction factor
becomes a catch-all for all those things we cannot quantify otherwise.

There is another important concept to understand when dealing with directional wells: There is some
critical inclination angle at which a body is at static equilibrium with movement impending. In common
engineering terms, this is known as the angle of repose, except in that case the angle of is conventionally
measured from horizontal. Since we measure inclination from the vertical, we simply call it a critical
inclination angle, αcr, meaning that any casing in the well where the inclination is greater than this value
will not slide under its own weight; that is, it has to be pushed into the hole.

The critical inclination angle depends on the friction factor, and it can be derived as follows
(Figure 7.5):

W cos αcr − μ W sin αcr = 0

1− μ
W sin αcr

W cos αcr
= 0

tan αcr = 1

μ
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W

W cos acr

acr

W sin acr

Figure 7.5 Critical inclination angle.

then

αcr = tan−1 1

μ
(7.6)

Since we know the friction factor only approximately, this formula at best gives us an idea as to
where in our borehole the casing will cease to slide from its own weight. For example, if an open hole
friction factor is 0.4, then the critical inclination angle, αcr = 68◦. We know, then, that we cannot expect
the casing to slide from its own weight and must be pushed anywhere the inclination exceeds 68◦. All
of us have seen similar limiting values in relation to wire line logging tools in directional wells.

7.3.2 Calculating borehole friction

A number of commercial friction software models on the market calculate borehole friction, probably
to the point that hardly anyone cares how they work as long as they give reliable results. One does
not really have to have software, since the calculations can be done manually, although it is a tedious
process. In addition to the tedium, doing borehole friction calculations manually is error prone, in that
if an error is made, it carries through to all the subsequent calculations. One can fairly easily program
one of the models into a spreadsheet and get results as accurate as any commercial software, although
the commercial software has numerous options to make life much easier.

Some assumptions are common to all the current models for borehole friction:

• The Amontons-Coulomb friction relationship is valid.
• The tubular string is a rigid body in translation.
• The tubular string is a rigid body in rotation.
• The tube has no bending stiffness.
• The tube is in contact with the bore hole everywhere.

The first assumption already has been discussed adequately. The second, third, and fourth assumptions
are referred to collectively as the soft string assumptions. None of them is true, but that needs
explanation. If the entire string is in translation or rotation, it does not matter if it is extensible or
not because we are primarily interested in the value of friction when the entire string is in translation
or rotation and not some intermediate values when only a portion of the string is in motion. The
fourth assumption is that bending the pipe around a curve does not add to the contact force. In other
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words, the contact force required to bend the tube is ignored. This is reasonable for drill pipe in most
cases, and even for casing in most situations, so we can generally accept this assumption. Some of the
commercial software now includes contact force caused by bending stiffness.2 The fifth assumption,
regarding discontinuous contact, might be questioned, however. Without better data than we currently
get regarding the borehole path and shape, it is not possible to determine where the pipe is in contact
with the borehole wall and where it is not. This is not a serious limitation, though, because of the
first assumption in the list. Since the Amontons-Coulomb friction relationship is independent of the
area of contact, the portion of the pipe that is not in contact is accounted for in the contact force
where the pipe is in contact. From a practical standpoint, the current torque-and-drag software works
quite well.

Most of the commercial software is based on the model of Johancsik, Frieson, and Dawson [40],
which is a difference equation that uses the buoyed specific weight of the pipe in its calculations. The
result is an effective axial load. Another model was formulated by Sheppard, Wick, and Burgess [41]. It
is in the form of a differential equation and it ultimately produces the true axial load, with the effective
axial load as an intermediate step. One might question why the commercial models use the former
instead of the latter. It was published first, it is easy to program, and not many people use the true axial
load for casing design in directional wells, because the unfortunate truth is that many do not understand
the difference. When programmed, the second model actually does the same thing in terms of buoyed
specific weight and results in an effective axial load, but it also shows how to take that result one
step further to calculate the true axial load. The issue is inconsequential from a practical standpoint, in
that both models produce the effective axial load and one goes a step further to produce the true axial
load. The true axial load formulas of Sheppard et al. may also be used with the Johancsik et al. model
results to determine the true axial load. The differential equation of Sheppard et al. is not solvable in
closed form, except in the case of a single plane, that is, constant azimuth, and the assumption that the
borehole curvature is that of a segment of a circle between survey points. (A circle-segment well path
between surveys is the basic assumption of the minimum curvature method currently used in directional
drilling.) Such closed-form solutions are derived in Appendix E. However, the single-plane, or 2D,
closed-form solution is of little practical use, because it can be used only for idealized single-plane
well paths and it results in two closed-form equations. The two solutions occur because at points where
the contact is on the high side of the hole, the gravitational force subtracts from the contact force, and
when the contact is on the low side of the hole, the gravitational force adds to the contact force. An
incremental calculation method must be used to determine when to switch from one solution to the
other. A number of tests were done using the closed-form solution to test the accuracy of numerical
techniques for solving Johancsik et al.’s difference equation and Sheppard et al.’s differential equation.
A simple incremental method was used in Johancsik et al.’s equation. An Euler method, a second-
order Taylor series, and a fourth-order Runge-Kutta method were used for solving Sheppard et al.’s
differential equation. As it turns out, the simple incremental method gave almost identical results with
the difference equation as the more sophisticated fourth-order Runge-Kutta method for the differential
equation, when the same number of increments were used. The Euler method never approached the
order of accuracy of the other methods, even with twice the number of increments. The net result is that

2 In their paper, Taylor and Mason [38] state that a quadratic borehole path should be adequate, and they could see no need for
a higher order curve. Well, not quite. The minimum curvature borehole path is a quadratic spline which is a class C1 curve at
the junctions (survey points) meaning that the slope (first derivative) is continuous at the survey points, but not the curvature
(the second derivative). To get an adequate well path to include bending, we really need class C2 smoothness at the junctions.
Of course this requires a cubic spline and more assumptions. Where bending stiffness is added to software it is a patchwork of
sorts, but while hardly as mathematically elegant as continuous curvature at the junctions, it works well enough.
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a simple incremental solution to either equation gives acceptable results, as long as one uses a sufficient
number of subintervals between survey points. The following is the differential equation of Sheppard
et al. [41]:

dF̂

ds
= w̄ cos α ± μ

[(
F̂

dα

ds
+ w̄ sin α

)2

+
(

w̄
dβ

ds
sin α

)2
] 1

2

(7.7)

where

F̂ = effective axial load

w̄ = buoyed linear weight of casing, w̄ = kb g ρ�

s = coordinate along the casing central axis

μ = friction factor

α = inclination angle

β = azimuth angle

The first term on the right is the gravitational contribution to the axial load, and the second term
is the frictional contribution, that is, the friction factor multiplied by the contact force. The ± sign is
determined by whether the pipe motion is into the well (negative) or out of the well (positive). Two
things to note about this equation are that the axial load appears on both sides of the equation and
the contact force always is positive. In a straight section of bore hole, the axial load is dependent
on the contact force, but the contact force is not dependent on the axial load. In that case, the axial
load disappears from the contact force term. In a curved bore hole, the axial force is dependent on
the contact force as in a straight section, but also the contact force is dependent on the axial load.
The differential equation may be solved numerically as an initial-value problem using a second-order
Taylor method or a fourth-order Runge-Kutta method. As previously mentioned, an Euler method does
not give very good results, even with a significantly greater number of increments. An incremental
formulation of the Sheppard et al. equation gives equally good results as the more sophisticated Taylor
and Runge-Kutta techniques with sufficient number of increments. The initial condition at the bottom
of the hole is F̂ (0) = F̂0 which accounts for any weight set on bottom. The incremental form of
Johancsik et al. [40] is

F̂n = F̂0 +
n∑

i=1

[
(si − si−1) w̄i cos

(
αi−1 + αi

2

)
± μiNi

]
(7.8)

where the contact force is given by

Ni = (si−1 − si)
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2

(7.9)
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Figure 7.6 Node numbering system for borehole friction calculations.

In this last equation, the angle measurements must be in radians. (When angles appear in formulas
outside of trigonometric functions, they are almost always in radians.) The numbering of the nodes starts
at the bottom of the hole with node 0 and proceeds to the top as seen in Figure 7.6.

Using these formulas one may write a simple spreadsheet program to do the calculations of borehole
friction for casing design.

To convert the values of effective load at any node to true load, one may use the formula from
Chapter 4:

Fi = F̂i − (poAo − piAi) (7.10)

There are times when we might consider rotating the casing while cementing. This is not often done
in highly inclined or horizontal wells because of the significant amount of friction. However, if it can be
done at a torque less than the maximum recommended makeup torque of the connections, then there is
a possibility of doing it. After all, getting a good cement job in a horizontal well is difficult enough as
is, and everything we could do to displace the mud is worthwhile. The differential form of the torsion
equation is

dTq

ds
= ro μ

[(
w̄ sin α + F̂

dα

ds

)2

+
(

F̂
dβ

ds
sin α

)2
] 1

2

(7.11)

where ro is the outside radius of the casing. This is also a one-dimensional differential equation with the
boundary condition, Tq (0) = Tq 0 at the bottom of the tube, although that would be zero for most casing
strings. We could solve this initial-value problem using a second-order Taylor method or a fourth-order
Runge-Kutta as previously mentioned. We could just as easily cast this equation in an incremental form,
where it becomes

Tq n = Tq 0 +
n∑

i=1

ri μi Ni (7.12)

and the normal contact force is calculated by Equation (7.9) as in the axial friction case. In this case,
the axial load used to calculate the normal contact force is not itself a function of the contact force, so it
may be calculated separately for use in Equation (7.9) from the following.
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F̂i = F̂o +
i∑

k=1

(sk−1 − sk) w̄k cos

(
αk−1 + αk

2

)
(7.13)

An incremental approach such as this and the one for sliding friction are used in most commercial
software. And, as previously mentioned, numerical techniques do not give better solutions when applied
directly to the differential form as long as a sufficient number of increments are used.

The drawbacks to using these models for casing design are the lack of actual friction factors and the
idealized well plan as opposed to the actual hole as drilled.

Common Friction Factors
There are no tables of values in which to look up friction factors for boreholes. There are some average
values for water-based drilling fluids:

• 3.0-4.0 for an open hole.
• 2.0-2.5 for a cased hole.

If one were using an oil-based mud, those values might be reduced by 30-50%. In practice,
measurements of the actual hook load are made in the field, and the values are plugged into a commercial
torque-and-drag model, which iteratively finds a friction factor that gives results matching the field
measurements. This is of great benefit during drilling operations but of little use if the casing is being
designed before the well is drilled, unless one has data from previously drilled wells. Even if we have
the correct friction factor, the next problem facing the casing designer is the well path.

In a conventional L-shaped horizontal well plan, for instance, the vertical portion of the well plan
is exactly that—vertical! There is no friction in that portion of the hole according to the models. And
the rest of the hole also is totally smooth with no tortuosity. The actual hole is quite different, there is
friction in the “vertical” section, and none of the rest of the well is quite as smooth as the planned well
path. How do we deal with that? One possibility is to use the data from a similar well with some possible
adjustments. Some commercial software have a way to impose some tortuosity on the planned well path
in the form of a sinusoidal curve or some type of random “noise” curve. Both are good, but they require
some experience to know how much tortuosity to use. One other method is to add an inclination of a few
degrees to the “vertical” section of the plan and use a “high” friction factor for casing design. Figure 7.7
shows the calculated true axial load for upward motion of 5-1/2 in. casing in an actual well plan and the
true axial load in this well as it was actually drilled.

For most wells, it is not critical what method is used, as long as it is recognized that one cannot use a
perfect well path plan to design a casing string for a real well. Long-reach and high-pressure wells may
require a lot more planning and even considerable effort to drill the well as nearly smooth and close to
the planned path as possible.

The result of the friction calculations just discussed is a load curve similar to Figure 7.7 that we
would employ for designing our casing string for tensile loads. In that particular curve, the friction is
calculated for an upward motion of the casing string once on bottom, similar to what we would expect
if reciprocating the casing while cementing. We can plot these curves either in terms of effective axial
load or true axial load, depending on how we intend to design our casing string. If we expect to rotate
the casing while cementing, we would also want a plot of the rotating torque from friction, so that we
might verify whether or not the connections of our string will permit rotation. Maximum recommended
makeup torque generally is the limiting factor in rotating most casing strings. The main point here is
that, in highly deviated wells, we do not use the simple vertical well assumptions we used in Chapter 4.
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Figure 7.7 Drag friction distribution for 5-1/2 in. casing being pulled off bottom in a horizontal well, as planned
and as drilled.

That having been said, there is one other important point: The friction curves do not account for bending
stresses in the pipe attributable to borehole curvature. That is a later topic.

7.3.3 Torsion

All torsion in wellbores is a result of frictional resistance to rotation, hence, torsion in casing is almost
never considered. There are few occasions where casing can be rotated in horizontal wells because the
torque required to rotate casing usually exceeds the maximum makeup torque of the connections. There
are instances however where liners can be (and are) rotated while cementing. Sometimes liners have
been rotated to get to bottom and to help clean the hole while circulating.

One thing we must include here is that slotted liners should never be rotated. Tests have shown that
they easily fail at less than a third the torque required to fail a solid liner and the failure occurs so easily
that there is no indication at the surface that the liner has failed. There are some slotted liners sold as
capable of being rotated liners, but tests (unpublished unfortunately) have shown that they fail just as
easily.

7.4 Casing wear

Casing wear is a serious problem in many intermediate strings and some surface strings. It often is the
reason that an intermediate string cannot be used as a production string in combination with a production
liner. Reduced wall thickness or a hole in the pipe can be disastrous. There is no good way to repair badly
worn pipe so that it will contain higher internal pressures other than to run a new string inside it with the
accompanying reduction of internal diameter. Hence, it is quite important to prevent or minimize casing
wear.
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The primary mechanism for casing wear is the rotation of drill pipe, although the tripping of the drill
pipe also contributes to the wear but to a lesser degree. Two things are necessary for the wear to occur,
and these are fairly obvious: contact force and movement of the drill pipe (rotation and sliding). The
rate of wear depends on a number of things, such as

• Magnitude of contact force
• Rotation speed
• Lubricity of the drilling fluid
• Relative hardness of the drill pipe tool joints and casing
• Presence of abrasives

Of course, the total amount of wear depends on all these plus the time duration during which wear
occurs. Typically, we measure the amount of wear as a percentage of reduction in the wall thickness,
with 100% meaning that the wall thickness is completely worn through. Reduction of wall thickness is
a linear measure and therefore somewhat misleading. The amount of metal removed under a specific set
of conditions generally is a linear function of time, but the reduction of wall thickness is not. Figure 7.8
illustrates why it is not.

It is easy to see that, as the tool joint wears into the wall of the casing, more volume of metal
must be removed in relation to the amount of penetration. So, while the rate of metal removed may
be linear with time or cumulative revolutions, the reduction in actual wall thickness is not. We can see
that, initially, the wall thickness reduction is quite fast, but as it progresses, it becomes much slower
because of the increasing volume of metal that must be removed for a corresponding reduction in wall
thickness.

Prevention of casing wear is of utmost concern in most wells. Historically, most of what was known
about preventing wear came from common sense and experience. We have long known that rough hard-
banded tool joints can wear a hole in casing as quickly as a mill. Even heat galling can take place when
the lubricity of the mud is low and the contact force is high. And, no matter what precautions are taken,
if there is sand in the mud, all wear mechanisms are accelerated. Even with rubber pipe protectors,
the presence of sand causes wear, since the sand grains can become embedded in the rubber itself. So,
assuming we know to keep abrasives to a minimum and hard-banded tool joints out of the casing while
rotating, where do we install the pipe protectors to reduce wear? It was once thought that we could make

Figure 7.8 Increasing volume of metal with reduction in wall thickness.
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a plot of dog-leg severity (hole curvature) to determine where the critical wear areas were. Historically,
this proved unreliable. In general, casing wear is not a function of the magnitude of the dog-leg severity.
The worst wear in casing typically occurs nearer the surface rather than deeper and often where the
magnitude of the dog-leg severity is typically less than 1◦ or 2◦ per 100 ft, as opposed to deeper in
the well where the dog-leg severity might exceed 4◦/100 ft, for example. Another approach that proved
more useful is a plot of the difference between successive dog-leg severity measurements. While that
is a much better indication of the areas of most severe wear, it too can be grossly misleading in some
parts of the well. Until casing was studied more seriously, that remained the only tool readily available
to most operators for determining the best location for pipe protectors. Most operators just ran them on
every joint or so in the upper half of the casing as a precaution.

A lot of work has been done to try to quantify wear in casing, and software is available to predict
the amount of wear. The results of such predictions have been mixed at best and, in many cases, have
been totally unreliable. The difficulty in quantifying wear is in quantifying all the variables that affect
the process. In other words, one has to know pretty accurately the time spent rotating, the penetration
rate, the lubricating properties of the mud, the rotation speed, the type and concentration of solids and
abrasives in the drilling fluid, and so forth. However, this is not a dismissal of such software by any
means. While it has proven relatively poor at quantifying actual casing wear, it is extremely good at
predicting where the critical wear areas in a casing string are located. For any given mud system and
amount of rotating time, the areas of most severe wear are those areas that experience the greatest
amount of contact force between the tool joints and casing. That contact force is quite easy to quantify,
at least to the accuracy needed.

An investigation was done several years ago with this type of software run post priori on several wells
that had experienced holes worn in the casing. Good drilling data were available, as well as caliper logs
that had been used to locate the holes, and of course, directional surveys, which are essential for use
of the software. The results were a bit disappointing. In none of these particular wells did the software
predict a hole in the casing, even though each actually had a hole worn through the casing. In fact, the
worst wall thickness loss predicted in any of the wells by the software was slightly more than 50%. But,
the important point again is that where the software predicted the worst wear to occur was exactly where
the holes were (see Figure 7.9). In addition to the wear curves, the contact force curves were plotted for
comparison in Figure 7.10, and in fact, the wear curves and contact force curves were almost identical,
except of course for the scale. The conclusion of that particular study was that, while the software was
not very good at quantifying the amount of wear, it was excellent for determining the critical wear areas.
It also was found that a contact force curve by itself was adequate for predicting where pipe protectors
were needed while drilling below those strings of casing. And that, ultimately, is what we want to know,
because we cannot know with certainty the exact properties of the mud system, abrasives content, and
rotating time prior to drilling below the casing. However, we do know the shape of the hole we just
cased, and the planned well path below the casing well enough to predict the amount of contact force
on the casing string we have just installed.

The other useful indicator mentioned, differential dog-leg severity essentially is the difference
between the dog-leg severity at one point and that at the previous point. While it often gives a similar
plot to the two above, it gives misleading results near the bottom of the casing string because it cannot
account for the reduction in contact force caused by smaller values of axial tension.

Rotating contact force can be calculated from the borehole friction formulas presented earlier in
Equations (7.9) and (7.13), and they easily can be programmed into a spreadsheet. Most commercial
torque-and-drag software also generates a contact force curve. But, to use the contact force for
determining the need for pipe protectors, one must have directional survey data, and in the case of
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Figure 7.9 Results from casing wear software, showing the predicted amount of wear in a particular well. This
casing string had a hole in it at about 3000 ft.

Figure 7.10 Contact force for same well.
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vertical wells, this may not be available. Many companies feel that if a well requires an intermediate
string for over-pressured reservoirs below, then it should also have a gyro survey run in the intermediate
casing in the event it becomes necessary to drill a relief well to kill a blowout. In those cases, the gyro
survey can serve both purposes. There really is no reason for not being able to determine where the
casing wear will be most severe and where pipe protectors should be placed in a drill string. Given
that knowledge and common sense as regard to wear mechanisms, casing wear should not be a severe
problem.

7.5 Borehole collapse

One of the early concerns in horizontal drilling was a borehole stability issue related to the way in
which the in situ stress field is oriented to a horizontal borehole. Because the largest of the in situ stress
components, the overburden stress, σv, acts in a vertical direction it was feared that borehole collapse
would be a potential problem. And in some cases that proved to be true. However, the dilemma was:
Will it, or will it not be a problem? Lacking any quantitative data, many operators elected to run some
type of liner into the horizontal section as a sort of insurance policy just in case. But rather than run a full
string of casing or conventional liner and cement it in place which is quite expensive, most chose to run
a slotted or perforated liner instead. As insurance against borehole collapse it is probably a reasonable
choice. Unfortunately, from a completion perspective it is probably the worst choice one can make for
a horizontal well. Unless you can get it out of the borehole later (and you should assume you cannot),
there is nothing else you can do with that wellbore as far as monitoring production or zonal isolation
for testing or stimulation. In short, there is nothing effective you can do other than accept what the
well produces. Additionally, a slotted liner is a very poor means of sand control, its original purpose.
The problem inherent with this type of completion is that most of the flow along the lateral takes place
outside the liner and does not enter the liner until it is near the heel of the lateral. There is no way to
run any kind of production profile to plan a stimulation. There is no way to spot a stimulation treatment
where it is most needed and one cannot even use diverting agents to perform an effective stimulation. If
the well starts to produce saltwater there is no way to determine where it is being produced and no way
to isolate it or shut it off. The hard fact is that once you install a slotted liner in a horizontal lateral you
have precluded all remaining options for managing the production from that lateral.

All that said, there are some better options even with slotted liners. One of the more successful is
slotted (or pre-perforated) liner sections along with blank sections and external casing packers. Inflatable
casing packers have long been favored, though their reputation has often suffered somewhat over the
years, mostly from haphazard placement practices and inadequate evaluation than from actual failure
of the packer itself. In recent years, swelling type packers have become quite popular in many such
applications. And of course a conventional casing string or liner is always an option, whether cemented
or with some type of zonal isolation packers. The critical point here is that whatever means one takes to
insure against borehole collapse the most important consideration in the selection process is the future
management of production in the wellbore.

7.5.1 Predicting borehole collapse

There are methods for predicting borehole failure through collapse, and they are discussed briefly in
Appendix E. The problem that we face in casing design is that we seldom have the data and/or expertise
to do a proper analysis. Typically, most such stability analyses are done for drilling purposes, but critical
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for casing design is the issue of pressure depletion during the life of the well. A horizontal wellbore that
is stable during drilling (even under-balanced) may later become unstable later in its producing life as
the pore pressure declines. These are issues we cannot address here, except to develop an awareness for
the potential problems.

There is one somewhat related issue that we must consider, and this is probably a good place. Often
times in earlier horizontal drilling operations one would hear someone claim that their borehole had
collapsed “halfway through the build section.” Mostly, such incidents have occurred while running drill
pipe back in a hole after a bit trip. But the same phenomenon has also occurred when running casing
into a horizontal well where it hits an obstruction about halfway through the build section where the
inclination is about 45◦ or so. Casing failures have occurred in such instances, and I have included a
real-life example later in this chapter. The usual description of such an event has been that the drill
pipe encountered an obstruction, the driller circulated, rotated, and washed through the obstruction,
and a “bunch of cuttings came across the shale shaker.” The conclusion: “borehole collapse.” Or is
it? If you examine the example borehole stability curves in Appendix E you will note that the most
critical stability inclination is 90◦, not some intermediate value like 45◦. If the borehole collapsed at the
midpoint in the build section, it would collapse from that point all the way down, yet in these instances
the lower part of the hole was always open. There are instances where there is an unstable shale zone
on top of the pay zone and the transition from the shale to the pay zone is near the midpoint of the build
section. In those cases such an explanation might certainly be valid, but most of these “collapses” were
reported where such was not the case. The true explanation in most of these cases was (and still is) a
cuttings removal problem. The part of a build section between about 40◦ to 60◦ is the most difficult
part of a hole to clean of drilled cuttings. In the horizontal section, cuttings tend to settle to bottom and
are removed with a combination of agitation from pipe rotation, proper mud rheology, and circulation
rate. In the build section, however cuttings may settle to the low side of the hole where the circulating
velocity is low, but they also start migrating back down the hole and form accumulations. In fact lab
experiments have shown that along the low side of the hole there actually can be a flow of cuttings
in the opposite direction of the circulation. Drillers are accustomed to making a bit trip and finding
a few feet of “fill” on bottom after a trip, but in a horizontal well the fill is not on bottom but in the
build section and it is usually more severe. So, cuttings removal in these wells is critical in the casing
process.

7.5.2 Designing for borehole collapse

What are the forces on casing during a borehole collapse? If there is any one topic in casing design
that begs a good solution this is it. The one thing we can say is that, with the possible exception of salt
flow, it is not likely to be a uniform radial pressure load. The problem with a collapsing borehole is that
the loading on the pipe is seldom uniform like a hydrostatic pressure. It can be different in every case,
depending on the geometry of the borehole cross section (seldom a perfect circle), the formation stress
field, the formation material, formation heterogeneities, etc. The ultimate design process will likely be
some sophisticated finite element procedure that cannot be replicated by simple manual calculations.
There is one simple method that has been used, though not particularly good. That is a unidirectional
distributed load as shown in Figure 7.11.

In the figure the distributed load f is acting in a vertical direction uniformly across the surface of the
pipe. An approximate solution to this problem was derived by Nester et al. [42]. And it is stated as

Y >
2 f ro

3 (ro − ri)
(7.14)
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Figure 7.11 A possible non-uniform, transverse loading on casing.

The only questions are what value to use for the distributed traction load, f and some would suggest
using the value of the overburden stress, f = σv. That might be a bit severe and can lead to selecting
some very heavy pipe in a horizontal section where friction is directly proportional the pipe weight. A
more reasoned choice might be f = σv − pdepl, where pdepl is the pore pressure at depletion. If you do
choose to use this formula, you should definitely also check the conventional radial collapse because
this formula will sometimes give you a lesser collapse value.

Effect of perforations

Another design concern that many have is the effect of perforating on casing collapse strength in
borehole collapse. Crushing tests performed by King [43] led to the following conclusions:

1. Shot densities of 4-8 shots per foot have little effect on crush resistance.
2. Shot densities of 12-16 shots per foot with 60o phasing have little effect on crush resistance.
3. Phasing of 0◦, 90◦, or 120◦ with 12-16 shots per foot significantly reduce crush resistance, especially when a

line of perforations is 90◦ to the load direction.

Salt flow and geotectonic activity

In some parts of the world salt beds behave as a visco-plastic liquid, though the flow rate is quite
slow. Consequently the hydrostatic pressure exerted by the salt is equal to the overburden stress,
σv discussed in Appendix E. This pressure is much higher than ordinary pore pressures and can
easily collapse a conventionally designed casing string. One solution is the use of special thick-
walled casing with wall thicknesses on the order of 1-1.5 in. Other solutions have been successfully
applied, such as two concentric casing strings with cement between the two strings. If the salt flow
is radially symmetric (i.e., hydrostatic) in nature the problem is similar to conventional collapse
except with higher external pressures. The difficulty arises when the flow is not symmetric and we
are back to the quandary mentioned above—how to model a non-uniform borehole collapse. These
are not common design considerations, but for those interested, equations for collapse of concentric
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casing-cement-casing strings with uniform radial loading have been proposed by Marx and El-
Sayed [44], and for non-uniform loads by El-Sayed and Khalaf [45].

As to geotectonic activity such a fault movement and subsidence, the prognosis is grim. These forces
of nature can move mountains, and there is no casing string that can resist such forces. In the case of
fault motion the most successful approach has been to under-ream the hole across the fault and cement
the casing below and above the expanded hole section. This allows some amount of movement of the
fault before it eventually collapses and shears the casing. Similarly, un-cemented casing in subsidence
intervals allow some flexibility in the casing string to postpone eventual failure. The hard fact is that all
you can do is delay the time of casing failure; you cannot prevent it.

7.6 Borehole curvature and bending

Curved boreholes add stress to casing, and often that added stress is quite significant. A general lack of
understanding of this has led to casing failures in the build sections of a number of horizontal wells. We
now examine the effects of borehole curvature and the resulting bending stresses in casing.

But, before we get into particulars, we need to see a couple of formulas, because we encounter them
time and again in working with curved boreholes. Curvature is the change in angle with respect to the
distance along the path, or mathematically,

κ ≡ dθ

ds
(7.15)

where

κ = curvature

θ = reference angle (inclination angle in 2D wellbore)

s = distance along curved path (wellbore length measurement)

The curvature may be expressed in two forms: as curvature, meaning a change in angle as just shown,
or a radius of curvature, rκ :

rκ = 1

|κ| (7.16)

There is a mathematical quirk here, in that the curvature can be either positive or negative (as we
defined it), but the radius of curvature always is positive, since a negative radius is meaningless.

Curvature is measured in units of reciprocal length, that is, L−1. In oilfield parlance, curvature is
called by a colorful term, dogleg severity, in reference to a crooked hole. It usually is measured in
degrees per 100 ft or degrees per 10 m. To convert from curvature as used in oilfield terminology to
radius of curvature and vice versa, we need a formula. In USC units this is

κ = 18000

π rκ

(7.17)

rκ = 18000

π κ
(7.18)
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where

κ = curvature (dogleg severity), degrees/100 ft

rκ = radius of curvature, ft

In SI units, the conversion formula is

κ = 1800

π rκ

(7.19)

rκ = 1800

π κ
(7.20)

where

κ = curvature (dogleg severity), degrees/10 m

rκ = radius of curvature, m

There are two other versions of curvature in metric units, degrees per 30 m and degrees per 100 m.
The former is numerically approximately the same as degrees per 100 ft and was used for a number of
years but is fading from popularity. When using degrees per 30 m, the numerator is 5400. The latter
measure, degrees per 100 m, was common about 20 years ago but does not see much use today.

We employ two conventions in referring to curvature here:

• Although we often use radius, rκ , to quantify curvature, the descriptions small or large values of curvature refer
to the values of κ . Hence, a large radius refers to a small curvature and vice versa.

• Measure of curvature in boreholes always is assumed to be taken at the central axis of the bore hole.

One more comment on curvature is in order. As we defined it in Equation (7.15) we are using
curvilinear coordinates. In Cartesian coordinates curvature takes on a more complicated form and is
conventionally defined as:

κ =
∣∣∣∣∣∣

d2y/dx2[
1+ (dy/dx)2] 3

2

∣∣∣∣∣∣
In most instances the derivative in the denominator is small when squared so the equation reduces
to κ ≈ ∣∣d2y/dx2

∣∣. The absolute value is taken in the conventional form, but for our applications we
allow for the negative value also because curvature has sign significance in borehole applications (build
sections and drop sections).

7.6.1 Simple planar bending

Calculating bending stresses can be a formidable undertaking in general. Even the planar bending
problem is a two-dimensional elasticity boundary-value problem, and several assumptions usually are
adopted so that a simple solution may be obtained from a one-dimensional ordinary differential equation,
a derivation of which is given in Appendix C. These ad hoc assumptions are known variously as Euler-
Bernoulli beam theory, planar beam theory, or simply just beam-bending theory. No theory really is
involved, but merely a set of a priori assumptions about the way a beam deforms in bending that allows
for an analytic solution to the more complicated boundary-value problem. For the case of tubes, such as
casing, these are the typical assumptions:
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Figure 7.12 Simple planar bending of tube.

• The tube initially is straight.
• The tube cross section is symmetric about the central longitudinal axis.
• All cross sections normal to the longitudinal axis before bending remain normal to the axis after bending.
• The central longitudinal axis (neutral axis) experiences no axial strain
• The tube radius is small compared to the length.
• The bending deflections are small in comparison to the length, so that the radius of the tube remains constant in

all directions.

The result of these assumptions is an equation for the axial strain:

εs = −y
dθ

ds
(7.21)

where y is a coordinate in the bending plane with origin at the neutral axis (center), θ the angle in the
plane of curvature, and s an axial coordinate along the neutral axis of the tube. Substituting this into a
one-dimensional constitutive equation (Hooke’s law) gives us the axial bending stress:

σb = σs = E εs = −E y
dθ

ds
(7.22)

It is obvious that the maximum stress occurs at the point where y is equal to the outside radius of the
pipe, ro. But we might want to determine the stress at the inner wall also in cases of internal pressure,
so we will just leave off the subscript with the understanding that ri ≤ r ≤ ro The term, dθ/ds, is the
curvature of the bent tube, which is the reciprocal of the radius of curvature, rκ So, in practical form
(Figure 7.12), the equation becomes

σb = ±E
r

rκ

(7.23)

where

σb = bending stress, (+) for tension, (−) for compression

E = Young’s elastic modulus

r = radius of pipe where stress is determined (i.e., inside or outside)

rκ = radius of curvature of borehole path

It is important that the units used are consistent. In USC units, the radius of the pipe usually is in
inches and the radius of curvature of the borehole path usually is in feet, so they must be converted to the
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same unit (it does not matter which). In SI units, both measures should be in meters. Young’s modulus
usually is in units of psi, kPa, or MPa, and the bending stress is in the same units.

It is necessary to remember the assumptions of this formula before using it, especially with tubes. As
a tube bends, its cross section tends to ovalize rather than remain circular. The pipe radius in the bending
plane is reduced as the cross section becomes ovalized, and the formula no longer is valid. Since there is
no simple way to determine the point at which the shape is too ovalized to use the formula, the tendency
is to ignore it, since it will over-predict the maximum bending stress when the pipe is slightly ovalized.
That makes the formula possibly a bit conservative in casing design. For long and medium radius of
curvature wells, it seems to work well for all but larger diameter, thin-wall pipe. For short-radius wells,
it should be used with caution, and again, it would depend on the pipe diameter and wall thickness. That
may seem to avoid the specific, but for certain, we can say that it becomes meaningless if the yield point
is exceeded. In addition to the tendency to become oval the cross section changes in another way. The
compressive side becomes thicker and the tensile side becomes thinner. This causes the neutral axis to
shift also. These effects are negligible for small bending deflections, but do not ignore the possibilities.
And since in the case of oval deformation, Equation (7.23) will over predict the stress (the effective
value of ro is reduced), it may still be considered as a conservative approach.

7.6.2 Effect of couplings on bending stress

One limitation of the simple bending formula, as we typically apply it, is that it assumes the casing is
in contact with the borehole wall along its entire length and its curvature is the same as that of the bore
hole. This does not account for an amount of standoff from the couplings. The coupling standoff allows
for local bending with a smaller radius of curvature than that of the bore hole, therefore possibly a higher
bending stress from axial tension or compression loading in the pipe. In the tensile case, the couplings
are assumed tangent to the borehole wall, so that if the pipe between couplings is not in contact with
the borehole wall, then the tension tends to straighten the joint between couplings. The result is that the
greatest bending stress in the joint is in the pipe body near the couplings, until the pipe makes contact
with the borehole wall, then the maximum bending stress in the pipe may be at some other point. In the
compression case, the casing between couplings is forced toward the borehole wall in a compressive
mode and the bending stress is higher near the couplings. Once pipe body contact with the borehole
wall is made in compression, the point of maximum curvature and bending stress may be at some other
point in the tube. This is illustrated in Figure 7.13.

An equation for determining the maximum bending stress with connections was derived for the
tension case by Lubinski [46] in 1961, and later derivations were done for both tension and compression
by Paslay and Cernocky [47] in 1991. Lubinski’s equation initially was developed to account for the

(a) (b)

contact

Figure 7.13 Effects of couplings in bending: (a) tension and (b) compression.
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standoff of drill-pipe tool joints and the effects this had on the fatigue of drill pipe rotating in tension
in curved boreholes. His equation later began to appear in conjunction with casing design in curved
wellbores. His equation (and all that follow in this discussion) assumes that the borehole curvature
is constant and in a plane between casing couplings, the coupling length is small compared to the
length of the joint, the couplings are in contact with the borehole wall, and the couplings are tangent
to the borehole curvature at the point of contact. Also assumed is that, since the coupling is relatively
small in length, its entire length is in contact with the wall and it does not bend. These are reasonable
assumptions. Although not in Lubinski’s original form, his equation from 1961 can be written as follows:

σ b = λb E
ro

rκ

(7.24)

which is essentially the same as our previous bending equation (7.23), except for the factor, λb, which
has been called a bending-stress magnification factor. Note that there is no ± in this equation, since
Lubinski’s equation is valid only in tension. Lubinski’s bending-stress magnification factor is

λb = ϕ

tanh (ϕ)
(7.25)

where

ϕ ≡ �

2
η (7.26)

and

η ≡
√
|Fs|
E Ia

(7.27)

where

� = joint length between couplings

Fs = axial load along curvilinear borehole path (tension in this case)

E = Young’s modulus of elasticity

Ia = axial second area moment of tube cross section

The second area moment of the tube cross section about an axis passing through the center of the
tube perpendicular to its longitudinal axis is

Ia = π

4

(
r4

o − r4
i

)
= π

64

(
d4

o − d4
i

)
(7.28)

A reminder, use consistent units. Note also that we used the absolute value of the axial load in this
formula. In this particular equation, we are talking about tension, but later we use the same quantities
for equations in which the axial load is in compression, a negative value, and the square root would be
a complex number. We choose this slight modification so that we may use the same nomenclature later
in both the tension and compression states. And, in that context, we could resume use of the ± sign in
Equation (7.24), once the equations for λb are derived for the compression case.

The limitation of this equation of Lubinski’s is that the casing does not contact the borehole wall
between the couplings. Simply stated, if there is contact, the equation is not valid. That notwithstanding,
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his equation has appeared in various places to show that coupling standoff is important in casing
design, but without mention of the contact limitation. One cannot just plug numbers into Lubinski’s
equation without understanding its limitations. One must always determine the valid range for a specific
application.

The maximum displacement, ymax, from a straight configuration to contact by the midpoint of the
casing between couplings, as written by Lubinski, is

ymax ≈ �2

8R
+ ω (7.29)

This gives the approximate maximum displacement of the midpoint of an initially straight pipe deflected
to the point of contact with the borehole wall. The second term, ω , is the standoff from the coupling,
defined as

ω ≡ rcpl − rcsg = dcpl − dcsg

2
(7.30)

where

ω = standoff

rcsg = outside radius of casing

rcpl = outside radius of coupling

dcsg = outside diameter of casing

dcpl = outside diameter of coupling

As previously mentioned, Paslay and Cernocky [47] did additional work in this area. They solved
the problem in both tension and compression and cast it in a slightly different format, which lends itself
to computer programming. The tension case results in a formula for each of the three possibilities: no
contact, point contact, and wrap contact. The first two are self-explanatory, and the wrap contact is
reached when the curvature of the pipe in contact with the bore hole begins to follow the curvature of
the bore hole. Since there are both tension and compressive axial-loading possibilities, the pipe can take
six modes of deformation:

• Mode 1. Tension, no contact
• Mode 2. Tension, point contact
• Mode 3. Tension, wrap contact
• Mode 4. Compression, no contact
• Mode 5. Compression, point contact
• Mode 6. Compression, wrap contact

Paslay and Cernocky derived equations for all six modes, plus four equations necessary to define the
transition between modes (two for tension and two for compression). I present their results with very
little explanation, and one should read their paper for a full understanding of the derivations.

Mode 1. tension, no contact

The bending-stress magnification factor for this mode is

λ = ϕ
cosh ϕ

sinh ϕ
(7.31)
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This equation is equivalent to Lubinski’s equation (7.25). The nomenclature for this equation and all
the following remain the same as previously defined.

Mode 2. tension, point contact

Point contact begins when the tension is such that

1− cosh ϕ +
(

ϕ

2
− 2 η ω R

�

)
sinh ϕ = 0 (7.32)

This nonlinear equation in ϕ must be solved numerically for values of tension, Fs, contained in η

and ϕ, to establish the value of tension at which contact is established. The equation for the bending-
stress magnification factor for point contact is

λb =
ϕ
[
(sinh ϕ − ϕ)−

(
ϕ
2 + 2 η ω R

�

)
(cosh ϕ − 1)

]
2 (cosh ϕ − 1)− ϕ sinh ϕ

(7.33)

Mode 3. tension, wrap contact

Wrap contact begins when the curvature in the casing first begins to equal that of the bore hole where
the two are in contact. Wrap contact begins when the magnitude of the tension is such that

ϕ

2
(cosh ϕ + 1)− 2 sinh ϕ +

(
2

ϕ
− 2η ω R

�

)
(cosh ϕ − 1) = 0 (7.34)

This nonlinear equation must be solved numerically to determine the value of the axial tension at
which the wrap contact begins. The equation for the bending-stress magnification factor in wrap contact
is

λb =
ξ2

2 + η2R ω (cosh ξ − 1)− ξ (sinh ξ − ξ)

ξ sinh ξ − 2 (cosh ξ − 1)
(7.35)

where we must first solve the following nonlinear equation numerically for ξ :

ξ2

2
(cosh ξ + 1)− 2ξ sinh ξ +

(
2− η2R ω

)
(cosh ξ − 1) = 0 (7.36)

Paslay and Cernocky state that the solution of interest is in the range

ϕ ≤ ξ ≤ η R cos−1
[

R

R+ ω

]
(7.37)

Mode 4. compression, no contact

The equation for no contact in compression is.

λb = ϕ

sin ϕ
(7.38)
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Mode 5. compression, point contact

When the compression load in the casing reaches a magnitude at which point contact is made, the
following condition is satisfied:

1− cos ϕ −
(

ϕ

2
+ 2 η ω R

�

)
sin ϕ = 0 (7.39)

It must be solved numerically to obtain the axial load at which point contact occurs.
The Paslay and Cernocky bending stress magnification factor for point contact in compression is a bit

more complicated, in that there are three possibilities as to where the maximum bending-stress occurs.
The maximum could occur at the coupling, the midpoint of the joint, or under some circumstances,
at another location in the pipe. One must determine the first two, then determine if the third possibility
exists and, if so, its magnitude. Once those are calculated, the maximum of the three is the bending-stress
magnification factor.

At the coupling,

Λcpl =
ϕ
[(

2 η ω R
�
− ϕ

2

)
(1− cos ϕ)+ ϕ − sin ϕ

]
2 (1− cos ϕ)− ϕ sin ϕ

(7.40)

At the midpoint,

Λmid =
ϕ
[
−
(

2 η ω R
�
− ϕ

2

)
(1− cos ϕ)+ ϕ cos ϕ − sin ϕ

]
2 (1− cos ϕ)− ϕ sin ϕ

(7.41)

Two additional quantities are needed to determine the possible third point:

Γ =
ϕ
[(

2 η ω R
�
− ϕ

2

)
sin ϕ + 1− cos ϕ

]
2 (1− cos ϕ)− ϕ sin ϕ

(7.42)

Ω = tan−1
(

Γ

Λcpl

)
(7.43)

Then, the third possible bending-stress moment is

Λs = Λcpl cos Ω − Γ sin Ω ⇔ 0 < Ω < ϕ (7.44)

If Ω is outside the valid range, then Λ does not exist and the maximum bending-stress moment will
be either at the midpoint or the coupling. The maximum bending-stress factor is the maximum absolute
value of the three possibilities:

λb = max
(∣∣Λcpl

∣∣ , |Λmid| , |Λs|
)

(7.45)

Mode 6. compression, wrap contact

When the compression load in the casing reaches a magnitude such that wrap contact begins, the
following condition is satisfied:

ϕ

2
(1+ cos ϕ)− 2 sin ϕ +

(
2

ϕ
− 2 η ω R

�

)
(1− cos ϕ) = 0 (7.46)
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As before, this must be solved numerically to determine the axial compressive load at which wrap
contact begins.

The bending-stress magnification factor for wrap contact in compression has two possibilities: The
maximum is at the coupling or some other point between the coupling and the midpoint. Since the casing
curvature at the midpoint is the same as the borehole curvature, the bending magnification factor there
is unity.

At the coupling,

Λcpl =
ξ
2 − η2ω R (1− cos ξ)+ ξ (ξ − sin ξ)

ξ sin ξ − 2 (1− cos ξ)
(7.47)

where we must first solve the following nonlinear equation numerically for ξ :

ξ2

2
(1+ cos ξ)− 2ξ sin ξ +

(
2− η2 ω R

)
(1− cos ξ) = 0 (7.48)

Paslay and Cernocky do not give a range for the solution, but it appears the range given in Equation
(9.32) might be at least a starting point.

We then calculate two more quantities:

Γ =
(

ξ
2 − η2ω R

)
sin ξ + ξ (1− cos ξ)

ξ sin ξ − 2 (1− cos ξ)
(7.49)

and

Ω = tan−1
(−Γ

Λcpl

)
(7.50)

Then, we calculate a stationary value of the bending-stress factor at some location in the pipe, if it
exists:

Λs = Λcpl cos Ω − Γ sin Ω ⇔ 0 < Ω < ξ (7.51)

If Ω is outside the specified range, then Λs does not exist. Paslay and Cernocky recommend assigning
a value of unity in that case, if it is used in a computer program. A value of unity is equivalent to saying
there is no bending-stress magnification at that point. Then, the maximum bending-stress magnification
factor for this joint of pipe is the maximum of the absolute values of Λcpl and Λs:

λb = max
(∣∣Λcpl

∣∣ , |Λs|
)

(7.52)

Comments on bending-stress magnification

As can be seen, calculation of the bending stress magnification factors of Paslay and Cernocky is
not exactly something that can be done manually. These formulas may be programmed for computer
implementation, but the programming is not trivial. Paslay and Cernocky were interested primarily
in drill-pipe fatigue, and they mention solving the transition equations for the standoff quantity that
we labeled ω. In that context, the equations are linear and solved easily. That may be of some use in
selecting a drill-pipe string with various options as to tool joint dimensions, but in most casing design,
the standoff, ω, is a fixed quantity, and our primary interest in the transition equations is in the value of
the axial load that determines the transition point from one mode of contact to another, so that we might
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Y

Figure 7.14 Typical behavior of transition equations for tension and compression. The compression equation has
additional solutions farther to the left (solutions at Y = 0).

apply the appropriate equation for the bending-stress magnification factor, λb. In terms of the axial
load, which is contained in the variables, η and ϕ, these equations are nonlinear and must be solved
numerically. All the nonlinear equations that must be solved numerically have been recast here to avoid
singularities in the numerical solutions, so they may not exactly resemble those of Paslay and Cernocky.
However, some of these equations have local minima and maxima and multiple roots, so they are best
solved with a bracketing technique, such as the bisection method. It might be of some help to see a plot
of some of the nonlinear equations that determine the contact mode transition points, and an example is
shown in Figure 7.14. This figure is for a specific casing size and borehole curvature so it will vary for
different casing sizes and borehole curvature.

The two equations that define the transition between tensile modes are relatively easy to solve with
a simple bracketing method, such as a bisection method. However, for small values of curvature, κ , (or
large radius, rκ ), there is a range for which contact is physically impossible and will result in an infinite
root. That condition, which is not addressed by Paslay and Chernocky, can be quantified as

ω >

√
r2
κ +
(

�

2

)2

− rκ (7.53)

Another characteristic of the tensile modes is that, when the curvature is small, the value of the tensile
load at which point contact occurs is far greater than the joint strength of the casing, so there is no point
in searching for a root if it lies beyond the joint strength.

The two transition equations for compression exhibit especially bad behavior, as equations with
trigonometric functions often do over a wide range of values. As previously mentioned, the equations
of Paslay and Cernocky have been recast here to avoid numerical singularities, but they still produce
multiple roots. The first roots for these two equations tend to lie close to the origin for large curvature
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and further away for smaller values of curvature. From a computational standpoint, this means that
a combination procedure that first brackets the root starting very near the origin, then proceeds to
locate the root within the bracket, is a good approach. The physical meaning of the additional roots
to these equations does not appear to have been explored, but Mitchell [33] has done work in lateral
buckling of drill pipe in curved boreholes and shows that the Paslay and Cernocky equations under-
predict the bending-stress magnification in cases where compressive loading causes lateral buckling.
The reason for the higher bending-stress magnification in those cases is that the lateral buckling
is out of the plane of the wellbore curvature to which the Paslay and Cernocky equations are
confined.

It is does not seem to have been mentioned in any of the discussions on the bending-stress
magnification factor as to the nature of the axial load used for actual calculations. Simple bending,
as described by Equation (7.23), is independent of axial loading, but the bending-stress magnification
factor, λb, is not. That raises the question as to whether we use the true axial load or the effective axial
load to calculate λb. The largest factors in tension arise from use of the effective axial load, which has
no compression in the string. More accurate results should come from the true axial load, however, the
compressive axial load in the bottom portion of the string begs a few questions. First, the values of
λb in the compressive section are usually minimal except in the case of a horizontal (or other highly
deviated well), where a significant amount of casing is below the critical angle point. Secondly the
compression formula does not consider lateral buckling which generally will not be planar as required
in the assumptions.3

When one calculates the bending-stress magnification factors for a particular casing design, one may
be alarmed at their magnitudes, which easily may range between 1 and 4, yet for some reason, this
process rarely is considered in actual casing design. One excuse might be that it is not something
that can be calculated easily, but surely if casing failures actually occur because of bending-stress
magnification, then everyone would have a computer program to calculate it. The most probable
reason that we do not recognize problems caused by bending-stress magnification is likely because,
in most casing strings, the highest value of tension occurs near the surface, where the curvature often
is relatively small. It is not unusual to see bending-stress magnification factors of over 5 in such
instances, but the bending stress attributable to borehole curvature is so small that, when multiplied
by a large magnification factor, it still is only a small percentage of the yield strength of the casing,
especially when we are inclined to use relatively large design factors in tension loading. This is not
to say that it can be ignored, but that it does not seem to cause problems in most wells (or at least
that we recognize as such). Bending-stress magnification should certainly be considered for casing
design in deeper wells and any well where the combined loading may be close to the yield of the
casing.

We definitely do not attempt an example calculation here, but Figure 7.15 shows an example of the
bending stress magnification factors for an actual horizontal well. And, as would be expected from our
discussion, they are highest near the surface.

These factors were calculated to check a previously designed casing string for the specific borehole
in which it would be run. While the results might tend to be cause for apprehension because of the large
magnitudes, the overall effect in this well is negligible, as will be seen in a following section of this
chapter devoted to combined loading in directional wells. The combined loading for this well is shown
with and without bending-stress magnification in that section in Figure 7.16. It can be seen there that

3 Personally, I run both along with both an upward and downward friction calculation (using software of course), and almost
always opt for the effective load for a design check as it is more conservative.
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Figure 7.15 Bending stress magnification factor for a horizontal well.

Figure 7.16 Combined loading in a horizontal casing string.

the only significance of the bending-stress magnification is in the build section of the well, as one would
intuitively expect.

The transition point equations as I have formulated them here are all nonlinear because I have used
the coupling standoff, ω, as a given, and then calculated the axial load at the mode transition points.
However, as I mentioned above, Paslay and Cernocky formulated the algorithm using the axial load
as the given and calculating the standoff at the transition points using linear equations. In our case
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of known actual standoff that method could be used to calculate the standoff at the transition points
and then determine into which mode bracket the actual standoff belongs. That might be a preferable
approach for some who would rather not program as many nonlinear equations.

One last comment is in order here. Paslay and Cernocky assumed a constant curvature, κ , and
couplings tangent to the borehole wall. Those are reasonable assumptions and really the only way to
obtain closed form solutions. Implicit in the assumption of tangent couplings is the assumption that
the curvature remain constant or nearly constant at least one joint length either side of the joint in
consideration. That is not a serious restriction, given the approximate nature of assumed geometry, but
the stress magnification could be more severe (or less) if the borehole path varied from that smooth
curvature.

7.6.3 Effects of bending on coupling performance

There are no standards on coupling performance in bending other than what some companies and
manufacturers established for themselves. API Bulletin 5C3 and a 2004 draft of ISO 10400 contained
two formulas for “joint strength of round thread casing with combined bending and internal pressure.”
Oddly, there were no terms in those two formulas to quantify the bending or pressure. The first edition
of this text included those two formulas (with a note of considerable skepticism). The release version of
ISO/TR 10400 [11] made no such mention of bending or internal pressure. Therefore those two formulas
do not appear in this edition.

One way that combined bending and axial load was handled historically amounted to multiplying
the maximum bending stress times the cross-sectional area of the tube, adding it to the axial load, then
comparing that sum to the joint strength of the casing. The best recommendation that could be made
here is no recommendation at all, as no particular method inspires much confidence. One thing that
should be understood about the eighth-rd thread in a bending situation, though, is that it is considered a
poor choice by most operators. V-shaped threads have a tendency to “jump out” or override one another
because the shape is conducive to this, and possibly more so in the presence of a thread lubricant. Most
operators of horizontal wells elect to use a thread with a more squared profile as opposed to a V-shaped
profile, because it lessens the possibility of jump-out. A buttress thread has a square contact in tension
but is somewhat tapered in compression. A buttress-type thread has performed successfully in medium-
radius wells for many operators. Most proprietary threads are a better choice, and in critical wells, the
proprietary threads that tend to interlock are a much better, although more expensive solution. Some
proprietary thread manufacturers publish bending performance data for their connections, and these can
be quite useful.

7.7 Combined loading in curved boreholes

We examined combined loading in the previous chapter. Perhaps, the most common occurrence of failure
from combined loading is in horizontal wells or highly deviated wells. Primarily, this is caused by the
addition of the bending stress, which can be quite significant in magnitude. Our approach to casing
design for these wells is to use conventional load curves for burst and collapse. Then, the tension design
is based on a load curve that includes the effects of both gravity and friction, so it will be quite different
from casing hanging in a vertical well. A typical curve like this was shown earlier in Figure 7.7. John
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Greenip [48] illustrated a simple method for designing casing strings in highly deviated wells, using
torque-and-drag curves like we discussed in an earlier section on borehole friction. He went a step
further to include bending stress, which he converted to an “equivalent axial load” by multiplying the
bending stress by the cross-sectional area of the tube so that it might be considered part of the tensile
load. That equivalent axial load is added to the axial load from the borehole friction curves in the
appropriate places to constitute a tensile load curve for casing selection. The procedure produces an
adequate design for most directional wells and has been used successfully by numerous operators. Here,
we assume that we designed a casing string by that method or something similar, and we now are ready
to check it for the effects of combined loading, especially in the build section.

Although none of the single loads, such as tension, bending, or burst, may exceed the yield strength
of the pipe individually, it is quite possible that the combination of the loads may exceed the yield
strength. And there are no handy charts to adequately show the effects of the combined loads often
encountered in highly deviated wells. It is easy to check the combined loads at critical points manually
to determine whether we need to make adjustments to a design or not. We also could do this with a
spreadsheet and check the entire string. Next is an example of a horizontal well in which there was a
casing problem. The operator had drilled the vertical part of the hole and a build section to an inclination
of 90◦. The company was running 7 in. casing, and about halfway through the build section, the casing
hit an obstruction, which is not unusual in a horizontal well, if the drilled cuttings are not sufficiently
cleaned out of the bore hole.4 The operator took immediate action. He put a circulating head on the
casing, then tried to wash through the obstruction. At first unsuccessful, the driller slacked off the brake
even further. As hard as it may be to understand, he set the entire string weight on the obstruction. The
shoe plugged and the internal pressure at the surface rose to 3000 psi before he was able to shut off the
pumps and pick up the string off bottom to relieve the pressure. The operator pulled the casing out of
the well and found one of the joints in the build section had buckled and crushed. Here are the data and
calculations for this actual case.

EXAMPLE 7.1 Combined Loading in Curved Wellbore

Data at 6000 ft (TVD):

• Casing OD = 7.0 in.
• Casing ID = 6.366 in.
• Casing grade = K-55 (Y = 55,000 psi)
• Young’s modulus = 30×106 psi
• Axial compression = –122,000 lbf (from torque and drag estimate)
• Radius of curvature = 300 ft
• External pressure = 3000 psi
• Internal pressure = 6000 psi

Determine if combined loads will yield pipe.

1. Calculate the axial stress:

σ z = −122000
π
4 (7.02 − 6.3662)

= −18, 331 psi

4 The build section of horizontal wells is notoriously difficult to clean because cuttings tend to migrate down the low side of the
hole at inclination angles between 45◦ and 60◦, even at relatively high circulating rates.
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2. Calculate the bending stress:

σ b = −30× 106 (7.0/2)

12 (300)
= −29, 167 psi

Note that we had to get the radius of curvature into the same units as the pipe radius.
3. Calculate the pressure effect using at the outside wall using the Lamé equations:

σ r = −3000 psi

σθ = −3000(3.52 + 3.1832)+ 2(6000)(3.183)2

3.52 − 3.1832 = 25, 694 psi

4. The maximum axial stress at the external wall is the preceding axial stress plus the bending stress:

σ z = −18331 − 29167 = −47, 498 psi

5. Since there is no torque, these are principal stress components and can be plugged directly into the von
Mises criterion:

Ψ =
√

1

2

[
(−3000 − 25694)2 + (25694 + 47498)2 + (−47498 + 3000)2]

Ψ ≈ 63, 900 psi

63, 900 > 55, 000 → yield

Clearly, this combined load value is well above the yield strength of the casing. This casing string, in
fact, did fail. The operator was not aware that the combined loading could be that significant. In this case,
the operator was lucky to get the casing out of the hole. Others have encountered similar circumstances
and found the lower part of the casing string missing when they pulled the string out of the hole. In this
case, we calculated the combined load at the outer wall of the casing, assuming that, since the maximum
bending stress occurs at the outer wall, that would be the critical location. But, the maximum stress from
pressure occurs at the inner wall, and if we calculate it at the inner wall, we find that the combined load
there would be slightly less at 63,700 psi. In this case, it was not obvious as to whether the maximum
combined load would occur at the inner wall or outer wall, but it did appear obvious that, since the pipe
was in compression, it would occur on the concave side of the curve. One should be careful about such
assumptions, however. While the maximum combined load typically occurs on the concave side when
the pipe is in compression and on the convex side when it is in tension, that is not true in general because
of the influence of the pressure.

It is relatively easy to program the Lamé equations and the von Mises yield criterion in a spreadsheet
to calculate the combined loading for a well for use in casing design. From a directional survey, one
needs the measured depths, true vertical depths, and radius of curvature between survey points. From
a torque-and-drag model, one needs the true axial loads for motion in both directions, so that one may
check for the worst-case scenario. Additionally, one needs the pipe dimensions and specific weights,
the fluid densities, applied pressures, and so forth. One does not actually need both directional and
friction software to get this data, as it all can be programmed into a single spreadsheet. The addition
of a bending-stress magnification factor would be a bit cumbersome in a spreadsheet though, but it
can be done. One convenient way to look at combined loading in casing design is in a plot of the
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combined load as a percentage of pipe yield stress. Figure 7.16 shows the combined load in an actual
L-shaped horizontal well as a percent of the yield of the casing. This is a rather simple case, where
the entire string is a single weight and grade of casing, 5-1/2 in., 17 lb/ft, N-80. The operator plans
to do multiple hydraulic fracture treatments in this well at high rates and pressures. The combined
load is calculated for a burst scenario, where the fracture treatment might screen out with a full
column of fracture fluid and proppant such that the pressure equalizes at maximum surface treatment
pressure.

A plot like this figure provides an easy way to visualize the effects of combined loading. If necessary,
a casing string can be modified to compensate for the combined loading effects. One last reminder
though, combined loading using a von Mises yield criterion does not account for connection strength
nor collapse prior to yield, as mentioned in previous chapters.

7.8 Casing design for inclined wells

The example well we used in Chapters 2–4 was for a vertical well. How would we design casing for a
directional well with the same fracture and formation pressure data? The answer is that we would follow
exactly the same procedure using vertical depths and pressures as before and we would reach a point as
at the end of Chapter 4 with a completely designed casing program adequate for our directional well to
which we would add the following steps:

Intermediate Casing
• Calculate borehole friction for intermediate string and adjust axial design if necessary.
• Calculate combined loads for intermediate string in curved portion of wellbore and adjust design if necessary.
• Calculate the section lengths of the casing for purchasing and running (as opposed to the vertical lengths in the

design.
• Calculate contact force on intermediate string for placement of drill pipe protectors while drilling to total depth.

This can only be done after the intermediate hole is drilled and before drilling below the intermediate casing.

Production Casing
• Calculate borehole friction for production string and adjust axial design if necessary.
• Calculate combined loads for production string in curved portion of wellbore and adjust design if necessary.
• Calculate the section lengths of the casing for purchasing and running (as opposed to the vertical lengths in the

design.

Let us illustrate these items in examples, first lets us establish the well geometry and data. Typically
we would have this data in a well profile plan provided by a service company according to our
specifications, in other words, they would do all the calculations. But for our example we will make
the specifications and do the calculations ourselves.

EXAMPLE 7.2 Directional Well Profile

Using data from our example well in previous chapters we will say the vertical depth is 14,000 ft as before.
Our target zone at 14,000 ft is 8000 ft horizontally from the surface location and we will drill a horizontal
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Figure 7.17 Example directional well profile.

lateral from that point an additional 3000 ft in length. That is the entirety of our data for this well plan, a
surface location and a target at the beginning of a lateral and a target at the end of the lateral. From there on, it
is up to us as to how we drill the hole. Optimizing a borehole path is not the topic of our endeavor here, so we
will just arbitrarily select a common approach. We will drill a vertical hole to 3000 ft and set surface casing.
At 500 ft below the surface casing we will begin the directional drilling with an upper build section with a
radius of 1000 ft. We will hold a constant inclination angle to near the top of the lateral at which point we will
drill a lower build section with a radius of 500 ft. Upon reach a horizontal inclination at our first target we will
drill the lateral for an additional 3000 ft. A profile of this plan is shown in Figure 7.17.

Data
vertical depth = 14, 000 ft

hz displ. = 11, 000 ft

a = 7000 ft

b = 10, 000 ft

l1 = 3500 ft

l5 = 3000 ft

r1 = 1000 ft

r2 = 500 ft

Using the given data and Figure 7.17 we may calculate the additional quantities needed. The only
clarification needed is to recognize that the line, c, is not parallel to l3, so the angle, θ2 requires a bit more
attention.

Calculations

c =
√

a2 + b2 =
√

70002 + 100002 = 12, 207 ft

l3 =
√

a2 + b2 − r2
2 =
√

70002 + 100002 − 5002 = 12, 196 ft
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θ2 = π

2
−
[
sin−1

(a

c

)
+ sin−1

( r2

c

)]

= π

2
−
[

sin−1
(

7000

12207

)
+ sin−1

(
500

12207

)]
= 0.91912 rad

θ1 = π

2
− θ2 = π

2
− 0.91912 = 0.65167 rad

(≈ 37◦
)

l2 = r1 θ1 = 1000 (0.91912) = 919 ft

l4 = r2 θ2 = 500 (0.65167) = 326 ft

Calculate the measured depths of the nodes:

s1 = l1 = 3500 ft

s2 = s1 + l2 = 3500 + 919 = 4419 ft

s3 = s2 + l3 = 4419 + 12196 = 16, 615 ft

s4 = s3 + l4 = 16615 + 326 = 16, 941 ft

s5 = s4 + l5 = 16941 + 3000 = 19, 941 ft

Calculate the vertical depths of the nodes:

h1 = s1 = 3500 ft

h2 = h1 + r1 sin θ1 = 3500+ 1000 sin (0.65167) = 4107 ft

h3 = h2 + l3 sin θ2 = 4107 + 12207 sin (0.91912) = 13, 812 ft

h4 = h3 + r2 − r2 sin θ1 = 13812 + 500− 500 sin (0.65167) = 14, 000 ft

h5 = h4 = 14, 000 ft

It is an exercise in trigonometry, but to avoid common mistakes remember that inclination is measured
from vertical (θ1 is the same as the inclination angle, θ2 is not, even though they may appear otherwise), and
always work in radians and convert to degrees when finished.

Now that we have those calculations done we need to determine the measured depths of our casing
sections. First, we do the 9-5/8 in intermediate casing which has two sections with the transition point
at a vertical depth of 6360 ft and the bottom at 10,500 ft.

EXAMPLE 7.3 Intermediate Casing Section Lengths

We calculate the lengths, �, of the two sections, starting with the top section, �2. The bottom section length,
�1, is all in the inclined straight section.

�2 = s2 + 6360 − h2

cos θ1
= 4419 + 6360 − 4107

cos (0.65167)
= 7253 ft

�1 = 10500 − 6360

cos θ1
= 10500 − 6360

cos (0.65167)
= 5207 ft
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Table 7.1 Example 9-5/8 in. Intermediate Casing

Weight Vert. Depth Meas. Depth Sect. Length

Section (lb/ft) Grade (ft) (ft) (ft)

2 43.5 P-110 6360 7253 7253
1 43.5 N-80 10500 12460 5207

We summarize the results in Table 7.1.

Next we will determine the borehole friction for this casing string. We do these calculations with
software programmed from the equations earlier in this chapter using only six survey points (at the
nodes in Figure 7.17) because this is a smooth well plan. Because of the smoothness of the planned
profile we will use higher than average friction factors to account for some amount of tortuosity in the
well as drilled. We will use a factor of 0.3 in. the cased hole and 0.5 in. the open hole. The vertical
section of the well will have zero contact no matter what friction factor we select, we will assume an
increasing inclination angle up to 4◦ in that section. We will also employ the interpolation algorithm in
Appendix E to add nodal points so as to generate a usable graph that we would not get with only six
surveys. The friction load is plotted in Figure 7.18 along with the axial strengths of the casing.

As you can see, the casing strength is well above the friction load. You may notice that the friction
load is based on the effective axial load instead of the true axial load. Both the Johancsik et al. [40] and
the Sheppard et al. [41] models calculate borehole friction using the effective stress as is this case. This
curve can be corrected to a true axial load with friction using Equation (7.10), but given the approximate
nature of our method of using a smooth well plan profile and increased friction factors to account
for tortuosity, it is hardly worth the effort since it usually has to be done manually. Most commercial

Figure 7.18 Example intermediate casing, axial load with friction (upward motion case).
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software can be “tricked” into giving a true axial load by applying a “bit weight load” equivalent to
the buoyant pressure load at the bottom, but this only works if the entire casing string is the same wall
thickness.

A point regarding that friction curve is that there exists a pervasive misconception that in a directional
well with friction, the true axial load does not exist because most of the string is “out of the shadow
of the casing top.” That is pure bunk, and where such a notion came from is a mystery (I have seen
this actually taught in industry training courses). The only time the pressure effects are not distributed
throughout a string of pipe is when the pressure has changed while the pipe is static and the change
in pressure is not sufficient to cause the pipe to move axially and redistribute the new pressure forces.
But if you move the pipe again the changed pressure effects will be distributed in the pipe as a true
axial load.

We should also check the combined load in the intermediate casing from the bending, axial load, and
burst pressure.

EXAMPLE 7.4 Intermediate String Combined Loading

We will examine the combined loading just inside the top of the build section where the radius of curvature
is 1000 ft. The axial load at this point taken from Figure 7.18 at 3500 ft is 365 klbf. We will assume that
the internal pressure when the casing is set is 2150 psi and the external pressure is 1520 psi. The internal
pressure in burst is 7660 psi and the external pressure is still 1520 psi (these values all interpolated from data
in Chapter 3). The casing is 9-5/8 in. 43.5 lb/ft P-110 (ID = 8.755 in.).

We will assume that yield will first occur at the inner wall.
Determine the initial axial stress:

σz0 =
Fz

At
= 365000

π
4

(
9.6252 − 8.7552

) ≈ 29, 060 psi

Determine the bending stress

σb = 30× 106 (4.8125)

12 (1000)
≈ 12, 030 psi

Determine the initial radial stress the Lamé equation for the inner wall (Equation (6.5)):

σr0 = −pi = −2150 psi

Determine the radial stress when the burst pressure is applied:

σr = −7660 psi

Determine the tangential stress before pressure test using the Lamé for the inner wall (Equation (6.6)):

σθ0 =
pi
(
r2

o + r2
i

)− 2por2
o(

r2
o − r2

i

)

= 2150
[
(9.625/2)2 + (8.755/2)2]− 2 (1520) (9.625/2)2

(9.625/2)2 − (8.755/2)2

≈ 5150 psi
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Determine the tangential stress when the test pressure is applied:

σθ = 7660
[
(9.625/2)2 + (8.755/2)2]− 2 (1520) (9.625/2)2

(9.625/2)2 − (8.755/2)2 ≈ 63, 480 psi

Determine the incremental radial and tangential stress due to the test pressure:

�σr = σr − σr0 = −7660 − (−2150) = −5510 psi

�σθ = σθ − σθ0 = 63480 − 5150 = 58, 330 psi

Then, using the Lamé equation for fixed end tubes (Equation (6.4)), calculate the change in axial stress
due to the test pressure:

�σz = ν (�σθ +�σr) = 0.28 (58330 − 5510) = 14, 790 psi

The axial stress including the test pressure effects is

σz = σz0 + σb +�σz = 29860 + 12030 + 9700 = 55, 880 psi

Now, using the three stress components calculated in the presence of the test pressure, we want to determine
whether or not yield will occur. Since there is no torsion, these values are principal stress components and may
be plugged directly in to the von Mises yield formula:

Ψ =
{

1

2

[
(σθ − σr)

2 + (σr − σz)
2 + (σz − σθ )

2
]} 1

2

Ψ =
{

1

2

[
(63480 + 7660)2 + (−7660 − 55580)2 + (55580 − 62480)2

]} 1
2

Ψ = 67, 660 psi

Finally, check the yield condition:

Y = 110, 000 psi

Ψ = 67, 660 psi

Y > Ψ → no yield

The combined load is nowhere near the yield strength of this casing section.

At this point we could calculate the bending stress magnification factors and the contact forces for
determining placement of drill pipe protectors to protect the intermediate casing from wear. Neither of
these two would be of much use when run on a smooth well plan profile. In practice, we would do a
bending stress magnification check with actual survey data as the drilling is nearing the casing point.
As to the contact force calculations we could do those once the drilling reaches the casing point and
sometime before the drill string is picked up to drill out. A more accurate contact force calculation
could be made from a gyro survey made inside the casing, but this is seldom done except in a well
where wear might be an extremely critical element of the drilling operation.
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Table 7.2 Example 7 in. Production Casing (Alternate
Selection)

Weight Vert. Depth Meas. Depth Sect. Length

Section (lb/ft) Grade (ft) (ft) (ft)

4 29 P-110 4500 4910 4910
3 32 N-80 9100 10700 5790
2 32 P-110 11800 14090 3390
1 35 P-110 14000 19940 5850

Next, let us calculate the lengths of sections for the production casing.

EXAMPLE 7.5 Production Casing Lengths

�4 = s2 + 4500 − h2

cos θ1
= 4419 + 4500 − 4107

cos (0.65167)
= 4910 ft

�3 = s2 + 9100 − h2

cos θ1
= 4419 + 9100 − 4107

cos (0.65167)
= 10, 700 ft

�2 = s2 + 11800 − h2

cos θ1
= 4419+ 11800 − 4107

cos (0.65167)
= 14, 090 ft

�1 = s5 = 19, 940 ft

The results of these section length calculations are shown in Table 7.2. We calculate the production
casing axial load with borehole friction. This time the calculation is a bit more complicated by the fact
that there are four sections of casing (only three different weights though) and both cased hole and
open hole friction factors.The results are shown in Figure 7.19, and as in the intermediate string there is
adequate tensile strength in the original selection.

Figure 7.19 Example production casing, axial load with friction (upward motion case).
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The maximum combined load might occur at the top of the upper build section if the plug bumps the
float collar during an upward motion of the pipe while reciprocating during the cement displacement.

EXAMPLE 7.6 Combined Loads for Production Casing

Data
• Pipe data (at top of upper build section 3500 ft): 7.000 in. OD, 6.184 in. ID, P-110
• Radius of curvature of upper build section: 1000 ft
• Tension with friction from Figure 7.19: 460,000 lbf
• Pressures from plug-bump case (Chapter 3): pi = 6820 psi, po = 2790 psi
• Additional tension from plug-bump case (Chapter 4): 38,000 lbf

Calculate Stress Components

σz = 460000 + 38000
π
4

(
7.0002 − 6.1842

) ≈ 58, 940 psi

σr = −6820 psi

σθ = 6820
(
3.5002 + 3.0922

)− 2 (2790)
(
3.5002

)
3.5002 − 3.0922 ≈ 29, 890 psi

σb = 30× 106 (3.5)

12 (1000)
= 8750 psi

σz = 58940 + 8750 = 67, 690 psi

Check for Yield

Ψ =
{

1

2

[
(29890 + 6820)2 + (−6820 − 67690)2 + (67690 − 29890)2

]} 1
2

≈ 64, 530 psi

64, 530 psi < 110, 000 psi → no yield

There is no combined load problem with this casing string. In a well like this we always design the
well path with a long radius curve for the upper build section to avoid high friction and bending forces
where the axial forces are high. If we were to plan a hydraulic fracture treatment through this string we
would repeat this calculation with the maximum internal treatment pressure.

7.9 Hydraulic fracturing in horizontal wells

Ironically, the initial impetus for horizontal wells was that it is a way to overcome the limitations of
hydraulic fracturing. Hydraulic fracturing was, and still is problematic in that the direction of hydraulic
fractures cannot be controlled. It is a given—determined by the in situ stress field which we cannot
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change. Unfortunately, hydraulic fractures almost always orient in the least desirable direction for
maximum productivity (see Appendix E for detailed explanation), whereas a horizontal well can be
drilled in a direction for best productivity. Few envisioned early on that hydraulic fracturing would ever
be necessary in horizontal wells, but that changed quickly as it became obvious that hydraulic fracturing
could considerably enhance productivity in horizontal wells in low permeability formations. Hydraulic
fracturing in horizontal wells in some areas was common for more than a decade before the shale gas
boom began, and it is now almost routine in those shale formations.

Casing in horizontal wells was also rare in the beginning. For one thing, there was no point in it
for most of the formations then being drilled, because no zonal isolation was necessary. Secondly, it
was expensive compared to a vertical well. And technically it was hard to do successfully. Getting
casing to bottom and adequately cemented posed new problems not experienced in vertical wells.
But there were good reasons to run casing in some areas because zonal isolation and stimulation
are not easily accomplished in open hole completions. There was also the possibility of borehole
collapse because of formation instability, but few operators understood that well enough to predict
or quantify any possible problems. Many operators opted to run slotted liners as insurance against
borehole collapse, and while that sounded like an inexpensive and easy solution at the time (and
unfortunately still does to many), it is possibly the worst completion choice one can make. Except
for possible borehole support, it virtually eliminates any further completion or production options
such as production monitoring (most flow is outside the liner until it nears the heel end), selective
stimulation, zonal isolation, and so forth. It is also the poorest sand control method in the industry.
I have already made this point, but it is critically important and bears repeating: Once a slotted liner
is in place, all further options are eliminated, unless you can get it out later, and good luck with
that.5

7.9.1 Casing design consideration

In addition to the items already covered, there are some special considerations concerning the design of
casing strings for hydraulic fracturing stimulations in horizontal wells, especially as they apply to the
high-pressure, high-volume treatments for shale formations.

• Relatively high treatment pressures
• Pressure cycling
• Temperature cycling

High treatment pressures

There is little that we need add to what we have already covered as far as internal pressure is concerned.
The pressures we experience in these high-volume fracture treatments is not in itself a complicated issue.
It is a source of high casing costs not normally encountered in these areas since these high pressures
are not intrinsic to the normal producing phase of the wells. That may lead to a discounting of its
importance, and some have paid the price with a very expensive fracturing stage going through casing
leaks rather than into the intended zone.

The only burst design question here is one of determining the burst pressure load for the fracture
job. The anticipated treatment pressures are dependent on depth, casing size, formation properties,

5 The exception to that caveat is the use of short slotted sections in a conventional liner with inflatable or swelling casing packers
between to achieve true zonal isolation; many of those have been quite successful.
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length and nature of the perforated interval, pumping rate, and the density and rheology of the fluids
being pumped. We are highly dependent on the service companies for much of this information until
we have experience of our own in a particular area. Once we are given the maximum anticipated
surface pumping pressure though, we can make adequate pressure load calculations for a casing string
design.

Worst case burst

When pumping the fracture fluid containing the maximum concentration of proppant at the maximum
rate, we may experience a critical event that can happen and often does—a screen-out occurs. A screen-
out is an event where the proppant bridges in the perforations and blocks entry of additional proppant.
Very quickly, all flow into the perforations is blocked and no further pumping into the formation is
possible. This can happen while pumping at the highest rates. Pressure can build very rapidly to a
static state where there is a hydrostatic column of proppant filled fluid in the casing and possibly a
high shut-in pressure at the surface. There is a compensating factor in that when screen-out occurs the
pressure at the perforations (less the hydrostatic head) is somewhat less than at the surface because of
the circulating friction loss in the casing. This may allow shut down before the shut-in surface pressure
acts upon the entire casing string above the perforations. But the pressure difference is overcome very
quickly at high pumping rates and the shut-in pressure can exceed the current surface pumping pressure.
Some would add an additional margin, yet many assume it is reasonable to use the maximum pumping
pressure as the surface shut-in pressure during a screen-out and that the fluid in the wellbore is the
fracture fluid with maximum concentration of proppant. The crux of the matter is that we do not always
know the surface pumping pressure, but we can set allowable limits based on our design, and enforce
those limits during the fracture treatment. We can then calculate a differential burst pressure as in
Chapter 3.

The only remaining question is the density of the fluid in the wellbore. In most treatment proposals
(and post-treatment reports) we read something like, “5 lb/gal #2 Ottawa sand.” What does that mean in
terms of density? If the fracture fluid is, say 9.0 lb/gal, does that mean that the fluid with the sand
proppant is 14.0 lb/gal? No, it does not. It is the weight of sand added to a gallon of the fracture
fluid. We cannot know the density of the combined fluid unless we know the density of the proppant,
and when we can find that number it is often stated in something like “lb/ft3.” That is hardly a useful
number either because that is not the actual density of proppant but the bulk density of the proppant.
(A cubic foot of sand in a sack may have a mass of 100 lb, but its density is not 100 lb/ft3.) Most
fracture service companies have appropriate tables and you can calculate the density of the mixture from
those.

ρfrac = Vfluid ρfluid + Vprop ρprop

Vfluid + Vprop
(7.54)

One can easily measure the density of a sample of the proppant using a mud balance, a graduated
cylinder, and water.

Once you know the density of the fracture fluid with proppant, then the worst case scenario at a
screen-out is easily calculated as in Chapter 3:

�p = psurf + h ρfrac − po

In addition to that you should also include a test pressure check that would take place before the well
is perforated.
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Pressure and temperature cycling

One of the more insidious problems that has been encountered in the high pressure, high volume, multi-
stage fracture treatments in recent times is that of coupling leaks. I have been involved in the forensics
of several cases and the most likely source of the majority of these leaks is the cycling of pressure and
temperature with the multiple stages. While none of the temperature or pressure cycles came near the
pressure rating of the couplings, the cyclic loading appeared to have a significant effect. In several cases
the pressure cycles were on the order of 9000-10,000psi and the temperature cycles on the order of
100 ◦F. Here is an example based on an actual well in the Marcellus shale in the USA.

EXAMPLE 7.7 Temperature and Pressure Cycle for a Fracture Stage

Assume that there is a section of casing between two fixed (cemented or stuck) points. We determine the
magnitude of the maximum differential axial stress in a stimulation cycle during winter conditions.

• Casing: 5-1/2 in. 20 lb/ft. P-110, 4.778 in.ID
• Initial down-hole pressure: pi = po = 3000 psi
• Maximum surface treating pressure cycle: �p = 10, 000 psi
• Maximum temperature change: �T = −100 ◦F (cold fracture fluid, near freezing point)

First we calculate the initial stress from the hydrostatic pressure:

σr = −3000 psi

σθ = 3000
(
2.7502 + 2.3892)− 2 (3000)

(
2.7502)

2.7502 − 2.3892 = −3000 psi

We do not know the axial stress, but for this example we are calculating the change in axial stress caused by
the pressure and temperature cycle. Now we assume the maximum pressure cycle and calculate the change in
stress caused by the change in pressure.

�σr = −13000 − (−3000)=− 10, 000 psi

�σθ = 13000
(
2.7502 + 2.3892)− 2 (3000)

(
2.7502)

2.7502 − 2.3892 − (−3000)

= 71, 530 psi

�σz = 0.28 (−10000 + 71530) = 17, 230 psi

Notice that there is now a change in the axial stress of the casing because of the change in internal pressure.
We used the Lamé fixed end formulas here.

Next we calculate the change in axial stress from the contraction caused by the cold fracture treatment
fluid. This particular well was fractured in winter where the fracture fluid had to be warmed to slightly above
the freezing point to prevent freezing. Normally we might not consider such a drastic reduction of bottom-hole
temperature, but in the case of such large volumes of treatment at a relatively shallow depth it is easy to lower
the casing temperature to very near the surface temperature.

�σT = −Eα �T = −30× 106
(

6.9× 10−6
)

(−100) = 20, 700 psi

Finally we calculate the differential stress cycle of a treatment stage.

�σz = 17230 + 20700 = 37, 930 psi



Casing in directional and horizontal wells 249

In that example we used the extreme values that could be encountered in a single fracture stage,
and we see that the results are not at all critical to the axial yield strength of the casing. Even though
we do not know the initial axial stress, it is most likely a compressive stress since this is a horizontal
lateral and the casing was pushed into the hole at that point. This particular calculation was made in
trying to determine why a casing string failed after the fourth stage of a multi-stage fracture treatment.
Several similar failures were also reported and examined, and it hardly seemed likely that the magnitude
of pressure-temperature change was severe enough to cause a coupling failure—all the failures were
in couplings. Down-hole videos of two failures verified the coupling failures. Severe erosion had taken
place and the couplings appeared to not be made up fully. In either case, once a coupling started to leak,
the fracture fluid and sand proppant began to quickly erode the threads and couplings. Great care was
exercised in the running process (because a previous string had a similar failure), and it seemed unlikely
that the connection was not fully made up. Had that been the case, the failure would more likely have
occurred during the first fracture stage, rather than the fourth. It is most plausible that the additional
separation occurred after the failure—possibly during a cycle of increased axial tension as in the
example.

All of the failures investigated in this area and another area (where temperature was not a factor)
failed in couplings. There are a number of possibilities such as improper makeup of connections,
improper amount or type of thread compound, and the axial and radial cycling that caused the couplings
to leak. After the first incident, considerable care had been taken to assure the first two were not the
problem. Because the threads were interference type (API 8rd and buttress) it appeared likely that the
cycling was causing a breakdown in the sealing effectiveness of the thread compound. The obvious
solution appeared to be to employ a metal-to-metal seal connection, or at least one in which the
pins contact a shoulder sufficiently so that the threads themselves do not cycle between tension and
compression. Two successful and inexpensive solutions have been used, one is the use of insert stop-
rings for buttress couplings as used in drilling with casing to prevent additional makeup while rotating
the casing, and the other is a special buttress connection with an extended pin so that the two pins contact
each other and form a shoulder. In both these cases the connections can be made up to the point where
an axial tension/compression cycle does not cause movement in the threads.

7.9.2 Field practices

There is a significant paradox in designing and selecting casing for a horizontal well that will undergo
high-pressure, high-volume, multi-stage hydraulic fracturing. On the one hand, the fracture pressures
demand a substantial casing string, and on the other, the resulting well will be low pressure and require
only a minimal casing string design. In other words we design and install a high pressure casing string
in a well that will never need it again once it starts producing (unless additional fracturing is done later
in the well’s life). That is one reason for seeking a low cost solution to the leak problems just discussed.

There is an associated problem that has also concluded with an expensive fracture stage going through
a coupling leak instead of the intended target zone. That problem involves the field practice. A low
pressure well does not need a 10,000 psi wellhead. This has been recognized from almost the beginning
of hydraulic fracturing in the 1950s. The solution was then, and still is, a Christmas tree saver, a device
installed on the wellhead that isolates the top of the wellhead from the casing so that the wellhead is
never subjected to the high treatment pressures. And here is where field practice comes into play—
casing should be adequately tested to the maximum anticipated treatment pressure before the day of the
treatment in case there is a leak. And a small leak should never be ignored because it will definitely get
much bigger during a large volume treatment. This test requires extra time, equipment, and expense, but
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the cost of pumping the first fracture stage into a casing leak well above the pay zone and the subsequent
task of repairing the resulting hole should be incentive enough. It has happened.

Finally, there is the process of running and cementing a casing string in horizontal well. Getting the
casing to bottom (or the end of the lateral) is one task. Getting an adequate cement job is the other. The
less the friction the easier the first. Here are some points on friction reduction:

• Smooth borehole with as little tortuosity as possible
• Minimize contact force in the lateral (lighter weight, higher strength casing)
• Minimize friction factor (friction reducers in mud—oil, plastic beads, ground walnut shells, etc.)
• Beveled couplings on casing
• Centralizers

Those are all self-explanatory, but recalling the friction equation from earlier in this chapter, F = μ N,
you can see that it is a linear relationship and lowering either the friction factor or contact force (or
both) will also reduce the friction force proportionally. The last item, centralizers, is thought to be a bit
controversial. If you get the hole clean, centralizers are an aid to getting casing in a horizontal section,
if you do not clean the hole prior to running the casing, the centralizers can be an impediment. As far
as the cementing goes, rigid centralizers are preferred and are good if the formation is competent. If the
formation is soft, the bow type are better for friction reduction, especially the “double-bow” type which
provide better rigidity and standoff. Cementing was discussed in Chapter 5.

There have been a number of problems in horizontal wells where getting to bottom has been
difficult—pinched pins from rotating, damaged connections or buckled joints from trying to push or
jar casing past obstructions, and so on. A possible aid is the use of insert-stop rings or long pin buttress
connections as mentioned previously which may allow for rotation of the casing string, but do not ever
attempt to rotate ST&C or LT&C casing.

7.10 Closure

Directional wells and horizontal wells place additional loads on casing that are not present in vertical
wells. We looked at the effects of friction and curvature in this chapter and saw the extent of these types
of loadings. We also examined the combined effects of tension or compression, pressure, and bending
in these types of wells to get a feel for the relative significance. What one should get from this chapter
is an understanding of the loads in these types of wells and a certain amount of comfort in being able to
check conventional designs for these types of wells.
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The symbols and notation used in continuum solid mechanics are not standardized. Among
disciplines, mathematicians tend to adhere to particular notation conventions, engineers to others,
physicists to yet others, and so on. Further, various authors within disciplinary groups tend have their
own particular preferences too. Adding to that is the fact that there are just too many different variables,
types of variables, and types of operators for the Roman and Greek alphabets to avoid repetition.
Therefore, I have tried to use some of the more common conventions within the mechanics community,
and use them in as consistent a manner as possible. There are some variable and operator representations
that are consistent through the entirety of the text. But strict consistency is not practical, so some
variables of lesser importance may be represented by the same letter or symbol as others. In those
cases such duplication should be obvious from the context and will be defined on first usage.

Please note that some of the mathematical symbols appearing in this appendix are not used in this
text. They are included for consistency and completeness in relation to some of those that are used.

Variables

A strict adherence to algebraic convention is used for representation of variables in that a variable
consists of a single kernel only, and further specification is indicated with subscripts and superscripts.1

This text also conforms to current ISO mathematical standards for slanted variables to distinguish
between variables and operators. This is especially important for upper case Greek characters which
in past traditions were non-slanted in all occurrences and often causing confusion.

I have tried to make all equations, especially in-line equations (those appearing in a line of text),
absolutely clear by including enough delimiters to avoid confusion even where their inclusion might
appear redundant.

Subscripts and superscripts

The standard convention used here is that italicized subscripts and superscripts signify a variable quan-
tity, e.g., the subscript, i, in xi is a variable indicating the coordinate directions as in three-dimensional

1 The use of multi-letter variable names should only appear in computer algorithms and programs as their appearance in equations
is both sloppy and confusing.
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space, x1, x2, x3. Non-italicized subscripts or superscripts are descriptors, e.g., the plain text subscript,
i, in di denotes the inside diameter of a tube. This practice is not standard with ISO, but is with many
science texts. The one exception I have made is with the linear density symbol where ISO specifies,
ρl but with a non-italicized subscript would appear as ρl, both of which can be easily misinterpreted, so
I have opted for ρ� to avoid confusion.

A.1 Mathematical operators and symbols

These are some of the more common operators and symbols that are useful in our text, and though we
may seldom use many of them they are listed here for reference.

Mathematical Operators and Symbols

∴ therefore

∀ for all

∈ in

→ to, as in A to B, or implies, as in A implies B

⇒ if, if A then B

⇔ iff, if and only if, B if and only if A

⊕ addition operation

� scalar multiplication operation

⊗ vector multiplication operation

∅ null or empty set

V a vector space

R space of real numbers

C space of complex numbers

E3 Euclidean space (manifold) (3D)

· inner product operator

× cross product operator

grad grad or gradient

∇ grad operator

div div or divergence

∇· div or divergence operator

curl curl

∇× curl or curl operator

∞ infinity∑
summation

∝ proportional to

� � row vector, 1× n
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{ } column vector, n× 1

[ ] matrix, m× n

[ ]T transpose of a matrix, n× m
T transpose operator (superscript T)

| | absolute value of a scalar

‖ ‖ magnitude of a vector or a norm

det[ ] determinant (the common notation | | is not used here to avoid confusion)

δ delta, a small variation

� Delta, an increment

δij Kronecker delta

C0, . . . , C∞ smoothness (C2 is continuous in its second derivative, C∞ is infinitely differentiable and
smooth)

Points, Vectors, Tensors

x, y, z typical points in a mathematical space

u, v, w typical vectors

0 zero vector

T, S typical tensors, 2-order

A.2 Standard ISO and traditional solid mechanics
variables and symbols

Physical dimensions for mass, length, time, and force and temperature are given by the symbols M, L,
t, F, and T, respectively.2

Scalar Variables

m mass, M

ρ mass density, M/L3

ρ� linear density, M/L

v specific volume (1/ρ), L3/m

p pressure (energy density), (F L)/L3 → F/L2

s distance (along a curvilinear path), L

T temperature, T

t time, t

V volume, L3

ν Poisson’s ration, dimensionless

2 Although force is not a fundamental unit, F = M L/t2, we will use F here for simplicity.
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Ia second area moment, axial, L4

μ dynamic friction factor, dimensionless

μs static friction factor, dimensionless

Z gas compressibility factor, dimensionless

αT coefficient of linear thermal expansion, T−1

βT coefficient of volumetric thermal expansion, T−1

I1, I2, I3 stress invariants, F/L2

J2, J3 deviatoric stress invariants (J1 = 0), F/L2

σ principal stress component (eigenvalue), F/L2

σ ′ principal deviatoric stress component (eigenvalue), F/L2

τo octahedral stress, F/L2

Some of the scalar symbols may have a subscripted 0, as h0, meaning a reference value. When
preceded by a � the meaning is an incremental value such as �h means h− h0.

Points

X, x coordinate points or coordinate systems (context dependent)

X1, X2, X3 coordinate points or axes in X

x1, x2, x3 coordinate points or axes in x

Vectors

Direct notation:

F force, F

M moment, F L

Tq torque, F L

p linear momentum, M L/T

h angular momentum, M L/T

r radius vector (from origin), L

Fg weight (mg), F

g local gravitational acceleration,3 L/t2

u linear displacement vector, L

u̇ linear velocity, L/t

ü linear acceleration, L/t2

Index notation:

Fi force, F

Mi moment, F L

3 Gravitational acceleration is a vector.
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Tq i torque, F L

pi linear momentum, M L/T

hi angular momentum, M L/T

ri radius vector (from origin), L

Fg i weight (mgi), F

gi local gravitational acceleration,4 L/t2

ui linear displacement vector, L

u̇i linear velocity (v is not used), L/t

üi linear acceleration (a is not used), L/t2

Second-Order Tensors5

Direct notation:

T or S stress tensor, F/L2

S′ deviatoric stress tensor, F/L2

E strain tensor, dimensionless

Index notation:

σij stress tensor, F/L2

σ ′ij deviatoric stress tensor, F/L2

εij strain tensor, L/L

Vector/tensor subscript variables (always in italics)

i,j,k general coordinate indices: 1,2,3

l,m,n also general coordinate indices: 1,2,3

x,y,z rectangular Cartesian coordinates

r,θ ,z circular cylindrical coordinates, (−π ≤ θ ≤ π)

r,θ ,φ spherical coordinates, (−π ≤ θ ≤ π , 0 ≤ φ ≤ π)

A.3 Casing and borehole application-specific variables

At cross-sectional area of tube, At = π(r2
o − r2

i ), L2

di inside tube diameter, L

do outside tube diameter, L

4 We usually omit the subscript on gi because we typically use an earth-oriented coordinate system, but this is not always the case.
5 Here these symbols are for small strain and displacements, other notation is defined in the very few places where needed.
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gi local gravitational acceleration,6 L/s2

g0 standard gravitational acceleration, L/s2

gc USC conversion factor (see Appendix B)

h vertical depth of a point in a borehole, L

kb buoyancy factor, dimensionless

kclps collapse rating reduction factor, dimensionless

kD design factor, dimensionless

kM design margin factor, dimensionless

� length along a curvilinear path, e.g., s2 − s1, L

L a straight length or vertical length, e.g., h2 − h1, L

p pressure, F/L2

pi inside or internal pressure, F/L2

po outside or external pressure, F/L2

�p differential pressure load, �p ≡ pi − po, F/L2

ri inside tube radius, L

ro outside tube radius, L

rh radius of hole (borehole), L

rcpl radius of coupling, L

rκ radius of curvature for borehole path, L

s coordinate distance along a curvilinear path, L

�s distance along a curvilinear path between two points on that path, L

tw pipe wall thickness (ro − ri), L

T temperature, T

Tm temperature at melting point, T

Tq torque, F L

w linear weight of tube (w = g ρ�), F/L

w̄ buoyed linear weight of tube (w̄ = kb g ρ�), F/L

Y uniaxial yield stress, F/L2

α inclination angle, rad. or deg. depending on context

β survey azimuth, rad. or deg. depending on context

αcr critical inclination angle, rad. or deg. depending on context

γ specific weight or fluid gradient, usually with subscript identifier, (F/L2)/L

κ borehole path curvature, (κ = r−1
κ ), L−1

λb bending stress magnification factor, dimensionless

6 We usually omit the coordinate subscript on g because we typically use an earth-oriented coordinate system, but this may not
always be the case.
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μ composite kinetic friction factor, dimensionless

μs composite static friction factor, dimensionless

ρ� tube linear density, mass per unit length of tube (ρ� = ρ At), M/L

ρ̂ specific density (water = 1.0), dimensionless

ρf density of fluid, M/L3

ρs density of steel (see Appendix B), M/L3

Ψ yield measure (“fictitious von Mises equivalent stress”), F L/L3 → F/L2
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B.1 Introduction

In this textbook, I have written all of the equations and formulas in their physical form without
conversion factors. Any numerical values appearing in them are physical or mathematical constants.
Any consistent set of units from a coherent unit system may be used without conversion factors. In
this appendix, we will list some conversion factors that are often required between metric and English
systems, as well as some commonly required within inconsistent English systems.

Additionally, a number of material property values as used in this textbook are also listed, as well as
some physical constants.

B.2 Units and conversions

All physical phenomena are independent of the units used to measure them, and consequently, all units
of measure are arbitrary. Hence, most systems developed over the centuries are based on convenience of
usage. In the latter quarter of the twentieth century most of the world adopted a standard system called
the SI system. It too is an arbitrary system, but it is also what is called a coherent system. A coherent
system allows use of the equations of mechanics and physics without need of conversion factors. Despite
the many advantages of such a system, there are vestiges of other systems still in use, especially in
the oilfields of the world. By far, the most prevalent oilfield usage is a mixture of units mostly in the
English engineering system, but hardly consistent. It is referred to in ISO standards as the USC (US
Customary) system. Almost every calculation done with this system requires conversion factors making
it cumbersome as well as confusing. We will not debate the issue of unit systems here, but we use the
USC system in this text because of its overwhelming prevalence in the world’s oilfields.

Table B.1 shows a comparison of four common systems.
The SI, the English absolute, and the English gravitational systems shown in the table are coherent

systems. The English engineering system is not coherent. Almost no one uses the English absolute
system as the poundal is almost unknown. While the English gravitational system is used frequently in
engineering where Newton’s second law is applicable, commercial scales that measure mass in slugs are
non-existent. A slug is gcm where m is in lb and gc = (1/32.174049) lbf · lb−1 · ft−1 · s2. Depending on
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Table B.1 Common Systems of Units

Physical International English English English
Quantity SI Absolute Gravitational Engineering

Length m ft ft ft
Force N pdl lbf lbf
Mass kg lb slug lb
Time s s s s
Stress/pressure Pa (N/m2) pdl/ft2 lbf/ft2 psi (lbf/in.2)
Energy/torsion J (N m) pdl ft lbf ft lbf ft
Density kg/m3 lb/ft3 slug/ft3 lb/ft3

Table B.2 Consistent Units in SI and English
Gravitational Units with Smaller Scale Subsets

Physical International English Gravitational

Quantity SI SI (mm) (ft) (in)

Length m mm ft in.
Force N N lbf lbf
Mass kg ton (103 kg) slug lbf s2/in.a

Time s s s s
Stress/pressure Pa (N/m2) MPa (N/mm2) lbf/ft2 psi (lbf/in.2)
Energy/torsion J (N m) mJ (10−3J) lbf ft lbf in.
Density kg/m3 ton/mm3 slug/ft3 lbf s2/in.4 b

albf s2/in. = slug/12.
blbf s2/in.4 = slug/124.

the scale of interest we may choose other sets of consistent units within those two systems which also
do not require conversion factors. Table B.2 shows both the SI and English Gravitational systems in two
sets of consistent units depending on the scale being used.

Table B.3 shows some of the more common conversion factors required to convert various USC
units to consistent SI units and Table B.4 lists conversion factors to convert common USC units into the
consistent English gravitational system.

Mass and force

One of the more confusing things about the USC system is in dealing with mass, lb, and force, lbf,
especially in gravitational loads. Under the force of earth’s standard gravity the two have the same
numerical value, and that was the intent of the definition of a pound-force. In our context the local gravity
seldom varies enough from the standard value to make any significant difference in our calculations.1

The net result is that we often omit the acceleration of gravity from Newton’s second law when the only
force is that of gravity. USC units require a conversion factor which, for lack of anything better, I will
call gc. So that the weight of an object is given by

W = m g = gc m g

1 If we want to get even more technical, the centrifugal force of the earth’s rotation opposes the gravitational force so the weight
of an object is a maximum at the poles and a minimum at the equator.
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Table B.3 Conversion of Common USC Units
to Consistent SI

Physical Quantity USC SI

Length 1 ft = 0.3048 ma

1 in. = 0.0254 m a

Area 1 ft2 = 0.09290304 m2 a

1 in.2 = 0.64516 ×10−3 m2 a

Volume 1 ft3 = 0.028316846592 m3 a

1 gal (US) = 3.785411784×10−3 m3

1 bbl = 0.158987294928 m3

Force 1 lbf = 4.4482216152605 N
Mass 1 lb = 0.45359237 kga

1 slug = 14.593903 kg
Density 1 lb/ft3 = 16.018463374 kg/m3

1 lb/gal = 0.119826427317 kg/m3

Pressure/stress 1 psi = 6894.75729317 Pa
Torsion/energy 1 lbf ft = 1.35581794833 J
Pressure gradient 1 psi/ft = 22620.5947939 Pa/m
Linear mass gradient 1 lb/ft = 1.48816394357 kg/m
Linear weight gradient 1 lbf/ft = 14.5939029372 N/m

aConversion is exact.

Table B.4 Conversion of Common USC Units
to Consistent English Gravitational Units

Physical Quantity USC Consistent Eng. Grav.

Length 1 in. = 1/12 fta

Area 1 in.2 = 1/144 ft2 a

Volume 1 in.3 = 1/1728 ft3 a

1 gal (US) = 231/1728 ft3 a

1 bbl = 9702/1728 ft3 a

Force 1 lbf = 1 lbfa

Mass 1 lb = 1/32.174049 slug
Density 1 lb/ft3 = 1/32.174049 slug/ft3

1 lb/gal = 0.23250165 slug/ft3

Torsion/energy 1 lbf ft = 1 lbf fta

Pressure gradient 1 psi/ft = 144 lbf/ft2/fta

Linear mass gradient 1 lb/ft = 1/32.174049 slug/ft
Linear weight gradient 1 lbf/ft = 1 lbf/fta

aConversion is exact.
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Table B.5 Some Other Common Oilfield
Units Within the USC System

Physical Quantity USC USC

Area 1 acre = 43,560 ft2 a

Volume 1 bbl = 42 gal(US)a

1 ft3 = 1728/9702 bbla

Density 1 lb/ft3 = 231/1728 lb/gal(US)a

1 lb/gal = 1728/231 lb/ft3 a

Pressure gradient 1 lb/gal = 0.052 psi/ft
1 lb/ft3 = 1/144 psi/fta

aConversion is exact.

where m is in lb and gc = (1/32.174049) lbf · lb−1 · ft−1 · s2. The net result of this is that numerically,
gc · g ≈ 1 and therefore gets omitted from many equations where USC units are used. That is fairly
straight forward, but confusion often arises in the case of inertial forces when Newton’s second law is

F = m ü = gc m ü

In this case, gc ü = 1 in general unless the acceleration, ü is equal to the gravitational acceleration, g.
We might make one more important point to remember. Though we seldom write it as such, g is actually
a vector and not a scalar. So properly written, the weight equation is W = m g = gc m g, and Newton’s
second law is F = m ü = gc m ü when expressed in USC units. Always remember too that gc is a
conversion factor in the USC system for converting engineering system mass units, lb, into consistent
gravitational system mass units, slug, and has nothing to do physically with gravitational acceleration.
Please note that gc as it appears in this edition is the reciprocal of that used in the first edition. The
usage here is more conventional. Other common USC units in oilfield usage are shown in Table B.5.

B.3 Material properties

Solid materials used in this text are all API steel for which there is little data published, and some is
inferred from calculation examples in some of the API standards. For properties of steel in Table B.6
we see that Poisson’s ratio is only 0.28 which is the value used in ISO/TR 10400 [11] rather than the

Table B.6 Steel Properties Used in This Text

Symbol Description SIa USCa

ρ Density 7850 kg/m3 490 lb/ft3

E Young’s modulus 206.8 GPa 30× 106 psi
G Shear Modulus 75.8 GPa 11× 106 psi
ν Poisson’s ratio 0.28 0.28
α Thermal exp. coef.—linearb 12.42 × 10−6 ◦C−1 6.9× 10−6 ◦F−1

β Thermal exp. coef.—volumeb 37.26 × 10−6 ◦C−1 20.7× 10−6 ◦F−1

aProperty values will vary with composition.
bActual values may vary significantly with temperature range and composition.
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Table B.7 Other Constants and Properties Used
in This Text

Symbol Description SI USC

ρw Water density (4 ◦C) 1000 kg/m3 8.33 lb/gal
g0 Standard gravity 9.80665 m/s2 32.174049 ft/s2

Table B.8 Standard Constants and Values Used in Gas
Equations

Symbol Description SIa USCa

R Gas constant 8314.462 J/K/mol 1545.349 ft lbf/R/lb-mol
g0

b Std Gravity 9.80665 m/s2 32.174049 ft/s2

MC1 C1 mass 16 g/mol 16 lb/lb-mol

aIn proper units for use in gas equations of Appendix D.
bCommonly used when local value of g is not known.

common value used for steel, 0.3. The coefficients of thermal expansion given here are the ones used
in the text and are average values for carbon steel in the 70-220 ◦F range. Actual values may vary
considerably with temperature range and metal composition. Other properties and gas constants used in
this text are given in Table B.7 and Table B.8, respectively.
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C.1 Introduction

This appendix is intended as a foundation level introduction to the mechanics of solids. This material is
generally taught on a graduate level, but I think it is important for those seriously working with oilfield
tubulars who have not studied this subject to any extent, to have a basic reference or refresher source.
There are excellent references on the topic, but most are difficult for those whose interest comes about
from an interest in tubulars in oilfield applications. I attempted something similar in the first edition
of this textbook, but was constrained from presenting what I thought was an adequate treatment. It
felt to me like starting a trip but stopping before getting anywhere. This appendix is more complete,
but still very brief. It assumes an understanding of undergraduate calculus, linear algebra, and matrix
operations.

In our field of endeavor we are working in an environment in which we assume a three-dimensional
Euclidean spatial geometry, E3, and that time, t, is represented as a monotonically increasing real
value. Further, we assume that Newtonian mechanics is sufficiently accurate for our applications.
These are nothing more than the assumptions of classical mechanics as taught in basic physics
and engineering courses that have served us well for many years and still do so in our everyday
macroscopic world. However, classical mechanics deals with points, point masses, point loads, and
rigid bodies. These are mathematical conveniences that do not physically exist in our universe, let
alone in our macroscopic world. We still employ them for convenience in many applications, but in
our applications, all material bodies have mass and volume (and hence, density), and all material bodies
are deformable. The only deformation phenomena taught in traditional classical mechanics courses
are modeled with springs (usually without mass). So, here we must add an additional assumption
as to the nature of material bodies, and that is that they are continuous on the scale in which we
are working. In other words, we may ignore the molecular, atomic, and subatomic substructure and
discontinuities of a material and assume a continuous material for whatever order of differentiation
we may require. This extension to classical mechanics is known as continuum mechanics and is what
engineers work with every day. It applies to both solids and fluids, though our concentration here will be
on solids.
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Our goal is to employ continuum mechanics to construct mathematical models of the material bodies
and events we are investigating. It is a simple task to do an experiment, record the data, plot the data
to show the results. For example, we might apply several tensile loads to a bar and record the stretch
in the bar for each load. A plot would give us a performance curve for that bar and might prove useful
for some specific application. What if we want to use a different size bar or use a different material
for the bar? Our plot is useless as a model because all it does is “output the input.” We seek to make
models that can predict behavior for different input. This appendix is a brief introduction/refresher to this
topic.

C.2 Coordinates

Before we explain the index notation that we will be using, we need a coordinate system, because index
notation always refers to a coordinate system. Figure C.1 illustrates a right-hand Cartesian coordinate
system similar to the one we employ in the various chapters. Note, however, that the coordinate axes are
not labeled x, y, z, but x1, x2, x3. We just as easily could have labeled them y1, y2, y3; z1, z2, z3; x′1, x′2, x′3;
or even X1, X2, X3. In this notation, the letters, x, x′, and X refer to specific coordinate systems, and we
may have as many or as few as we need for a specific use (typically, we seldom need more than two).
The numbered subscripts, 1, 2, and 3, refer to the three axes of those specific coordinate systems.

Once we have the coordinate system established, we can refer to a point in that coordinate system.
So, instead of referring to a point by its three coordinates, x1, x2, x3, we can simply refer to the point as
xi where i = 1, 2, 3.

The letter index, i in this case, is assumed to include all three axes, so it is not necessary to write out
the range of the index, i, except in cases where other subscripts might cause confusion.

We used a Cartesian coordinate system as an example, but we are not limited to Cartesian coordinates.
For instance in a circular cylindrical coordinate system we may still number the axes as 1, 2, 3, instead
of r, θ , z. The only thing we have to be careful about in other coordinate systems is the physical meaning
of some of the quantities, but we do not concern ourselves with that for now.

x1

x2

x3

Right-hand
rotation  +

Figure C.1 A right-hand Cartesian coordinate system.
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The greatest advantage to numbered coordinate systems is in computation. Computers do not do
qx, qy, qz or qx î, qy ĵ, qz k̂ very well at all. The computational baggage of such notations is excessively
inefficient.1

One important point to remember is that the physical entities which we will encounter that are
represented by scalars, vectors, and tensors are coordinate invariant, meaning that they do not depend
on our selection of coordinates. While their numerical components take on different values in different
coordinate systems, the physical entity itself is invariant. Once a coordinate system is assigned to such
an entity, it becomes unique and its values are fixed in any other coordinate system we may later choose.
This will repeated time and again in case you miss it here.

C.3 Notation convention

The notation used in continuum mechanics is relatively simple, at least it is simple after you understand
it. The difficulty in understanding is for the most part a difficulty in explaining it, and that is my
challenge, not yours.

There are three general notational schemes employed in engineering mechanics: algebraic, direct,
and index notations. The first is the most common and is taught from an early age on through most
undergraduate engineering curricula. It can become extremely cumbersome when dealing with the most
common entities of mechanical phenomena, vectors and tensors. The second finds popularity in the
discipline of mathematics where its compactness is an asset to a discipline primarily interested in
qualifying mathematical and physical phenomena rather than quantifying them. The third one, once
thought the domain of mathematicians, is a shorthand version of the first and an expansion of the second.
Let us look at an example in way of clarification.

Let us assume a vector, q, represents a steady-state heat flux across a material boundary at some
point. Assume also that q = q(x, y, z). We would like to find the gradient of that vector by taking the
spatial derivative of it. In one-dimensional space this is written simply as dq/dx.In three dimensions it
becomes a little more complicated because q has three components, qx î, qy ĵ, qz k̂. The gradient vector
is given by:

• Algebraic notation:⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂qx î

∂x î

∂qx î

∂y ĵ

∂qx î

∂z k̂

∂qy ĵ

∂x î

∂qy ĵ

∂y ĵ

∂qy ĵ

∂z k̂

∂qzk̂

∂x î

∂qzk̂

∂y ĵ

∂qzk̂

∂z k̂

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

• Direct notation

∇q or grad q

• Index notation

qi,j

1 We will use x, y, z in most of our discussions and derivations for clarity, but never for programmed computation.
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Algebraic notation can become exceedingly verbose mathematically as in the above example. Some
would shorten that example by omitting the unit coordinate vectors, î, ĵ, k̂, as being understood.
The direct notation is the most compact of all in that it seldom refers to a coordinate system at all,
because scalars, vectors, and tensors are independent of any coordinate system used to reference them.
Index notation is similar to direct notation in its compactness, but it always refers to components
(the subscripts) in some coordinate system.2 In continuum mechanics the indices (subscripts) always
take the values of 1, 2, 3 in three dimensions, 1, 2 in two dimensions, and in relativity 0, 1, 2, 3.
You may have noticed the comma in the indices “qi,j.” It denotes partial differentiation (more on
that later).

From that example, index notation should obviously have some appeal. It is:

• Logical
• Economical and compact
• Easily learned

We will introduce index notation in the next section. But before leaving this section we want
to emphasize an extremely important point. A vector or tensor will have different component
values in different coordinate systems, but they are the same entity and do not depend on the
coordinate system you select. All vectors and tensors are independent of any reference coordinate
system.

C.3.1 Index notation

In a previous finite element textbook I co-authored, I was told that it is forbidden to present index
notation to undergraduates. I think this is nonsense. It takes only a few minutes to understand the basics
of index notation for small deformations in Cartesian coordinate systems, and after a little practice and
familiarity, one would wonder why this was never taught sooner. It greatly simplifies the appearance
of the equations of mechanics and, I believe, enhances understanding. Index notation is simply this:
Coordinates are numbered and noted with subscripts.3 That is it! That is the whole idea! It was more
or less formalized by Einstein to make life easier in dealing with the geometric analogy of general
relativity where there are four dimensions in non-Euclidean space-time. We use a much more modest
version though.

Conventions of index notation

The power of the index notation is not merely the handy way to denote coordinates, but in ad-
ditional conventions that greatly reduce the amount of writing we have to do. We cover some of
those now.

2 As long as we use orthogonal coordinate systems such as Cartesian or cylindrical the indices will all appear as subscripts.
In more general coordinate systems indices may appear as both subscripts and superscripts. We will not use non-orthogonal
coordinates here.

3 In some coordinate systems, the axes are not orthogonal. There, we must use both superscript and subscript indices. But we are
not going to concern ourselves with that degree of complexity here. See Simmonds [49] for a good foundation level book on
vectors and tensors.
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Summation convention
Any index repeated in a term is automatically summed over its entire range (3). For example,

aij xj = ci →
3∑

j=1

aij xj = ci i = 1, 2, 3

In the summation convention, a non-repeated index is called a free index, and the repeated index is
called a dummy index. In the example, i is a free index, and j is a dummy index.

Range convention
Any free (not repeated) index is implied to take on all possible values of its range (3). For example,

aij xj = ci →
a11 x1 + a12 x2 + a13 x3 = c1
a21 x1 + a22 x2 + a23 x3 = c2
a31 x1 + a32 x2 + a33 x3 = c3

Nuances
The dummy index may be changed without affecting the meaning. The following is acceptable because
changing the dummy index does not change the meaning, since it only implies a sum over the range:

aij xj = aik xk

The free index may not be changed within an equation, unless we change all occurrences of that
particular index. For example,

aij xj = ci ↔ akj xj = ck

The two equations are equivalent but the following is not:

aij xj = akj xj

because the free index is not consistent on both sides.
A repeated index on a single variable is called a contraction:

aii = a11 + a22 + a33

A dummy index can be repeated only once in a term. The following expressions are meaningless:
Ciiii , εiii , aibici

We might think of indexed quantities as matrices, although that is not necessarily the purpose. Two
examples follow:

ai =
⎧⎨
⎩

a1
a2
a3

⎫⎬
⎭ bij =

⎡
⎣ b11 b12 b13

b21 b22 b23
b31 b32 b33

⎤
⎦
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When considered in terms of matrix algebra, the first index is the row number and the second is the
column number. (Caution: While this is the most common practice, some use the opposite convention:)

ci = ajbij →
⎧⎨
⎩

c1
c2
c3

⎫⎬
⎭ =

⎡
⎣ b11 b12 b13

b21 b22 b23
b31 b32 b33

⎤
⎦
⎧⎨
⎩

a1
a2
a3

⎫⎬
⎭

=
⎧⎨
⎩

a1b11 + a2b12 + a3b13
a1b21 + a2b22 + a3b23
a1b31 + a2b32 + a3b33

⎫⎬
⎭

In index notation, it makes no difference whether we write

ci = ajbij or ci = bijaj

as long as we keep the indices in the correct order, but the order of the indices does make a difference;
for instance, in general,

ajbij = ajbji

Partial derivatives
Partial derivatives with respect to spatial coordinates occur frequently in solid mechanics, and index
notation allows for a shortcut in notation by using a comma to denote partial differentiation.

fi,j ≡ ∂fi
∂xj

fi,jk ≡ ∂2fi
∂xj ∂xk

We also use summations in derivatives; for instance,

ui,ij =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂2u1

∂x1∂x1
+ ∂2u2

∂x2∂x1
+ ∂2u3

∂x3∂x1

∂2u1

∂x1∂x2
+ ∂2u2

∂x2∂x2
+ ∂2u3

∂x3∂x2

∂2u1

∂x1∂x3
+ ∂2u2

∂x2∂x3
+ ∂2u3

∂x3∂x3

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

Note that the result is still a 3×1 vector.
It becomes readily apparent that index notation can save a lot of space and effort in presenting

mathematical expressions. It is not necessary to write out such long expressions, and it also lends itself
well to computer algorithms.

This is enough to get us started. We will add to this as needed in context of certain applications. The
important things to remember for now are the ideas of the indices and the summation convention. It is a
simple concept at this level, and one only need a little practice to master it.

C.4 Scalars, vectors, and tensors

Most of you are already familiar with scalars and vectors. Tensors are perhaps not quite so familiar
to many bachelor level engineers except perhaps in the form of matrices. What follows is not by any
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means a thorough treatment, but I hope sufficient to grasp the basic concepts and to clear up any possible
misconceptions.

C.4.1 Scalars

Scalars are nothing more than single numbers. Here, they will always be real numbers, and they obey the
simple addition and multiplication rules of ordinary arithmetic. In our context, pressure, mass, density,
and temperature are commonly encountered scalars. Obviously they are not necessarily constants, but
can be functions of space and time. They may also have the physical dimensions of some vectors and
tensors, like ft/s or psi and so forth. We can often speak of them in terms of scalar fields over some
volume of space, such as a temperature field or pressure field. And since a scalar field is a function
of space we can determine its spatial gradient at different points (its rate of change within that space
in different directions). Its gradient, however, is not a scalar, but is a vector because it is assigned a
direction as well as a magnitude. The dp/dx in Darcy’s one-dimensional flow rule is an example of a
pressure gradient in one direction—it is a vector, the gradient of a scalar pressure field in the x-direction.

C.4.2 Vectors

Now we turn to the traditional engineering concept of a vector as a special case of a general algebraic
vector. A simple definition of a geometric or physical vector is a quantity with both a magnitude (or
length) and a direction in some space, e.g., displacement, velocity, momentum, and so forth in E3.
Mathematically such a vector is an ordered n-tuple such as (u1, u2, u3, . . . , un) which may or may
not represent any physical phenomena. It may be expressed in a number of notations, for example, a
displacement vector, u, may be written variously as:

1. u
2. (u, v, w) e
3.
(

u î, v ĵ, w k̂
)

4. u î+ v ĵ+ w k̂
5.
(
ux, uy, uz

)
6. (u1, u2, u3)

The first of these is called direct notation, used primarily in mathematics where the component values
in any particular coordinate system are seldom important. While it is quite compact, it is a bit abstract
for most engineers whose primary interest is in numerical results. Form 2 above is a slightly expanded
general form where e is understood as a set of base vectors of some coordinate system. These are not
necessarily unit base vectors nor is the coordinate system necessarily orthogonal. Forms 3 and 4 are
expansions commonly used in undergraduate engineering texts where î, ĵ, and k̂ are unit base vectors in
a Cartesian coordinate system and u, v, and w are the three component magnitudes, respectively. These
two examples are very easy to visualize as physical quantities, especially when numerical values are
assigned to the components. But in the age of computers they are extremely cumbersome to the point
of being an impediment to computation because they involve three different variable names as well as
three different coordinate names for the same vector. Number 5 illustrates the components with a single
name but with component subscripts denoting three coordinate directions. This form is very common,
but is still un-handy for machine computation and becomes even messier when we get to tensors later.
The last form is more computationally efficient in that the variable has a single name and the indices are
sequential numbers rather than characters. In the more efficient index notation we commonly write that
same displacement vector simply as
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ui where i = 1, 2, 3

or simply, ui, where the index, i, is assumed to take the range of some spatial coordinate system
directions. In other words, ui represents all three of the components of u in our coordinate system.
More formally we might write the vector, u as a vector sum of its components:

u =
3∑

i=1

ui êi

This then brings us back to the summation convention of index notation where the above may be written
more simply as

u = uiêi = u1 ê1 + u2 ê2 + u3 ê3

where the expansion is understood but seldom written.
I have included a set of unit base vectors, êi, similar to the familiar î, ĵ, k̂, into the mix here as a

formality where

ê1 = (1, 0, 0)

ê2 = (0, 1, 0)

ê3 = (0, 0, 1)

For clarity u might be written more fully as

u = uiêi

= u1ê1 + u2ê2 + u3ê3

= u1(1, 0, 0)+ u2(0, 1, 0)+ u3(0, 0, 1)

= (u1, 0, 0)+ (0, u2, 0)+ (0, 0, u3)

= (u1, u2, u3)

In most applications base vectors are understood, do not change, and are omitted for simplicity, so
our displacement vector is usually written simply as ui with the base vectors being understood but not
written. The written economy of index notation is becoming readily apparent and will become more so
as we progress. We do, however, need to understand base vectors and basis in a little more depth before
we proceed.

Base vectors

When we wish to work with vectors in component form, we must have some basis to which they refer.
For example, u, refers to a vector in direct notation and requires no coordinate system or basis, however
when we cast the same vector in component form, ui for instance, there is an implied basis to which the
subscript refers. The basis itself is comprised of a set of base vectors. In three-dimensional Euclidean
space, E3, there are three base vectors and ui means (u1, u2, u3)e where e is the basis or u1e1, u2e2, u3e3
where e1, e2, e3 are the base vectors of the basis e. The three base vectors are not necessarily unit valued
nor orthogonal in general. When they are orthogonal we call e an orthogonal basis. When they are both
orthogonal and unit valued, as ê1, ê2, ê3, we call the basis ê an orthonormal basis.
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Figure C.2 Rectangular components of a vector.

Most commonly we work with orthonormal bases on which we define a Cartesian coordinate system.
The components of a vector in such a basis are the projections of the vector onto the basis vectors.
For example, consider the vector, u, with magnitude, u, in a Cartesian coordinate system with an
orthonormal basis:

u = u1ê1 + u2ê2 + u3ê3 (C.1)

The vector components, u1, u2, u3, are the projections of u onto their respective base vectors, ê1, ê2, ê3
with the angles θ1, θ2, θ3, as shown in Figure C.2 and given by

u1 = u cos θ1, u2 = u cos θ2, u3 = u cos θ3 (C.2)

where the length of the vector, u = ‖u‖ is defined in the next section.
The bases we have described here are relatively simple, but the topic can get much more complicated

in some applications, as in curvilinear coordinate systems for example. In cases where displacements
and/or strains are of significant magnitude a basis assigned to a point in a material body that was initially
orthonormal in an undeformed reference configuration may not be orthonormal in the resulting deformed
configuration. That being said, we will not include basis vectors in our notation beyond this point except
where necessary for clarity.

Vector magnitude

The magnitude (or “length”) of a vector representing some physical quantity is obviously an important
property and its coordinate components by themselves may not directly express what we need to know
about a particular vector. For example, a displacement (vector), u, of some point in a material body
may be represented in coordinate form as (u1, u2, u3), but that does not tell us the magnitude of the
total distance that point has moved. There are many mathematical operations where knowledge of the
magnitude of a vector is necessary. The magnitude, u, of a vector, u is defined by

u = ‖u‖ ≡
√

(u1)2 + (u2)2 + (u3)2 ≥ 0 (C.3)
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The magnitude of a vector is either positive or zero, and in most contexts a zero vector is a point and
not a vector. An important point: When squaring vector (and tensor) components it is wise to always
use parentheses to avoid confusion, e.g., use (ui)

2 or (u2)
2 instead of u2

i or u2
2, respectively. While we

will seldom use superscripted vector or tensor components in this text, more general vector and tensor
analyses do, and omitting the parentheses can cause confusion. The exception will be when we are using
second-order derivatives like ∂2u2/∂x2

2 where parentheses might cause even worse confusion.

Unit vectors

A unit vector is a vector whose magnitude is unity (1). Any non-zero vector can be unitized so that its
magnitude is unity, and its direction is unchanged. A unit vector, û, for instance is defined as

û ≡ u
‖u‖ (C.4)

In index form we might express it as

ûi = ui

u
= ui√

(u1)2 + (u2)2 + (u3)2
(C.5)

It is quite important to note that a component, ûi, of a unit vector, û, is not equal to unity (unless the
other two components are equal to zero), so ûi always denotes the components of a unit vector and not
components that are themselves unity in value.

Polar and axial vectors

So far we have assumed that vector orientation is obvious from the physical quantities they represent,
but that is not always the case. Polar vectors, also called true vectors, are the vectors we are most
accustomed to using. They have the property that when transformed by coordinate rotations they
maintain their correct orientation. For example if we consider a reflection of some event or a transform
from a right-hand coordinate system to a left-hand system, a polar vector will still retain the proper
orientation for the quantity it represents. On the other hand, an axial vector, or pseudo-vector, is oriented
by some established convention and when transformed into a reflection or from a right-hand to left-
hand coordinate system it will generally point in the opposite direction from the quantity it represents.
Examples of axial vectors are torque (moment), angular momentum, and electro-magnetic flux which
are oriented by convention rather than obvious physical entities. Typically axial vectors arise from a
cross product such as f× u = τ which might represent force×length = torque, an axial vector. Torque
does not have an intuitive “direction” like force, so the direction of the torque vector is assigned by
convention as it is a mathematical construct of a special operation on two vectors.

C.4.3 Coordinate invariance

What we have covered about vectors so far has been illustrated in Cartesian coordinate systems which
is where we work for the most part, and we think of a vector as an ordered 3-tuple (or ordered
triple if you prefer) whose components are dependent on the particular coordinate system chosen.
But mathematically, a vector is an objective entity, and it is coordinate invariant. In other words it
represents the same entity, independent of any coordinate system in which it is cast. Once it is quantified
in component form in any coordinate system it is absolutely unique. It may be transformed into other
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coordinate systems where its components may take different numerical values, but it is still the same
unique vector. This is an extremely important point to remember.

C.4.4 Vector operations

The basic operations of vectors are addition and multiplication, and there is no operation called
“division” in vector (or tensor) operations. Vector addition and multiplication take different forms from
the arithmetic of scalar numbers. Additionally, there are several special operators that are unique to
vector (and tensor) operations. We will introduce two especially useful operators immediately, and
though they are tensors, it is not essential to understand tensors at this point.

Kronecker delta and permutation symbol

Before we get into specific vector operations it is advisable to introduce two tensor operators and an
identity that relates them. They are extremely useful in applying index notation to vector (and tensor)
operations. These are the Kronecker delta which is a 2-order tensor and the permutation symbol which
is a 3-order tensor in our usage. For now let us be satisfied that a 2-order tensor has two subscripts and
a 3-order tensor has three.

The Kronecker delta, is written in index notation as δij, a delta with two coordinate subscripts in
orthogonal coordinate systems. It is defined simply as

δij ≡
{

1 if i = j
0 if i = j

(C.6)

Where i and j take on the values 1, 2, 3. It might also be thought of as an identity tensor since in matrix
form it is written

I = [δij
] =
⎡
⎣ 1 0 0

0 1 0
0 0 1

⎤
⎦

as Iv = v. Its usefulness will soon become apparent as we proceed.
The permutation symbol or permutation tensor is a 3-order tensor which in Cartesian coordinate

systems is defined as

εijk ≡
⎧⎨
⎩

0 if any two indices are equal
1 when i, j, k are an even permutation of 1, 2, 3
−1 when i, j, k are an odd permutation of 1, 2, 3

(C.7)

The idea of even and odd permutations is easily visualized in Figure C.3 so that (1,2,3), (2,3,1), (3,1,2)
are even permutations, and (3,2,1), (2,1,3), (1,3,2) are odd permutations. The permutation symbol is a
shortcut for computing determinants and cross products which we will soon encounter. In those contexts
it serves as a notational device, hence the term, permutation symbol, however, in a more general context
it is a 3-order tensor called the Levi-Civita tensor where it can take ± values other than 1 in its even
and odd permutations. We will not encounter that form in this text, but you should be aware that we are
employing a special case of the more general form.
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Figure C.3 Even and odd permutations.

The permutation symbol and Kronecker delta are related in Cartesian coordinates by a relationship
called the ε-δ identity:

εijkεipq = δjpδkq − δjqδkp (C.8)

which is used in computing a triple cross product that we will see later.

Vector addition

All engineers are familiar with vector addition in a geometric context where vectors are graphically
arranged head to tail, and and a resultant vector (the vector sum) is drawn from the first tail to the
last head. For computational work that is a bit primitive and we use the component form instead. For
example the sum w of two vectors, u and v is

w = u+ v

w = (u1 + v1, u2 + v2, u3 + v3)

or

wi = ui + vi

Inner product

Often we find need to multiply two vectors in a manner that produces a scalar value. This is variously
referred to as inner product, dot product, scalar product. The inner product between two vectors, u and
v is defined as

u · v ≡ ‖u‖ ‖v‖ cos θ , 0 ≤ θ ≤ π (C.9)

where ‖u‖ and ‖v‖ are the magnitudes of u and v, respectively, and θ is the angle between the two
vectors (see Equation (C.3) for vector magnitude). An inner product of a vector with itself or “square”
of a single vector, is given by

u2 = u ·u = ‖u‖2 cos 0 = ‖u‖2 (C.10)

From the definition Equation (C.9) we can see that the inner product between any two different unit
base vectors, ê1, ê2, ê3 of an orthonormal coordinate system is zero since θ = π/2 and cos π/2 = 0 and
the inner product of a unit base vector with itself as in Equation (C.10) is equal to 1. Hence,

ê1 · ê2 = ê2 · ê3 = ê3 · ê1 = 0

ê1 · ê1 = ê2 · ê2 = ê3 · ê3 = 1
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We could as easily express the above two equations as the Kronecker delta:

êi · êj = δij (C.11)

Typically we are working with the component form of vectors in some orthonormal coordinate system
so the inner product of u and v is

u ·v = (u1ê1 + u2ê2 + u3ê3
) · (v1ê1 + v2ê2 + v3ê3

)
= (u1v1 + u2v2 + u3v3)

= ui vi

or using the Kronecker delta as a substitute for the orthonormal base vectors,

u ·v = (uj vk
)

δjk = ui vi

An inner product of a vector with itself is often encountered and is

u ·u = (ui)
2 = ui ui = u1 u1 + u2 u2 + u3 u3

There are several other uses for the inner product of two vectors. From the definition of the inner
product (Equation (C.9)), we may find the angle between two vectors u and v as

cos θ = u ·v
‖u‖ ‖v‖ (C.12)

or

θ = cos−1

(
ui vi√

(ui)
2 (vi)

2

)
(C.13)

Also considering two vectors, u = 0 and v = 0, if the inner product, u ·v = 0 then u and v are
perpendicular vectors, i.e.,

u ·v = 0 ⇒ u ⊥ v (u, v = 0) (C.14)

This is sometimes useful in computational work to test whether or not two vectors are
perpendicular.4

The inner product is a form of contraction which refers to any tensor operation which results in a
tensor (or vector) of an order less than the original. In this definition we are talking of tensors in general
of any order including scalars and vectors.

We might also mention at this point that in many engineering contexts, the “dot” is often omitted
from the notation and is to be assumed by the context. For example a = uv might be used, and in this
case it should be obvious that a is a scalar and a = u ·v is the implied meaning since that is the only
possible product of two vectors, u and v, that can produce a scalar.

4 In practice, the finite arithmetic of computers will seldom compute inner products as exactly zero from roundoff and truncation,
so if such a test is required one must test an absolute value of the inner product against some arbitrarily small positive constant or
variable depending on the application, for example, “If abs(Prod)<Small then Prod = 0.0e00,” where Prod is the inner product
and Small = 1.0e-10 or something within reason.
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Open product

An open product of two vectors produces a tensor called a dyad. We have not yet covered 2-order
tensors, but for explanation of this vector operation just consider them to be 3× 3 matrices for the time
being. For example

T = u⊗ v (C.15)

where T is a dyad tensor produced from the open product of two vectors, u and v. In Cartesian
coordinates we could express it as

Tij = ui vj =
⎡
⎣ u1v1 u1v2 u1v3

u2v1 u2v2 u2v3
u3v1 u3v2 u3v3

⎤
⎦ (C.16)

Upon examination you will see that this dyad tensor is symmetric, i.e., T = TT or Tij = Tji because the
vector components are scalars and multiplication of scalars is commutative.

The open product is also called a tensor product, but that name is a bit confusing and will not be used
here. In fact we will not have need for the open product in this text but include it should you encounter
it elsewhere.

Cross product

The cross product or vector product is another type of multiplication of two vectors, u and v, that yields
a third vector, w that is perpendicular to the plane containing the original two vectors.

u × v = w (C.17)

The magnitude of the cross product may be defined as

‖u × v ‖ ≡ ‖u‖ ‖v‖ sin θ , (0 ≤ θ ≤ π) (C.18)

and by convention its direction is perpendicular to the plane containing the original two vectors and
directed like a right hand coordinate system as in u → v → u × v shown in Figure C.4.

u v

u x v

Right-hand
rotation  +

Figure C.4 Cross product, right-hand convention.
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Because the cross product results in an axial vector it is not commutative. In other words

u × v = − (v × u) (C.19)

so that the commuted magnitude is the same but the orientation is in the opposite direction. A cross
product is distributive over addition

u × (v+ w) = u × v+ u × w (C.20)

A cross product is not associative.

u × (v × w) = (u × v) × w (C.21)

An oftentimes useful property of the cross product is its use calculating a unit normal vector to a
plane defined by two vectors. Given two vectors, u and v, then a unit normal vector, n̂, to those two
vectors and a plane they define is

n̂ = u × v
‖u × v‖ (C.22)

Somewhat similar to the inner product, the angle between u and v is given by

sin θ = ‖u × v ‖
‖u‖ ‖v‖ , (0 ≤ θ ≤ π) (C.23)

or

θ = sin−1
(‖u × v ‖
‖u‖ ‖v‖

)
(C.24)

Computing a cross product
The defining equation for the cross product (Equation (C.18)) given previously is not particularly
useful if one does not know the angle between the two vectors. The magnitude of the cross
product is usually calculated from the components of the two vectors in a Cartesian coordinate
system as

u × v = det

⎡
⎣ ê1 ê2 ê3

u1 u2 u3
v1 v2 v3

⎤
⎦ (C.25)

Suppose now we want to calculate a vector, w, using the above equation by cofactor expansion on
the first row for the determinate.

w = u × v = det

⎡
⎢⎣

ê1 ê2 ê3

u1 u2 u3
v1 v2 v3

⎤
⎥⎦

= (u2v3 − u3v2) ê1 + (u3v1 − u1v3) ê2 + (u1v2 − u2v1) ê3

Alternatively, we may make use of the permutation symbol so that the direct notation equation for w
above may be expressed in index notation as

wi = εijk uj vk (C.26)
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Let us use this equation to calculate the three components of w. First let is calculate w1 so the free index
i is 1 and w1 = ε1jkuj vk. Recall that the permutation symbol is zero if any two indices are the same,
so that leaves only two possibilities, ε123 which is an even permutation, and ε132, an odd permutation.
Therefore,

w1 = ε123u2v3 + ε132u3v2 = (1)u2v3 + (−1)u3v2 = u2v3 − u3v2

which is exactly what we calculated using the determinate form above. Now we calculate the remaining
two components, w2 and w3.

w2 = ε231u3v1 + ε213u1v3 = (1)u3v1 + (−1)u3v2 = u3v1 − u1v3

w3 = ε312u1v2 + ε321u2v1 = (1)u1v2 + (−1)u2v1 = u1v2 − u2v1

There are two combination products with the cross product that are useful to know though
they seldom apply in our applications here. The most common is the called the scalar triple
product which is a triple product of three vectors as in u ·(v × w) that gives a scalar value re-
sult. Geometrically it calculates the volume of a parallelepiped (Figure C.5) and as such we may
write it as

vol (u, v, w) = |u · (v × w)| (C.27)

and it forms a right-hand system, and by symmetry it is invariant under cyclic permutation, i.e.,

u · (v × w) = w · (u × v) = v · (w × u) (C.28)

Notice that in Equation (C.27) we used absolute value notation on the result of the scalar triple product
result because in that particular context a volume is a positive scalar. The scalar triple product always
yields a scalar value, but it is not necessarily positive.

Another cross product is often called the triple cross product or triple vector product and is
given by

u × (v × w) = (u ·w) v− (u ·v) w (C.29)

Similarly

(u × v) × w = (u ·w) v− (v ·w) u (C.30)

u

v

w

Figure C.5 Parallelepiped formed by scalar triple product.
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and is a different vector from Equation (C.29). Computing the triple vector product for t = u × (v × w)

in component form makes use of the ε-δ identity (Equation (C.8)) as

ti = εijk uj
(
εkpq vp wq

)
= εkij εkpq

(
uj vp wq

)
= (δipδjq − δiqδjp

)
uj vp wq

= (uj wq δjq
)

vpδip −
(
uj vp δjp

)
wqδiq

= (ur wr) vi − (ur vr) wi

This is the component form of Equation (C.29) above and also serves as a proof of the ε-δ identity.
Before leaving the cross product, we should understand that it is a special case of a more general

vector operation called variously the wedge product, the outer product, or the exterior product. We will
not encounter those forms in this text because they refer to a more general case in vector spaces of
dimensions greater than three.

C.4.5 2-Order tensors

We have mentioned before that scalars and vectors may be thought of as tensors of 0-order and 1-order,
respectively, because they obey similar rules. However, in common usage of continuum mechanics,
“tensor” refers to a 2-order tensor. And that is the custom we will follow from here on unless we specify
otherwise. Like a vector, a tensor is an objective entity, and it is coordinate invariant. It only takes on
numerical values when it is quantified in some coordinate system at which time it becomes absolutely
unique even though its components may have different numerical values when transformed into other
coordinate systems.

The definition of a tensor is usually unsatisfying for most engineers when first encountered: A tensor
is a linear operator that transforms a vector into another vector. So its definition tells us what it does, but
before we get into tensor operations let us cover a few things about what it is in terms of representation.
In our context we typically think of a tensor as being represented as a 3× 3 matrix in some coordinate
system.

In direct notation we indicate a tensor in boldface upper case like, T for instance. In component
index form we might represent the same tensor as Tij where i, j each take all values of 1, 2, 3, in three
dimensions (or 1, 2 in two dimensions), so there are nine tensor components in three dimensions. In
matrix form the first subscript refers to the matrix row number and the second to the matrix column
number.5 For example

T = Tij =
⎡
⎣ T11 T12 T13

T21 T22 T23
T31 T32 T33

⎤
⎦

Possibly the best starting point is with three examples. Simmonds [49] uses one I particularly like
called the projection operator that projects a vector onto another vector. It is quite commonplace in
many applications (including this text) and is defined as

5 While this is common in most of mechanics, some texts use an opposite convention, especially some mathematical texts as well
as some of Truesdale’s work [50, 51].
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x2

x1

u

v

Proju v

Figure C.6 Projection operator.

Projuv ≡ (v · û
)

û (C.31)

which is illustrated geometrically in Figure C.6. The vector, u, is generally not a unit vector, but must
be unitized for the projection calculation using Equation (C.4) or (C.5).

While Proju does not fit so nicely into our notion of a tensor as a 3× 3 matrix it is nevertheless a
linear operator that transforms one vector, v into another with magnitude v · û in the direction of u, it
does meet the definition of a tensor. Notice the projection tensor is equivalent to projecting a vector
onto a basis vector to calculate its component in that direction as shown previously in Equations (C.1)
and (C.2) and as illustrated in Figure C.2.

An example of a tensor is the Kronecker delta which we have already used and may represent as a
3× 3 matrix

I = [δij
] =
⎡
⎣ 1 0 0

0 1 0
0 0 1

⎤
⎦

which we earlier called an identity matrix because I v = v when used with a vector or in matrix form

Iv = δij vj =
⎡
⎣ 1 0 0

0 1 0
0 0 1

⎤
⎦
⎧⎨
⎩

v1
v2
v3

⎫⎬
⎭ =

⎧⎨
⎩

v1
v2
v3

⎫⎬
⎭

It “transforms” a vector into itself.
Another common tensor, T, forms the Cauchy stress relationship whereby the stress tensor at a point

on a surface (a physically real surface or an imaginary interior surface) transforms a unit vector normal
to that surface, n̂, into the equivalent traction vector (distributed load vector), t, acting on the surface at
that point as in t = n̂ T.

Further discussion of tensors requires an understanding of tensor operations which is the next section.

C.4.6 Tensor operations

Similar to vectors, tensors have analogous operations of addition and multiplication with somewhat
different rules from scalars or vectors. Tensors add as we would expect, but multiplication is somewhat
different.
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Dyadic tensor product

The dyadic tensor product is a tensor operation on a vector as v = T u. Some authors use a dot
notation, v = T ·u, but more commonly it is omitted and we will not use it here. We have already
shown an example of a dyadic tensor product as Cauchy’s stress relationship, t = n̂ T, as the product
of a vector and a tensor. In general dyadic products are not commutative, u T = T u unless T
is symmetric, i.e., u T = T u ⇔ T = TT. In our work here, most of the tensors we use will be
symmetric and that sometimes leads to carelessness. In index notation we have more flexibility, for
example

u T = ui Tij = Tij ui

and

T u = Tij uj = uj Tij

are all valid, as long as we keep the indices in the proper sequence to indicate the proper sum-
mation. However, the second forms in each of the above, while correct, are considered sloppy
practice and should be avoided as many common computational errors result from improper index
notation.

A dyadic product, v = T u, written in matrix form would be⎧⎨
⎩

v1
v2
v3

⎫⎬
⎭ =

⎡
⎣ T11 T12 T13

T21 T22 T23
T31 T32 T33

⎤
⎦
⎧⎨
⎩

u1
u2
u3

⎫⎬
⎭ (C.32)

and v = u T would be written as

⌊
v1 v2 v3

⌋ = ⌊ u1 u2 u3
⌋⎡⎣ T11 T12 T13

T21 T22 T23
T31 T32 T33

⎤
⎦ (C.33)

Again, Equations (C.32) and (C.33) are equivalent if T is symmetric, T = TT or Tij = Tji.

Tensor product

The tensor product of two tensors is one that results in another tensor. Such operations occur frequently
in continuum mechanics applications. It is commonly written as

T = U V (C.34)

Some authors use a dot as in T = U ·V, but most omit it as we will here. The best way to understand
the operation is to cast it in index notation in Cartesian coordinates as

Tij = UikVkj (C.35)

where it is seen as the simple multiplication of two 3× 3 matrices. The tensor product forms a
real vector space, and as such obeys all the rules. It is not, however, commutative, in that U V =
V U. But

U V =
[
VTUT

]T
(C.36)
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Inner product of two tensors

The inner product of two tensors is a product that results in a scalar value. For example

U : V = UijVij

= U11V11 +U12V12 +U13V13 + · · · + U33V33 (C.37)

There is another form where

U . . V = UijVji

= U11V11 +U12V21 +U13V31 + · · · + U33V33 (C.38)

If either tensor is symmetric (U = UT or V = VT) then they are the same form. The inner product is
commutative, is associative with addition and scalar multiplication, and U : U > 0 when U = 0.

Curvilinear coordinates

Before moving on, this is an appropriate place to bring up an important point. The previous examples
of matrix representations of dyadic products are only valid for rectangular Cartesian coordinate
components. Things become much more complicated in curvilinear coordinates where the components
of a tensor in a coordinate system are not the same as the physical components they represent. We
alluded to this earlier when we talked about “distances” in a cylindrical coordinate system where θ , is
not the same type of coordinate as r and z. For example, the dyadic product, vi = Tijuj, expressed in
matrix form in Equation (C.32) is only valid in rectangular coordinates. In more general coordinates
it would be written as vi = Tijuj where vi is a covariant vector and uj is a contravariant vector (see
Simmonds [49]). This is not said to confuse the issue, but to make you aware of more general concepts
that we are specializing in our treatment.

C.4.7 Coordinate transforms

Quite often it becomes necessary to transform the components of a vector or tensor from one coordinate
system into another. In working with tubes in boreholes one finds it is quite often useful to employ a
global coordinate system that is earth oriented to account for a downward vertical gravitational force
and some compass orientation of the borehole itself. However, it is more convenient when working with
some segment of a borehole or a tube within a borehole to use a local coordinate system oriented in
relation to the segment of the borehole or the tube. Were it not for the gravitational force component,
our work could be greatly simplified, but that is almost never our case and we are constantly faced with
working with two coordinate systems in the same analysis.

The topic of coordinate transformation is quite easy, but as a consequence, almost no textbook
on tensor analysis gives an adequate explanation for someone who actually intends to apply such a
transform in actual calculations. Furthermore, the notation can cause considerable confusion to the
practitioner. I will try to remedy that here by explaining coordinate transforms as something you are
actually going to apply in practice since it is essential in our applications.

A transform between Cartesian coordinates whose origins are coincident is easily accomplished by
a 3× 3 orthogonal rotation matrix, [Q]. Such an orthogonal matrix has some interesting and specific
properties.
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[Q] [Q]T = [Q]T [Q] = [I]

[Q]T = [Q]−1

det [Q] = det [Q]T = 1

where the superscript, T, denotes the transpose of the matrix, [Q].
In index notation, given that [Q] = Qij, then the above may be stated as6

Qik Qjk = Qki Qkj = δij

Qji = Q−1
ij

det Qij = det Qji = 1

One must be very careful about index notation in regard to transposed matrices. The general custom is to
always use free indices in alphabetical order, and therefore free indices in reverse order would indicate
a transpose matrix form, e.g., if [Q] = Qij then [Q]T = Qji. Unfortunately this is not always so clear or
adhered to consistently, as we will discuss later.

To understand the orthogonal rotation matrix, we should see how it is defined. The standard derivation
is correct, but can lead to misunderstanding if not followed closely. Consider two coordinate systems,
x and x′, with orthogonal base vectors, ei meaning e1, e2, e3 and e′i meaning e′1, e′2, e′3, respectively,
then

ei ·ej = δij and e′i ·e′j = δij (C.39)

because the base vectors are orthogonal. Note especially here that the index on ei refers to the number
of the base vector, e.g., e2, and not to its individual components.

A vector, u, may be expressed in either coordinate system as

u = ujej = u′je′j (C.40)

If we want to transform a vector, uj from the original coordinate system, x, to a new coordinate
system, x′, we use the vector equality as expressed in the above equation and rearrange it to the
following:

e′j u′j = ej uj (C.41)

We multiply both sides by e′i we get

(
e′i ·e′j

)
u′j =

(
e′i ·ej

)
uj (C.42)

Since e′i ·e′j = δij then

u′i =
(
e′i ·ej

)
u′j (C.43)

6 Strictly speaking, Qij refers to specific components of the matrix, [Q], and hence the second two equalities are not correct for
individual components of the matrix, but are meant in this context to denote the entire matrix in index notation.
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At this point we define the transform matrix as

Qij ≡
(
e′i ·ej

) = cos θij (C.44)

From this we can see that

u′i = Qij uj (C.45)

or in direct notation

u′ = Q u (C.46)

If we wish to perform the inverse operation, recall that [Q]T = [Q]−1 so pre-multiplying both sides by
QT gives

QTu′ = u (C.47)

or

Qjiu′i = uj (C.48)

Here, we must always exercise caution with indices to distinguish between the transform matrix
and its transpose. We will always use Qij for the components of [Q] and Qji for the components of its
transpose, [Q]T. Be aware that some authors do differ in this notation.

In general form the transform matrix, [Q], is written as

[Q] =

⎡
⎢⎢⎣

cos θ11 cos θ12 cos θ13

cos θ21 cos θ22 cos θ23

cos θ31 cos θ32 cos θ33

⎤
⎥⎥⎦

In matrix form the row numbers refer to the components of the transformed vector and the column
numbers refer to the components of the vector being transformed. For example, u′1 = Q11u1 +Q12u2 +
Q13u3. In some texts you might see the components written as Qi′j as to keep the meaning clear, but we
will not do that here as it encumbers the notation considerably. Now comes the confusing part; the angle
θij is the angle measured from the original ith coordinate to the new jth coordinate. For example, θ13 is
the angle from x1 to x′3 which appears contrary to the notation of row and column numbers we have just
stated, but that is how it is measured.

For a simple example, assume that the x′ coordinate system is formed by a rotation of the x
system by an angle, θ , counterclockwise about the x3 axis as in Figure C.7. This is a right-hand
rotation in a right-hand coordinate system so θ is a positive rotation angle. The angle between
the x1 axis and the x′1 axis is θ hence the Q11 component is cos θ . Next, the angle between x1
and x′2 is θ + π/2, so Q12 = cos(θ + π/2)= sin θ . The angle between x1 and x′3 is π so Q13 =
cosπ = 0. The second row of [Q] is done similarly. Q21 =cos(π/2− θ) =− sin θ . Then Q22 = cos θ

and Q23 = cos π = 0.
This completes the first two rows of Qij, and you should be able to see the pattern now. The first

subscripts of θij, the row numbers, i, are the axes of the original coordinate system from which θ is
measured, and the second subscripts, j, the column numbers, are the transformed axes to which θ is
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x3,x¢3

x¢2
x2

x¢1

x1

θ
13

θ12

θ
11

Figure C.7 Example of positive rotation of θ about the x3 axis.

measured. For completeness, the last row is Q31 = cos π = 0, Q32 = cos π = 0, Q31 = cos 0 = 1. We
may write it in matrix form as

[Q] = Qij =
⎡
⎣ cos θ sin θ 0
− sin θ cos θ 0

0 0 1

⎤
⎦

It may seem obvious at this point that the general case will usually be much more complicated than
a simple rotation about a single axis and the values of θij will be much more tedious to calculate than
that simple example. The good news is that any configuration can be determined by three consecutive
rotations, each about a single axis. For many applications, two consecutive rotations is all that is
required. Any orientation can be achieved by a rotation about an axis of the original system followed
by second rotation about an axis of the transformed system, followed by a third rotation about an axis
of the second transformed system. In other words, we only have to determine three rotation angles
at maximum. And we may combine those three rotations into a single matrix if it is one we may
be continually using for a particular application. In common practice of evaluating borehole stress
components, we will require only two rotations rather than three.

[Q] = [Q′] [Q]
Tensor and matrix multiplication is associative but not commutative in general, so the order of
multiplication is critical because [Q′] [Q] = [Q] [Q′]. Hence, the sequence of rotations proceeds from
right to left.

That being understood, three axial rotation forms are all we will ever require, and we will seldom
need more than two of them for most transformations in our context.

[
1Q
]
=
⎡
⎣ 1 0 0

0 cos θ1 sin θ1
0 − sin θ1 cos θ1

⎤
⎦
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[
2Q
]
=
⎡
⎣ cos θ2 0 sin θ2

0 1 0
− sin θ2 0 cos θ2

⎤
⎦

[
3Q
]
=
⎡
⎣ cos θ3 sin θ3 0
− sin θ3 cos θ3 0

0 0 1

⎤
⎦

The superscripts on these denote the axis of rotation. If you examine these you will notice a pattern that
will make it very easy to remember these three transforms. A value of 1 always appears on the diagonal
of the row/column for the axis of rotation. The other elements of that row and column are 0. The other
two elements on the diagonal are always cos θ . The remaining two elements are always sin θ with the
lower left of those two always negative. Remembering that and the right-hand convention of rotations,
you will never have to look any of this up again. Now how do we apply this?

For a general transform consisting of a rotation of θ3 about the x3 axis followed by rotation of θ2
about the x′2 axis we would have

Qij = 2Qik
3Qkj =

⎡
⎣ cos θ2 0 sin θ2

0 1 0
− sin θ2 0 cos θ2

⎤
⎦
⎡
⎣ cos θ3 sin θ3 0
− sin θ3 cos θ3 0

0 0 1

⎤
⎦

=
⎡
⎣ cos θ2 cos θ3 cos θ2 sin θ3 sin θ2

− sin θ3 cos θ3 0
− sin θ2 cos θ3 − sin θ2 sin θ3 cos θ2

⎤
⎦

Notice that in the summation convention the subscripts of the two rotation matrices are not in
alphabetical order as we required earlier, but we formed the two matrices, 2Qij and 3Qij, properly first,
then changed the inner indices to dummy indices to indicate the matrix multiplication. While this is
shown for illustration, this particular transform occurs frequently in analyses regarding boreholes.

Transforming vectors

The transform of a vector, u = u(xi) = ui to the new coordinate system, u′ = u′(x′i) = u′i, is simple in
direct notation.

u′ = Q u

or

u′ = u QT

The order is important because matrix multiplication does not in general commute. In index no-
tation it may be written any number of ways, each correct, but possibly confusing when actually
calculating.

u′i = ujQij = ujQji = Qijuj

or even
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u′i = ukQik = ukQki = Qikuk = Qkiuk

Remember, we may use any indices we choose but the free index must always signify the row index of
the original [Q]matrix as we defined it above. While this is mathematically a trivial point, it is one of the
most frequent sources errors in student programming. So, whatever notation you choose, be consistent
in its use.

EXAMPLE C.8 Coordinate Transform of a Vector

Suppose ui = (1, 1, 1) and our new coordinate system represents a rotation of π/2 (90◦) counterclockwise
about the x3 axis so that our coordinate transform tensor in matrix form is

Qij =
⎡
⎣ 0 1 0
−1 0 0
0 0 1

⎤
⎦

then

u′i = Qijuj =
⎡
⎣ 0 1 0
−1 0 0
0 0 1

⎤
⎦
⎧⎨
⎩

1
1
1

⎫⎬
⎭ =

⎧⎨
⎩

1
−1
1

⎫⎬
⎭

Alternatively we could do it u as a row vector and QT as

Qji =
⎡
⎣ 0 −1 0

1 0 0
0 0 1

⎤
⎦

then

u′i = ujQji =
⌊

1 1 1
⌋⎡⎣ 0 −1 0

1 0 0
0 0 1

⎤
⎦ = ⌊ 1 −1 1

⌋

In the above example we assumed that a row vector and a column vector were equivalent for our
transformation, but in non-orthogonal coordinates that is not necessarily the case.

Transforming tensors

The transformation of tensor components from one coordinate system to another is quite similar to that
of vectors in that the transformation matrix, [Q], is exactly the same. The difference is that the 2-order
tensor has nine components represented as a 3× 3 matrix, and requires two multiplications instead
of one.

T′ = Q T QT

In index notation where [Q] = Qij one possibility is

T ′ij = Qip Tpq Qjq
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EXAMPLE C.9 Tensor Transform

Assume the same transform matrix, [Q] as in Section C.4.7 and a tensor

Tij =
⎡
⎣ 1 2 3

4 5 6
7 8 9

⎤
⎦

then the transform is

T ′ij =
⎡
⎣ 0 1 0
−1 0 0
0 0 1

⎤
⎦
⎡
⎣ 1 2 3

4 5 6
7 8 9

⎤
⎦
⎡
⎣ 0 −1 0

1 0 0
0 0 1

⎤
⎦

=
⎡
⎣ 0 1 0
−1 0 0
0 0 1

⎤
⎦
⎡
⎣ 2 −1 3

5 −4 6
8 −7 9

⎤
⎦

=
⎡
⎣ 5 −4 6
−2 1 −3
8 −7 9

⎤
⎦

where we started the matrix multiplication from the right. It makes no difference as to which matrix
multiplication is done first as long as you do not commute the matrix sequence.

As a quick error check when transforming tensors manually, recall that the sum of the diagonal
elements of the transformed matrix will be the same as the sum of the diagonal elements of the
original matrix. Also, if the original matrix is symmetric, then the transformed matrix will also be
symmetric. These checks are no guarantee against errors, but if either of these fail there is definitely
an error.

C.5 Kinematics and kinetics—strain and stress

The two fundamental tensor quantities of the mechanics of deformable bodies are strain and stress. In
general, strain is a measure of kinematics, kinematics meaning movement in space as a result of force
or energy—displacement, translation, deformation. Stress on the other hand is a measure in kinetics,
kinetics meaning the forces and energy that provide motion.

C.5.1 Deformation and strain—kinematics

All real materials are deformable. But it is perfectly appropriate in many cases to assume that certain
objects behave as rigid bodies and do not deform, since in many cases we are not interested in
deformation or the magnitude of deformation does not affect our observations or calculations. An
example would be picking a casing string up off bottom in a well to reciprocate the pipe while cementing.
When we first begin to pull on the pipe, it is stretching. The top is moving, but the casing shoe is not.
Once we pull a certain amount, the entire string is moving. If we are trying to determine the maximum
load required to reciprocate the pipe, then we are not interested in the load as the pipe is stretching
before the entire string is moving. We are interested only in the load from gravity and friction when the
entire string is moving. This is modeled as a rigid body motion and the deformation or stretch in the
pipe has no significance in this context. A rigid body motion may be a translation and/or a rotation in
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space. A body moves from one position to another without deformation. A rotary table rotates while
drilling, and that is a rigid body motion for most applications. Certainly, there is some amount of
deformation in the individual parts, but that is of no interest if we are interested in penetration rate
as a function of rotary speed. If we are interested in bit speed as a function of rotary speed, however,
we might consider the deformation of the drill pipe in torsion as a possible fluctuating variable. If we
are interested in the burst pressure of a casing string, the burst value is based on a deformation of the
casing.

Deformation by itself is not that meaningful. For instance, if a casing string is stuck, we pick up on
it to try to free it, and we pull maybe 6 ft or 2 m through the rotary table. Is that significant? We cannot
answer such an important question with only the amount of information given. If it is stuck at a depth
of 10,000 ft, then a 6 ft or 2 m stretch is not very much. But, if the casing is stuck near the surface that
deformation could be quite significant. So, what we need is a measure that gives us some idea of how
significant the stretch is.

One way to measure deformation, then, is simply the stretch divided by the original length. That
is a simple measure of strain and satisfactory at low values for uniaxial deformations. However, if we
were to measure the wall thickness of the pipe very accurately, we also would find that, as the pipe
stretched and got longer, the wall thickness decreased slightly. One simple definition of strain in three
dimensions is

εij = 1

2

(
ui,j + uj,i

)
(C.49)

where ui is the deformation in one of the three axis directions. This definition of strain, called the Cauchy
infinitesimal strain, is the measure most commonly used for small strains. Suppose, for our pipe example
from above (with a “strain” measure ΔL/L = 0.0006), the x3 coordinate is vertical and downward in
a weight-less environment (for simplicity), so that the strain from the 6 ft stretch is uniform along the
entire length of the tube down to 10,000 ft, that is, du/dx3 is a constant all along the length of the pipe,
then

ε33 = 1

2

(
u3,3 + u3,3

) = 1

2

(
∂u3

∂x3
+ ∂u3

∂x3

)
= 1

2
(0.0006+ 0.0006) = 0.0006

This is fairly straightforward, but note that there are a total of nine strain components instead of one,
and the others may not be zero. In fact, not all will be zero. Because, as we said, when we stretch the
pipe in one direction, there is a change in the other dimensions as well. Those other changes may be
insignificant or they may not. In addition to the strain definition given by Equation (C.49), the Cauchy
infinitesimal strain, there are other definitions of strain. We save those for later. The Cauchy strain tensor
may be written as a matrix:

εij =
⎡
⎣ ε11 ε12 ε13

ε21 ε22 ε23
ε31 ε32 ε33

⎤
⎦ (C.50)

Large deformations

We are not going to cover large deformations in this text, but we should mention a few things that are
important. Most all of the engineering mechanics problems we solve are based on small deformations
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and infinitesimal strains. The world gets a lot more complicated when we consider finite or large
deformations and finite or large strains.

Strains within the elastic limit of metals like steel are very small, and we are quite safe in that respect.
Where we get into trouble with even small strains is when the displacements become finite, so that even
though the strains are very small, the geometry of the deformed body changes measurably.

In our area of interest this is most common in the bending of tubes in curved wellbores. Such
a problem is classified as one with nonlinear geometry. The rule of thumb is that deflection of any
structural member with a length to radius of gyration ratio of 10:1 or greater should be considered as
one of nonlinear geometry. That means that most problems we address regarding lateral deflection of
casing (or tubing or drill pipe) should be considered as geometrically nonlinear.

In the linear geometry of small deformations and infinitesimal strains we need only consider one
coordinate system—the original reference coordinate system. Once we move to the next step up in
complexity, finite deformations and infinitesimal strains, we must now include an additional coordinate
system, the current or deformed coordinate system. This presents additional complexities as to how we
define strain. If the reference coordinate system is designated the X-coordinate system and the deformed
coordinate system is the x-coordinate system then we have two measures of the strain:

Eij = 1

2

(
ui,j + uj,i + uk,iuk,j

) = 1

2

(
∂ui

∂Xj
+ ∂uj

∂Xi
+ ∂uk

∂Xi

∂uk

∂Xj

)

and

eij = 1

2

(
ui,j + uj,i − uk,iuk,j

) = 1

2

(
∂ui

∂xj
+ ∂uj

∂xi
− ∂uk

∂xi

∂uk

∂xj

)

Very few textbooks deal with large deformations to any extent, and it sometimes becomes a matter
of self study to piece together a workable knowledge of the topic. One place to begin is the book by
Fung [52].

C.5.2 Stress—kinetics

Our early concept of stress was most likely that it is a “distributed load” as opposed to a “point load.”
That is all right for many simple engineering calculations, but it is quite misleading when we advance
to more complicated problems. First of all, we need to recognize that, in the real world, there is no
such thing as a point load. A point load is a mathematical convenience that exists only in theory and
calculations. All real loads are distributed loads. Think about it this way; if we could apply a true point
load of 100 lbf to the surface of a steel block, what would happen? If it is truly a point load, the contact
area shrinks to zero, the pressure exerted by the load goes to infinity, and the steel block fails at the point
of contact. Of course, this does not happen in the real world, because the contact area is not zero, so the
load actually is distributed over some area, even though it may be very small. So, even though true point
loads do not exist, we use them in our calculations for convenience. Now, back to the distributed load,
is a distributed load that we typically measure in psi (lbf/in.2) or Pa a stress? No, it is not. Just because
it has the same units of stress does not make it a stress.

What is a distributed load then? Some call it a stress vector. This is an unfortunate bit of terminology
that has become entrenched in elementary mechanics. If you want to use that term, you have plenty of
company, but it can be confusing to call two totally different things stress. A distributed load is a vector,
it has magnitude and direction, but stress is never a vector. The proper name for a distributed load is
a traction or traction vector, and it is a directional load (force) distributed over some area of contact.
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Something else worth noting is that you cannot apply a stress. You can apply only traction; stress is a
result of the traction. But, most important, remember that stress itself is never a vector.

We have said that stress is a tensor. What is a tensor? That is a good question for which there is not
a good answer. Or at least, there is no good answer that would ever satisfy an engineer. A tensor is a
mathematical quantity that transforms according to certain rules (which were illustrated previously, but
we lack space to explain here). Also, when we speak of a tensor, we typically are talking about a 2-order
tensor, such as stress (or strain). There are other tensors of different orders as well.

The stress tensor for small displacements and strains is called the Cauchy stress tensor. In component
form, σij, it has nine components and is typically written as a 3×3 matrix.

[
σij
] =
⎡
⎣ σ11 σ12 σ13

σ21 σ22 σ23
σ31 σ32 σ33

⎤
⎦

In our applications it is real-valued and symmetric, σij = σji, such that σ12 = σ21, σ13 = σ31, σ23 = σ32,
thus reducing the number of different components to six.

Figure C.8 shows the sign convention of the components. All of the components shown are positive in
value. For example, σ11 to the right is on the positive x1 face of the block and is pointed in the positive
x1 direction, hence it is positive in sign. On the left side there is a component of σ11 pointing in the
negative x1 direction, but it is on the negative x1 face of the block so it too is a positive component. The
off-diagonal or shear components of the stress matrix follow a similar convention. The shear component,
σ12, is on the positive x1 face and is pointed in the positive x2 direction. On the negative face (not
shown) σ12 would point downward in the negative x2 direction and hence is also positive. The first
subscript denotes the face and the second denotes the direction. Considering the diagonal components,
σ11, σ22, σ33, positive is tension, and negative is compression.

A very important formula that relates the stress tensor and a traction vector is known as Cauchy’s
formula7 and is

t = n̂ T → ti = nj σij (C.51)

σ11

σ33

σ22

σ11

σ33

σ22

x1

x3

x2

σ23

σ32

σ31
σ13

σ12

σ21

Figure C.8 Stress sign convention.

7 A derivation of this important formula appears in every book on continuum mechanics. We will not take space to derive it here
because we are not going to use it.



Appendix C: Basic mechanics 295

where t (ti), n̂ (nj), and T (σij) are a traction vector acting on a surface with a unit normal vector, and
the stress at the point of contact, respectively. The surface need not be a physical surface, but can be an
imaginary one drawn within a material body itself.

One final point before we move on. It is misleading to assume that we can always determine a uniaxial
stress by dividing a uniaxial load by the cross-sectional area of the material body. This is true only for a
prismatic bar, that is, one with a constant cross section, but it is not true near the ends of the bar, where
the loads are applied. We cannot determine the axial stress in a tube under a thread cut into the tube by
dividing the axial load by the cross-sectional area under the thread. Likewise, we cannot calculate the
uniaxial stress in a coupling, connection, or upset in a tube in a similar fashion. Whenever the cross-
sectional area of a tube changes, the stress field at the change and in the near vicinity of the change is
more complicated than a single uniaxial component. In the case of a connection, additional complication
comes from the addition of tangential, radial, and shear stress components in the connection itself. Saint-
Venant’s principle, however, effectively states that, at some distance away from the ends of a long tube
(or point of change in diameter), the stress field becomes uniaxial, and there we are safe in dividing the
cross-sectional area by the axial load to get the uniaxial stress component. For all practical purposes,
that distance is relatively short in oilfield casing, but in a strict interpretation of the theory, it is valid
only for tubes of infinite length.

Stress invariants

Some things about a stress tensor are invariant no matter how we may rotate our coordinate system.
These are called stress invariants, and three are associated with a symmetric stress tensor:

I1 = σii (C.52)

I2 = 1

2

[
(I1)

2 − σijσji

]
(C.53)

I3 = 1

3

[
3I1I2 − (I1)

3 + σijσjkσki

]
(C.54)

You might well ask, of what use are those three invariants? There are a number of times when those
are useful, but one use that is of importance is to find the three principal stress components. We can
expand the determinant in the following equation to get a cubic equation in terms of the above stress
invariants, from which we can solve for the three principal stress components:

det
[
σij − σδij

] = 0

where σ is a principal stress component and δij is the Kronecker delta. We will return to methods to
determine the principal stress components and their directions after the next section.

Deviatoric stress

To understand a yield stress and plastic material behavior, it is necessary to learn about one other type
of stress component and its invariants, the deviatoric stress. The stress tensor may be decomposed into a
spherical (or hydrostatic) stress and a deviatoric stress. The spherical stress is that part of the stress
tensor that is basically equal in all directions, that is, just like hydrostatic pressure. The deviatoric
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stress is what is left after the spherical stress is taken out. One way of thinking about it is that the
spherical stress might be said to be the part of the stress tensor trying to compress a material body (or
pull it apart) uniformly in all directions and the deviatoric part of the stress is what attempts to distort
its shape.

In terms of the three principal stress components, the spherical stress is

σspherical = σ1 + σ2 + σ3

3
(C.55)

We could then calculate the three principal deviatoric stress components by subtracting the spherical
stress from each principal stress component:

σ ′1 = σ1 − σ1 + σ2 + σ3

3

σ ′2 = σ2 − σ1 + σ2 + σ3

3
(C.56)

σ ′3 = σ3 − σ1 + σ2 + σ3

3

If we do not have the principal stress components, we can calculate the deviatoric stress from the
stress tensor components as

σ ′ij = σij − δij
σkk

3
(C.57)

There are several things to note here. The off-diagonal components of the deviatoric stress tensor are
the same as the regular stress tensor. The only components that are changed are the ones on the diagonal.
Each of those has subtracted from it one third of the sum of the diagonal components, which is I1/3.
Now, the deviatoric stress also has similar invariants:

I′1 = σ ′ii = 0

I′2 =
1

2

[(
I′1
)2 − σ ′ijσ ′ji

]
= −1

2
σ ′ijσ ′ji

I′3 =
1

3

[
3
(
I′1
) (

I′2
)− (I′1)2 + σ ′ijσ ′jkσ ′ki

]
= 1

3
σ ′ijσ ′jkσ ′ki

But rather than use the same notation as the regular stress invariants, it is customary to define these
deviatoric stress invariants as follows:

J1 ≡ I′1 = 0 (C.58)

J2 ≡ −I′2 =
1

2
σ ′ijσ ′ji (C.59)

J3 ≡ I′3 =
1

3
σ ′ijσ ′jkσ ′ki (C.60)

Note that we defined J2 as −I′2. There is a purpose to that in later applications, but use care in that some
authors do not use this convention.

We show an example of the deviatoric stress when we discuss yield stress in the section on plasticity.
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Principal stress components

As already stated, the stress tensor is invariant under any coordinate system and that only the component
values vary. In Cartesian (and other orthogonal systems) it is possible to find a coordinate system
in which all the off-diagonal components of the stress matrix disappear leaving only the diagonal
components. These three diagonal values are called the principal stress components of a stress tensor.
The principal stress components are the eigenvalues of the stress matrix and their direction vectors
are the eigenvectors. Recall from your linear algebra that a system of linear equations [A]{x} = {C}
has a unique solution if and only if the coefficient matrix, [A], is non-singular, i.e., det[A] = 0.
For a homogeneous system, [A]{x} = {0}, with a non-singular, [A], the unique solution is {x} = {0},
and is called the trivial solution. If the homogeneous system is singular, det[A] = 0, then there is
no unique solution, and there may be an infinite number of them which will include the trivial
solution.

In mathematical terms the eigenvalues, σ , make the matrix [σij − δijσ ] singular, such that there are
nontrivial solutions to the homogeneous set of equations, [σij − δijσ ]{xj} = {0}. The nontrivial solutions,
{xj} are the eigenvectors. Singular systems are of no interest to us except to solve for the eigenvalues
and eigenvectors which are the principal stress components and their direction vectors. In matrix form
we express the singular equation set as⎡
⎣ σ11 − σ σ12 σ13

σ21 σ22 − σ σ23
σ31 σ32 σ33 − σ

⎤
⎦
⎧⎨
⎩

x1
x2
x3

⎫⎬
⎭ =

⎧⎨
⎩

0
0
0

⎫⎬
⎭ (C.61)

Here the eigenvalues are of a value that makes the stress matrix singular. Since one characteristic
of a singular square matrix is that its determinant is zero, we solve for the eigenvalues (principal stress
components) by setting the determinant of

[
σij − σδij

]
equal to zero:

det
[
σij − σδij

] = 0 (C.62)

or in matrix form as

det

⎡
⎣ σ11 − σ σ12 σ13

σ21 σ22 − σ σ23
σ31 σ32 σ33 − σ

⎤
⎦ = 0 (C.63)

When we expand that determinant, we get a characteristic equation whose coefficients are the three
stress invariants:

σ 3 − I1σ
2 + I2σ − I3 = 0 (C.64)

When the stress tensor is symmetric (always the case in our applications), that cubic equation
has three real roots, which are the three principal stress components. Any cubic equation always
has a closed form solution, meaning there is a formula we can use to find the three principal stress
components.

General formula
The characteristic equation may be solved for the real roots, the principal stress components, as follows:

a = 1

9

(
I2
1 − 3 I2

)
(C.65)
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b = 1

54

(
2 I3

1 − 9 I1 I2 + 27 I3

)
(C.66)

1. If a3 + b2 > 0 then there are three real and unequal roots (principal stress components) and the equation may
be solved by the trigonometric method as follows.

φ = cos−1
(

a√
b3

)
(C.67)

σ1 = −2
√

a cos (φ/3)− I1/3 (C.68)

σ2 = −2
√

a cos [(φ + 2π) /3]− I1/3 (C.69)

σ3 = −2
√

a cos [(φ − 2π) /3]− I1/3 (C.70)

2. If a3 + b2 = 0 then there are three real roots and at least two are equal. These roots may be solved with the
following which involves complex arithmetic (the results are real valued, but the intermediate arithmetic will
involve complex numbers).

A = 3
√
−b+

√
b2 + a3 (C.71)

B = 3
√

b+
√

b2 + a3 (C.72)

σ1 = − (A+ B) (C.73)

σ2 = A+ B

2
− A− B

2

√−3 (C.74)

σ3 = A+ B

2
+ A− B

2

√−3 (C.75)

3. If a3 + b2 < 0 then there is one real root and two conjugate complex roots, i.e., the tensor is not real valued and
symmetric. We do not consider this case since our stress tensor is symmetric.

Polar coordinates
In tubes where σrz, σθz = 0.

σ1 = σθ + σz

2
+
√(

σθ − σz

2

)2

+ σ 2
rθ (C.76)

σ2 = σθ + σz

2
−
√(

σθ − σz

2

)2

+ σ 2
rθ (C.77)

σ3 = σr (C.78)

and in tubes where there is no torsion, i.e., σrθ = 0, then

σ1 = σθ (C.79)
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σ2 = σz (C.80)

σ3 = σr (C.81)

Principal deviatoric stress components

The characteristic equation for the principal deviatoric stress is:(
σ ′
)3 + J2σ

′ + J3 = 0 (C.82)

This is similar to the characteristic equation for principal stress components except that J1 is zero and
does not appear.

General Formula
Similar to solving for roots of the cubic characteristic equation for principal stresses we set:

a = −J2/3 (C.83)

b = −J3/2 (C.84)

1. If (J3/2)2 − (J2/3)3 < 0 then

φ = cos−1
(

B√
A3

)
(C.85)

σ ′1 = 2
√

a cos (φ/3) (C.86)

σ ′2 = 2
√

a cos [(φ + 2π) /3] (C.87)

σ ′3 = 2
√

a cos [(φ − 2π) /3] (C.88)

2. If (J3/2)2 − (J2/3)3 = 0 → J2/J3 = 3/2 then

A = 3
√
−b+

√
b2 + a3 (C.89)

B = 3
√

b+
√

b2 + a3 (C.90)

σ1 = A+ B (C.91)

σ2 = −A+ B

2
+ A− B

2

√−3 (C.92)

σ3 = −A+ B

2
− A− B

2

√−3 (C.93)

3. If (J3/2)2 − (J2/3)3 > 0 then the stress tensor is not real valued and symmetric.

And as before, step 2 above involves complex arithmetic. There are any number of software
programs available that will do these calculations, if you are not familiar with programming complex
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variables. And there are other approaches that can avoid complex arithmetic altogether (see Allen and
Haisler [53]), but are too long to go into here.

Principal stress directions

After solving for the principal stress components (or deviatoric principal stress components), we may
also need the orientation of the components, the eigenvectors. To do this we plug an individual principal
stress component into Equation (C.61) and solve for its eigenvector. If there are three different roots we
will have to do this three times to solve for all three eigenvectors. While this is easy to say, it is not
a simple as that, because each eigenvalue makes the coefficient matrix, [σij − δijσ ] singular, and thus
rendering an infinite number of solutions. But the important characteristic of these solutions is that the
values are always in the same proportion to each other, which is all we need to define a vector and which
we can easily make unit vectors using Equation (C.4). One way to do this is to set one of the solution
components to unity and solve the set for the other two.⎡
⎣ σ11 − σ1 σ12 σ13

σ21 σ22 − σ1 σ23
σ31 σ32 σ33 − σ1

⎤
⎦
⎧⎨
⎩

1
x2
x3

⎫⎬
⎭ =

⎧⎨
⎩

0
0
0

⎫⎬
⎭ (C.94)

We can then use two of those three equations to solve for the components, x2, x3. Traditionally we make
the eigenvector a unit vector with Equation (C.5). And we repeat the process for each principal stress
component.

Comments on stress

There are a number of ways we can use the stress invariants, I1, I2, I3 and the deviatoric stress invariants,
J2, J3 in applications. For example, if we calculate the principal stress components, σ , we do not have
to solve another cubic equation for the principal deviatoric stress components because

σ ′ = σ − I1/3 (C.95)

Another way to get the principal deviatoric stress components without solving the characteristic
equation is to calculate another stress quantity called the octahedral stress, τo.

τ0 =
√

2

3
J2 (C.96)

then

φ = cos−1
(√

2
J3

τ 3
o

)
(C.97)

Then the principal deviatoric stress components are then

σ ′1 =
√

2 τo cos

(
φ

3
+ 4π

3

)
(C.98)

σ ′2 =
√

2 τo cos

(
φ

3

)
(C.99)
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σ ′3 =
√

2 τo cos

(
φ

3
+ 2π

3

)
(C.100)

From these results we can back into the principal stress components with Equation (C.95)

σ = σ ′ + I1/3 (C.101)

This involves a few more steps, but avoids solving the cubic characteristic equation totally.
One last comment. The notion of principal stress components raises an interesting question. Since

stress is independent of any coordinate system and may be represented mathematically as a symmetrical
stress tensor that can always be resolved into three principal stress components in any coordinate system
such that the “shear” components disappear, then is shear stress a physical reality or just a mathematical
notation? Or posing it another way, if for any stress, we can orient our coordinate system such that
the shear components disappear, is there actually such a physical entity that we can designate as shear
stress or is it just a name for the off-diagonal components of a stress matrix? What I am driving at here
is that shear components of stress are nothing more than the mathematical names for components of
stress in particular directions and are not some separate kind of physical stress as much common usage
tends to imply. The unfortunate use of separate variable names, σ and τ , for diagonal and off-diagonal
components, respectively, of a stress matrix as if they are somehow a different type of stress, has
contributed greatly to the misunderstanding. While the orientation of stress at some point in a material
body or structure is obviously very important, it is that orientation with regard to a material body or
structure that may be critical rather than some separate physical entity of the stress tensor. As one wise
soul once stated it, “A material cannot ‘feel’ a shear component, only the principal components.”

C.6 Constitutive relationships

Suppose we have a solid cube of some material that measures 1 meter on each edge, and it is lying on
a flat surface. We know the weight of the cube. We apply a downward force of a known magnitude on
top of that object. If we are asked, What is the force on the flat surface?, we have an easy problem. It is
Newtons third law, and the answer is the force on the surface is the weight of the cube plus the force we
applied to the top of the cube. If we approach it slightly differently and instead of measuring the force
we apply on top we instead measure how much we actually compress that cube vertically, by say 0.2%
of its original height (see Figure C.9). We now have a different problem in determining the resultant
force on the flat surface.

We know that it is equal to the weight of the cube plus whatever force is necessary to compress the
cube by 0.2%. In order to solve this problem we need to know something about the material the cube is
made of, and more specifically how the material responds to a compressive load. Such a relationship is
called a constitutive equation and in this case it is a simple one-dimensional version of Hookes law.

σz = E
du

dz

This simple relationship relates a load (stress), to a deformation gradient (strain), by means of a
constant, Young’s modulus, which is a property of the material. There are many constitutive relationships
in every day use though we do not often think of them as such. Here are two one-dimensional
examples.
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0.002 m

F = unknown

R = ?

Figure C.9 Force, displacement, and reaction.

q = −k
dT

dx

v = k

μ

dp

dx

The first is Fouriers law of heat conduction that relates heat flux to a temperature gradient by means of a
material property, the conductivity. The second is Darcy flow that relates fluid flux to a pressure gradient
with two material properties, permeability and viscosity.

There are many types of material behavior, for example, elastic, plastic, viscoelastic, viscoplastic.
Elastic behavior could be subdivided into linear elastic, non-linear elastic, hyper-elastic, and viscoelas-
tic. If one were to apply a load to a material and plot the load curve (load versus deformation) such as
a stress-strain curve, one could not really understand much about a materials behavior. It is only when
the load is removed that we can begin to understand its behavior. For example, look at the material load
curve in Figure C.10a. What type of behavior is this? We might be tempted to say it is elastic-plastic
since it looks like what we have often seen to illustrate how a metal behaves elastically up to a yield
point and then becomes plastic beyond the yield point. But in truth, all we can say for this example
without more information is that its behavior is non-linear.

Now let us reveal the unloading behavior on that same material, Figure C.10b. We see that it returns
to the same point that we started. So when the load is removed it has no permanent deformation. It is by
definition elastic.

The defining criteria for elastic behavior is that if a body is subjected to a load and the load is later
removed it will return to its original state. But we notice something else about this material load curve.

σ

ε

σ

ε
(a) (b)

Figure C.10 Nonlinear behavior: (a) loading curve and (b) loading and unloading curves with a hysteresis loop.
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s

e

Figure C.11 Slow loading and unloading cycle. Linear elastic material?

It did not return by the same path with which it was loaded (a hysteresis loop). What could explain
that? Time. It is a rate-dependent behavior, in other words it is viscoelastic. The shape of this load curve
depends on the loading and unloading rate. The loading and unloading curve does not tell us the rate at
which the load was applied or removed. For example, we could load the same material very slowly and
remove the load also very slowly. We might get a loading and unloading curve that would look like the
straight path in Figure C.11. If you were not aware of the time dependent curves you might assume that
it is a linear elastic material. And it is, albeit at very slow rates of loading. Many materials that we might
consider linear elastic are actually rate dependent materials. Porous formation rock in most wells is an
example.

Appearances can be deceiving. We are not going to concern ourselves with rate dependent materials
here, but the point is important, do not jump to conclusions that are not justified.

C.6.1 Elasticity

We said that an elastic material is one in which the material returns to its original state after an applied
load is removed. A linear elastic material8 is one whose loading path and unloading path are the
same straight line. The constitutive behavior of a linear elastic material is modeled by Hooke’s law,
as mentioned before. It is called a law, but it is not a law of physics or nature. It is just a convenient
relationship that models the behavior of certain materials within a very limited range of deformation.
We might even say that we are very fortunate that it does, even though its range is quite small, because
almost every structure or machine we come into contact with daily is designed using this constitutive
relationship. Hooke’s law written in three-dimensional tensor form is

σij = Cijkl εkl (C.102)

If we were to write that out in matrix form, the stress and strain tensors would each contain 9 terms
and the elastic modulus would contain 81 terms. All are symmetric (except in the presence of body
moments—usually electro-magnetic). For an isotropic material, one whose material properties are the
same in all directions, Equation (C.102) can be simplified considerably. We can use a contracted notation
(called Voigt notation) and write the stress and strain in vector form and the elastic modulus as a 6 × 6
matrix:

8 We should note that, when we refer to an elastic material, we are speaking to only a particular range of a particular material’s
behavior. Materials may exhibit different types of behavior in different load ranges.
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⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

σ11
σ22
σ33
σ23
σ13
σ12

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭
= E

(1+ ν) (1− 2ν)

⎡
⎢⎢⎢⎢⎢⎢⎣

1− ν ν ν 0 0 0
ν 1− ν ν 0 0 0
ν ν 1− ν 0 0 0
0 0 0 1−2ν

2 0 0
0 0 0 0 1−2ν

2 0
0 0 0 0 0 1−2ν

2

⎤
⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ε11
ε22
ε33
ε23
ε13
ε12

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

where we have now included Poisson’s ratio, ν. This is a bit more complicated than the simple one-
dimensional form, but often a number of simplifying assumptions, such as plane strain or plane stress,
can be adopted to reduce it to two dimensions for a number of applications. We are not going to use this
constitutive relationship, but merely show it so that you can see what it looks like.

C.6.2 Plasticity

We defined an elastic material as one in which, when an applied load is removed, the material goes
back to its original state. A material is said to behave plastically when an applied load is removed and it
does not go back to its original state. In other words, it has undergone some permanent deformation in
the loading process. Plasticity is a complex topic and there are exceptions to just about everything, but
we are concerned primarily with steel in casing here, so we are going to confine our discussion to that
limited scope. Steel behaves more or less as a linear elastic material up to a point, called the yield point.
When loaded beyond that point, its behavior is said to be plastic, but the elasticity has not disappeared,
it is still exhibited when the loads are removed. Figure C.12a shows a load curve for elastic-plastic
behavior of a test sample in uniaxial tension.

The loading in this curve is such that the sample is linear elastic up to its yield point, Y, then deforms
plastically until the load is removed, at which time, it unloads elastically. The difference between the
initial strain (zero here) and the final strain is the permanent deformation of the material in a plastic
mode. It is of significance at this time to make mental note of this elastic unloading. When a metal, such
as steel, is deformed plastically to a certain size or shape, it will always display some amount of elastic
“rebound” or deformation when the load is removed. When coiled tubing is bent plastically onto a reel,
a lot of elastic energy is stored on that reel, and if you were to release the end of the tube, you would
witness an amount of elastic unloading you might not otherwise imagine.

In many cases, the behavior of the metal at the yield point is somewhat more complicated than that
in Figure C.12a. Sometimes the elastic behavior becomes nonlinear before the actual yield stress is
reached, and that point is called the proportional limit. Ductile steels often exhibit this behavior and

s

e

s

e

(a) (b)

Y Y
Failure

Ultimate strength

Figure C.12 Uniaxial test, elastic-plastic behavior of steel: (a) loading and unloading and (b) loading to failure.
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Figure C.13 A typical steel test sample.

materials like cast iron seldom exhibit a distinctive yield point. There are other cases where the stress
actually decreases slightly after the yield stress is reached; hence, there is an upper yield stress and a
lower yield stress. This is typical of some steel alloys. In many cases, the yield point is indistinct on
a stress-strain chart, so the yield point is defined as some arbitrary point offset from the proportional
limit by a specified amount of strain (API does this). We do not concern ourselves with those details,
but rather assume that, as long as we do not exceed the published yield stress for the casing material, its
behavior is linear and elastic up to that point.

What happens if we continue to load the test sample? Figure C.12b shows the uniaxial loading of a
sample all the way to failure. At this point, we need to explain a few things. First of all, in this figure,
we are looking at a uniaxial load curve. It is plotted as stress versus strain, which we already discussed
but we need to understand a bit more. We must emphasize one thing about this figure, and that is in
reference to the point labeled as the ultimate strength. That is not a material property, it is a property
of the sample geometry and the test type. It is the point at which the test sample begins to experience
significant deformation of its initial geometry in tension. You will observe nothing comparable in a
compressive test. While it is not a material property, it is a property in a tube in tension and does have
some use—it appears in the current ISO formulas for ductile rupture.

The samples of material used in these tests are relatively small compared to the massive machine
in which they are tested. The samples usually look like the one shown in Figure C.13, sometimes
colloquially referred to as a dog bone sample. The sample is placed in a large machine that pulls it
in tension, as the load and stretch are recorded.

The ends are larger than the test portion, so the gripping effects of the machine do not affect the
stress in the narrower test portion. The cross-sectional area of the test portion is measured accurately
before the test begins. The stretch in the sample is measured by the machine as a displacement, and
the load is measured with a pressure transducer, These are recorded on a chart similar to that shown
in Figure C.12b. The machine itself is massive in relation to the size of the sample, but nevertheless it
has some amount of elastic stretch while pulling tension, as does the wider portion of the sample, so
usually an electronic strain gauge is attached to the sample in the thinner area to measure the stretch.
The results may be plotted as load versus stretch, which is the raw data from the machine, but that is
not of much use unless one is testing a particular structural element or part as opposed to a sample
of material like we are considering here. We use the following relationships to get the values for a
stress-strain plot:
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σ = F

A
, e = �− �o

�o
= Δ�

�o

where the stress is the machine-measured load divided by the cross-sectional area of the sample, and the
strain is the stretch in the sample section divided by the original length of the sample section.This strain
measure is known as the engineering strain or the nominal strain. These are plotted as in Figure C.12b.
Similar tests may be run in compression or cyclical loading.

In looking at Figure C.12b, we see that the material deforms elastically up to the yield point, then
begins its plastic deformation, in which a lot of strain takes place with little increase in stress, yet the
stress continues to increase up to a point, where it begins to decline until the sample fails. The part of
the curve where the stress continues to increase in the plastic range is called strain hardening. But what
about the part of the curve where it starts to decline. Is this “strain softening” then? This part of the curve
can be misleading because of the way we calculated the stress and strain. Our definition holds only for
very small deformations. If we actually measured the cross-sectional area of the sample as it stretches,
we would find that the area is getting smaller. So, what we have plotted on the vertical axis is not the true
stress, but rather the load divided by the original cross-sectional area of the sample, which is commonly
referred to as the engineering stress or nominal stress. And, if we looked at the failed sample, we would
see that the most significant decrease in cross-sectional area occurred in only a small part of the length
of the sample and the cross-sectional area at the point of failure is possibly less than half the original
area. If we were to plot the true stress, we would find that, in many cases, it continues to increase right
up to the point of failure; and for some materials, the increase is rather drastic just before failure. We
might also note that our measure of strain, e above, is no longer valid either, since the reduction in cross
section (called necking-down) is quite localized, so that the uniaxial strain in the region of failure is
apparently a lot greater than elsewhere along the sample length. The true strain is not Δ�/�0 but rather
d�/� , which leads to a true strain or logarithmic strain measure:

ε = ln

(
�

�0

)
= ln

(
1+ �− �o

�0

)
(C.103)

We might also note that the appearance of the sample itself began to change just before failure, in that
visible bands of discoloration or surface texture began to appear on the surface of the sample where the
area reduction was most pronounced, giving the appearance of some change in the metal itself. These
are called Lüder’s bands, and that is exactly what they indicate. Two things are of importance here. If
we tested several samples of the same material, all would fail at different values. That is the nature of
materials; we cannot predict the actual load value at which the material fails. We can determine a range
of values, but we cannot predict the exact value for any particular sample. If all of the samples were
cut in precisely the same way under the same conditions and we could perform rigorous inspections
on them, we could get pretty close, but the point is we could not predict the exact failure strength. The
second point is this. We said that, if we used a measure of true stress and strain, then we could say
that the material never got “weaker” before it failed, and that is often true. However, the sample itself
got weaker before it failed, and that is important. In terms of total load, it failed at a load less than the
maximum load it was subjected to in the test. If it were a structural member or casing, that would be
important. So, while the true stress is important, the load on a structure does not know to reduce itself
when the cross-sectional area of a structural member is reduced by plastic deformation. In casing, the
apparent stress at the maximum load is called the ultimate strength. It is very important to remember
that the ultimate strength is not a material property; it is a property of the sample in uniaxial tension.
Likewise it is a property of a right, prismatic tube like casing. We never want to exceed that maximum
load value, no matter how we measure stress or strain.
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Now, let us go back to the issue of strain hardening mentioned earlier. Strain hardening in a metal, for
the most part, is caused by defects in its crystalline structure, called dislocations. All steels have some
amount of this type of defect. But defect might be a severe term to use in an oilfield context, so perhaps
a dislocation should be thought of as an imperfection in the crystalline lattice of a metal. A dislocation
is a missing bond at a lattice junction. When a metal is stressed beyond its initial yield point, these
dislocations begin to move or migrate. No material physically moves (at least, on an observable scale),
but where a bond is missing at a lattice junction, a bond forms, and the missing bond is transferred to
the next junction, sort of like the game of musical chairs, where there is one fewer chair than the number
of people present. When one person gets up, another takes his or her place. What causes the strain-
hardening effect is that as these dislocations begin to accumulate at grain boundaries, there is no other
place for them to go, and they begin to resist the deformation of the material. There are other contributing
factors, but that is the main one. While most structural steels are strain hardening materials to some
degree, some are not. Some brittle steels exhibit very little strain hardening, and failure strength is very
close to the yield strength. Some soft steels behave more like what is known as an elastic-perfectly-
plastic material, in that once yield stress is reached, the material continues to elongate to failure with
no increase in stress required. The steel used for coiled tubing closely approximates this latter behavior.
Also some strain-softening materials are such that, once yield is reached, continued elongation requires
less and less stress.

For a strain-hardening type of steel, if we stop loading a sample before we reach the maximum and
remove the load, we know that it unloads elastically as shown in Figure C.12a. What happens if we apply
a load again? The answer is that it goes right back up the same path as the unloading path. Furthermore,
it does not yield until it reaches the value at which the load was removed before. It may vary with a
bit of hysteresis and become slightly nonlinear before yielding again, but after yield, it continues on the
same path, as if the unloading never took place. The result, though, is that, on re-loading, it actually
yields at a higher value than the original yield value at the start of the test. We could repeat this process
any number of times, and each time, we increase the yield value until we reach the top of the curve. So,
for a strain-hardening material, we can increase the yield strength by cold working it. Or can we? It all
depends on what our application is. Let us look at compression.

If we were to test an identical sample in compression, it would be a mirror image (and upside down)
of the one we just showed. And we could compress it to the same point and increase its yield strength
in compression just as we did in tension. The question is, then, if we work our sample in tension
first then test it in compression, will the yield point in compression be increased just like the one in
tension? The answer is no, it would not. In fact, if we increased the yield in tension, then the yield
in compression actually would be less than the initial yield. This is called the Bauschinger effect. In
other words, we cannot have it both ways. Is the amount of reduction in compression equal to the
amount of increase in tension? Again the answer is no, the reduction in the compressive yield stress
generally is less than the increase in tensile yield stress. We can show this with an ellipse, which we
call a yield surface in two dimensions for now. We are not plotting strain now but principal stress
components in two directions. Up is tension, down is compression. We do not concern ourselves with
the transverse component for now. We know that, when we increase the tensile load beyond the yield
surface, we increase the yield stress in that direction. One way to think about it would be that the yield
surface gets larger. In other words, it expands by the amount we go beyond the initial yield stress, as
shown in Figure C.14a. This is known as isotropic hardening; the yield surface grows uniformly in all
directions.

This means that we also increased the yield strength in compression by the same amount; and
we already said that does not happen. Isotropic hardening does not happen, but it is useful in a few
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Figure C.14 Strain hardening: (a) isotropic hardening and (b) kinematic hardening.

applications when repeated loading does not cause yielding in different directions. Another possibility
might be that the yield surface actually moves as shown in Figure C.14b. Here, the yield surface
stays the same size, but it moves as the stress exceeds the yield stress. This model is called kinematic
hardening

For kinematic hardening in the simple uniaxial case we are discussing, the reduction in yield stress in
compression is of exactly the same magnitude as the increase in the tensile yield stress. We already said
that does not happen either. What actually takes place is something in between. The yield surface grows,
but it also moves. This is called combined hardening. And what all this amounts to is this: When working
in the plastic regime, we have to keep up with the growth of the yield surface and keep track of where
it is. This usually is done with something called internal state variables, which are defined by a flow
rule to account for the translation of the yield surface and a growth law that accounts for its expansion
or hardening. In the simple incremental theory of plasticity, one internal state variable is a second-order
tensor that tracks the translation of the yield surface, and the other is a scalar that keeps track of the size
of the yield surface. Take into account also that we are not talking about the three-dimensional space
we live in, but rather a nine-dimensional stress space. Another point of complication is that, when the
stress is on the yield surface (it cannot go past it), the most common plasticity theory requires that plastic
strain can take place only in a direction normal to this nine-dimensional hyper-surface. In some plasticity
theories, the yield surface is not regular and smooth, like the ellipse we illustrated, and loading paths
also may change shape in addition to size and location. Additionally, in larger deformations such as
the necking discussed in the uniaxial test previously mentioned, localized rotations within the material
begin to occur. These rotations must be tracked, too. At some point, we begin to kid ourselves as to what
we know how to do in this strange space. So we are going to drop back a notch or two for now and think
about how to stay out of it. Obviously, if we stay inside that yield surface with our stress and do not
bump into it, we should stay out of serious trouble. That is the topic of the next section, but let us look
at one more scenario first.

One of the most difficult aspects of materials that have been loaded beyond the initial yield point is
predicting their properties at a later time, because the loading beyond initial yield makes it a history-
dependent material. You cannot predict its future behavior unless you know the history of its loading.
For example, suppose we take two identical samples, both with an initial yield strength of 80,000 psi.
We subject them both to a uniaxial load of 90,000 psi. In other words, we work hardened them in
tension to increase the yield strength (in tension). If we test these two samples, one in tension and one
in compression. We find that the tensile sample does indeed yield at 90,000 psi as we expect. But the
sample we test in compression does not yield at 90,000 psi, nor even the original 80,000 psi. We find that
in compression it yields at say 77,000 psi. This is a case of combined hardening (somewhere between
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isotropic and kinematic) which is typical in many metals. By cold working this metal we have moved
the yield surface (in stress space) and we have also changed the size.

That example was for a simple uniaxial test. If we had subjected a large sheet of steel to the same
uniaxial stress then cut samples from it in various directions, the results would have been even more
alarming. The point is that, when a metal is loaded beyond the initial yield point, we cannot possibly
predict its behavior, unless we know the history of the loading. And, that not only means the exact
loads but also the exact sequence. One oilfield example would be a well subject to large temperature
fluctuations from a shut-in state to a flowing state, and back to shut-in. If, in compression from thermal
expansion, suppose a portion of the production casing string yields. Take into account that, during the
heated stage, the packer fluid also is heated and expands, causing a high internal pressure in the casing.
Assume that the casing actually yields at the inner wall with a combined axial compressive stress, a
radial compressive stress, and a tangential tensile stress, but because of strain hardening, it does not
actually fail in this particular case. Then, the well is shut in for a few days and cools to where that
portion of the casing is now in tension and even has a net differential pressure from the outside. Now,
the state of stress at the inner wall is axial tension, radial compression, and tangential compression.
What is the yield strength of the casing under that load? All we can honestly say is that it differs from
what it was before the yield occurred and is probably less, but without knowing the exact history of the
loading, we cannot predict the yield in the current state. We may be able to get close enough for “oilfield
use” with some appropriate assumptions—or we may not.

The history dependence and the changes in yield are the primary reasons we try to stay out of the
plastic regime in most engineering design. We can do fairly well with one-time loading, but when
the loading is cyclical and even varies in magnitude and direction with the cycles, it is extremely
difficult to get any meaningful results. James F. Bell, who did significant experimental work with
large deformation plasticity at Johns Hopkins University, once made the comment that, if you subject a
material to varying loads beyond the initial yield point, it may become impossible to even find the yield
point experimentally. What that translates to is that incremental plasticity theory works much better as
a mathematical concept than it does with real materials.

C.6.3 Yield criteria

A yield criterion is a hypothesis that defines the limit of elastic behavior under any possible state of
stress. We call that limit a yield surface, although it is a surface in a mathematical sense only. There
have been a number of yield criteria over the years, but two have proven quite successful, especially for
metals such as steel. The oldest of these is that of Tresca, dating back to 1864. It is a piecewise linear
model that in cross section is a hexagon. It found a lot of use before computers became available for
computations and still enjoys some use because it lends itself to a number of closed-form solutions that
otherwise require a computer and numerical solutions. It does not model real metals very well except in
some special cases and is considered outmoded in today’s technology.

The other yield criterion that is most used and best models metals like steel is the one attributed
to Richard von Mises in 1913, who developed it from theoretical concepts. The idea behind it is that
pure spherical stress (hydrostatic pressure) has no effect on the yielding of a material because it acts in
direct opposition (compression or tension) to the bonding forces of the atomic structure of a material
which are very strong. Assuming a material body is isotropic, a spherical stress causes a material
body to compact or expand uniformly, thus preserving its initial shape (but not size). If we subtract
the spherical stress from the stress tensor we are left with the deviatoric stress. The deviatoric portion
of the stress tensor tends to distort the shape of the material body. It is this distortional or deviatoric
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portion of the stress state that causes the material to yield, by shearing action. This concept was first
hypothesized by James Clerc Maxwell in 1858 but never published except in his private letters. Later
M. T. Huber, in 1905, published a similar hypothesis, but it went unnoticed because it was published in
a journal that was not widely read outside his home country (Poland). About 11 years after von Mises’s
publication, Heinrich Hencky did some work with plasticity, especially in the range beyond the yield
point, and his name became associated with it too. So, variously, you will hear it referred to as the von
Mises hypothesis, the Maxwell-Mises hypothesis, the Huber-Mises hypothesis, or the Hencky-Mises
hypothesis, and so on. That should give fair due to all those who contributed their skills to the idea,
but we call it the von Mises yield criterion for the sake of brevity. Plotted in principal stress space,
the von Mises yield criterion is a circular cylinder, which makes more physical sense than the Tresca
criterion. Its biggest disadvantage is that it does not lend itself to closed-form solutions of elastic-plastic
problems.

The von Mises yield criterion may be stated mathematically as

Y ≥ √3J2 (C.104)

where Y is the uniaxial yield strength of the material and J2 is the second deviatoric stress invariant,
defined in Equation (C.59). The yield condition is

Y >
√

3J2 → no yield (C.105)

Y = √3J2 → yield (C.106)

Y <
√

3J2 → not possible (C.107)

Now, comes a bit of semantics. What is
√

3J2 ? It has the units of stress, traction, pressure—is it any
of those things? No, it is not. It is a scalar quantity with the same units as stress, traction, or pressure. It is
definitely not a stress. You might well ask, then, how can we compare a scalar to the uniaxial yield stress
and get anything meaningful? The truth is we are not comparing it to the uniaxial stress component,
Y, we are comparing it to the value of

√
3J2 in which σ11 = Y and all other stress components are

zero. We, in fact, are comparing it to another scalar. In continuum mechanics,
√

3J2 may be written in
several different forms and it is seldom referred to by any particular name in most continuum mechanics
textbooks. Properly,

√
3J2 is distortional energy density or deviatoric energy density, a scalar value. The

distortional energy density is commonly called the von Mises equivalent stress or something similar in
many contexts. And that is okay as long as you understand what it actually is.

Now we must consider another serious misconception. In the above equations we stated that the
distortion energy density cannot exceed the uniaxial yield stress value of a metal (Equation (C.107)). In
this case the value of Y is the current yield stress and not necessarily the initial yield value. When the
loading exceeds the yield stress, the yield surface expands and moves in principal stress space as in the
examples shown in Figure C.14.

In our applications we are only concerned with the initial yield value which we take as our design
limit in most cases. If we calculate

√
3J2, and its value exceeds that of the initial yield stress what does

that mean? It means that the stress resulting from that particular loading exceeds the yield strength of
the material, and that is all we can draw from our calculations. It does not tell us by how much the yield
has been exceeded, because all of our calculations (in this textbook) are based on linear elasticity and
are not valid beyond the initial yield stress. So any value of

√
3J2 that we calculate with linear elasticity
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and exceeds the yield stress of the material is purely fictitious. Do we then refer to it as the “fictitious
distortional energy density” or perhaps the “fictitious von Mises equivalent stress?”

Since I do not mind being labeled an eccentric, and I refer to it as a yield measure which is about as
apt a description as I can come up with.9 And I use the symbol, Ψ (Psi), to denote this yield measure.
If this violates your sensitivities, then feel free to use whatever you like as long as I have made the
point in your mind that if this value exceeds the initial yield stress value, then it is purely fictitious
(unless you have calculated it with a valid elastic-plastic constitutive model). So, we define a yield
measure, Ψ :

Ψ ≡ √3J2 =
{

1

2

[
(σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ3 − σ1)

2
]} 1

2

(C.108)

where Ψ is our yield measure and σ1, σ2, σ3 are the three principal stress components, assuming the
material is linear elastic. We also state that Y ≡ Y0, in other words Y is the initial yield strength, and
we do not concern ourselves with changes in the yield strength caused by work hardening. The yield
condition is

Y > Ψ → no yield (C.109)

Y ≤ Ψ → yield (C.110)

This may seem a lot like nitpicking. It is.
The best way to comprehend all this is to see a picture of it. Figure C.15 shows a plot of

the von Mises yield surface plotted in principal stress space, which has only three coordinate
axes.

The von Mises yield surface is a cylinder in this space.10 The central axis of the surface is along
the line, σ1 = σ2 = σ3. In theory, the ends do not terminate, but we can assume that it extends as far

Yσ3

σ2σ1

σ1= σ2= σ3

Figure C.15 The von Mises yield surface plotted in principal stress space.

9 My apologies to readers of the first edition and training manuals where I used a different name for this. Over time I have used at
least three different names seeking something appropriate. Mathematically it is a distance measure or metric in principal stress
space. I refuse to call it anything with “stress” in the name because it is not a stress.

10 The intercept of this cylinder with the σ1-σ2 plane is a two-dimensional ellipse as already seen in Figure C.14 and will appear
later in Figure C.18.
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Figure C.16 Example of load that is beyond the boundaries of the von Mises yield surface.

as any load we could practically imagine. (Be careful to not confuse this cylinder with a section of
pipe.) The meaning is that any combination of principal stress components that plots on the inside of
this cylindrical yield surface does not cause yield and anything on the surface or outside does cause
yield. The radius of the cylinder is the uniaxial yield stress of the material. As discussed in the previous
section, this yield surface grows and its axis moves about as various combinations of stress exceed its
initial boundaries. As it grows and moves, it may no longer retain its shape as a cylinder and may even
develop corners. Most plasticity theory demands that the outside of the surface remain convex though.
But, as we said, our primary interest is not what happens outside this yield surface but that we keep our
casing stress inside it. Another thing that should be apparent with this surface is that the central axis is a
spherical stress. You can see that, no matter the magnitude of the spherical stress, it always plots within
the cylindrical yield surface, it makes no difference whether it is 1000 psi or 106 psi. Spherical stress
(compression or tension) cannot cause yield in materials that can be modeled by the von Mises yield
criterion.

Figure C.16 shows a case where we calculate a load on casing using elastic assumptions, and we
plot that point in principal stress space. You can see that it is outside the yield surface (meaning that the
material will yield), and our yield measure is the distance from the central axis to that point. This gives
some physical meaning to our yield measure. So the yield measure, Ψ , or

√
3J2, is actually a distance

measure in the principal stress space. A distance measure (sometimes called a metric) is not a vector but
a scalar. It is always positive. You can see that Y is also a distance measure in this space, and although it
has the same value of, say, σ11 at the yield point in a uniaxial stress-strain test, it is not the same thing.
Maybe that does not justify my nitpicking, but at least you can see the point.

As mentioned before, we can write the von Mises yield criterion in several forms, such as
Equation (C.108), which is in terms of principal stress components. If the principal stress components
correspond to the cylindrical coordinate axes (and they do in absence of torsion) we can write it in terms
of the coordinate axes components:

Ψ =
{

1

2

[
(σθ − σr)

2 + (σr − σz)
2 + (σz − σθ )

2
]} 1

2

(C.111)



Appendix C: Basic mechanics 313

z

r

s
r sz

q sq

Figure C.17 Principal stress components in cylindrical coordinates.

If the principal stress components do not correspond with the coordinate axes, as when torsion is
present, then we have a choice. We can resolve the stress into principal stress components and use
Equation (C.108) or we use the expanded version of the von Mises criterion when the axial components
of stress are not the principal stress components:

Ψ =
{

1
2

[
(σθ − σr)

2 + (σr − σz)
2 + (σz − σθ )

2
]

+ 3
(
σ 2

rθ + σ 2
rz + σ 2

θz

) } 1
2

(C.112)

In this case, we normally consider only the shear stress from torsion, σrθ and the other two
components of shear are assumed to be zero. If we prefer to get the principal stress components and
use the principal stress formula, then

σ1 = σθ + σr

2
+
√(

σθ − σr

2

)
+ σ 2

rθ

σ2 = σθ + σr

2
−
√(

σθ − σr

2

)
+ σ 2

rθ

σ3 = σr

(C.113)

When we work with principal stress components, it is immaterial how they are numbered, but the
custom is that the largest value is σ1 and the smallest is σ3. There are a number of other ways to
show the von Mises criterion in equation form. Usually, it is shown in a form that makes sense as to
how it relates to deviatoric stress, octahedral stress, principal stress, and the like. One note of caution:
Whenever doing manual calculations with the von Mises yield criterion, no matter which formula
you use, be careful with the signs, so that you do not run amok. Tension is positive; compression is
negative.

Now that we have seen the von Mises yield criteria in equation form and in a graph, let us examine
how it applies to casing design. First of all, we hear terms like biaxial casing design and triaxial casing
design. Those terms refer to the coordinate axes and the state in which the principal stress components
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are aligned with those coordinate axes. And, in terms of casing, the coordinate axes usually are circular
cylindrical coordinates as in Figure C.17. So biaxial casing design refers to two principal stresses aligned
with two coordinate axes. The two principal stresses referred to are the axial stress component and the
tangential stress component. In a biaxial sense, the radial stress component is ignored. Triaxial design
refers to all three. If there is a nonzero shear stress component, as in rotational torsion, then neither of
those terms apply as the principal stress components are not aligned with the coordinate axes. Although
it is not technically correct, some refer to any three-dimensional stress state as triaxial, whether the
principal stresses are aligned with the coordinate (or pipe) axes or not, and that is okay as long as we
understand the meaning.

Earlier, we employed an ellipse in a two-dimensional chart to correct for the combination of tension
and collapse pressure. Essentially, that was a biaxial approach, and that chart is another way to
visualize the von Mises yield criterion. If the principal stress components are the tangential, radial,
and axial stress components, that is, no shear components, then we can use Equation (C.111) to derive
the equation for the ellipse. On the yield surface, Ψ = Y, the yield measure is equal to the yield
stress:

Y =
{

1

2

[
(σθ − σr)

2 + (σr − σz)
2 + (σz − σθ )

2
]} 1

2

Y2 = 1

2

[
(σθ − σr)

2 + (σr − σz)
2 + (σz − σθ )

2
]

Y2 = (σθ − σr)
2 − (σθ − σr) (σz − σr)+ (σz − σr)

2

With a bit of algebra, we have gotten the von Mises yield surface into an elliptic equation of the form
r2 = x2 − xy+ y2. This is a quadratic equation we can solve as

x = y

2
±
√

r2 − 3y4

4

which we can put in a more useful dimensionless form:

x

r
= y

2r
±
√

1− 3y2

4r2

We can write this in terms of the principal stress components:

σz − σr

Y
= σθ − σr

2Y
±
√

1− 3(σθ − σr)
2

4Y2 (C.114)

or, equivalently,

σθ − σr

Y
= σz − σr

2Y
±
√

1− 3(σz − σr)
2

4Y2 (C.115)

We can plot either of those as in Figure C.18, which is exactly what we used in Chapter 6.
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Figure C.18 The von Mises yield criterion in two dimensions.

So far we have not accomplished much. We have taken a three-dimensional surface and plotted it in
two dimensions. Since the radial stress is the negative value of the pressure on the wall of the tube, we
can substitute that into the equations. Then, if we know the pressure and one other component, we can
find the value of the third at the yield surface. However, this is no easier than calculating it, but it does
provide a useful way of illustrating an elastic stress state in relation to the yield surface. The basis of
so-called biaxial casing design is that we ignore the radial stress, which usually is small compared to
the other two components, and we have the following equivalent equations:

σz

Y
= σθ

2Y
±
√

1− 3(σθ )
2

4Y2 (C.116)

or

σθ

Y
= σz

2Y
±
√

1− 3(σz)
2

4Y2 (C.117)

Those are the biaxial design formulas (we need only one), then we could plot them and the plot would
be exactly as before, except we assume the radial stress or pressure at the wall is zero. One always should
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remember that the underlying assumption of biaxial casing design is that the radial stress component
is relatively small compared to the tangential and axial stress components, and that assumption is not
always true.

Before leaving this section, it might be worth illustrating the von Misses yield criterion with an
example to show how the hydrostatic pressure (or spherical stress) has no effect on yield.

EXAMPLE C.10 Hydrostatic Pressure Effect on Yield

Suppose a block of steel in the shape of a cube has a yield strength of 40,000 psi. It is loaded three-
dimensionally in tension such that the three principal stress components are σ1 = 80, 000 psi, σ2 = 50, 000 psi,
and σ3 = 50, 000 psi.

Each of those components is greater than the yield strength of the steel. Will it yield? We calculate the
deviatoric stresses to see the hydrostatic pressure effects:

σ ′1 = 80,000− 80,000+ 50,000+ 50,000

3
= 20, 000

σ ′2 = 50,000− 80,000+ 50,000+ 50,000
3

= −10, 000

σ ′3 = 50,000− 80,000+ 50,000+ 50,000

3
= −10, 000

Then we calculate

J2 = 1

2

[(
σ ′1
)2 + (σ ′2)2 + (σ ′3)2]

= 1

2

[
(20,000)2 + (−10,000)2 + (−10,000)2

]

= 300× 106

Then, we substitute into the yield criterion to calculate the yield measure:

Ψ = √3J2

Ψ =
√

3
(
300 × 106)

Ψ = 30, 000 psi

And, we check the yield condition:

Y > Ψ ?

40, 000 > 30,000 → no yield

For this particular example we did not have to even make the calculations, because we could see that
two of the components were 50,000 psi and the third was greater than that, so the hydrostatic stress is
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50,000 psi. We subtract that value from 80,000 psi and it leaves us with the equivalent of 30,000 psi in
one direction.

In order to better understand the behavior of casing in the plastic regime, we might look at an example
of the elastic-plastic behavior at the inner wall of a 7 in, 23 lb/ft tube with an 80,000 psi yield strength.
This is not an example of actual API casing, but a tube of the same dimensions with a common strain
hardening uniaxial behavior in tension.

EXAMPLE C.11 Elastic-Plastic Behavior of a 7 in. OD Tube

In this example analysis, we will use a 7 in. OD, 6.366 in. ID tube with a yield strength of 80,000 psi. A
uniaxial tensile test for a sample of this steel is given in Figure C.19. This data is a piecewise linear plot,
which is common for an analysis of this type.
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Figure C.19 Uniaxial test data for example material.

We will assume no initial axial stress, and load the tube with increasing internal pressure with no external
pressure.

The analysis is done with a special purpose finite element program for nonlinear material behavior.
Nonlinear geometry is not considered as the strains are less that 2.5%. Three cases are analyzed, (1) free
ends (at least one open), (2) both ends capped (at least one end free), and (3) both ends fixed (capped or not
capped has no effect). The results are plotted in Figure C.20.

You will note from the figure that the free end model yields at an internal pressure of about 7250 psi, the
fixed end model at about 7900 psi, and the capped end model at about 8050 psi. In the first case the axial stress
remains at zero, hence the lower yield pressure. In the latter two cases we have an increase in axial tension
caused by “ballooning” in the fixed end case, and end forces from pressure in the capped end case. Recall
from the two-dimensional ellipse plot of the von Mises yield criterion that tension increases the burst (internal
yield) limit whereas it decreases the collapse resistance.
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Figure C.20 Internal pressure loading effects on inner wall of 7 in. OD tube.

Another point that should be emphasized is this: once the distortional energy density,
√

3J2, reaches
the yield point, 80,000 psi in this example, the plot becomes nonlinear. The Lamé equations are perfectly
valid up to this point and would duplicate exactly the curves from the finite element analysis. Had we
employed them beyond that point they would have continued as straight lines with exactly the same
slope as before and would not be valid at all. This is why I am adamant about the nomenclature
regarding a “yield measure,” Ψ , when doing manual calculations using the Lamé equations, because
the results are purely fictitious if elastic equations are used beyond the yield point, and they often are
when we use them as a check on yielding with combined loads. Another example similar to the above
is shown if Chapter 6, Figure 6.3, where we show the simultaneous behavior at both the inner and
outer walls of a fixed end model, as well as the error of the elastic equations and Ψ beyond the yield
point.

At this point I add a caution. The von Mises yield criterion has no basis in physics, it is what we call
phenomenological, in that it describes what is observed rather than any underlying principles of physics.
The hypothesis has been tested many times for over a century and found to be valid for a number of
metals. For many years most experiments showed variations, and the variations were almost always
attributed to anisotropy in the samples. Even the famous experiment of Taylor and Quinney [54] which
in the eyes of many verified the criterion once and for all, showed some small but disturbing variations
also attributed to anisotropy. Over 40 years later Bell [55] revisited their experiment and noted that
they had plotted their results as nominal stress versus logarithmic strain. He recalculated their results
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using nominal stress versus nominal strain and found “precise agreement” of the Taylor and Quinney
experiment with the von Mises criterion.

Before you go away overly enthralled with it, we should consider a quotation from Bernard
Budianski [56] of Harvard University, one of the world’s foremost solid mechanics experts, “No one
really believes Mises’ theory is really right. It might be good enough, but it is not really right.”

C.7 Natural laws

Many so-called “laws” have appeared in science and engineering over the centuries, but most are merely
relationships that are convenient and approximate. There are some naturally occurring laws, however,
that are foundational in their nature that we refer to as natural laws or sometimes as laws of physics.
These are the true laws of nature and the foundation on which natural sciences are based. Man did not
invent them nor can they be derived from more fundamental axioms. They just are! And always have
been as far as we know! Humans eventually discovered them and formulated them into mathematical
expressions which are the foundations of science. If we cannot derive them, how do we know they are
true? We don’t! However, throughout the history of the universe as we know it, man has never seen any
evidence that they have ever been violated. Mathematically that is not a proof, but it is overwhelmingly
the nearest thing to it that we can imagine.

The natural laws we speak of are called conservation laws in that some particular quantity is
conserved. The quantity may or may not be some physical quantity like mass for instance, but rather a
mathematical quantity like energy.11 These conservation laws are generally expressed as mathematical
equations, and they are reversible as mathematically formulated. But there is another law that is
somewhat different in that it is not an equality equation but an inequality from which no quantity
can actually be calculated. Yet it constrains all events in our universe by stating that none of these
conservation laws is actually reversible in the real universe even though they are formulated as such.
While there are conservation laws that apply on a sub-atomic scale we only concern ourselves with the
macroscopic scale:

• Conservation of mass
• Conservation of momentum
• Conservation of energy
• Entropy production

C.7.1 Conservation of mass

Those of my generation were taught this law from early on stated as, “Matter can neither be created
nor destroyed.” Later we learned that it is not true because energy and matter are equivalent, at least on
a quantum scale. That said, however, on our macroscopic scale it is fundamental. In our applications
where we consider the mass of a body a constant, it is almost trivial

ṁ = 0 → dm

dt
= 0 (C.118)

11 Mass and energy are equivalent in modern physics, as in E = mc2.



320 Casing and Liners for Drilling and Completion

In fluid mechanics, conservation of mass is expressed more elaborately and called a continuity
equation which we will not need in our work.

C.7.2 Conservation of momentum

There are two types of momentum, linear momentum that is concerned with straight-line motion and
will be central to our focus, and angular momentum which is concerned with rotational motion. Both
are vector quantities, the first being a polar vector and the second, an axial vector. For material bodies
with uniform density, we may express them, respectively, as

p = m u̇ → pi = m u̇i (C.119)

and

h = m r × u̇ → hi = m εijkrju̇k (C.120)

Newton’s second law as expressed by Euler says that the change of rate of linear momentum is equal
to the applied force (or moment in the case of angular momentum which we will not be using):

F = ṗ = m ü+ ṁ u̇ → Fi = m üi + ṁu̇ (C.121)

As we already stated in the previous section that we will not consider cases where mass changes with
time, so ṁ = 0, and we may express conservation of linear momentum as:

F = ṗ = m ü → Fi = m üi (C.122)

where the force, F is assumed to be the summation of forces, �F.
Without going into any details of derivation, we may also express conservation of linear momentum

in terms of stress as

∇ ·T+ ρ b = ρ ü → σji,j + ρ bi = ρ üi (C.123)

where the second term is the body force vector (gravity in our case). Though we skipped over angular
momentum it does have a consequence in our considerations of the stress tensor in that, in the absence
of electro-magnetic body forces, the Cauchy stress tensor is symmetric:

T = TT → σij = σji (C.124)

Newton’s laws of motion

Newton’s laws of motion are not natural laws but are a special case subset of the law of conservation of
momentum. They are:

• First law: Objects in motion (or at rest) stay in that motion (or at rest) unless acted upon by some force.

ü = 0 (C.125)

• Second law: Force on a body is equal to the rate of change of momentum (inertia).

F = ṗ = ṁu̇+ mü (C.126)

• Third law: Every reaction has an equal and opposite reaction (equilibrium).∑
F = 0 (C.127)
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The first law is more or less a statement of condition in absence of forces. In statics we employ the third
law for equilibrium. In dynamics where mass is constant we generally combine the second and third
laws as∑

F = mü (C.128)

by which D’Alembert became famous for performing a simple algebraic feat as
∑

F− mü = 0.

C.7.3 Conservation of energy

We cannot know the amount of energy present in a system, but what we can know and measure is the
change of energy in a system. So the conservation of energy law that we use is one that balances the
changes in total energy, not the total energy itself. There are any number of ways to express this law, but
we quantify energy in four forms, internal energy, E, kinetic energy, K, heat energy, Q, and mechanical
energy (work), W. The energy balance is thus stated as the change in internal energy plus the change in
kinetic energy is equal to the heat added plus the work done on the system:

dE + dK = dQ+ dW (C.129)

or in terms of rate of change12

dE

dt
+ dK

dt
= dQ

dt
+ dW

dt
(C.130)

That is a global form of the law. We will not go into the long derivation of the local component form,
but give the result here

ρė = σijε̇ij + ρ r − qi,i (C.131)

where ė is the rate of change of internal energy, ε̇ij is the strain rate, r is the rate of generation of internal
energy, and qi,i is the gradient of heat flux into the system.

In the above form you can see that the conservation of energy is coupled with the conservation of
linear momentum through the mechanical energy term, σijε̇ij. This creates considerable difficulty in
thermal stress analyses because the heat flow depends on the stress-strain rate, but the stress depends on
the heat changes. This is often referred to as two-way coupling. For most engineering applications the
stress-strain term is considered small and negligible and can be omitted so that the changes in heat and
stress can be calculated incrementally in time. This coupling is often called one-way coupling. These
will not concern us here, but it is an important point to understand—thermal and mechanical effects are
interrelated.

C.7.4 The second law

The second law (of thermodynamics) is not something we find much use for in mechanics since it cannot
be used to calculate anything. It is actually a constraint on what is physically possible, and does have

12 In solid mechanics we may use the simple time derivative as d/dt whereas in fluid mechanics we must use the total derivative
(or co-moving derivative), D/Dt, which gives the rate of change of a fluid at a particular location as well as the rate of change
in the material itself as it moves past that location.
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application in formulating some material constitutive equations. In its global form, the total internal
entropy, Si, is defined as

ρ dSi ≡ ρ ds− dq

T
≥ 0 (C.132)

where s is entropy, q is heat flux, T is temperature, and ρ is material density. Stated here in local
coordinate form with time dependence, it is

ρ
dS

dt
= ρ

ds

dt
−
(qi

T

)
,i
− ρ r ≥ 0 (C.133)

In this form the second law is often called the Claus-Duhem inequality. While the law says that the
rate of entropy production is either zero or positive the reality is that it is never zero. The importance is
that while all the other conservation laws are mathematically reversible the second law tells us that in
the real world they are not.

Our macroscopic version of entropy may seem unrelated to the idea of entropy as discussed by
physicists, but it is not. There seems to be a prevalent misconception about entropy production in that
it has something to do with randomness, and that is a false notion. I suspect it comes from the popular
illustration in many elementary physics texts that show a two-chambered box with an opening between
the two chambers. Two particles are placed in one chamber and on inspection after some lengthy time
interval it is found that there is one particle in each chamber. This has nothing to do with going from
orderliness to randomness, it is merely a matter of probabilities. You could perform the same experiment
with two dense metal billiard-sized balls in a weight-less environment, and the results would be quite
different—they would both be in the same chamber and touching each other. The assumption in the first
case is that there is no physical attraction between the particles, and each has a 50% probability of being
in either chamber. The probability of each being in separate chambers is about 67%. But the metal balls
have a gravitational attraction to each other, and though small, it will eventually pull them together so
the probability in that case is 100% that they will both be in the same chamber.

C.8 Field problems

The notion of a field problem stems from the presence of a material body interior domain and its
boundary. While various entities will vary within that domain they all obey the definitions and laws
we have covered. If we consider a linear elastic mechanical field in a solid (no thermal effects), we have
the following equations:

1. Conservation of mass, ṁ = 0, 1 equation
2. Conservation of linear momentum, σji,j + ρ bi = ρ üi, 3 equations
3. Conservation of angular momentum, σij = σji, 1 equation
4. Definition of small strain, εij = 1/2 (ui,j + uj,i), 9 equations
5. Elastic constitutive equation, σij = Cijkl εkl, 9 equations

We have 23 equations, how may unknowns?

• ui, 3
• σij, 9
• εij, 9
• ρ, 1
• bi, 3
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We have 25 unknowns and 23 equations, so we have to eliminate some unknowns (or find more
equations). Number 1 does not apply here so we have only 22 equations. We can specify ρ, leaving
us with 24 unknowns. We can apply number 3 to make σij symmetric so that we now have 18 unknowns
and 21 equations. But when we apply number 4, we find that εij is also symmetric which reduces the
number of equations in number 5 to 6. Now we have 12 unknowns left (ui, σij, and bi) and 9 equations.
We can then specify the body forces, bi, and we are left with 9 unknowns and 9 equations.

This is an outline of the formulation of a simple linear elastic field problem. Perhaps the best way to
understand it is with examples. There are two very important field problems in tubular mechanics that
lend themselves to frequent use: tube elongation and simple tube bending. Those we will now illustrate
with examples and add a corollary to the second one.

EXAMPLE C.12 Tube Elongation

The elongation (stretch) of a tube is one of the basic field problems in mechanics of tubes. It is easily derived,
and an understanding of the derivation is important, because the results may be expressed in many useful
forms for a variety of applications. We begin with a vertically suspended tube (or uniaxial bar) as shown in
Figure C.21.

Figure C.21 Vertical tube (or uniaxial bar).

Kinetic Equation (Equilibrium)

dF

dz
+ f (z) = 0 (C.134)

This is derived from a balance of forces in Figure C.21 above as follows:

− (F +ΔF)+ F +
∫ z+Δz

z
f (z) dz = 0 (C.135)
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Divide Equation (C.135) by Δz

−ΔF

Δz
+ 1

Δz

∫ z+Δz

z
f (z) dz = 0

and take the limit as Δz→ 0

lim
Δz→0

(
−ΔF

Δz
+ 1

Δz

∫ z+Δz

z
f (z) dz

)
= dF

dz
+ f (z) = 0 (C.136)

Kinematic Equation (Strain)

ε = du

dz
(C.137)

Constitutive Equation (One-Dimensional)

σ = Eε (C.138)

Field Equation
Then for a uniaxial tube or bar, F = A σ and which we substitute into the kinetic equation, (C.136) to get

d

dz
(Aσ)+ f (z) = 0 (C.139)

and substituting the constitutive Equation (C.138) gives

d

dz
(AE ε)+ f (z) = 0 (C.140)

and finally substituting the kinematic Equation (C.137) gives the general governing differential equation for
a uniaxial bar or tube:

d

dz

(
AE

du

dz

)
+ f (z) = 0 (C.141)

Boundary Value Problem
The general governing differential equation has no unique solution. To obtain solutions for specific
applications we must now apply some boundary conditions. A one-dimensional equation such as this one
has two boundaries, one at each end. For most applications we assume the cross section is prismatic, i.e., the
cross-sectional area, A , is constant and Young’s modulus, E , is also a constant. For a vertical bar or tube
the forcing function, f (z), is attributable solely to the gravitational force per unit length and is a constant,
w = g ρ�. In this case the differential equation simplifies to:

AE
d2u

dz2 + w = 0 (C.142)

Integrate once:

AE
∫

d2u

dz2
dz+

∫
w dz = AE

du

dz
+ wz+ C1 = 0
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at the boundary, z = L, AE du/dz = P (the end load) and the integration constant

C1 = − (P+ wL)

Integrate once more:

AE
∫

du

dz
dz+

∫
[w − (P+ w L)] dz = AEu+ w z2

2

− (P+ w L) z+ C2 = 0

At the boundary where z = 0 the displacement u = 0 and by inspection we can see that the integration
constant, C2 = 0.

Displacement (Stretch)
The displacement at any point, 0 ≤ z ≤ L, then is given by

u = 1

AE

[
(P+ w L) z− w

z2

2

]
(C.143)

For the entire tube where z = L the total displacement is:

u = 1

AE

[
P L+ w

2
L2
]

(C.144)

or for a specified displacement the required load is:

P = AE u

L
− w L

2
(C.145)

Incremental Displacement
An incremental displacement from a change in load is:

Δu = ΔPL

AE
(C.146)

Incremental Load
Incremental load required for a given incremental stretch:

ΔP = AE Δu

L
(C.147)

Free Pipe
This equation can also be rearranged to give the length of free pipe when measuring an incremental
displacement and incremental load:

L = AE Δu

ΔP
(C.148)
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Note: this equation is only marginally reliable for determining the free point of stuck pipe (especially in open
hole) because of borehole friction and lack of precision in a typical weight indicator.

Composite Bar or Tube
If the bar are tube is composed of more than one size (still prismatic in each size) then we can expand the
previous formulas.

Δ u = ΔP

E

n∑
i=1

Li

Ai
(C.149)

and

ΔP = Δu E

(
n∑

i=1

Li

Ai

)−1

(C.150)

A note of caution: Be aware that uniaxial formulas are for continuous tubes and are not valid near
connections or the ends. The stress field near connections and ends are not the same as the pipe body and
there is no formula that is valid there. As an example, the composite formula above is commonly used for
long bars of, say two different diameters, milled from a single piece of stock. There is no connection,
but the local stress field near the diameter change is not a simple σ = F/A. The formula is not valid
near the diameter transition (and the two ends where loads are applied). In these types of problems we
appeal to Saint-Venant’s principle that says the local stress field becomes a uniform uniaxial stress field
very quickly as the distance from that local area increases. And in fact it does, and we seldom concern
ourselves, but also keep in mind that a fundamental assumption in Saint-Venant’s theory is that the bar
is infinitely long.

Another important field problem in tubular mechanics is that of planar bending of tubes or beams.
The derivation is a bit more involved, but again it is important to understand the assumptions that go
into it so that you can also understand the limitations.

EXAMPLE C.13 Planar Beam (Tube) Bending

The so-called theory of simple beam bending in a plane is not an actual theory but a set of ad hoc assumptions
as to the nature of the beam in its deformed state. Our beam is a tube so our set of assumptions addresses that
as follows.

• Cross sections perpendicular to longitudinal axis before bending remain perpendicular after bending
• Tube cross sections remain circular
• Tube is initially straight and prismatic
• Tube is long in relation to its diameter

The first assumption is often referred to as the classical Euler-Bernoulli assumption, and the others are
qualifiers for which the first is true.

A right-hand Cartesian coordinate system is assumed. The downward positive vertical coordinate here is z
and the z-displacement is uz. A horizontal y-coordinate is defined as positive “out of” the page.
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Moment, Shear, and Axial Second Area Moment (Definitions)

M ≡
∫
A

σxx z dA (C.151)

V ≡
∫
A

σxz dA (C.152)

Ia ≡
∫
A

z2 dA (C.153)

These integrations are over a cross-sectional area, A, of the beam (tube). The second area moment, Ia, defined
above is an axial second area moment. In the case of a tube, the axis, a, in the subscript is any outside diameter.
For this derivation we will take Ia = Iy so that the diameter used is on the y-axis. We will not include the
derivation of Ia, but will give the formulas at the end of the example.

Kinetic Equations (Equilibrium)
Referring to the above free-body diagram we set up equilibrium equations in shear

−V + (V +ΔV)+
∫

f (x) dx = 0 (C.154)

and in moment

−M + (M +ΔM)+ VΔx+
∫

f (x) Δx dx = 0 (C.155)

Similar to the uniaxial tube procedure, we divide these two equations by Δx and take the limit as Δx→ 0.

dV

dx
+ f (x) = 0 (C.156)

dM

dx
+ V = 0 (C.157)

It is important to note that these equilibrium equations are specific to the coordinate system and conventions
in the free-body diagram (Figure C.22), hence the signs are specific to that diagram. You may notice that
in other sources the convention may be different, so always use caution when working with beam bending
equations.

Figure C.22 Tube in simple planar bending, free-body diagram.
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Kinematic Equations
It is in the kinematics that our bending assumptions come into play, and we will specifically point them out as
they are encountered. The axial displacement from small rotational bending about the y-axis is

ux = −z θy (C.158)

and, hence, the axial strain is

ε = dux

dx
= −z

dθy

dx
(C.159)

Next, we incorporate the Euler-Bernoulli small rotation assumption as in Figure C.23 and make the following
approximation.

θ ∼= tan θ = lim
Δx→0

Δuz

Δx
= duz

dx
(C.160)

This is the important simplifying assumption that limits the simple beam bending equation to small rotations.

Figure C.23 Small rotation of simple beam (tube).

Constitutive Equation (One-Dimensional)

σ = Eε (C.161)

Field Equation
Now substitute (C.160) into (C.159)

ε = −z
d

dx

(
duz

dx

)
(C.162)

then (C.162) into (C.161)

σ = −E z
d

dx

(
duz

dx

)
(C.163)
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Now substitute (C.163) into (C.151)

M =
∫
A

−zE
d

dx

(
duz

dx

)
z dA = −EIy

d2uz

dx2
(C.164)

then (C.164) into (C.157)

V = − d

dx

(
−EIy

d2uz

dx2

)
(C.165)

Finally we substitute (C.165) into (C.156) to get the governing differential equation for small deflection planar
beam bending:

d2

dx2

(
EIy

d2uz

dx2

)
+ f (x) = 0 (C.166)

Boundary Value Problem
There are many possible load conditions, so the equation will not be integrated further here for any particular
situation. For most tubes E and I are constants, and many useful formulas may be obtained by integration and
specification of the value of two or more of these boundary conditions:

uz = transverse displacement

duz

dx
= slope

d2uz

dx2 = curvature (approximate)

EIy
d2uz

dx2 = moment

EIy
d3uz

dx3 = shear

EIy
d4uz

dx4
= − f (x) = the transverse load (C.167)

Second Area Moment (Axial)

Ia = π
(
r4

o − r4
i

)
4

(C.168)

or

Ia = π
(
d4

o − d4
i

)
64

(C.169)

where a is any diameter.

Another example closely related to the previous one is that of axial stress in a tube that results from
the bending just described. This is an important part of casing design in curved wellbores and is included
here.
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EXAMPLE C.14 Axial Bending Stress

Along a curvilinear borehole path, s, we may define the curvature at any point as

κ ≡ dθ

ds
(C.170)

Likewise we define a radius of curvature as

rκ ≡
∣∣∣∣ 1κ
∣∣∣∣ (C.171)

and while the curvature, κ , can be positive or negative, a radius of curvature, rκ only has meaning when it is
positive.

Figure C.24 Simple planar bending of tube.

Similar to Equation (C.159) in the previous example the axial strain is

ε = du

ds
= −z

dθ

ds

Appealing to the small rotation assumptions of the previous example,

θ ≈ du

dx

as in Equation (C.160) and ds ≈ dx, and wecan express the small strain in Cartesian coordinates as

ε = du

dx
= −z

dθ

dx
= −zκ = −z

rκ

In the previous example, we assumed a positive z which gave a negative strain. In this case we will assume that
z measured from the centroid of the tube can be either positive or negative depending on the direction of the
rotation. So that now we say ±z and substitute into Hooke’s one-dimensional constitutive Equation (C.161)

σ = ±E
z

rκ

For the small bending of casing (or any tube) the maximum value of z is the outside radius of the tube, ro,
(Figure C.24), so the maximum axial bending stress is

σb = ±E
ro

rκ

(C.172)
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Some commentary on those examples is in order. Notice that in Section C.8, we took two differential
equations, (C.156) and (C.157), and through a substitution process we ended up with the single
Equation (C.166). Did you notice that the first two differential equations are about different entities,
force and moment, respectively, and the differential forms (differentiated with respect to length) are in
units of F/L and F, respectively? We did the process correctly, but I would like to call to your attention
to something else you may encounter. Often you will see those two combined into a single equation
equivalent to:

dV

dx
+ V + dM

dx
+ f (x) = 0

Mathematically this is legitimate since both equations equate to zero, but physically it makes no sense,
and you can run amok if you are not careful.

C.9 Solution methods

To understand mechanical theory we cast entities and events in mathematical form which we call
models. The mathematical formulation we seek is simple (and elegant if possible) and conveys the
essential physical nature of the model. In continuum mechanics these models take the form of field
problems defined by differential equations. The ideal is to find a closed-form solution to these equations
if possible. Such solutions, referred to as exact solutions, are the pinnacle of mathematical modeling.
They can be easily taught, printed in a textbook like this, and used by engineers with pencil and paper, a
hand held calculator, or laptop computer. We tend to think of such solutions as the ultimate in mechanics.
At least that is the prevalent notion in academia. It is not a wrong notion, except where it tends to
claim superiority over so-called “numerical approximations.” All solutions are approximate because
all models are approximate. The false faith in so-called “exact solutions” as opposed to “numerical
approximations,” is unjustified. The truth is that an exact solution to an over-simplified model is not as
accurate as a proper numerical solution to a more exacting and complex model that better represents the
physical reality. All real problems in mechanics are solved numerically. That may sound a bit brash, but
it is true. With the abundance of digital computers it has become possible to easily obtain more accurate
solutions to almost any physical problem than with reliance on closed-form solutions used in the past.
This is a reality of our time.

Along these lines, the extent to which engineers have in the past avoided nonlinear equations is
no longer acceptable. There is plenty of software available to perform these tasks, and plenty of free
programming software if you do not have access to commercial versions. Every engineer at this time
has been taught numerical methods and some basic programming skill in at least one language to solve
simple nonlinear equations and initial value problems.

Unfortunately, when it comes to solid mechanics the situation is not quite as simple because we
are dealing with partial differential equations in two and three dimensions. Commercial software is
almost mandatory for all but a few who can and do write their own. It is not cheap, and the training
and skill level required is not minimal. I am alluding to the finite element method here which was
born in structural engineering and has evolved to multi-physics applications today. While training and
skill levels are significant barriers in themselves, most commercial finite element software does not do
subsurface borehole mechanics very well. Most commercial packages are focused toward simulated
loading and behavior of manufactured parts or components and assemblies of such. For example, a rule
of thumb says that any structural member whose length to radius of gyration ratio is greater than 10:1
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should be analyzed as geometrically nonlinear in any deflection situation. Okay, but that means every
joint of oilfield pipe exceeds that 10:1 ratio. What about a 14,000 ft string of 7 in. casing with a ratio
of over 90,000:1. It can be done, but not always easily. Most analyses regarding casing can be confined
to a local region to evaluate rupture, collapse, buckling and so forth. But to evaluate a full casing string
on a global scale, for torque, drag, impact loads, bending stress magnification, inertial reactions to
sudden decelerations, and so forth, requires analyses that most commercial software is not well suited
for. One of the real complications with the finite element method is contact problems, and especially
when friction is included. As we discuss in Chapter 7, the Amontons-Coulomb friction equation is
problematic with extensible bodies (like long tubes). Another difficulty is that most calculations with
casing in the borehole must start from the bottom of the string and this is sometime difficult to do with
commercial software. Some applications are better analyzed with special-built software, as for example,
Newman’s finite element model [57] as used by McSpadden et al. [58] for a casing path in a borehole.
I am not denigrating the finite element method in the least; I think it is one of the most useful tools
engineers can have access to. I taught graduate courses in the subject; I co-authored two textbooks on
the subject, I have written a at least a couple of dozen specialty finite element programs including one
for dynamic aerothermal stress analysis for NASA; I am a believer! But, I find that commercial finite
element software is not that well suited for many of the applications we want to address. (At least that
is my opinion.)

I think there is one very important point we must always keep in mind regarding casing design.
The data we have both a priori for the design process and even later as the well is drilled are of
varying accuracy and reliability. And among the least accurate is the actual geometry of the borehole
path. So even the most sophisticated analytical approaches in casing design must be taken as a fair
approximation.

There is no need to detail any of the numerical methods here as there are many excellent sources.
For those interested in further reading about numerical methods, I can recommend the one by Burden
and Faires [59]. As to finite element methods the standard is Zienkiewicz [60] and his two companion
volumes. For those just wanting an introduction in terms of undergraduate level math, I cannot help but
recommend one by Huebner et al. [61] that I co-authored.

C.10 Closure

We have covered a lot of deep material in this appendix with a rather sweeping brush stroke, the point
being to give you a basic acquaintance with the foundational material to the mechanics of tubes as used
in subsurface borehole environments. For those whose interest go deeper there is a wealth of literature
on the subject.

For those whose interest is not so much depth but a more complete but systematic approach to
what we have covered written in the mathematical language of the undergraduate I can recommend
the introductory text to structural analysis by Allen and Haisler [53], and although its primary topic is
aerospace structures it just as easily applies to casing.

For those who want to go farther, I can recommend two texts on vectors and tensors. By far, the
most popular and enduring is the one by Simmonds [49] often referred to as the “little yellow book.”
It is short, concise, and easy to understand. My only reservation is his use of the terms “cellar” and
“roof” for subscript and superscript coordinate variables which makes for easy initial understanding,
but leaves one disadvantaged when encountering the conventional terms, covariant and contravariant, in
all the rest of the literature. The other text, by Lebedev et al. [62], is newer, is more complete, and has
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several applications to mechanics, but unfortunately, a sparse index. Adequate treatments of vectors and
tensors may also be found in the classic text on continuum mechanics by Malvern [63] and the solid
mechanics text of Fung [52] and also in his book on continuum mechanics [64]. These last three texts
use only subscripted vectors and tensors (covariant) in orthogonal coordinate systems as we do here.
A newer text on continuum mechanics by Irgens [65] is quite good if perhaps a bit heavy on math and
light on examples. Though intended primarily for physicists, the text by Jeevanjee [66] is excellent in
many of its explanations on vectors and tensors as covered in his first three chapters. A good look-up
type reference is the classic Bronshtein and Semendyayev Handbook of Mathematics [67] now in its
fifth English edition.

For those wanting more in-depth coverage of linear algebra there are any number of basic linear
algebra texts available. Most authors, myself included, tend to recommend the text they learned from,
having never experienced any other unless they taught the subject. I used Kolman [68] which I found to
be at least adequate as an introductory text, but it was a fourth edition and it is now in the ninth edition
and appears to get poor reviews at Amazon. A more advanced and rigorous book on vector and tensor
analysis is by Bowen and Wang [69] that is sufficiently rigid to satisfy most mathematicians, but it is
not for the feint of heart. It was originally published in two volumes but has since been reprinted in a
Dover paperback edition in one volume. Recently, the introductory linear algebra textbook by Larson
and Falvo [70] seems to get the best reviews at Amazon.
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D.1 Introduction to subsurface hydrostatic loads

The pressure loads on tubes in wellbores are for the most part hydrostatic, meaning static or quasi-
static, but there are applications where fluid dynamics also come into play during circulation where
both pressure and friction from fluid flow also exert loads on the tubes. The biggest drawback to
application of pressure loads is that they usually must be calculated from surface measurements with
assumed conditions in the wellbore, rather than by direct measurements. Hydrostatics is a fairly simple
topic and as such receives relatively brief coverage in basic fluid mechanics courses. Because of this
brief coverage and the fact that most such courses deal with near surface hydrostatics with liquids
only, the frequent number of misconceptions and intuitive assumptions arising should not be surprising.
Almost no one is immune to an occasional blunder (myself included). For those reasons, we will cover
hydrostatics in a bit of detail beyond the simplified equation, p = g ρ h, that we are all so accustomed to
using.
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D.2 Hydrostatic principles

Most simply stated, hydrostatics is the effect of gravity on fluids at rest. To be more precise, we
should include temperature which is quite important in wellbore hydrostatics. A better description is:
hydrostatics is the effect of gravity and temperature on fluids at rest. Before we begin discussion of the
calculations of hydrostatics, we should clarify some of the fundamental concepts involved.

D.2.1 Basic concepts

Fluid
A fluid is a material that cannot sustain a shear load when at rest. The definition includes both liquids
and gases. Or another way, a solid is a material that retains its shape when at rest; a fluid is a material
that does not. While both definitions seem to clearly delineate between a fluid and a solid, the division
is not quite as distinct as one might hope. What we left out of the definitions is time. How much time
is allowed for a shear load to dissipate? Seconds? Hours? Years? Centuries? For example, we think of a
salt diapir as a solid, yet on a geologic timescale it is more like a fluid. The distinction is not as clear as
we would like, but for our purposes the simple definition will apply.

Pressure
We normally think of pressure as a force per unit area. That is a useful description for most applications,
but pressure is actually something else: it is energy density with physical dimensions F L/L3, that is,
energy per unit volume resulting from molecular motion and resistance to compaction. We seldom write
it with those dimensions since the length units partially cancel leaving F/L2 (psi in USC units) which
is obviously force per unit area. In the ideal gas equation, pV = nRT, the term pV represents energy
density times volume which results in the macroscopic energy of that volume of gas. The right hand-
side represents the same energy in terms of molecular activity as a function of temperature.

While pressure has the units of force per unit area like a traction vector (a distributed force), it is
not a distributed force vector. Pressure, as we encounter it in mechanics is a scalar value, and when
we use it as a traction (distributed force), we are actually multiplying it with a unit normal vector to
the contact surface as t = −p n̂, and it is negative because the unit normal vector, n̂, is conventionally
positive outward from a surface. And while we are referring to a “surface,” we should be clear that it is
not necessarily a physical surface we refer to, but any surface, physical or imaginary drawn within the
fluid itself as in Figure D.3 later in this appendix. Perhaps that is a bit technical, but the important things
to remember in our applications are

• Hydrostatic pressure at a point is the same in all directions (it is a scalar not a vector).
• Hydrostatic pressure can only act in a normal direction to a surface (there are no other pressure components

acting on a surface at any point).

Archimedes’ principle
Simply stated, the brilliant discovery of Archimedes is that the net buoyant force on a body in a fluid is
equivalent to the weight of the fluid displaced by that body. It is an extremely useful and simple concept.
But the key ideas are that it is a net force and it acts only in an upward vertical direction. It has no
horizontal force component. It says nothing about the distribution of forces acting on a body nor about
the distribution of forces within a body. It is most easily applied to a rigid body in an incompressible
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fluid. When that is not the case, other things must be taken into account. For instance, consider a rigid
body in a compressible fluid where the rigid body density is only slightly greater than that of the fluid at
the surface. The body will sink initially, but because of gravity, the density of the compressible fluid
will increase with depth so the body may descend only to a point where its density and that of the
fluid are equal, and there it will remain suspended. Or consider a case of a compressible body and an
incompressible fluid in which the density of the body is slightly less than that of fluid. If placed in a
closed tank of incompressible fluid, the body will remain at the top of the tank, but if the pressure inside
the tank is increased until the density of the compressed body becomes greater than that of the fluid then
it will start to sink. And as it sinks deeper, its density will continue to increase because the hydrostatic
pressure is also increasing. It will only stop when it reaches the bottom of the tank. If the pressure on
the tank is released, the body may remain on bottom if the hydrostatic pressure is sufficient that the
density of the body cannot recover to its initial value. High altitude weather balloons are a buoyancy
scenario where both the body and the fluid are compressible. Initially, the effective density of the balloon,
including its gas content and cargo, is less than that of the surface atmosphere. When released, the
balloon will rise. The density of the atmosphere decreases with altitude, but the effective density of the
balloon also decreases as its gas expands. Eventually, though, the effective density of the balloon will
equal that of the atmosphere at some altitude and the balloon will cease to rise any farther.1

D.2.2 Hydrostatic pressure

Another clarification we make in this introduction concerns the fundamental nature of pressure in the
macroscopic scale of material bodies. As already stated, pressure at a point has the same magnitude in
all directions, and it only acts on a body normal to its surface at a point of contact. It has no tangent
component acting on any surface which it contacts. In the sense of pressure acting on the surface of a
material body, pressure is a stress which is a scalar, −p, multiplied by the identity tensor, I. In matrix
form, we would express it as

−pI = −p[I] = −p

⎡
⎣ 1 0 0

0 1 0
0 0 1

⎤
⎦ =

⎡
⎣ −p 0 0

0 −p 0
0 0 −p

⎤
⎦ (D.1)

It is what we refer to in solids as a spherical stress. Why the negative sign though? Recall Cauchy’s
formula from Appendix C (Equation (C.51)), t = n̂ T, relating stress the traction at a point on a surface
by its action on an outward unit normal vector to that surface. For example, let us assume a flat vertical
surface some submerged object. The surface is a positive face perpendicular to a horizontal x2 Cartesian
coordinate as in Figure D.1. At some point on that surface, the magnitude of the hydrostatic pressure is
p. So the traction on that surface is

tj = ni σij = �0, 1, 0�
⎡
⎣ −p 0 0

0 −p 0
0 0 −p

⎤
⎦ = �0,−p, 0�

While that is straightforward, some amount of confusion occasionally tends to arise, especially in
buoyancy and subsurface applications. And even when a hydrostatic effect is correct, the explanation
sometimes typically offered for the effect may be dead wrong. Take for instance an oft used sample

1 The altitude is restricted by the capacity and weight of the balloon and cargo, otherwise a weight-less balloon with an
infinitesimal elastic modulus and containing hydrogen could reach the upper edge of the atmosphere.
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Figure D.1 Solid with outward normal on positive 2 face.
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Figure D.2 Floating cork cylinder in chamber.

question from a fundamentals of engineering exam. A cylindrical cork is floating vertically in a chamber
half filled with water as in Figure D.2 where a small weight on the bottom keeps the cork cylinder
in a vertical position. Initially, the upper part of the chamber contains air at standard atmospheric
pressure.

Suppose now that we attach a vacuum pump to the outlet and remove the air from the upper part of
the chamber so that it now has a vacuum. The question is: (A) does the cork rise slightly in the water,
(B) does the cork maintain the same level in the water, or (C) does the cork sink slightly in the water?
The correct answer is C, but the explanation usually given appeals to Archimedes’ principle saying that
the air has mass and is buoying the cork and hence when it is removed it no longer buoys the cork. While
that is true in essence it is quite misleading as stated. The air is not directly buoying the cork, it acts
only downward on the top surface of the cork and horizontally on the exposed side of the cork. So how
can it buoy the cork? It does so only indirectly by acting on the surface of the water. The only buoying
force acting on the cork is on the bottom surface of the cork, where there is no contact with the air. That
buoying force is the combined hydrostatic pressure of the water plus the pressure of the air on top of the
water, acting in conjunction on the bottom of the cork in an upwards direction. While it might seem that
the air pressure on top of the cork and on the surface of the water are the same, they are not. Because
the air has mass, the air pressure on the water surface is slightly greater than on the top of the cork.



Appendix D: Basic hydrostatics 339

A

Figure D.3 Imaginary material boundary in a liquid.

Hence the net effect of the air is a buoying force, but only indirectly as the portion of the cork in the
air experiences no direct buoying force at all, but rather a downward force from the air pressure on top.
The pressure difference between the top of the cork and the surface of the water is indeed small, but still
enough to add to the buoyancy force on the bottom of the cork.

Another fiction which arises occasionally is that hydrostatic pressure can cause a free body to move
in some direction other than vertically upward. It cannot. If it were true we might design a ship that could
cross the oceans without power, a violation of the natural laws. Whenever we observe any material body
motion other than vertically upward seemingly caused by hydrostatic pressure, it is caused by a resultant
force of the buoyant force on the body and some other applied force or physical constraint, removal of a
constraint, or contact with some other body. One of the better and often used illustrations of hydrostatic
equilibrium is shown in Figure D.3 where we draw an imaginary boundary in a liquid defining some
arbitrary domain, A. The liquid contained within that boundary is in equilibrium with its surroundings.
If A is a solid but with the same density as the liquid, it is also in equilibrium and will experience no
motion caused by hydrostatic pressure.

D.2.3 Compressibility

All materials are compressible; the only distinction is the relative degree as in a particular application.
Incompressibility is an assumption we often make in particular applications where material compress-
ibility is negligible or where we ignore it simply because we do not know how to account for it.
Unfortunately, the later is more common than we are prone to admit. Contrary to what we have been
given to assume in many engineering courses, water is compressible. It is significantly less compressible
than most metals, only about 0.7% the compressibility of steel at room temperature and atmospheric
pressure. It varies with temperature and pressure, for example, at down-hole conditions of 200 ◦F and
6000 psi it is about 1.1% that of steel.

D.3 Formulation of hydrostatics

All matter on earth is affected by gravity, whether or not we choose to ignore it in some particular
application. From Newton’s second law, we can derive the fundamental formulation of hydrostatics.
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In index notation Newton’s second law says

fi = m üi (D.2)

where the mass, m, is not a function of time.
The fundamental differential equation of hydrostatics is

dp = ρ g dz (D.3)

where p is pressure, ρ is the fluid density, g is the local gravitational acceleration, and z is a vertical
coordinate measure. In integral form, the fundamental equation is

∫ ph

p0

dp =
∫ h

h0

ρ g dz (D.4)

where in the limits of integration p0 is the pressure at a reference point, z = h0, and ph is the pressure
at some point z = h. Although it is almost never noted formally in these equations, g and z are actually
vectors, but since they are always vectors in the same direction (vertical), only their scalar magnitudes,
g and z, are commonly used.

In general ρ and g are not constants, but for most applications at or near the earths surface we assume
that at least g is constant. The density, ρ is almost never constant, but over relatively short intervals
and isothermal conditions, it may be nearly constant for many liquids. In wellbores, we generally
assume that it is constant for most circulating fluids used in wellbore operations because we seldom have
accurate fluid property data or accurate knowledge of the wellbore temperature which usually increases
with depth but also varies with the forced-convection effects of circulation. For most applications, the
assumption of constant density is accurate enough for the approximate nature of the calculations we
must make to determine pressure loads in a wellbore. In those cases, the assumptions of constant ρ and
g simplify Equation (D.4) to

ph − p0 = ρ g (h− h0) (D.5)

While many applications of this equation occur where both h0 = 0 and p0 = 0 leading to the common
form of

p = ρ g h (D.6)

It is important to remember that such is not always the case and Equation (D.5) is always the basic
equation for hydrostatics when ρ and g are constants. It is also important to remember that in many
wellbore applications the known pressure, p0, is at some depth h0 > h so that p0 > p. Perhaps a less
burdensome form to remember to avoid mistakes is

�p = ρ g Δh (D.7)

D.3.1 Gases

Unlike in the previous equations, we may almost never assume a constant density for gases. Fortunately,
we do have an equation of state for gases from which we can derive an equation of state for gas density,
and from which we can substitute into Equations (D.3) and (D.4) and solve in closed form for some
useful approximations for many applications.
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We are all familiar with the simple form of this state equation known as the ideal gas law, often
written as

pV = nRT (D.8)

where p is the pressure of the gas, V is the gas volume, n is the number of moles, and T is the absolute
temperature. R is the “ideal gas constant” which is a conversion factor that converts mass-temperature
(MT) to energy (F L) for an “ideal gas.” In terms of physical properties, this equation is an energy
balance that says “macroscopic energy = microscopic energy” or in physical dimensions, F L = F L. In
that form, common in chemistry and physics, the equation is hardly useful in engineering applications
where gas pressure is to be calculated. In essence, it relates a macroscopic energy scale to a microscopic
one, and we seldom know (or even care) how many moles of gas are present in a particular wellbore
or even the earth’s atmosphere for that matter. Before we begin to derive a more useful form of this
equation, we should examine some of its aspects for better understanding.

Mole
Briefly, the definition of a mole is the amount of a substance that contains the same number of atoms
or molecules as the number of atoms in 12 g of 12C (carbon-12). It is a unit of measure defined in the
SI system and abbreviated as mol. It is sometimes called a gram mole (g mol), but in many engineering
applications a more useful form is the kmol (equivalent to the old kg mol). It is often defined in USC
units as a pound-mole (lb-mol) and in some cases an ounce-mole. In any event, it always corresponds to
the Avogadro constant of 6.022141× 1023 atoms or molecules of the substance.

Gas Constant, R
The gas constant is essentially a conversion factor that converts absolute temperature into energy per
mole of gas per degree absolute temperature (F L/mol/T).

In working with real gases as opposed to an “ideal gas,” we typically employ a compressibility factor,
Z, to account for variations from Equation (D.8) as

pV = nZRT (D.9)

The value of Z is dependent on the composition of the gas, and in general, Z is not a constant but rather,
a function of both temperature and pressure.

In order to calculate gas density (physical units, M/L3) from Equation (D.9) for use in Equation (D.3)
or (D.4) we work with n, the number of moles. If we represent the mass of a mole of gas by M, the
relationship of a mass of gas, m, to the number of moles, n, is given by

n = m

M
(D.10)

Next we divide both sides of Equation (D.9) by V, the volume of gas, and substitute Equation (D.10)
for n,

p = 1

V
nZRT = 1

V

m

M
ZRT . (D.11)

so that both sides are in terms of energy density. The density of a gas is

ρ = m

V
(D.12)
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and substituting this into Equation (D.11), and rearranging to get ρ gives

ρ = pM

ZRT
(D.13)

which is our goal, an equation of state for the density of a gas as a function of temperature and pressure.
Now, we may substitute that into the differential form of the hydrostatic equation (D.3) to get

dp = pM

ZRT
g dz (D.14)

or into the integral form of the hydrostatic equation (D.3) resulting in

∫ ph

p0

dp

p
=
∫ h

h0

M

ZRT
g dz (D.15)

In wellbore applications the temperature, T, is almost never a constant. One simple approach is to
use an average temperature, Tavg as a constant in Equation (D.15). The resulting integration is

p = p0 exp
Mg (h− h0)

ZRTavg
(D.16)

A slightly different approach for most wellbores is to take the temperature as a linear function of
the vertical coordinate, z, such as T = T0 + kT z where T0 is the temperature at h0 and kT is a linear
temperature gradient. Substituting this relationship into Equation (D.15) yields

p = p0

(
T0 + kTh

T0 + kTh0

) Mg

ZRkT (D.17)

The two equations above are adequate for many wellbore hydrostatic calculations where we often use
methane as a worst case gas load. Methane has a molecular mass of M = 16 g mol and a compressibility
factor of Z ≈ 1. But for more accurate work, we must consider the compressibility factor, Z, which
we obviously assumed constant in the above two derivations. In general, it is not constant and is not
only material dependent, but also a function of both pressure and temperature. Gases encountered in
wellbores are never a single molecular gas but consist of several hydrocarbons and oftentimes include
CO2, H2S, and even elemental He. If a greater degree of accuracy is required, one must turn to more
sophisticated methods. There are a number of correlations and models for use with natural gas. Some
are fairly simple requiring only the specific gravity of the gas (air = 1.0) and others more accurate which
require a detailed knowledge of the chemical composition of the gas. Those methods will not be covered
here, and Equation (D.16) will suffice for our basic design process.

As to the value of the gas constant, R, standard values are readily available in many sources.
Table B.8 in Appendix B gives standard values for R along with values for standard gravitational
acceleration and M for methane, C1, in SI and USC units. The confusion often encountered with gas
equations in a gravitational environment as in Equations (D.14)–(D.17) is in the units of R and M. Most
reference sources give the SI value of R as 8.314462 J K mol, but most standard chemistry references
give molecular mass in g/mol which is inconsistent with R and requires a conversion factor in our
formulations. In this text we will apply a conversion factor to the gas constant so that R = 8314.462
mJ K mol, thus allowing the use of M in standard chemistry units of g mol. This has the advantage that
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when working in USC units M will have the same numerical value, though in units of lb/lb-mol instead.
The problem in USC units though is complicated not by R or M, but by use of lb and lbf as mentioned
earlier in this chapter. The inclusion of the conversion factor, gc numerically cancels g if the two are
numerically equal (and they usually are assumed equal for most applications). The result of that is
the conversion is often invisible in the calculations so that R and M appear consistent. Numerically
they are, but in terms of units, they are not—yet another reason not to use USC units in serious
engineering work.

Again, always keep in mind that the known gas pressure p0 may be at some depth h0 > h and that
p0 > p in those cases. If you substitute into the equations correctly this is automatically accounted for,
but it is a common source of error in manual calculations.

D.4 Buoyancy

The effects of buoyancy from the presence of fluids in a wellbore are significant. While we may choose
to ignore it in certain calculations (unbuoyed design), it is nevertheless always present.

D.4.1 Buoyancy and Archimedes’ principle

When we mention buoyancy, Archimedes’ principle automatically comes to mind. It is an essential part
of hydrostatics, which states that the buoyant force on a submerged, or partially submerged, body is
equal to the weight of the volume of fluid displaced by the body. This is quite handy for calculating
the buoyed weight of submerged objects, such as casing, without the necessity of determining the
hydrostatic forces on the body, which requires details of the body geometry and depths within the fluid.
For instance, a cube with dimensions b× b× b submerged in a liquid, as shown in Figure D.4, has a
buoyant hydrostatic force acting on the bottom cross-sectional area, b× b. We can calculate the force
on the bottom easily:

Fbottom = −gρliquid h b2

The force on the top is

Ftop = gρliquid (h− b) b2

The net buoying force is the sum of those two (no buoying force on the sides). And the buoyed
weight, Ŵ , of the cube can be calculated as

Ŵ = gρsolidb3 + gρliquid (h− b) b2 − gρliquidh b2

= g
[
ρsolidb3 + ρliquid

(
hb2 − b3 − hb2

)]
= g
(
ρsolid − ρliquid

)
b3

We see that the depth is irrelevant (assuming the liquid is incompressible) and the buoyed weight
depends only on the difference in densities of the solid and the liquid and the volume of the solid (or the
displaced liquid), and above equation in its final form is a statement of Archimedes’ principle, which
can be generalized as

Ŵ = g
(
ρsolid − ρliquid

)
Vsolid (D.18)
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where

Ŵ = buoyed weight of solid

Vsolid = volume of solid

ρsolid = density of solid

ρliquid = density of liquid

Now suppose that, instead of the orientation in Figure D.4, the cube had been oriented with the
“bottom” face 60◦ to the vertical and a “side” face 30◦ to vertical. The calculation of the buoyed weight
is somewhat more complicated but yields the same result. So, it should be obvious that Archimedes’
principle is of considerable use in simplifying calculations of buoyed weight of submerged or semi-
submerged objects.

A handy relationship we can derive for employing Archimedes’ principle is the formula for a
buoyancy factor for a body, which is the ratio of the buoyed weight in a liquid to the weight in air. We
start with the ratio of a buoyed solid to an unbuoyed solid using the generalized Archimedes’ principle
above (Equation (D.18)):

Ŵ

W
= g
(
ρsolid − ρliquid

)
Vsolid

g ρsolid Vsolid
= 1− ρliquid

ρsolid

From that we define the buoyancy factor, kb, as the ration of Ŵ/W as

kb ≡ Ŵ

W
= 1− ρliquid

ρsolid
(D.19)

We could also use specific gravity or specific weights in the formula instead of density.
While Archimedes’ principle can be of great use, as we just demonstrated, it can also get us into

serious trouble if we are not careful. Here is an important question: Can we use Archimedes’ principle
to determine a load at some point within a buoyed body? We will examine some examples of axial and
moment loads on tubes from buoyancy and gravity shortly.

D.4.2 Fluid density

Throughout this text, we continually use the density of fluids in wellbores to calculate hydrostatic
pressures. The common oilfield measure of liquid density is pound per gallon (lb/gal or ppg), which

Figure D.4 Solid cube submerged in a liquid.
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almost always requires conversion factors every time it is used. Almost anyone who uses that measure
has long since committed to memory the necessary conversion factors, but it is still an awkward measure,
especially for those accustomed to SI units and in regions where the common engineering density
measure, pound per cubic foot, is used instead. Therefore, in the interest of making this text more
universal, I use specific gravity (density), ρ̂, in referring to the densities of wellbore liquids. This specific
gravity is easily multiplied by the density of water in whatever units one may want to use to give the
density of the liquid in those units.

That, of course, brings up the question as to what is the density of water to which our measure is
specific. Pure water at 4 ◦C has a density of 1000 kg/m3, and at 20 ◦C, it has a density of 998 kg/m3.
Respectively then, those give us densities of 8.345 lb/gal and 8.33 lb/gal or 62.43 lb/ft3 and 62.32 lb/ft3.
Some will immediately ask to what temperature do we refer when we have to convert the specific
gravity into a value of density for a calculation. It is interesting that this question arises in this context,
because it almost never arises when one reads a drilling fluid density from a drilling report and uses it in
hydrostatic calculations. At what temperature was the density measurement made on the rig, and how
does that relate to the temperature and density down hole? Do we ever even consider that? In this text, I
use the density of water at 20 ◦C for the sake of consistency and possibly some notion that it is perhaps
closer to the average temperature at which most rig density measurements are made. But I also add that
it does not make any difference, because nobody knows the density of the drilling fluid at 4 or 20 ◦C in
the first place. Furthermore, if I work in SI units, I use water at 4 ◦C just to make my life easier, since
the density in kg/m3 is simply 1000 times the specific gravity rather than 998 times.

D.4.3 Axial load in a vertical tube

Suppose we have a smooth tube suspended vertically in a liquid to some depth, h, as in Figure D.5.
We want to know the axial load, Fa, in that tube at point a, some distance, �, from the bottom.
The density of the liquid (fluid) is ρf, the density of the tube (solid) is ρs, and the tube is open at
both ends.

We use Newton’s third law by saying the force at point a is equal to the buoyed weight of the portion
of the tube below that point, and we can calculate that buoyed weight by calculating the displaced vol-
ume times the difference in the density of the solid and the fluid, in other words Archimedes’ principle:∑

Fz = 0

g VΔρ − Fa = 0

Fa = gπ
(

r2
o − r2

i

)
� (ρs − ρf) (D.20)

Figure D.5 A smooth open-ended tube suspended vertically in a liquid.
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Now, is that correct? Is that really the axial force in the tube at point a? Let us compare to Newton’s
third law and the actual forces, that is, the body force of the section of tube below point a and the force
of the fluid on the bottom of the tube. Assuming there is no pressure at the surface, then∑

Fz = 0

gρsπ
(

r2
o − r2

i

)
�− gρfπ

(
r2
o − r2

i

)
h− Fa = 0

Fa = gπ
(

r2
o − r2

i

)
(�ρs − hρf) (D.21)

The two methods give different results because � = h. We know that Newton’s law with the forces
is correct, so what is wrong with using Archimedes’ principle in Newton’s law? Before we answer that,
let us note one thing about the results. If � = h, then they both give the same results. In other words,
the only point where Archimedes’ principle can give the correct axial load in the suspended tube is
at the surface. The casing in this example is being acted on by forces (at the surface) not accounted
for in Archimedes’ principle. The problem with Archimedes’ principle is that, in general, it cannot be
used on part of a body to give the loads within the body itself. This is important to remember, and
it is a common mistake. Newton’s third law with actual forces gives us the true loads; Archimedes’
principle gives us something often termed effective loads in the vertical direction. Actually, there are
legitimate applications for the effective loads, and we discuss those Chapter 6. For now we consider
how Archimedes’ principle can give us misleading results.

D.4.4 Axial load in a horizontal tube

Now let us attempt another application using Archimedes’ principle. Suppose we have an open-ended
tube fixed to a vertical wall and extending horizontally into a liquid, and the central longitudinal axis
of the tube is at some depth, h, as in Figure D.6. What is the longitudinal axial load in this horizontal
tube (neglecting bending loads caused by gravity for now)? We can see that a pressure load on the end
of the tube is acting on the cross-sectional area, so we know there is a compressive axial load in the
tube. Can we use Archimedes’ principle to determine that load? No, we cannot, because Archimedes’
principle applies to gravitational (vertical) loads only. Also we cannot simply multiply the pressure by
the cross-sectional area, as we did previously, because it is apparent from the figure that the pressure on
the cross section is not the same at all points since the pressure varies with depth. So, let us see how we
calculate the load on the end attributable to the liquid pressure, which varies with depth.

We could show this more easily if it were a solid bar with a rectangular cross section, but since our
interest is in tubes, we may as well see the details of how it is done. Since pressure varies with depth,
we can express the pressure at any point on the tube end as follows:

Figure D.6 Horizontal tube, centroid at depth, h.
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p = po + gρf (h+ r cos θ) (D.22)

Note carefully the orientation of our coordinate system, because we have adopted the convenient
system mentioned earlier for our use in wellbore calculations, and it appears to be upside down to
what we are accustomed to seeing; that is, the z-axis is positive downward. The angle, θ , is measured
counterclockwise from the positive z-axis. Since the pressure varies over the area of the tube, the force
of the pressure on the end of the tube is the pressure integrated over the area of the tube:∑

Fy = 0

−F −
∫∫

p dA = 0

F = −
∫ ro

ri

∫ 2π

0
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i

3
cos θ

]
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F = − (po + gρf h) π
(

r2
o − r2

i

)
(D.23)

From this result, we see that the force on the end of the tube is equal to the pressure at the center
of the tube end times the cross-sectional area of the tube. Is this a general result for any tube, or is it
specific for a horizontal tube face? This can be generalized to any inclination and is an important result
in fluid statics, in that the force of a fluid of constant density on a submerged flat surface is equal to the
pressure at the centroid of the surface times the area of the surface.

D.4.5 Axial load in an inclined tube

We generalize the preceding statement with the following example of an inclined tube. The tube in
Figure D.7 is inclined at some angle, α, from vertical. Note that, in oilfield applications, wellbore
inclination angles are always measured from vertical not horizontal. So again the pressure at the center
of the tube end at its end is given by

p = po + g ρf (D.24)

where po is a surface pressure and h is the depth of the center of the tube end. If we use Newton’s third
law, again with the subscripts denoting a coordinate direction along the longitudinal axis of the tube, the
axial force on the end of the tube is

Figure D.7 Tube at a in inclined angle in a liquid.
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∑
Fs = 0
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∫∫
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(D.25)

We see then that the result is the same. No matter what the inclination angle the hydrostatic force on
the end of the tube is equal to the cross-sectional area of the tube times the pressure at the centroid of
the tube end.

Now let us look at the axial force at some point, a, some distance, �, from the end of an inclined
tube: ∑

Fs = 0gρsπ
(

r2
o − r2

i

)
� cos α −

[
po + gρfπ

(
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o − r2
i
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h
]
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i

)
(�ρs cos α − hρf)− po (D.26)

Notice that, as the inclination angle goes to 0◦ (vertical), Equation (D.26) is identical to Equa-
tion (D.21) with the addition of a surface pressure, and when the inclination goes to 90◦ (horizontal), it
is identical to Equation (D.23).

D.4.6 Moment in a horizontal tube

Let us now look at one more example of a horizontal tube and determine the moment in the tube at some
point a. We determine the moment about the x-axis, in Figure D.8.

Again we might be tempted to use Archimedes’ principle as others have before. We try that using the
buoyed weight of the end segment to find the moment at point a about the x-axis:∑

Mx = 0∫ �

ya

π
(

r2
o − r2

i

)
g (ρs − ρf) (y− ya) dy −Ma = 0

Figure D.8 A fixed horizontal tube.
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That is pretty straight forward and relatively easy. Now, let us do it using the actual forces, and to
save a little bit of calculation, we use the center of gravity of the segment as the length of the moment
arm:∑
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(D.28)

We can see immediately that the results are different. The first term of the result is the moment from
gravity, and we see that it is exactly the same as the moment we derived using Archimedes’ principle.
But the second term is a moment at the end of the tube from the difference in the pressure from the
top of the tube to the bottom of the tube. We might call this term a pressure-end moment. Clearly, this
term is finite and does contribute to the moment in the tube, so it is not something fictitious that we can
arbitrarily disregard. But, how significant is this term in oilfield applications? Let us look at an example
to get some idea of the magnitude of that term in an oilfield context. Say, the tube is 9-5/8 in. casing
with an inside diameter of 8.681 in., and the fluid is drilling fluid with a specific gravity of 2.0 (16.66
ppg, 124.64 lb/ft3, or 1996 kg/m3):
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This is a relatively small value in oilfield calculations (0.86 lbf ft or 1.16 J), so we almost always
choose to ignore it. But if we choose to assume its value to be negligible, then we must certainly
acknowledge at least to ourselves that we are doing so.
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D.4.7 Moment in an inclined tube

That was for a horizontal tube, but what is generalized result for an inclined tube? In this example, the
inclination angle is α, h is the depth at the center of the tube end, and s is a coordinate along the axis of
the inclined tube. Now the pressure varies along the length of the tube.
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This was also a bit tedious to do, but most of the terms evaluate to zero and the results are identical to
the horizontal case, except for the sine of the inclination angle. Note that, as the inclination angle goes
to zero (vertical wellbore), both terms, the gravitational moment and the pressure-end moment, vanish,
as one would expect. Likewise, both terms are a maximum when the tube is horizontal.

D.5 Oilfield calculations

It is important that we become familiar with routine calculations involving hydrostatics in bore-hole
applications. This is particularly important, because more often than not, we do not have measured
pressures down hole, and we must rely on surface pressures and known fluid densities to calculate down-
hole pressures and loads. In drilling and casing applications, we typically work with gauge pressures
as opposed to absolute pressures. Atmospheric pressure is negligible in the context of these types of
applications, so it typically is ignored, but at least we acknowledge here that we recognize the difference
between absolute pressures, which include atmospheric pressure, and gauge pressures, which do not.

D.5.1 Hydrostatic pressures in wellbores

Liquid Columns
Calculating hydrostatic pressure of a liquid column in a wellbore is probably the most frequent type of
calculation made in drilling, completion, intervention, and stimulation work. It is easy to do and one of
the first things a field engineer learns to do. The best way to understand it is with an example. Figure D.9
shows a simple but common wellbore situation. A tube is hanging freely in a vertical wellbore with an
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Figure D.9 An open-end tube suspended in a well.

open end. The wellbore fluid has a specific gravity of 1.5 and the depth of the tube is h. What is the
hydrostatic pressure at the end of the tube?

The pressure can be calculated as

p = p0 + gρfh = p0 + g (1.5ρw) h

where ρw is the density of water. This calculation is quite simple in SI units, because the density and
depth are always in consistent units. For instance, if the depth is 3000 m, then the calculation is

p = 0+
(

9.81
m

s2

)
(1.5)

(
998

kg

m3

)
(3000 m) = 43.97× 106 N

m2 = 43.97 MPa

SI units are consistent and all these types of calculations are straight forward; however, USC units are
not consistent and conversion factors are required. The fact that pressure is measured in psi (lbf/in.2),
depth in ft, and density in lb/gal basically means that length, area, and volume are measured in three
distinct and inconsistent units. So let us derive the necessary conversion factor such that we may have it
available for use in all our oilfield calculations of this type. One way to do this is as follows:

p = p0 + g CL gc ρf h (D.31)

where CL is a conversion factor for the length, area, and volume units and gc is a conversion factor for
the mass units as previously discussed. We can calculate the value of this factor as

CL =
(

gal

231 in3

)(
12 in

ft

)

CL = 0.051948

(
gal

in2 ft

)

CL ≈ 0.052

(
gal

in2 ft

)
(D.32)

This is the factor commonly used in the oil field, and since any deviation of local gravity from
standard gravity is usually negligible, the term g · gc is assumed to be unity and generally is ignored
in the USC system of units. However, this has also led to a certain amount of misunderstanding on the
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part of those using these units, since the gravitational acceleration is an essential part of any equation
dealing with gravitational body forces (e.g., hydrostatic pressure) and cannot be omitted. We could use
the proper formula for pressure in a fluid of constant density as

p = p0 + gρf h (D.33)

with the understanding that, when using USC units for calculation, it actually means

p = p0 + g CL gc ρf h (D.34)

and always keeping in mind that gc is a conversion factor for ρh and not g. We take one more step to
simplify that for our use. If we use specific weight instead of density, it makes the use of conversion
factors somewhat easier. Specific weight is defined as

γ ≡ gρ (D.35)

In the English engineering system, this means

γ = g gcρ (D.36)

The SI units of specific weight are N/m3, and in USC units, they are lbf/gal. This makes the pressure
formula slightly less cumbersome because the specific weight is a pressure gradient.

p = p0 + γ h (D.37)

Remember though that, in USC units, we still need the conversion factor for length, area, and volume as

p = p0 + CLγ h (D.38)

If we take the previous example, with a depth of, say 10,000 ft, and calculate the pressure at the end
of the tube it goes like this:

p = p0 + CL γ h

p = 0+
(

0.052
gal

in2 ft

)
(1.5)

(
8.33

lbf

gal

)
(10, 000 ft)

p = 6487
lbf

in2

And in SI units

p = p0 + γ h

p = 0+ (1.5)

(
9810

N

m3

)
(3048 m)

p = 44.85 MPa

In the SI unit calculation, we used the specific weight of water at 4 ◦C to make life easier, so the
results are slightly different. If you prefer, you could use the density at 20 ◦C and the specific weight
of water would be γ = gρ = 9.81 (998) = 9790 N/m3. That type of calculation should become routine
for the engineer or anyone doing hydrostatic calculations in wellbores. From now on, we do not show
the conversion factor in the formula, so that the formula is not unit specific, but you must remember to
include it when using USC units.
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(a) (b)

  1.5 SG
    mud

1200 psi

h

   1.5 SG
    mud

10000 ft

1200 psi? psi

1.1 SG
 water

Figure D.10 (a) Same well with surface pressure and (b) same well with different fluids and surface pressure.

Figure D.10a shows another example of the same well with pressure on the surface. The formula is
the same but the pressure at the surface is not zero in this case.

p = p0 + γmud h

p = p0 + (1.5 γwtr) h

If the surface pressure is 1200 psi, calculate the pressure at the bottom of the tube:

p = 1200+ 0.052 (1.5) (8.33) (10000) = 7697 psi

Figure D.10b shows different fluids in the same wellbore. In this case, the fluid in the annulus has a
specific gravity of 1.5, as before, but the fluid in the tubing has a specific gravity of 1.1.

There is a pressure of 1200 psi on the annulus, and the tubing is closed at the surface. Here, our task
is to calculate the pressure at the surface in the tubing. There are various ways to do this, but the easiest
way is to set up an equality knowing the pressure in both the tubing and annulus are equal at the bottom
of the tubing:

p0 tbg + γtbg h = p0 ann + γann h

p0 tbg = p0 ann +
(
γann − γtbg

)
h

p0 tbg = 1200+ (0.052) (1.5− 1.1) (8.33) (10000)

p0 tbg = 2933 psi

For a slightly different perspective, suppose we do not know the density of the fluid in the tubing,
but we measure the pressure at the surface of the tubing to be 2000 psi. All other variables are the same.
What is the specific gravity of the fluid in the tubing? What is the density of the fluid in the tubing? We
start out exactly the same; that is, we know the pressure at the bottom of the tubing:

p0 tbg + γtbg h = p0 ann + γann h

ρtbg = p0 ann + γann h− p0 tbg

g h
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ρtbg = p0 ann − p0 tbg

g h
+ ρann

ρtbg

ρwtr
= p0ann − p0 tbg

γwtr h
+ γann

γwtr

ρ̂tbg = p0 ann − p0 tbg

γwtr h
+ ρ̂ann

ρ̂tbg = 1200− 2000

0.052 (8.33) 10000
+ 1.5

ρ̂tbg = 1.32

And the answer to the second question is

ρtbg = ρ̂tbg ρwtr = 1.32 (8.33) ≈ 11.0
lb

gal

The only difficulty with this particular problem is where to use the conversion factors, and that is just
a matter of practice and familiarity with the units.

D.5.2 Buoyed weight of casing

To calculate the axial loads on casing, we have to find the weight of the casing in the fluid that
surrounds it. We show the specific details of the calculations in Chapter 4, but will define some of
the nomenclature here.

Weight of Casing in Air
In some casing designs, we use what we call the weight of the casing string in air. However, strictly
speaking, we actually mean the weight of casing in a vacuum, since air is a gas and there is a difference
in the pressure on the top and on the bottom of a casing string suspended in a borehole containing only
air. However, this buoyant force is relatively small compared to the weight of the casing and usually
ignored in practice. So when we speak of the weight of casing in air, we actually ignore all buoyant
forces on the casing string. To calculate the weight of a casing string suspended vertically in air, we
merely multiply the weight per unit length times the length to get the weight of the string and the axial
load at the surface.

Weight of Casing in a Liquid
When the casing is hanging in a liquid, we must include the buoyant forces on the tube to determine
the buoyed weight of the string and the axial loads. We already distinguished between the true axial
load and something called the effective load. We saw that Archimedes’ principle gave us the correct
load at the surface but did not give us the true axial load at any other point within the string, but rather,
what we called the effective axial load in Chapter 4. Another factor to consider is that, in most casing
string designs, the wall thickness is not the same for the entire string, and that contributes further to
the inaccuracy of using Archimedes’ principle. To get the true axial load, we must use the actual forces
attributable to the weight of the tube and the hydrostatic pressure at the points where it acts on cross-
sectional areas.

The best way to understand the calculation procedure for the true axial load is to refer to a schematic
of a casing string with different inside diameters. Figure D.11 shows a schematic of a casing string with
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Figure D.11 Schematic of hydrostatic forces on a casing string.

four sections with three internal changes of diameter. We number the tops and bottoms of these sections
as nodes starting at node 1 at the bottom and ending with node 5 at the top.2 Wherever the cross-sectional
area changes, we will have two calculations to make because there is a pressure step at that node. We
calculate the axial force in the top of the joint just below the node, and then the axial load in the bottom
of the joint just above the node. Please note the pressure at a cross-sectional area change has no effect
on the casing below that point, it only affects the axial load above that point. There are a number of
ways we could cast these equations, but this is an easy way to formulate them for programming. The
first equation calculates the axial force at the bottom of section j just above its bottom node, j, and the
second equation calculates the axial force at the top of section j just below its top node, j+ 1.

F↓j = −p0A0 + p1A1 +
j∑

i=2
pi (Ai − Ai−1)+

j−1∑
i=1

wiLi

j = 1, . . . , n
(D.39)

F↑j = −p0A0 + p1A1 +
j∑

i=2
pi (Ai − Ai−1)+

j∑
i=1

wiLi

j = 1, . . . , n
(D.40)

2 This numbering scheme is different from the first edition, and is a bit easier to program with most software (the earlier scheme
was set for compatibility with C++).
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where

j = section number

n = total number of sections in string

and the arrows denote the top or bottom of the sections (not the direction of the loads).
Note: Mathematically, the convention is that when a summation index, i, is initially greater than

the summation limit, j or j− 1, then the summation is zero. And in a case where j− 1 < 0, then the
summation is zero. This is standard in mathematics, but be cautioned that this is not always consistent
in some programming languages.

While those formulas lend themselves easily to programming, they are a bit confusing if doing the
calculations manually because they separate the bottom and top loads of each section and calculate them
separately. When doing the calculations manually, we prefer to do them sequentially without having to
repeat so many of the calculations in the summations. Here is a way to more easily visualize the process
when doing the calculations sequentially and manually. The subscripts on the force, Fj , will refer to a

section number. The arrow superscripts designate the bottom or top of section j. For example, F↓j is the

load at the bottom of section j, and F↑j is the load at the top of section j. From the diagram, we easily

see that the load at the bottom of section 1 is F↓1 = −p0A0 + p1A1. At the top of section 1 it is equal to

the force at the bottom of section 1 plus the weight of section 1, F↑1 = F↓1 + w1L1. In the summation
equations (D.39) and (D.40), these two quantities are calculated for each summation. For n sections of
casing, both of these forces are calculated 2n times. The forces at the top and bottom of section 2 are
calculated 2n− 1 times and so forth. If we calculate these in a sequence, F↓1 , F↑1 , F↓2 , F↑2 , F↓3 , F↓3 , and
so on, we eliminate the repetitious calculations. We can further reduce the work of manual calculation
by lumping similar types of calculations into groups.

Here is a simple procedure for manual calculation of the trues axial load:

1. Calculate the cross-sectional areas: A0, A1, . . . , An.
2. Calculate the unbuoyed weight of each section: Wi = wiLi.
3. Calculate the pressure at each node: p0, p1, p2, . . . , pn, pn+1.
4. Starting at the bottom, calculate the force at the bottom of section 1, F↓1 , then the top of section 1, F↑1 , bottom

of section 2, F↓2 , top of section 2, F↑2 , etc.

The procedure would then go in sequence as follows:

F↓1 = −p0A0 + p1A1

F↑1 = F↓1 +W1

F↓2 = F↑1 + p2 (A2 − A1)

F↑2 = F↓2 +W2

...

F↓j = F↑j−1 + pj
(
Aj − Aj−1

)
(D.41)

F↑j = F↓j +Wj (D.42)

...
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F↓n = F↑n−1 + pn (An − An−1)

F↑n = F↓n +Wn

Notice that we always start at the bottom. That is because the pressure at a node has no effect on the
forces below it.

Buoyed Weight of Casing in Inclined and Curved Wellbores
Casing rarely hangs vertically in an actual wellbore. Most wells are inclined to some extent, and the
wellbores are also curved. The casing is partially or sometimes totally supported by the walls of the
borehole. Therefore, the axial load is that component of the gravitational body force not supported by
the borehole wall. We ignore friction for now, but discuss it at length in Chapter 7. So, for our purposes
here, the only force acting on the casing are the body forces of the casing attributable to gravity and the
hydrostatic forces of the fluid in the wellbore.

There are two approaches we might take: (1) a trigonometric resolution of gravitational and pressure
forces (as in the first edition) which is a bit tedious unless using specific software (see Figure D.12),
or (2) use only true vertical depths for section lengths and pressure forces. The second is considerably
easier to do and gives exactly the same result. The only caveat is that the section lengths are vertical
projections and must be resolved into actual lengths for purchasing and actually running the casing. This
is the method we use in this edition.

A Clarification on Buoyed Axial Loads
In Chapter 4, it is stated that the true axial load based on equilibrium forces and hydrostatics and the
effective axial load based on Archimedes’ principle will both give the same axial load at the surface. That
is a true statement, but if you actually calculate them using the equations above and the buoyancy factors
as shown in Chapter 4, you will find that the results do not agree. The difference is relatively small, but
we know the results should be exactly the same except for a little numerical roundoff. Why don’t they
agree? It comes back to the fact that we use the nominal weight in our calculations, and the nominal
weight is not the actual weight. If we used the actual weight to calculate the effective load, it would give
us the exact buoyed load at the surface. But the equations above for the true load would not. The reason

Figure D.12 A segment of casing in an inclined wellbore.
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Figure D.13 Schematic of hydrostatic forces on a coupling.

the true load would not be accurate is because we did not take into account the couplings. There are
buoyant forces on the couplings that are not accounted for in our casing schematic (Figure D.11). The
forces acting on a coupling are shown in Figure D.13. While the difference between the pressure acting
downward on the top edge and the upward pressure on the bottom edge is small, it makes a difference
when you consider 200, 300, or more couplings. It is still easy to calculate the true axial load by using
the actual body weight of the pipe from the pipe body formula (Equation (1.2) in Chapter 1). Then add
in the weight and buoyant force on the couplings (you need calculate the magnitude of only one). If you
program the procedure, all you need is ID and OD of the pipe, the OD of the coupling, and the density
of the steel.

D.5.3 The ubiquitous vacuum

The foolish gaffes regarding a vacuum could be a great source of humor and professional teasing were it
not for the serious costs that have often resulted. A perfect vacuum is zero absolute pressure and does not
exist. In oilfield terms, that is roughly 15 psi less than atmospheric pressure. A near perfect vacuum by
itself does not cause casing to collapse. It does not suspend a significant column of fluid in an annulus.
I will not mention any specific instances (and I know of several) because, to this day, those involved are
still embarrassed. If your design or operation procedure is close enough to a disaster that you have to
consider a vacuum, then you are too close to worry about it. Revise your design or pause to think about
the actual magnitude of a vacuum.
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D.6 Closure

We may have spent an inordinate amount of time on basic hydrostatics, especially as the subject applies
to oilfield casing in wellbores. One reason for this is that it is an important topic: a secondary reason is
that there seems to exist a pervasive degree of confusion in the oil field about hydrostatics, especially in
regard to buoyancy.
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E.1 Introduction to the borehole environment

We easily imagine a borehole as a vertical cylindrical hole drilled through a rigid medium. This is an
ideal for visualization and understanding. Unfortunately, that picture is an idealization that is not true
in practice. Actual boreholes are not straight except possibly over small intervals nor are they vertical
except within small intervals. The rock in which the borehole is drilled is not a rigid medium, and though
we may treat it as such, its mechanical behavior cannot be taken for granted in all applications. In this
appendix, we examine the characteristics and mechanical behavior of this rock medium in brief. We
then turn to the geometry of the borehole path and some of its consequences.

E.2 Pore pressure in rocks

Before getting into the mechanics of rock behavior, let us first explore an important property of
sedimentary rocks, porosity. All sedimentary rocks contain voids called pores, the space between the
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Figure E.1 Soil compaction model. (a) Free drainage and (b) restricted drainage.

solid grains of the sedimentary deposition and any other solids formed in the process. The volume
fraction of the bulk rock that constitutes the pores is called porosity, φ = Vpores/Vbulk rock. All pore
spaces contain some type of fluid. The connectivity of pore spaces (if any) allows those fluids to flow
through the rock. The measure of the conductivity of rock to fluid flow through the pore spaces is called
permeability. While porosity and permeability are physically related, there is no general correlation
between the two and the two terms are not interchangeable.

Pore pressure (also called formation pressure) is the pressure of the fluid that fills the pore
spaces (or voids) in the rock. This pressure normally determines the lower limit of the drilling fluid
density (exceptions are under-balanced drilling operations or some borehole stability problems). All
sedimentary rock contains some type of fluid in the pore spaces and this fluid may be in the form of
liquid or gas. In general, the pressure of the fluid is dependent on the depth of the rock and the density
of the fluid, and in particular it depends on the connectivity, if any, of the pore spaces to the surface. We
can illustrate the deposition process with a simple picture used by Terzaghi and Peck [72] to illustrate
the nature of soil compaction as in Figure E.1a.

The cylinder, a, in the figure contains porous rock and liquid. A downward force, F, is applied to
the piston representing the weight of subsequent layers of rock (called overburden) deposited above
the sample. As the force (overburden weight) is increased with increasing deposition, the rock in the
cylinder is compressed forcing some of the fluid into the drain tube whose length represents the depth
of the rock below the earth’s surface. If the fluid can flow freely into the tube and to the surface, it can
be seen that no matter how deep the rock or the weight of the overburden the pressure of the fluid in the
pore spaces will be equivalent to the hydrostatic pressure of the fluid column in the tube. This closely
models the situation in many formations that have porosity or channels that freely connect to the surface
(though the connection may be far from obvious). In this instance, the pore pressure of the formation is
equal to the hydrostatic pressure of the fluid column between the formation and the surface. Typically,
such a fluid contains dissolved minerals such as salt that makes the density greater than fresh water.

In general, the path through pore spaces of various formations from some depth to the surface is not
quite so direct, and there may be considerable variation if the deposition, for instance, is occurring at a
faster rate than the fluid can escape. This is illustrated in Figure E.1b where we have placed a valve or
choke in the drain tube.

If we restrict the rate at which the fluid is allowed to escape as the formation is compacted by the
increasing overburden, then the pressure of the fluid in the second cylinder will be higher than in the
first cylinder because of the reduced rate at which the fluid is allowed to escape. Such a restriction could
be caused by very low permeability formations between the sample and the surface for instance. If the
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deposition rate slows or stops, the pore pressure might eventually equalize to the hydrostatic head of
the fluid column, but such a process might require several hundred thousand years or so. In that case
we might consider for all practical purposes that the escape tube is totally sealed depending upon where
in the age of the process we drill into the formation. In the case where the fluid has been trapped or its
escape severely restricted we consider the pore pressure to be abnormally high or over-pressured. It can
be considerably higher than in the first model. We call such a formation an under-compacted formation,
meaning that it has not compacted to a normal density for the given amount of overburden pressure
because some of the fluid has been trapped and is also contributing to the support of the weight of the
overburden. The fluid pressure could vary considerably from slightly above normal to an upper limit
which would be a pressure equivalent to the weight of the overburden. We may write an expression as
to the limitation of values the formation pressure can have:

∫ h

0
g ρf dz ≤ p ≤

∫ h

0
g ρr dz (E.1)

where p is the formation pressure, g is the local acceleration of gravity, ρf and ρr are the densities of
the fluid and rock, respectively, and z is a vertical coordinate axis. The limits of integration are from the
surface to some depth, h. The term on the left is the hydrostatic pressure of a column of the formation
fluid; the term on the right is the overburden pressure.

Since the density of the rock usually is consistent throughout a formation interval, the term on the
right is generally computed incrementally as

p ≤ g
n∑

i=1

ρri �zi (E.2)

where n is the number of different rock intervals and the subscript, i denotes the ith interval, and �zi is
the ith interval thickness. This type of digital integration is a routine service of most logging companies
running density logs.

Four obvious consequences of these two illustrations are that, (1) the density of an under-compacted
formation will be less than that of a normally compacted formation since it contains a greater percentage
of fluid; (2) if the fluid is salt water, the resistivity measurement from an electric log will be lower than
the normal formation, again because it contains a greater percentage of fluid; (3) the acoustic travel time
in the under-compacted formation will be less; and (4) if we are drilling through the two formations,
the drilling rate will be faster through the under-compacted formation because it is less dense and the
differential pressure between the drilling fluid and pore pressure will be less, hence the drilled cuttings
will be more easily removed from the formation face. These four mechanisms are the primary means
we have to detect the presence of abnormally high-pressured formations. While the fluid entrapment
mechanism explains most of the abnormally high-pressured formations in the world, there are other
causes such as a long gas column in a steeply dipped reservoir, artesian flow, a reservoir that has been
pressured by a higher pressure reservoir during uncontrolled subsurface flow in a blowout, flow in an
un-cemented casing annulus, and so forth. We have no means to detect these other types of situations
except by direct measurements or previous knowledge of the situation.

On the other extreme, there are situations where the formation pore pressures are abnormally low,
that is, less than the gradient of salt water. These cases are generally caused by depletion of the normal
pore pressure by production of the fluids from the formation. This type of situation is generally known
in advance of drilling (but not always).
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Another point that is quite important is this. Much of what we know about formation pore pressures
in a given area seems to fail miserably at shallow depths. A number of rigs have been lost because of
drilling into shallow pockets of trapped gas. The uncertainty and unpredictability of the presence of
these small shallow gas accumulations often require that small diameter pilot holes be drilled in some
areas to ascertain their presence prior to starting a well. And in the case of low pressure there was at least
one occurrence of a rig drilling into a shallow man-made mine shaft that swallowed the entire rig and
all the water from a small lake. The data that one has available for casing point selection will seldom
include data near the surface, and one should never assume that the absence of such data means that
pore pressures near the surface are of no consequence.

There are various methods for determining or estimating the magnitude of pore pressures in a
wellbore, and while we cannot go into those methods, here is a brief list of some methods and
sources.

• Before drilling
• Production data in area
• Direct measurements in other wells
• Log correlations
• Paleontology correlations
• Seismic correlations

• While drilling
• Shale density measurements
• Drilling rate monitoring
• Gas monitoring
• Full mud logging
• Logging while drilling

For this text we will assume that we already have access to reasonable pore pressure estimates for
our borehole, and after reading the above we have some fundamental understanding of what it means.
Further in-depth reading may be found in the book by Fertl [12].

E.3 Basic rock mechanics

All rock under the surface is in a state of stress. This stress state is almost always a compressive state,
in other words, subsurface rock is always under pressure. The source of the stress in most sedimentary
environments is a gravitational load. Tectonic activity is another, but far beyond our discussion here.
Simply put, the weight of the overlying rock, called the overburden, tends to vertically compress the
rock beneath. The vertically compressed rock then tends to expand laterally because of the vertical
compression. However, it cannot freely expand laterally because it is constrained by more rock also
subject to the same overburden. Figure E.2a illustrates a block of subsurface rock with its typical
principal in situ stress components. There is a vertical stress component, σv, a maximum horizontal
component, labeled σH, and a minimum horizontal component, labeled σh. This is the normal case
for most sedimentary environments, but be aware—not always. Usually, the relative magnitudes of the
three principal stress components are σv > σH > σh and the difference between the first two is usually
significantly greater than the difference between the last two.
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Figure E.2 In situ stress field. (a) General case and (b) fracture direction (top view).

It is relatively easy to determine the magnitude of the vertical stress component from density logs
using

σv = g
n∑

i=1

ρi �zi (E.3)

The magnitude and direction of the minimum horizontal stress component can actually be measured
with a mini-fracture test (more later), but quantifying the maximum horizontal stress component is much
more difficult. Fortunately, we seldom need that value except in borehole stability analyses. What is most
significant in our interest is the magnitude of the minimum horizontal stress component. In a vertical
borehole, σh and the tensile strength of the rock determine the fracture pressure. A top view of a vertical
borehole in Figure E.2b shows that a fracture initiates perpendicular to σh because it represents the least
resistance to a fracture opening. This is a significant fact to remember: a fracture always propagates
perpendicular the least principal stress component. Any exception usually mean flaws in the rock or
a stress field that is changing because of large volumes and rates of fluids pumped during a hydraulic
fracturing process. So if we know σh and the tensile strength of the rock we can calculate the fracture
strength of the rock in this borehole with reasonable accuracy.1

We must discuss briefly one related topic. It was once common to theorize that rock was totally
constrained laterally for all practical purposes because the only relief points for the constraint were often
hundreds of miles distant. The consequence of such a theory is that the horizontal stress components are
the same value in all directions, and that leads to the simple plane strain formula

σh = ν

1− ν
σv (E.4)

where σh, σv, and ν are the horizontal stress component, the vertical stress component, and Poisson’s
ratio for the rock, respectively. The vertical stress component is calculated using Equation (E.3).
Equation (E.4) is then an easy formula and the reasoning makes sense. Unfortunately, the underlying
assumption of total constraint is false. There are constraint reliefs such that the horizontal components
are seldom equal and the formula is correct almost nowhere. It has been shown to be off by near
1000% in shallow depths and 100% in some deeper depths. The reason I even bring up this point is
that this formula has historically been and still is being used to predict fracture pressures and gradients
in drilling operations, and it has been successful. Why? It is because the Poisson’s ratio value used in the
formula is not the actual Poisson ratio of the rock but a “correlation” factor that has been “calibrated” to
certain geographical areas and formations so that it yields a reasonable approximation of the minimum

1 Inclined and horizontal boreholes bring added complexity that we will not address in this elementary discussion.
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horizontal stress component to which is closely related to fracture pressure in a vertical well. It does not
work in highly deviated and horizontal wells.

E.4 Fracture pressure

The pressure at which the matrix of a rock will physically fracture and admit the entrance of whole
liquids depends upon a number of things. Here is what we normally expect when we think about that
definition of fracture pressure:

• The wellbore liquid cannot enter the formation pore spaces prior to fracture (e.g., a filter cake building mud or
an impermeable formation such as shale)

• The formation is in a state of compression from an in situ stress field (from overburden, lateral constraints,
and/or tectonic activity)

• The formation matrix has some amount of cementation and hence some amount of tensile strength (may be
relatively small though)

For this formation to be hydraulically fractured, the pressure of the liquid in the wellbore has to
exceed both the near borehole stress field that is compressing the rock at the point of fracture and
the tensile strength of the rock matrix at that point of fracture initiation. The near borehole stress field
is usually not the same as the in situ stress field because the rock deforms slightly when some of it
is removed to form the borehole, and consequently the stress field near the borehole has changed.
Once the fracture is initiated, the fluid enters the fracture and the fracture will propagate at a lower
pressure than the initial fracture pressure. The reason that the propagation pressure is lower than the
original fracture pressure is that once the fracture is open, the fluid pressure acts similar to a wedge
in the fracture. In other words, mechanical advantage is gained as the fracture length grows (up to a
limit).

That definition is widely accepted. It is normally the way we interpret “fracture pressure” and that is
what we usually assume when we design casing. However, the “fracture pressure” we utilize at the time
of casing depth selection and casing design often comes from several different sources such as leakoff
tests, integrity tests, fracture gradient curves/correlations, pilot hole mini-fracture tests, and production
stimulation fracture treatments. Often the values obtained from these sources are not what we assumed
from the above definition. Additionally, there are certain consequences of that definition of fracture
pressure that we do not always anticipate, such as:

• Once fractured a formation as described above can never be pressured again to the original fracture pressure in
that wellbore because it has no tensile strength at that point once fractured. Upon repressuring, the formation will
open at the fracture closure pressure because the tensile strength, if any, is now permanently lost. The fracture
closure pressure is a function of the in situ stress field and not the rock itself. The original tensile strength at
the point of fracture is never restored. The rock is broken, and it stays broken. (Note: some mud systems may
form plugs that can sometimes effectively divert the point of fracture to a different point in the rock matrix and
cement can sometimes restore some tensile strength at a point).

• The fracture pressure also depends on the orientation and inclination of the borehole in most cases. The reason
for that is that the principal in situ stress components are generally not equal in magnitude and their orientation
in relation to the wellbore can vary. That is a complicating factor in that the fracture pressure is commonly
reduced as the borehole inclination increases. The fracture pressure in an inclined wellbore will also vary with
the azimuthal direction of the inclined wellbore as well as inclination angle.

Here are some other situations to consider about fracture pressure.
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• Some formations have no tensile strength, e.g., unconsolidated sandstones, formations with micro fractures,
faults, and so forth.

• A borehole fluid can actually enter the pore spaces under pressure prior to fracture (e.g., fracturing a porous
formation with a clear fluid such as brine water).

In the case of no tensile strength, the fracture pressure depends entirely on the in situ stress field. It will
open at the same pressure each time so that fracturing it does not reduce its strength as in the previous
case. This is why in many areas it is perfectly “safe” to fracture a zone while drilling, because the
“strength” of the formation has not been reduced. In actuality, the formation has no tensile strength; the
compressive in situ stress field is what holds it together.

In the case of the pressured fluid entering the pore spaces before fracture occurs, the fracture
pressure will usually be lower than in the earlier definition because there is mechanical advantage to
the pressurized fluid in the pore spaces.

So we see that fracture pressure depends on orientation of the borehole to the stress field, the type
of fracturing fluid we use, the permeability of the rock, and the tensile strength of the rock, if any.
Awareness of those variations enable us to better understand exactly what fracture pressure means.
However, fracture pressure values come from various sources, and we must understand the nature of the
sources to know what the values mean.

E.5 Borehole stability

Though seldom considered in casing design, the stability of a borehole has for the most part been
considered a drilling problem. With the significant increase in the number of horizontal wells being
drilled, especially into shale formations that will be cased and fractured, it becomes a consideration in
casing design too. When we consider that 90% of borehole stability problems occur in shales, we must
have at least some rudimentary understanding of the phenomenon. We will present an overview here
without going into the details of the rock mechanics involved. First, we look at an example stability
curve, Figure E.3. This curve is for a specific formation at a specific depth, and shows a stable region
between a collapse region on the left and a fracture region on the right as functions of mud density and
inclination angle. You will notice that as the borehole is inclined more and more (toward the top) the
window of stability decreases. Why is this? It has to do with the in situ stress field not being isotropic.
The three principal in situ stress components are not equal, and in general we have σv > σH > σrmh

(vertical, maximum horizontal, minimum horizontal components). In a vertical well, the stability is
governed by the two smaller stress components, σH and σh. But as the inclination angle increases the
vertical stress component, σv, which is the largest of the three, begins to take on a more dominant role.
The case shown here is somewhat severe, but it is from an actual well analysis.

If that were not enough, the stability curve also depends on the direction of the borehole as well as
the inclination. Figure E.4 shows a case where it is not possible to select a mud density that will allow
the hole to remain stable when inclined at more that about 65◦. This is a curve for the same formation,
same depth, and same well. The difference is that the first curve is an analysis based on drilling in the
best direction and the second is based on drilling in the worst direction for stability. What is the best
direction? the worst direction?

To answer that we must look at what is taking place in the rock when we drill a borehole through
it. Since the rock is already in a state of compressive stress, it deforms some amount when we drill a
borehole through it. In other words, we remove some of the rock and the remaining rock deforms because
some amount supporting material has been removed. The local stress field changes. The question is: does
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Figure E.3 A borehole stability plot in direction of σh.
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Figure E.4 A borehole stability plot, in direction of σH.

this change in the near-borehole stress field cause the rock to fail? That is what a stability analysis seeks
to answer, as in Figures E.3 and E.4.

Figure E.5a shows a subsurface rock element with the three principal in situ stress components,
where σv > σH > σh. In Figure E.5b, we have drawn the outline of two boreholes to be drilled through
that rock, one vertical, and the other horizontal in the direction of the maximum horizontal stress
component, σH.

In a thought experiment we may “drill” these two example boreholes, and if we know the original in
situ stress components, we may calculate the resulting stress field around the borehole wall. In our
case we will assume the following values: σv = 10, 000 psi, σH = 7500 psi, and σh = 7000 psi. We
can calculate all the resulting stress components at the borehole wall, but since the tangential stress
component, σθ , is usually the most critical we will plot it (see Figure E.6). The plot shows the values of
σθ at the borehole wall all around its circumference. (The starting point for measuring θ is immaterial
in the vertical case, but in the figure it starts on the σH-axis.)
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Figure E.5 In situ stress. (a) Typical orientation and (b) planned borehole orientations.
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Figure E.6 Tangential stress component around borehole wall in a vertical well.

While it is hardly discernible in the graph, the tangential stress around the undrilled borehole
circumference varies from 7000 to 7500 psi, the values of the horizontal in situ stress components.
After the borehole is drilled, the resulting tangential stress around the circumference of the borehole
wall varies from 6500 to 8500 psi. Such a difference tends to cause the borehole cross section to become
slightly oval in shape. While this is not always obvious in most drilling situations, it is obvious in some
and the hole must be reamed a little on each connection.2 Once reamed additional deformation is usually
inconsequential.

Next, we make the same plot for a horizontal borehole as shown in Figure E.5b. Again, we plot the
tangential stress components in the rock where the borehole circumference will be when drilled. Then
we calculate and plot the tangential stress components around the drilled borehole wall (see Figure E.7
where σθ is measured from the high side of the horizontal borehole). Here, we see that the predrilling
stress components vary from 7000 psi on the high and low sides of the hole to 10,000 psi on the two sides,
but once rock is removed to form the borehole, the rock deforms and the tangential stress component
varies from about 4000 psi on the high and low points to 16,000 psi on the sides. This is a significantly
more severe change in near-borehole stress field than in a vertical well in the same rock. It is this
extreme difference that tends to cause excessive oval deformation and failure of the borehole in some
horizontal wells.

2 This has been quite troublesome in some coiled tubing drilling operations where there is no periodic pickup for connections. If
drilling proceeds too far before reaming, it may not be possible to pull the bit back through the drilled interval.



370 Casing and Liners for Drilling and Completion

0

5000

10,000

15,000

20,000

0 30 60 90 120 150 180 210 240 270 300 330 360
q (degrees)

s q
 (

ps
i)

Before drilling
After drilling

Figure E.7 Tangential stress components around borehole wall in a horizontal well.
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Figure E.8 Borehole instability. (a) Compressive break-out failure and (b) tensile fracture failure.

We must understand one thing about this deformation: Unless the two in situ stress components
perpendicular to the borehole axis are equal, the borehole deformation will result in an oval-shaped
borehole, and there is nothing we can do to prevent it. The degree of ovality may be insignificant or
it may be sufficient to cause failure in some of the rock on the borehole wall. And in the case of rock
failure, that too could be relatively insignificant or it could mean total borehole collapse. The only
means we have of mitigating the effects and resulting damage of the deformation is by controlling
the internal pressure (mud density), but because pressure is the same in all directions it cannot restore
the near-borehole formation to its original round shape. Too little pressure and the formation may fail in
compression on the two sides tangent to the maximum stress component as in Figure E.8a, and too much
pressure and it may fracture the formation on the two sides where the wall is tangent to the minimum
stress component (Figure E.8b).

Since the compressive and tensile failure points are at different locations on the borehole wall, it is
possible that they can both occur concurrently. For example, we see that the borehole stability curve in
Figure E.4 shows the two curves crossing at about 65◦ inclination. Had we extended those two curves
beyond their intercept we would have defined an area where both collapse and fracture are possible, and
that is exactly what can happen in some boreholes.

One critically important point, that must be understood when drilling horizontal wells for hydraulic
fracturing, and that is that the hydraulic fractures will always propagate perpendicular to the minimum
principal in situ stress component. Usually that is the minimum horizontal stress component, σh.
Figure E.9 illustrates fracture propagation from boreholes drilled in the directions of the three principal
in situ stress components. While the cylindrical borehole geometry affects the fracture orientation upon
initiation at the borehole wall, once away from the wall, the fractures will always propagate and grow
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Figure E.9 Fracture propagation from boreholes oriented in the three principal in situ stress component directions
where σv > σH > σh.

in a direction perpendicular to the minimum principal in situ component as shown. Obviously then, the
borehole on the left side of the figure drilled in the direction of σH will have a very poor response
a fracturing treatment except in cases where one is attempting to overcome vertical permeability
limitations in a thin bed or one near a gas or water contact where fracture length as measured away
from the wellbore is not desired.

The intent of this section is to give you a brief overview of the nature of borehole stability as it applies
to highly deviated wellbores. Space here does not allow us to go into detail about obtaining data and
making calculations for a stability analysis, but for your information the following are required:

• In situ stress components, σv, σH, σh (magnitudes and direction)
• Rock strength/failure properties
• Rock failure model

More information may be obtained in the book by Fjær et al. [71] and the paper by Yew and Li [73].
Also, in Chapter 2, we discussed other aspects and showed a pressure chart of a mini-frac used to obtain
fracture data.

E.6 Borehole path

The basic tools for determining a borehole path are an inclinometer for measuring the borehole
inclination (the deviation angle, α, of the borehole from vertical), a magnetic compass for measuring
the borehole direction (azimuth angle, β, from magnetic north), and the drill pipe measurements for
determining the length, �s, along the borehole path between directional survey points. The resulting
data defines a spatial direction vector at each survey point using α and β. The drill pipe measurement,
�s, is the distance between two of the vectors as measured along the borehole path between them.
Contrary to what is often assumed, that is not enough information to specify the location of a second
survey point even when the first of the two is known exactly. We must assume some shape of the borehole
path between survey points in order to specify the location of the second survey point.

E.6.1 Minimum curvature method

The method for determining a borehole path used almost exclusively today is known as the minimum
curvature method as proposed by Taylor and Mason [38] in 1972. They arrived at their method by
minimizing a quadratic curve that will describe the minimum length quadratic path between two survey
points and having the same vector directions as the survey vectors at the two ends. Their result is that the
minimum quadratic borehole path between two survey points is approximated by a segment of a circle
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Figure E.10 Minimum curvature notation scheme.

in a plane. Their equations may be written in several forms using trigonometric identities, but here they
are in the form presented in Taylor’s and Mason’s paper:

�x = �s

ϕ

(
vx sin ϕ + ux − vx cos ϕ

sin ϕ
− (ux − vx cos ϕ) cos ϕ

sin ϕ

)
(E.5)

�y = �s

ϕ

(
vy sin ϕ + uy − vy cos ϕ

sin ϕ
−
(
uy − vy cos ϕ

)
cos ϕ

sin ϕ

)
(E.6)

�z = �s

ϕ

(
vz sin ϕ + uz − vz cos ϕ

sin ϕ
− (uz − vz cos ϕ) cos ϕ

sin ϕ

)
(E.7)

where

vx = sin α1 cos β1

vy = sin α1 sin β1

vz = cos α1

ux = sin α2 cos β2

uy = sin α2 sin β2

uz = cos α2

and

ϕ = cos−1 [uxvx + uyvy + uzvz
]

(E.8)

Note: ϕ must be in radians in these equations.
The numerical subscripts refer to the current survey (1) and the previous survey (2). The letter

subscripts refer to the physical directions: x is North/South, y is East/West, and z is Down/Up. The
quantities �x, �y, and �z represent the changes in North/South, East/West, Down/Up, respectively,
since the previous survey with North (+), South (−), East (+), West (−), Down (+), and Up (−). The
quantity, �s, is the measured length of the well path between the two survey points.
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E.6.2 Interpolations on the borehole path

For a number of computations, such as contact force for friction calculations and casing wear, and for
bending stress magnification, it is often necessary to determine the location of points along a borehole
path on a finer nodal mesh than is given by the directional survey results which are typically on intervals
ranging from 30 to 90 ft. where the direction is being tightly controlled and significantly longer intervals
elsewhere. There are various ways to do this, the most common being a simple linear interpolation
of the inclination and azimuth angles separately between survey points. While that produces sufficient
accuracy for most measurements and calculations, it ignores the foundational premise of the current
survey method used by the industry. Such an interpolation constitutes a radius of curvature method,
whereas the well path is calculated by a minimum curvature method. Here, we show a consistent method
of interpolation based on the same assumptions of the minimum curvature method.

General interpolation procedure

Given two successive survey sets, (αa, βa, sa) and (αb, βb, sb) at survey points a and b respectively, we
want to determine the survey data for any arbitrary nodal point(s) between them using the minimum
curvature method as the basis of the interpolation (refer to Figure E.10). The survey angles at points a
and b describe two tangent vectors on the geodesic curve connecting the two points. That and the length
of that geodesic, �s = sb − sa, give us enough information to determine a tangent vector at any node
on the curve between the two points. The general procedure is as follows.

1. Translate measured angles (inclination and azimuth) for the two tangent vectors into coordinate descriptions in
the global coordinate system

2. Using the minimum curvature assumption that these two vectors are in the same plane, calculate the angle
between them using the inner product

3. Using that angle and the arc length distance between them, determine the radius of curvature of the well path
geodesic

4. Calculate the binormal vector to the arc using the vector product (cross product) of the two tangent vectors
5. Calculate the normal vector at point a using the vector product of the binormal vector and the tangent vector at

point a
6. These three orthogonal vectors (tangent, normal, and binormal) form a local coordinate system at point a from

which we can determine a tangent vector at any node between point a and point b
7. Determine the incremental angle along the geodesic between point a and the interpolation node
8. Calculate the tangent vector at the node in the local coordinate system
9. Calculate the projection of that tangent vector back into the global coordinate system

10. Calculate the inclination and azimuth at that node

Specific interpolation procedure

Starting at the top of the borehole, the interpolation nodes will be numbered i = 1, 2, . . . , n. The node
variables for inclination, azimuth, and measured depth will be noted as αi, βi, and si, respectively.
The survey points will be numbered k = 1, 2, . . . , m and generally n > m. The survey variables for
inclination, azimuth, and measured depth will be noted likewise as Ak, Bk, and Sk. In order to simplify
the notation for interpolation within each survey interval we define six scalar variables αa, βa, and sa

as the values for Ak, Bk, and Sk, respectively, at the beginning of the interval and αb, βb, and sb as the
values for Ak+1, Bk+1, and Sk+1 at the end of the interval.

Initialize the survey index, k = 1

1. Loop through all the nodes i = 1, n incrementing the survey intervals as required:
2. Initialize αa, βa, sa, αb, βb, and sb.
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3. Determine if the node depth, si, falls within the measured depth interval of surveys a and b, such that sa ≤ si <

sb. Note that the first survey depth is considered to be part of the interval and the second is not. We use the
closed/open interval, [sa, sb), where sb defines the end of the interval but is not included in the interval. This is
an arbitrary computational convenience.

4. If si does not fall within the interval, proceed to the next survey interval by incrementing k and repeat the first
step.

5. If si = sb then assign that node the values of the survey at that same depth, αi = αa and βi = βa, return to the
first step where the node number, i, will be incremented to i+ 1. (Usually node 1 will coincide with the first
survey and in that case you would assign that survey value to node 1, return to step 1 and increment to node 2.)

6. If si is within the interval and si = sa, determine the two unit vectors in global coordinates using the following
transform.

t̂ = (sin αa cos βa ê1, sin αa sin βa ê2, cos αa ê3
)

(E.9)

v̂ = (sin αb cos βb ê1, sin αb sin βb ê2, cos αb ê3
)

(E.10)

In the Cartesian coordinate system that we are using, both those tangent vectors are unit vectors.
7. The scalar product (inner or dot product) of these two unit vectors is the cosine of the angle between them, so

cos ϕ = t̂ · v̂→ ϕ = cos−1
(

t̂ · v̂
)

and we have

ϕ = cos−1 (t1v1 + t2v2 + t3v3) (E.11)

8. Since we assumed that the borehole path is a geodesic on a sphere we can now determine the radius of the
sphere with the familiar arc formula, s = rθ , and in our nomenclature where s = �s = sb − sa the radius is

r =
∣∣∣∣�s

ϕ

∣∣∣∣ (E.12)

We use the absolute value signs here as a radius is always taken to be positive. However, in our case �s will
always be positive unless we have made a mistake because sb > sa.

9. We know that the two tangent vectors are in the same plane as the two radius vectors, and that the two radius
vectors are normal to the two tangent vectors, respectively. Hence a radius vector is usually called a normal
vector. A vector normal to both the tangent vectors and the radius vectors (remember they are all in the same
plane) is called a binormal vector. The binormal vector is easily found using the vector product (or cross
product) of the two survey tangent vectors.

b = t̂× v̂ = det

⎡
⎣ ê1 ê2 ê3

t1 t2 t3
v1 v2 v3

⎤
⎦

b = [(t2v3 − t3v2) ê1, (t3v1 − t1v3) ê2, (t1v2 − t2v3) ê3
]

(E.13)

The two vertical bars denote the determinant of the matrix given by the expansion on the right. The vectors,
t̂ and v̂ are unit vectors, but they are not orthogonal to each other so their product b is not a unit vector, so it
will be convenient to unitize it now.

b̂ = b
‖b‖ =

(
b1 ê1, b2ê2, b3 ê3

)
√

b2
1 + b2

2 + b2
3

(E.14)

10. At the first survey point we have the unit tangent vector, t̂, and the unit binormal vector, b̂, but we do not yet
have the normal vector at that survey point which we will need to form a local coordinate system aligned with
the three principal direction vectors at that point. Again we use the vector product but with the unit tangent
vector and binormal vectors, t̂ and b̂, at survey point a to calculate the normal vector.
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n̂ = b̂× t̂ = det

⎡
⎣ ê1 ê2 ê3

b1 b2 b3

t1 t2 t3

⎤
⎦

n̂ = [ ( b2 t3 − b3 t2) ê1, ( b3 t1 − b1 t3 ) ê2, ( b1 t2 − b2 t3 ) ê3
]

(E.15)

In this case the unit vectors, b̂ and t̂, are orthogonal to each other and their orthogonal vector product, the
normal vector, n is also a unit vector.

11. From this local coordinate system we will interpolate the tangent vectors at any point within the interval
between point a and point b. Note that we will no longer need the tangent vector, v, within this interval because
we only needed it to establish the plane in which the tangents and radii reside. The triad of unit vectors we
have just calculated form a local unit basis, ê:

t̂ = ê′1
b̂ = ê′2
n̂ = ê′3

12. Next we calculate the tangent vector at a node in the local coordinate system by first determining the distance
and angle between the node and survey point a.

�s = si − sa

�ϕ = �s

r
(E.16)

13. Then we calculate the tangent vector in local coordinates

τ ′1 = cos (�ϕ) (E.17)

τ ′2 = sin (�ϕ) (E.18)

τ ′3 = 0 (E.19)

14. Then we calculate the projection of this vector into the global coordinates

τ̂1 = τ ′1 t̂1
|τ ′1| +

τ ′2 n̂1

|τ ′2| (E.20)

τ̂2 = τ ′1 t̂2
|τ ′1| +

τ ′2 n̂2

|τ ′2| (E.21)

τ̂3 = τ ′1 t̂2
|τ ′1| +

τ ′2 n̂3

|τ ′2| (E.22)

15. And lastly, we convert this nodal tangent vector to an inclination angle and azimuth

αi = tan−1
(

τ̂2

τ̂1

)
(E.23)

βi =
∣∣∣∣∣∣ tan−1

⎛
⎝
√

τ̂2
1 + τ̂2

2

τ̂3

⎞
⎠
∣∣∣∣∣∣ (E.24)

A programmable algorithm for this procedure is listed later.
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Programming borehole path calculations

The algorithm for doing directional survey calculations using Taylor and Masons method is fairly
straightforward and the calculations may easily be done manually using a hand-held calculator though
almost no one does that now. The serious drawback to manual calculations is that the errors are
cumulative, so that an error in one calculation carries forward to all subsequent calculations. The task
of programming directional survey calculations for a spreadsheet or some compiled program is easy but
there are a few eccentricities involved that should be noted.

Accounting for straight sections
It is not uncommon that two consecutive surveys will be identical, and in fact this is often desirable in
vertical wells and some sections of directional wells. A program designed to employ only the minimum
curvature algorithm will likely crash when it encounters two consecutive and identical surveys because
the radius of curvature between the two identical surveys goes to infinity, in other words, the section
is not a curve but is straight. A simple logic test to compare successive surveys can avoid this totally
and the straight section can be handled by a straightforward trigonometric calculation. Along this line,
it has been noted that some directional service companies using spreadsheets to calculate directional
surveys have gotten around this with a procedure that adds and subtracts very small amounts to the data
during calculations to avoid any infinities in the minimum curvature calculations. While this reeks of
programming laziness, the quantities used are usually on the order of 1.0× 10−8 so the accuracy may
not be affected beyond the accuracy of the measurements themselves.

Accounting for large azimuth changes
While one might think large azimuth changes between survey points are rare, that is not the case. In near
vertical wells with small inclination it is not that unusual to see azimuth changes of up to 180◦ between
consecutive surveys. Though the magnitude of the change of azimuth might be large, at very small
inclination angles the change in the borehole path is minimal. Two problems arise in programming
azimuth. One is the case of the zero inclination in which azimuth is meaningless because there is
no azimuth for a vertical borehole. As common practice, the azimuth may be assigned arbitrarily to
the same value as the previous survey, or especially in the case of the surface location it may be set
to zero.

The other case that must be accounted for and which arises in contact force calculations where a
net change in azimuth, �β = βb − βa, cannot be more than 180◦ or less than −180◦, i.e., −180◦ <

�β ≤ 180◦.3 For example, if the azimuth for one survey is βa = 12◦ and the next survey azimuth is
βb = 344◦, then the net change in azimuth between the two surveys is −28◦ not 332◦. This is shown
mathematically as

if

{
βb − βa < −180◦ → �β = βb − βa + 360◦
βb − βa ≥ 180◦ → �β = βb − βa − 360◦ .

Other considerations
It is always good to keep in mind that a drilling assembly is a relatively large physical object that does
not change direction rapidly or lend itself to mathematical oddities like reversing direction between

3 While one can consider a rotation of up to 360◦, the net change in direction cannot exceed ±180◦.
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surveys (except as previously discussed for small inclinations). Also, the mathematical possibility exists
that since the two survey vectors are assumed to be in the same plane the inner product could be zero
meaning that the two survey directions are perpendicular to each other, which should not be the case in
a drilled borehole where the survey points are reasonably spaced.

Interpolation algorithm

For programming purposes the interpolation procedure is given in two algorithms below where

st = total measured depth

si = nodal measured depth

αi = nodal inclination

βi = nodal azimuth

Sk = survey measured depth

Ak = survey inclination

Bk = survey azimuth

All other variables should be self explanatory. In this general algorithm, we assume the first survey is
at zero depth and that the first node is also at zero depth, otherwise the algorithms should be modified
to take other cases into account. The procedure consists of two algorithms. The first is the main or
controlling program that sets up the survey data and calls the interpolation subroutine.

Algorithm E.1 Main Interpolation Program

set n equal to number of nodes
set m equal to number of surveys
calculate nodal depth interval; �s = st/n
initialize first depth si = 0 at i = 1
for remaining node depths, i = 2,n
{increment depth; si = si-1 +�s}

initialize survey counter, k = 1
do while k < m
{
for each interpolation node, i = 1,n
{

if (si = Sk)
{set node depth to first survey depth; si = Sk
set node incl. to survey incl.; αi = Ak
set node azimuth to survey azimuth; βi = Bk}

else if (Sk < si < Sk+1)
{call Minimum Curvature Interpolation subroutine}

else
{increment survey counter; k = k+1}

}
}
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The algorithm for the interpolation subroutine is:

Algorithm E.2 Minimum Curvature Interpolation Subroutine

{
calculate tangent vectors; t̂ and v̂, eqns.E.9 and E.10
calculate included angle; ϕ, eqn. E.11
calculate depth increment; �s = sb − sa
calculate radius of curvature; r = �s/ϕ, eqn. E.12
calculate the bi-normal vector, b, eqn. E.13
unitize the bi-normal vector, b̂, eqn. E.14
calculate the unit normal vector, n̂, eqn. E.15
calculate the angle from survey to node, �ϕ, eqn. E.16
calculate the nodal local tangent vector, τ, eqns.(E.17)-(E.19)
calculate the nodal global tangent vector, τ̂, eqns.(E.20)-(E.22)
calculate the nodal inclination, αi, eqn. E.23
calculate the nodal azimuth, βi, eqn. E.24

}

We now have an interpolated survey at that node using the minimum curvature method for the
interpolation rather than a linear interpolation of inclination and azimuth separately which amounts
to a radius of curvature interpolation.

Comments on the interpolation method

While this method is more refined than a linear interpolation, the difference in the results is not
necessarily that significant in many applications, and for a two-dimensional borehole profile where
there is no change in azimuth, the results are exactly the same. The algorithm is easily programmed and
interpolations can be made for a mesh of one foot, a half meter, or one meter intervals if desired. The
run time is very short (less than a second) on most desktop and laptop PCs using Fortran or C++, but
a little longer if programmed within a spreadsheet using VBA. The interpolation method can generate
a uniform mesh at much shorter intervals than is common for actual directional survey data. This does
make a difference when calculating borehole friction and especially in calculating points of maximum
contact force for determining the critical casing wear locations. Though the final results may not include
the actual survey points except where the nodes and survey points may accidentally coincide, this is not
seen as a disadvantage in this type of work.

This interpolation method is quite useful in a number of borehole applications. The run time for one
foot intervals is negligible, but output for plotting purposes is excessive at those intervals. The usual
procedure is a subroutine to scan larger intervals of say, 100 ft., and pick the maximum value (contact
force, bending stress magnification, etc.) within that interval for output and plotting.

E.7 Closed-Form friction solutions

The full discussion of borehole friction is in Chapter 7, but here I add some additional information that
may be of peripheral interest. From the three-dimensional differential equations for borehole friction
derived by Sheppard et al. [41], we may specialize these into two-dimensional form by assuming there
is no change in azimuth (β = 0). Further, we assume that the borehole path is a series of circular arcs as
calculated by the minimum curvature method which is the standard for determining the borehole path
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and location. With these assumptions we are able to obtain closed-form solutions for borehole friction
in both upward and downward motions as well as in pure rotation mode.

E.7.1 Closed-Form drag solutions

In two dimensions, the governing differential equation for tension may be solved exactly if we have a
closed-form expression for the curvature as a function of the axial coordinate s.

dF̂

ds
= w̄ cos α ± μ

∣∣∣∣ F̂ dα

ds
+ w̄ sin α

∣∣∣∣ (E.25)

Now for sections with constant build angle the curvature, dα/ds, is given exactly by

dα

ds
= α − α0

s
(E.26)

This is a first-order linear ordinary differential equation and is easy to solve. There is a complicating
facet, though, and that is the necessity of maintaining the absolute value of the contact force even though
these terms must be separated to get a solution. Without going into the details we will give the solutions,
and the necessary criteria for their use.

Closed-Form solutions for upward motion

The two solutions for pulling casing out of the hole where the friction term is positive are

F̂(+) = eμ(α−α0)

{
F̂0 + w̄ s

(α − α0)
(
μ2 + 1

) [(μ2 − 1
)

sin α0 + 2μ cos α0
]}

− w̄ s

(α − α0)
(
μ2 + 1

) [(μ2 − 1
)

sin α + 2μ cos α
] (E.27)

and

F̂(−) = e−μ(α−α0)

{
F̂0 + w̄ s

(α − α0)
(
μ2 + 1

) [(μ2 − 1
)

sin α0 − 2μ cos α0
]}

− w̄ s

(α − α0)
(
μ2 + 1

) [(μ2 − 1
)

sin α − 2μ cos α
] (E.28)

The (−) solution, Equation (E.28), is used where the following conditions exist

F̂
dα

ds
< w̄ sin α and

∣∣∣∣ F̂ dα

ds

∣∣∣∣ > w̄ sin α

for all other cases the (+) solution, Equation (E.27), is used.

Closed-Form solutions for downward motion

For running casing in the hole, the sign of the friction term is negative. This leads to solution equations
identical to Equations (E.27) and (E.28). However, in this case where

F̂
dα

ds
< w̄ sin α and

∣∣∣∣P̂dα

ds

∣∣∣∣ > w̄ sin α
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we must use Equation (E.27), the (+) solution, and for all other cases we must use Equation (E.28), the
(−) solution.

Remarks on the Closed-Form solution

While the closed-form solutions may appear rather complex they are quite easily set into simple
computer programs. The complicating factor is the problem of dealing with two solution equations and
patching them together where the magnitudes of the gravitational contact force is smaller in magnitude
than the contact force from tension. In order to patch these equations together it is necessary to get the
solution at incremental points along with the values of the contact force components to determine which
equation to use. This would seem to defeat the purpose of having an exact solution since a numerical
solution requires an incremental approach also.

E.7.2 Closed-Form torque solution

For a constant curvature in a two-dimensional wellbore, the equation for rotational torque reduces to

dTq

ds
= ro μ

∣∣∣∣ w̄ sin α + F̂
dα

ds

∣∣∣∣ (E.29)

and

F̂ = F̂0 −
s∫

0

w̄ cos α ds̄ (E.30)

The constant curvature in a plane means that

dα

ds
= ±κ = sgn (αs − α0) κ (E.31)

where sgn is the signum operator, e.g., if (a− b) > 0 then sgn (a− b) = +1 and if (a− b) < 0 then
sgn (a− b) = −1, and κ is the curvature of the borehole path (assumed constant here) and is considered
negative in a build section (remember s is measured from the bottom so that dα/ds is decreasing in a
build section), and positive in a drop-off section so that we may substitute Equations (E.30) and (E.31)
into Equation (E.29) and separate variables to get

dTq = ro μ

∣∣∣∣∣∣ w̄ sin α ds+ sgn (αs − α0)

⎛
⎝F̂0 −

L∫
0

w̄ cos α ds0

⎞
⎠ κ ds

∣∣∣∣∣∣ (E.32)

Recalling that for a constant curvature

ds = dα

κ
(E.33)

and Equation (3.8.8) becomes

dTq = roμ

∣∣∣∣∣∣
1

κ
w̄ sin α dα + sgn (αs − α0)

⎛
⎝F̂0 −

α∫
α0

1

κ
w̄ cos ᾱ dᾱ

⎞
⎠ dα

∣∣∣∣∣∣ (E.34)
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Assuming the weight per unit length is a constant, we now integrate this equation

Tq s∫
Tq 0

dTq = ro μ

∣∣∣∣∣ 1

κ
w̄

αs∫
α0

sin α dα + sgn (αs − α0)
αs∫
α0

(
F̂0 − 1

κ
w̄

α∫
α0

cos ᾱ dᾱ

)
dα

∣∣∣∣∣ (E.35)

we get the closed-form solution

Tq s = Tq 0 + ro μ | rκ w̄ (cos α0 − cos αs)

+sgn (αs − α0)

{
F̂0 (αs − α0)− 1

κ
w̄ [cos α0 − cos αs − (αs − α0) sin α0]

} ∣∣∣∣ (E.36)

and as before this solution is valid only for sections where the curvature and the buoyed weight are
constants.

E.8 Closure

It is not within the scope of this text to detail the various methods for quantifying pore pressures or
fracture pressures. The brief overview given in this appendix may at least cast a little insight into the
subject for those whose backgrounds do not include any study of geology or reservoir mechanics. There
are a number of reliable sources for quantifying pore pressures and fracture pressures for well planning.
Unfortunately, the majority of those are local to the Louisiana and Texas Gulf Coast. Those methods
will work anywhere, but the correlations are quite restricted geographically, and my reluctance to include
any here is strictly motivated by a desire to keep any part of this text from being restricted to a limited
geographical area. A readable source of information on rock mechanics is the book by Fjær et al. [71].
And another good source for understanding and quantifying pore pressures and fracture pressures is the
book by Fertl [12]. In any event, one should be aware that the pore pressure and fracture pressure data
that we use in casing design is only approximate at best.
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Appendix F: Summary of useful formulas

Chapter outline head

F.1 Borehole geometry 383
F.2 Directional well equations 384
F.3 Hydrostatics equations 386
F.4 Geometric equations for tubes 387
F.5 Axial stress and displacement equations 387
F.6 Tube bending equations 389
F.7 Tube pressure equations 389
F.8 Torsion equations 390
F.9 Lateral buckling equations 390

F.10 Thermal equations 391
F.11 General solid mechanics 391

F.11.1 Yield criteria 391

F.12 API/ISO performance equations 392

Listed in this appendix for convenience and quick reference are many of the formulas and equations
from the text. There is little or no qualification listed here and one should refer to the text if uncertain as
to any formula’s assumptions and use.

Precaution
There are no conversion factors in these formulas, so consistent units must be used.

F.1 Borehole geometry

Curvature
Borehole curvature, reference equation (7.15):

κ ≡ dθ

ds
(F.1)

Radius of Curvature
Reference equation (7.16):

rκ = 1

|κ| (F.2)
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F.2 Directional well equations

Minimum Curvature Method
See Appendix E

�x = �s

ϕ

(
vx sin ϕ + ux − vx cos ϕ

sin ϕ
− (ux − vx cos ϕ) cos ϕ

sin ϕ

)
(F.3)

�y = �s

ϕ

(
vy sin ϕ + uy − vy cos ϕ

sin ϕ
−
(
uy − vy cos ϕ

)
cos ϕ

sin ϕ

)
(F.4)

�z = �s

ϕ

(
vz sin ϕ + uz − vz cos ϕ

sin ϕ
− (uz − vz cos ϕ) cos ϕ

sin ϕ

)
(F.5)

where

vx = sin α1 cos β1

vy = sin α1 sin β1

vz = cos α1

ux = sin α2 cos β2

uy = sin α2 sin β2

uz = cos α2

and

ϕ = cos−1 [uxvx + uyvy + uzvz
]

(F.6)

Note: ϕ must be in radians in these equations.

Amontons-Coulomb Friction
Reference equation (7.1):

F ≤ μ N (F.7)

Critical Inclination Angle
Reference equation (7.6):

αcr = tan−1 1

μ
(F.8)

Differential Friction Equation, Sheppard et al. [41]
Reference equation (7.7):

dF̂

ds
= w̄ cos α ± μ

[(
F̂

dα

ds
+ w̄ sin α

)2

+
(

w̄
dβ

ds
sin α

)2
] 1

2

(F.9)
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Incremental Friction Equations, Johancsik et al. [40]
Reference Equations (7.8) and (7.9):

F̂n = F̂0 +
n∑

i=1

[
(si − si−1) w̄i cos

(
αi−1 + αi

2

)
± μiNi

]
(F.10)

and

Ni = (si−1 − si)

{[
w̄i sin

(
αi−1 + αi

2

)
+ F̂i−1

(
αi − αi−1

si−1 − si

)]2

(F.11)

+
[

F̂i−1

(
βi − βi−1

si−1 − si

)
sin

(
αi−1 + αi

2

)]2
} 1

2

Torque Equation, Differential Form
Reference equation (7.11):

dTq

ds
= ro μ

[(
w̄ sin α + F̂

dα

ds

)2

+
(

F̂
dβ

ds
sin α

)2
] 1

2

(F.12)

Torque Equations, Incremental Form
Reference Equations (7.12) and (7.13):

Tq n = Tq 0 +
n∑

i=1

ri μi Ni (F.13)

and

F̂i = F̂o +
i∑

k=1

(sk−1 − sk) w̄k cos

(
αk−1 + αk

2

)
(F.14)

The contact force in this set is calculated with Equation (F.11).

Axial Load
To convert from effective axial load, F̂, at a point (reference equation (7.10)):

Fi = F̂i − (poAo − piAi) (F.15)

Bending Stress
Reference equation (7.23):

σb = ±E
r

rκ

(F.16)

Bending Stress Magnification
The equations for the bending stress magnification factor, λb, are quite lengthy and require considerable
qualification. Refer to Section 7.6.2 for these equations.
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F.3 Hydrostatics equations

Basic Differential Equation
Reference equation (D.3):

dp = ρ g dz (F.17)

Basic Integral Equation
Reference equation (D.4):∫ ph

p0

dp =
∫ h

h0

ρ g dz (F.18)

Basic Common Form
Reference equation (D.7) where ρ and g are constants:

�p = ρ g �h (F.19)

Gas Equation for Design
Reference equation (D.16):

p = p0 exp
Mg (h− h0)

ZRTavg
(F.20)

or an alternate version, reference equation (D.17):

p = p0

(
T0 + kTh

T0 + kTh0

) Mg
ZRkT

(F.21)

Generalized Archimedes’ Principle
Reference equation (D.18):

Ŵ = g
(
ρsolid − ρliquid

)
Vsolid (F.22)

Buoyancy Factor
Reference equation (D.19):

kb ≡ Ŵ

W
= 1− ρliquid

ρsolid
(F.23)

Buoyed Axial Load
Bottom of a section, reference equation (39):

F↓j = −p0A0 + p1A1 +
j∑

i=2

pi (Ai − Ai−1)+
j−1∑
i=1

wiLi (F.24)

j = 1, . . . , n
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Top of a section, reference equation (D.40):

F↑j = −p0A0 + p1A1 +
j∑

i=2

pi (Ai − Ai−1)+
j∑

i=1

wiLi (F.25)

j = 1, . . . , n

or alternately as reference Equations (41) and (42):

F↓j = F↑j−1 + pj
(
Aj − Aj−1

)
(F.26)

F↑j = F↓j +Wj

F.4 Geometric equations for tubes

Cross-sectional Area

At = π
(

r2
o − r2

i

)
= π

4

(
d2

o − di

)
(F.27)

Second Area Moment, Axial

Ia = π

4

(
r4

o − r4
i

)
= π

64

(
d4

o − d4
i

)
(F.28)

where a is any diameter.

Radius of Gyration

rg =
√

I

A
= 1

2

√
r2
o + r2

i =
1

4

√
d2

o + d2
i (F.29)

Polar Area Moment

Jz = π

2

(
r4

o − r4
i

)
(F.30)

F.5 Axial stress and displacement equations

Axial Stretch at a Point
Reference Equations (C.143):

uz = 1

At E

[
(P+ w̄ �) z− w̄

2
z2
]

(F.31)

for 0 ≤ z ≤ �
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Total Axial Stretch
Reference equation (C.144):

u = 1

AtE

[
P�+ w̄

2
�2
]

for z = � (F.32)

Load for Specified Displacement
Reference equation (C.145):

P = AE u

L
− w L

2
(F.33)

Incremental Displacement
Reference equation (C.146):

�u = �PL

AE
(F.34)

Incremental Load
Reference equation (C.147):

�P = AE �u

L
(F.35)

Free Pipe
Reference equation (C.148):

L = AE �u

�P
(F.36)

Composite Bar or Tube
If the bar or tube is composed of more than one size (still prismatic in each size), then we can expand
the previous formulas, reference Equations (C.149) and (C.150):

� u = �P

E

n∑
i=1

Li

Ai
(F.37)

and

�P = �u E

(
n∑

i=1

Li

Ai

)−1

(F.38)

Axial Stress
Reference equation (6.1):

σz = Fz

At
= Fz

π
(
r2

o − r2
i

) = Fz
π
4

(
d2

o − d2
i }
) (F.39)
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F.6 Tube bending equations

Maximum Planar Bending Stress
Reference Equations (7.23) and (C.172):

σb = ±E
r

rκ

ri ≤ r ≤ ro (F.40)

Planar Bending Differential Equation
Reference Equation (C.166):

d2

dx2

(
EIy

d2uz

dx2

)
+ f (x) = 0 (F.41)

Boundary Conditions for Integrating Equation (F.41)
Reference equation (C.167):

uz = transverse displacement
duz

dx
= slope

d2uz

dx2 = curvature (approximate) (F.42)

EIy
d2uz

dx2 = moment

EIy
d3uz

dx3 = shear

EIy
d4uz

dx4 = − f (x) = the transverse load

F.7 Tube pressure equations

Lamé General Solution
Reference Equations (6.2), (6.3) and (6.4):

σr = r2
i r2

o (po − pi)

r2
o − r2

i

1

r2 +
por2

o − pir2
i

r2
o − r2

i

(F.43)

σθ = − r2
i r2

o (po − pi)

r2
o − r2

i

1

r2 +
por2

o − pir2
i

r2
o − r2

i

(F.44)

�σz =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

pi r2
i − po r2

o

r2
o − r2

i

capped ends, both free ends, one or both

0 open ends, one or both free ends, one or both

ν (�σθ +�σr) open or capped ends fixed ends, both

(F.45)
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Lamé Inner Wall Solution, r = ri
Reference Equations (6.5) and (6.6):

σr = −pi (F.46)

σθ = pi
(
r2

o + r2
i

)− 2por2
o

r2
o − r2

i

(F.47)

Lamé Outer Wall Solution, r = ro
Reference Equations (6.7) and (6.8):

σr = −po (F.48)

σθ = −po
(
r2

o + r2
i

)+ 2pir2
i

r2
o − r2

i

(F.49)

Lamé Change in Axial Stress Caused by Change in Pressure
Initial axial stress is calculated from Equation (F.39). The change caused by pressure is given as:

�σz =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

pi r2
i − po r2

o

r2
o − r2

i

capped ends (both) free (one or both)

0 open ends (one or both) free (one or both)

ν (�σθ +�σr) open or capped ends fixed (both)

(F.50)

F.8 Torsion equations

General Torsion Formula
Reference equation (6.9):

σrθ = rTq

Jz
= 2 r Tq

π
(
r4
o − r4

i

) ri ≤ r ≤ ro (F.51)

Rotational Deflection

θ = Tq L

Jz G
= 2Tq L

π
(
r4

o − r4
i

)
G

(F.52)

F.9 Lateral buckling equations

Lateral Buckling
Reference equation (6.56):

Fcrit = 2

√
4EI g kb ρ� sin α

�r
(F.53)
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Stability Condition
Reference Equations (6.49), (6.50), (6.51) and (6.52):

σz ≥ Aipi − Aopo

Ao − Ai
(F.54)

σz ≥ ri2pi − r2
opo

r2
o − r2

i

(F.55)

Fz ≥ Aipi − Aopo (F.56)

σz ≥ 1

2
(σθ + σr) (F.57)

Neutral Stability Point
Reference equation (6.54):

F̂z = Fz + (Aopo − Aipi) = 0 (F.58)

F.10 Thermal equations

Axial Stress, Thermal
One-dimensional thermoelastic Hooke’s equation, reference equation (6.62):

σ = σ0 + E ε − E α �T (F.59)

F.11 General solid mechanics

The important general equations of solid mechanics in Appendix C are too numerous to include here,
and you are referred to that appendix. The equations for the von Mises yield criteria are listed. Some
solutions from that appendix for axial stretch and planar bending of tubes are listed in separate categories
in this appendix, however.

F.11.1 Yield criteria

The von Mises Yield Criterion
Reference equation (C.104)

Y ≥ √3J2 (F.60)

Yield Measure, Principal Stress
Principal stress formulation, reference equation (C.108):

Ψ ≡ √3J2 =
{

1

2

[
(σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ3 − σ1)

2
]} 1

2

(F.61)
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If torsion is the only shear stress in the tube, the principal stress components are given by reference
equation (C.113):

σ1 = σθ + σr

2
+
√(

σθ − σr

2

)
+ σ 2

rθ

σ2 = σθ + σr

2
−
√(

σθ − σr

2

)
+ σ 2

rθ (F.62)

σ3 = σr

Yield Measure, Cylindrical Coordinates, No Torque
Principal stress formulation in cylindrical coordinates with not shear stress components, reference
equation (C.111):

Ψ =
{

1

2

[
(σθ − σr)

2 + (σr − σz)
2 + (σz − σθ )

2
]} 1

2

(F.63)

Yield Measure, General Stress Field, Cylindrical Coordinates
General stress formulation in cylindrical coordinates, reference equation (C.112):

Ψ =
{

1

2

[
(σθ − σr)

2 + (σr − σz)
2 + (σz − σθ )

2]+ 3
(
σ 2

rθ + σ 2
rz + σ 2

θz

) } 1
2

(F.64)

F.12 API/ISO performance equations

Pipe Body Yield
Reference equation (6.11):

Fmax = Y At (F.65)

API Internal Yield, Barlow Formula
Reference equation (6.12):

p = 0.875 Y
do − di

do
(F.66)

Lamé Internal Yield
Reference equation (6.16):

pi = Y
d2

o − d2
i√

3d4
o + d4

i

(F.67)
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Reduced API Wall Thickness for Use in Equation (F.67)
Reference equation (6.17):

d̃i ≡ do − 0.875 (do − di) (F.68)

ISO Ductile Rupture
Reference equation (6.18):

p = 2k1U
t̃w − k2 δ

do − t̃w + k2δ
(F.69)

Yield Collapse Formula
Reference Equations (6.19) and (6.20):

pYC = 2Y

[
(do/tw)− 1

(do/tw)2

]
(F.70)

Valid range:

(do/tw) ≤ A− 2+
√

(A− 2)2 + 8 (B+ C/Y)

2 (B+ C/Y)
(F.71)

Plastic Collapse Formula
Reference Equations (6.21) and (6.22):

pPC = Y

[
A

(do/tw)
− B

]
− C (F.72)

Valid range:

A− 2+
√

(A− 2)2 + 8 (B+ C/Y)

2 (B+ C/Y)
< (do/tw) ≤ Y (A− F)

C+ Y (B− G)
(F.73)

Transition Collapse Formula
Reference Equations (6.23) and (6.24):

pTC = Y

[
F

(do/tw)
− G

]
(F.74)

Valid range:

Y (A− F)

C + Y (B−G)
< (do/tw) ≤ 2+ B/A

3B/A
(F.75)

Elastic Collapse Formula
Reference Equations (6.25) and (6.26):

pEC = 46.95× 106

(do/tw) [(do/tw)− 1]2 (F.76)
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Valid range:

(do/tw) >
2+ B/A

3B/A
(F.77)

API Constants, USC
Reference equation (6.27):

A = 2.8762+ 0.10679× 10−5Y + 0.21301× 10−10Y2

−0.53132× 10−16Y3

B = 0.026233+ 0.50609× 10−6Y

C = −465.93+ 0.030867Y − 0.10483× 10−7Y2

+0.36989× 10−13Y3 (F.78)

F =
46.95× 106

[
3B/A

2+ (B/A)

]3

Y

[
3B/A

2+ (B/A)
− (B/A)

][
1− 3B/A

2+ (B/A)

]2

G = FB/A

API Constants, SI
Reference equation (6.28):

A = 2.8762+ 0.15489× 10−3Y + 0.44809× 10−6Y2

−0.16211× 10−9Y3

B = 0.026233+ 0.73402× 10−4Y

C = −3.2125+ 0.030867Y − 0.15204× 10−5Y2 (F.79)

+0.77810× 10−9Y3

F =
3.237× 105

[
3B/A

2+ (B/A)

]3

Y

[
3B/A

2+ (B/A)
− (B/A)

] [
1− 3B/A

2+ (B/A)

]2

G = FB/A

ISO Collapse Formulas
Reference Equations (6.29), (6.30) and (6.31):

pclps =
pelas + pyld −

[(
pelas − pyld

)2 + 4pelaspyldHt

] 1
2

2 (1−Ht)
(F.80)
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where

pelas = 0.825 (2E)(
1− ν2

)(do

tw

)(
do

tw
− 1

)2 (F.81)

is the elastic collapse portion, and

pyld = 2kyY

(
tw
do

)(
1+ tw

2do

)
(F.82)

is the yield collapse portion.

Simplified Reduced Collapse Strength
Reference equation (6.36):

kclps =
√

1− 0.75

(
F

AtY

)2

− 0.5
F

AtY
(F.83)

Simplified Reduced Collapse Strength, Westcott et al. [26]
Reference equation (6.37):

kclps =
√

1− 0.932

(
F

AtY

)2

− 0.26
F

AtY
(F.84)

Traditional API Reduced Yield for Collapse
Reference equation (6.45):

Ỹ = Y

√
1− 3

4

(σz

Y

)2 − σz

2
(F.85)

API Collapse Correction for Presence of External Pressure
Reference equation (6.46):

p̃clps = preduced + pi

(
1− 2tw

do

)
(F.86)

Collapse Pressure from Slip-Type Casing Hanger
Not an API/ISO formula, reference equation (5.1):

phgr = kD
W

Aslip tan φ
(F.87)
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Glossary

Terms Related to Mathematics

Associative abc = (ab)c = a(bc)
Commutative ab = ba

Terms Related to Borehole Applications

Azimuth The compass direction of the horizontal projection of a borehole path at a specific point on
that path. Usually measured from true north, magnetic north, or grid north, but may use any arbitrary
reference.

Biaxial loading Loading on two principal tube axes, usually the axial and tangential axes.
BOP Blowout preventer. A large piece of equipment on top of the casing that is essentially a valve that

can be closed (manually and/or hydraulically) to prevent uncontrolled flow of formation fluids to the
surface (blowout). Usually a set of three or more are installed, one closes on open hole, one closes
around drill pipe, and one flexible type closes around various sizes of pipe.

Borehole A hole drilled into the earth from the surface. Usually refers to the un-cased hole, but usage
is not consistent in the literature (also see wellbore).

Build section The portion of a directional well where the inclination angle is increased to a specified
point.

Build rate The rate at which inclination angle is increasing in a directional well.
Burst A common and often misleading term referring to internal yield of a tube due to a positive

pressure differential (�p > 0) from the inside directed toward the outside. Usually does not refer to
actual rupture or failure, but rather, to the internal pressure at initial yield.

Casing The relatively larger diameter pipe that is cemented in the borehole and becomes a permanent
part of the well. It provides borehole integrity (from collapse, erosion, fracture), prevents flow of
formation fluids into the borehole, and prevents flow of borehole fluids into formations. Standard
sizes range from 4-1/2′′ to 30′′ (114 to 762 mm) though other options are available.

Casing string Casing joints that are assembled into a continuous length in a well.
Collapse Radial buckling and postbuckling collapse of a tube due to a negative pressure differential

(�p < 0) directed from the outside toward the inside. Usually, a combination of elastic instability and
yielding.

Connections The means by which pipe joints are connected to each other. Typically, connections are
threaded ends with the pin (male) end run at the bottom and the box (female) end at the top. The
connections usually fall into one of two general categories, integral, where both the box and pin
threads cut on the pipe body, and coupled where both ends of the pipe body are threaded as pins and
a separate box-box coupling is installed on one end.

Coupling A threaded female-female (box-box) collar used in joining two male (pin) threaded joints of
pipe together.
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Directional survey A reading from a down-hole instrument consisting of an inclination angle and a
directional azimuth along with a depth measurement.

Drill collars Heavy, thick-walled pipe immediately on top of the bit. Used to give weight to the bit
in order to drill. Selection is based on providing enough weight to drill efficiently yet keep the drill
pipe above in a state of effective tension to prevent lateral buckling of the drill pipe and its premature
fatigue failure while rotating.

Drill pipe Relatively sturdy pipe extending from the surface to near the top of the drill collars which are
connected to the drill bit. Relatively thick-walled because of high degree of wear from many hours of
rotation in a borehole. Common diameters range from 2-7/8′′ to 6-5/8′′ (73 to 143 mm).

Drill string Refers to the entire drilling assembly: principally the drill pipe, drill collars, and bit
but also any other tools (stabilizers, cross-over subs, etc.) that are in the down hole assembly
(“string”).

ERW Electric resistance welding is the process of welding metal by fusion when heated electrically
and using no filler material as with conventional welding.

EU External upset. Outside diameter of pipe is increased above nominal at joint end(s) for threading.
(see also IU, IEU).

Flush-joint Pipe with both box and pin end threads cut into the tube with no upset or couplings.
Inclination angle The inclination of a borehole at some point along its path, always measured from

vertical.
IU Internal upset. Inside diameter of pipe is decreased below nominal at joint end(s) providing extra

thickness for threading. Uncommon in casing (see also EU, IEU).
Joint A single length of pipe as it comes from the manufacturer, usually with a connection on each

end (male on one end and female on the other). Typically lengths range from 20 ft (∼ 6m) to 42 ft
(∼ 13m).

LT&C API 8-rd long thread and coupling (see also ST&C).
Lateral A horizontal (or near horizontal) section of a directional well.
OCTG Oil Country Tubular Goods Oilfield casing, tubing, drill pipe, and line pipe
Over-pull An amount of tension in casing over and above the suspended weight of the casing in a

borehole.
Pipe Refers to one or more joints of pipe collectively, either assembled into a string or not. The plural,

“pipes,” is never used, but is expressed in terms of strings or joints. For example a well may be said
to have four stings of pipe (casing and/or tubing) in it, or a truckload of pipe may consist of 24 joints
of pipe.

psi units of pressure, lbf/in.2.
Q&T Quenched and tempered. A hardening process in the manufacture of casing.
SG Specific gravity. Density compared to water 62.43 lb/ft3, 8.33 ppg, or 1000 kg/m3.
Shoe track The pipe and float equipment below the float collar that is full of cement after a primary

cement job. Typically, a float collar, two joints of casing, and a float shoe.
Spherical stress A stress state in a solid (analogous to hydrostatic stress) in which all three principal

stress components are equal, σ1 = σ2 = σ3.
ST&C API 8-rd short thread and coupling (see also LT&C).
Stand A length of pipe (usually drill pipe) made up of two, three, or four joints (depending on the

height of the derrick) that are set aside in the derrick when a string is being pulled out of the hole for
some purpose, such as changing a bit, but with the intent that it will be run back in the hole. Rather
than disconnect each joint, only every second, third, or fourth joint is disconnected and each stand is
set aside vertically in the derrick to speed the pulling and running process.
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String Refers to a completely assembled length of pipe joints such as a drill string, casing string, tubing
string, etc.

Sub A short length of pipe that is typically used to change from one type of thread to another, and called
a cross-over sub. May also serve other purposes such as adjusting the length of a specific section of a
string to facilitate handling the pipe.

Tubing Smaller diameter pipe through which oil or gas flows to the surface. It is intended to be
removable and replaceable should the need arise. Common sizes range from 1-1/4′′ to 5′′ (32 to
127 mm).

Wellbore The hole drilled in the rock and the casing in it. This usage not consistent in the literature
(also see borehole).
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Note: Page numbers followed by f indicate figures and t indicate tables.

ε−δ identity, 277, 281

A
Absolute system, 259–260
Acoustic logs, 24
Algebraic convention, 251
Algebraic notation, 268, 269
American Petroleum Institute (API), 6

Bulletin 5C3, 83, 172
Bulletin 5C2, 83, 175–176
collapse formula, 161–164, 163f, 174
constants, 392
8-rd connections, 15
grades, 12–13
method, for combined loads, 154
Spec 5B, 155
Spec 5CT, 11–12, 12t

Amontons-Coulomb friction law, 206–211,
331–332, 382

Angle of repose, 210
Anisotropy, 318–319
Annular bridge, 42
API. See American Petroleum Institute
API/ISO standards, 5, 14

performance equations, 390
API/ISO-based approach, to combined loads, 176–177
Archimedes’ principle, 88, 89, 336–337, 338f, 343

generalized, 384
Artificial lift, 41
Atmospheric pressure, 36
Axial buckling, of casing, 186–187
Axial casing failure, 142–143
Axial compression, to axial tension, 182–183
Axial design loads, 96–97

burst and, 97, 98f
for intermediate casing, 110f
for production casing, 119f
surface casing, 97f

Axial design margin, 102, 103t, 112t, 123t
Axial loads, 3, 36, 86–97

borehole friction and, 204
buoyed, 100f, 357–358, 384–385
casing, 91–96, 92t

in casing string, 86–87
collapse with, 98–101
comparison of, 94f
considerations, 87–88
design factors, 87–88, 97
in directional wells, 383
ductile rupture formula for, 159
effective, 89, 93–94
factors affecting, 213
freeze point and, 138–139
in horizontal tube, 346–347
in inclined tube, 347–348
for intermediate casing, 108–109, 241f
plug-bump case, 92, 95, 109
post plug bump, 96
preliminary calculations, 108
production casing, 114–118, 118f,

244, 244f
running case, 108–109
surface casing and, 92, 93–94, 96f
true, 89–91, 212–213
types of, 88–91
unbuoyed, 88, 93–94
in vertical tube, 345–346

Axial second area moment, 327
Axial strength, for intermediate casing, 110f
Axial stress, 149–150, 167

displacement equations and, 385
formula, 172
fractional, 172
Lamé change in, 388
temperature changes and, 191–192
thermal, 389

Axial tension, axial compression to, 182–183
Axial vectors, 275
Azimuth changes, 376

B
Barlow formula, 155, 156, 390
Base vectors, 273–274
Bauschinger effect, 307
Beam-bending theory, 224–225
Bell, James F., 309
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Bending
axial, 330
borehole, 223–235
couplings and, 226f, 235
equations, 387
internal pressure and, 235
planar, 153f, 224–226, 225f, 387
planar beam, 326
simple planar, 224–226, 225f, 327f, 330f

Bending stress, 153, 226–235, 237, 383
intermediate string, 242
magnification, 373, 383–384
maximum, 387

Bending-stress magnification factor, 226–227,
228–229, 231

comments on, 231–235
for horizontal wells, 234f
Lubinski’s, 226–227
Paslay and Cernocky, 230

Biaxial design, 98
Biaxial loading, 3, 98
Bicenter bit, 34
Bifurcation points, in lateral buckling, 139,

177–187, 179f
Billet, 7
Bisection method, 231–232
Bit

bicenter, 34
choices, 32–33
clearance, 32–33
size, for hard rock environments, 30f
size, for unconsolidated rock environments, 31f

BOP stack, 142
pressure tests and, 43

Borehole clearance, 32
Borehole collapse, 220–223

designing for, 221–223
predicting, 220–221

Borehole friction, 205–216
axial load considerations and, 87
axial loads and, 204
calculating, 211–216
in inclined wells, 241
node number system for, 214f

Borehole instability, 370f
Borehole path, 204–205, 371–378

calculations, 376–377
interpolations on, 373–378
minimum curvature method, 371–372
quadratic, 212

Borehole stability, 24, 367–371, 368f
analysis, 22f

Boreholes
application-specific variables for, 255–259
bending, 223–235
curvature, 223–235
curved, combined loading in, 235–238
geometry, 381
lateral buckling in, 179f
size selection, 29–32

Boundary conditions, for integrating
equation, 387

Boundary value problem, 324–325, 329
Box end, 14
Buckle arrestor, 160
Buckle propagation pressure, 160
Buckling. See also specific buckling types

axial, 186–187
of drill collars, 183
in inclined wells, 185–186
loads, 185–186
neutral point, 179–180
radial, 159
thermal, 195–196, 196f
torsional, 177–178
in vertical wellbores, 185

Buoyancy factor, 89, 94, 343–350, 384
Archimedes’ principle and, 343

Buoyed specific weight, 212–213
Buoying forces, 90
Burst, 36

alternate preliminary selection, for intermediate
casing, 108f

axial design load and, 97, 98f
calculated tops of intermediate casing for, 107t
collapse compared to, 86f
design loads, 80, 81f, 103–104, 105f, 113f
design margin factors, 102t, 109, 111t, 123t
production casing preliminary selection for,

115f, 116f
selection, for intermediate casing, 106, 106f
selection depths, 106–108
worst case, 247

Burst design loads
intermediate casing, 103–104, 105f
production casing, 113f
surface casing, 80, 81f

Burst design strength, 155–159
Burst loads, 36, 37, 41–45

cases, 42, 45t
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conductor casing, 48
drilling stage, 43
external, 42
installation stage, 42
intermediate casing, 49, 67f
internal, 42
production casing, 50, 70, 74f
production stage, 44
surface casing, 47–48, 56, 57f, 61f

Burst strength, 83
Buttress, 16

C
Capped-end conditions, 150
Carbonic acid, 45
Cartesian coordinate system, 149, 204, 267, 267f
Casing. See also specific casing types

application-specific variables for, 255–259
axial buckling of, 186–187
axial load, 91–96, 92t
to bottom, 134
clearance, 29, 34
damage, 128
dynamic effects in, 187–189
expansion tool, 199f
incorrect, 129
installation, 20f
lateral buckling of, 183–186
to rig floor, 130
strength, 17, 40
strength treatment of, 8–9

Casing design
basics, 2–3
biaxial, 313–314
friction and, 208
for hydraulic fracturing in horizontal wells, 246–249
for inclined wells, 238–245
sequence, 3
triaxial, 313–314

Casing dimensions, 9–12
Casing grades, 12–14, 82

non-API, 13–14
Casing handling tools, 133–134, 133f
Casing hangers

collapse loads, 140
mandrel-type, 138–139
maximum weight on, 139–141
slip-type, 139–140, 140f, 393

Casing head, 142
Casing performance, for design, 153–166

Casing selection, 28f, 76
based on collapse, 85f
considerations, 82–86
preliminary, 82–86
simplicity, 83–86

Casing size
for hard rock environments, 30f
selection, 28–33
for unconsolidated rock environments, 31f

Casing strings, 2f
additional, 196
axial loads in, 86–87
configuration, 33–34, 33f
failure of, 141
hydrostatic forces on, 355f
multiple, 196
unbuoyed, thermal effects on, 192–193

Casing wear, 216–220, 219f, 373
Casing weight, 11–12

in air, 354
axial load considerations and, 87
buoyed, 354–358
in curved wells, 357
in inclined wells, 357
in liquid, 354–357
nominal, 94

Cauchy infinitesimal strain, 292
Cauchy stress relationship, 283, 284
Cauchy’s formula, 294–295
Cement check

for intermediate casing, 61–62
for production casing, 68
for surface casing, 54

Cementing, 136–138
conventional, 39
with expandable casing, 198–200
external burst loads and, 42
head, 137
inner string, 39–40
installation stage, 56–58
intermediate casing, 61
intermediate casing burst loads and, 63–64
intermediate casing collapse loads and, 62
poor, 137f
production casing, 67
production casing burst loads and, 70–71
production casing collapse loads and, 68–69
surface casing and, 53
surface casing burst loads and, 56–58
surface casing collapse loads and, 47, 49
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Centralizers, 137
Characteristic equation, 297
Christmas tree saver, 249–250
Circular cylindrical coordinate system, 148–149,

149f, 267
Clausius-Duhem inequality, 322
Clearance

bit, 32–33
borehole, 32
casing, 29, 34
problems, 82–83

Coefficient
friction, 207
of thermal expansion, 191

Coherent systems, 259
Cold working, 9
Collapse, 36. See also Borehole collapse

axial design load and, 97
with axial loads, 98–101
casing selection based on, 85f
charts, 99
compared to burst, 86f
correction for internal pressure, 393
design, 85
design loads, 80, 81f, 85–86, 103, 104f, 113f
design margin factors, 102t, 111t, 122t
expandable casing and, 158
hydrostatic-induced, 160
modes, 160f
partial, 160
production casing preliminary selection for, 115f,

116f
rating, 159
reduced, 120, 171
reduced yield for, 393
tension combined with, 100, 101
tension interpolation, 122f
yield-bias, 165t

Collapse design strength, 159–166
Collapse formula, 392–393

API, 161–164, 163f, 174
constants, 163
elastic, 161–162, 177, 391
improved, 164–166
ISO, 392–393
plastic, 161, 391
transition, 391
yield, 161, 391

Collapse loads, 36, 37, 38–41
cases, 39, 41t

casing hangers, 140
conductor casing, 48
drilling stage, 40
external, 39
installation stage, 39
intermediate casing, 48–49, 62, 63f
internal, 39
lost circulation and, 55–56
production casing, 49, 68, 69f
production stage, 40
surface casing, 47, 54, 55f, 56f

Collapse resistance, 175
Collapse strength, 83

for intermediate casing, 111f
simplified reduced, 393

Columnar buckling. See Lateral buckling
Combined hardening, 308
Combined loading

in curved boreholes, 235–238
in horizontal wells, 234f
intermediate string, 242
Lamé equations and, 237–238
von Mises yield criterion and, 237–238

Combined loads, 98–101, 166–177
API method, 172–176
API/ISO-based approach, 176–177
improved simplified method for,

170–172
for intermediate casing, 109
for production casing, 120–121, 245
simplified method for, 168–170
yield-based approach, 166–168

Completion fluid, 71
Composite bar, 326
Composite factor, 77
Compressibility, 38, 339
Compressibility factor, 38
Compression, 178–179

axial, 182–183
no contact, 229–230
point contact and, 230
thermal effects on, 192–193
transition equations for, 232–233, 232f
wrap contact and, 230

Compressive waves, 188–189
Conductor casing, 52–53

burst loads, 48
collapse loads, 48
depth, 24–25
design factors, 101–102
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offshore platforms, 46–47
pressure loads, 46–47, 52–53

Cone of uncertainty, 205
Connections, 14–17, 82–83

API 8-rd, 15
flush-joint, 16
gluing, 132
integral, 16–17
premium, 16
threaded, 16

Conservation
of energy, 321
laws, 319
of mass, 319–320
of momentum, 320–321

Constants, 263t
API, 392
collapse formula, 163
gas, 341–343
gas equation, 263t

Constitutive equation, 324, 328
Constitutive relationships, 301–319
Contact force, 219f

rotating, 218–220
Contact surfaces, deformations on, 206–207
Continuum mechanics, 266, 267, 331
Contraction, 278
Conventions, 3–5

algebraic, 251
notation, 268–271
range, 270
sign, 294f
summation, 270

Conversion factors, 46
Conversions, 259–262
Coordinate invariance, 275–276
Coordinate transforms, 285–291

of vectors, 290
Coordinates, 267–268
Corrosion

collapse design strength and, 159
tubing, 45

Cost, 123–124
minimal, 82

Coulomb friction law, 206
Coupling performance, with internal pressure, 159
Coupling standoff, 226, 234–235
Couplings, 14, 82–83

bending and, 226f, 235
bending stress and, 226–235

failures, 249
hydrostatic forces on, 358f

Critical inclination angle, 210–211,
211f, 382

Cross product, 279–282, 279f
Crossover joints, 130
Crossover subs, 130
Crushing tests, 222
Curvature, 381

borehole, 223–235
dog-leg severity, 223–224
hole, 217–218
radius, 381–382
wellbore, 186

Curved wells, casing weight
in, 357

Curvilinear coordinates, 285
Cylindrical coordinate system, 149f

D
Darcy flow, 301–302
Defects, 307
Deformations, 8–9

on contact surfaces, 206–207
large, 292–293
strain and, 291–293

Depth
burst selection, 106–108
conductor casing, 24–25
data, 34
determination, 20–28
from fracture pressure, 26–28
intermediate casing, 26
from pore pressure, 26–28
selection, 27f, 124
selection parameters, 20
surface casing, 25–26

Depth selection curve, 52
Design comments, 148
Design factors, 76–79

axial loads, 87–88, 97
common, 78t
conductor casing, 101–102
intermediate casing, 103–112
minimum, 79t
production casing, 112–123
strength, 77
surface casing, 102

Design formula, 157–158
Design limits, 147–148
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Design loads
burst, 80, 81f, 103–104, 105f, 113f
collapse, 80, 81f, 85–86, 103, 104f, 113f
plots, 96

Design margin factors, 79, 109
axial, 102, 103t, 112t, 123t
burst, 102t, 109, 111t, 123t
collapse, 102t, 111t, 122t
intermediate casing, 109–112
production casing, 121–123
surface casing, 102, 102t

Design parameters, 86
Design plots, 86–97
Design strengths, 83
Deterministic design, 147
Development wells, 34
Deviatoric energy density, 310
Deviatoric stress, 295–296

components, 299–300
Differential friction equation, 382–383
Differential loading pressures, 72
Differential sticking, 134
Direct notation, 268, 272–273
Directional wells

axial loads in, 383
calculations, 239–245
data, 239
equations, 382
minimum curvature method for, 382
profile, 238–239, 239f

Dislocations, 8–9, 307
Displacement, 302f, 325

equations, 385
incremental, 325

Distance measure, 312
Distortional energy density, 151–152, 310, 318
Distributed load, 221–222, 293–294
Dog bone sample, 305
Dog-leg severity, 217–218

curvature, 223–224
Dot product, 277
Down-hole videos, 249
Downward motion, closed-form solutions for, 379–380
Drag

closed-form solutions for, 379–380
frictional, 82–83, 216f

Drift diameters, 10, 32–33
Drift mandrel, 10, 10t
Drill collars, 182

buckling of, 183

Drill pipe measurements,
204, 371

Drilled cuttings, 138
Drilling, liners, 51, 51f
Drilling fluids

gelling of, 136
water based, 215

Drilling stage
burst loads, 43
collapse loads, 40
gas kick at, 59–60
maximum mud density at, 59

Drill-pipe fatigue, 231–232
Ductile rupture, 148, 391
Ductile rupture formula, 156–159

for axial loads, 159
Ductile steels, 304–305
Dummy index, 270
Dyadic tensor product, 284

E
Effective density, 336–337
Effective loads, 346
Eigenvectors, 297
8-Acme, 16
8-rd connections, 15
Elastic behavior, 302
Elastic collapse formula, 177, 391
Elastic modulus, 191
Elastic stability, 180–181
Elastic waves, 189
Elastic yield point, 147–148
Elasticity, 303–304
Elastic-perfectly-plastic material, 307
Elastic-plastic behavior, 317
Elastic-plastic theory, 151–152
Electric resistance welding (ERW), 7
Electro-magnetic inspection, 128
Elevators, 133, 133f
Elongation, 178–179
Emergency stop, 187
End conditions, 153–154, 164
Energy

conservation of, 321
forms, 321
heat, 321
internal, 321
kinetic, 321
mechanical, 321
potential, 181–182
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Energy density, 192, 336
deviatoric, 310
distortional, 151–152, 310, 318

Engineering strain, 305–306
Engineering stress or nominal stress, 306
English engineering system, 259–260
English gravitational units, 260t

USC system to, 261t
Equation of state, 340
Equilibrium

stable, 178
states, 178f
thermal, 190

ERW. See Electric resistance welding
EU. See External upset
Euclidean space, 266
Euler method, 212–213
Euler-Bernoulli beam theory, 224–225
Exact solutions, 331
Expandable casing, 17, 34, 196–200

advantages of, 200
cementing with, 198–200
collapse and, 158
schematic, 201f

Expandable pipe, 157–158
Expansion process, 197–198
Experience parameter, 21
Exploratory wells, 34
Extensible body model, 209f
External pressure, 151f

ductile rupture formula for, 159
External upset (EU), 14

F
Failures

axial casing, 142–143
of casing strings, 141
couplings, 249
structural, 147
tensile, in tubing, 142

Fatigue, drill-pipe, 231–232
Field end, 14
Field equation, 324, 328
Field practices, 249–250
Field problems, 322–331
Filling operation, 131
Fixed-end casing, yield stress in, 152f
Float equipment, 131
Float plugging, 70
Fluid, 336

completion, 71
density, 344–345
drilling, 136, 215
formation, 37
fracture, 247
interfaces, 57–58
statics, 347

Footage contracts, 141–142
Forces, 260, 302f. See also Hydrostatic forces

buoying, 90
contact, 218–220, 219f
frictional, 206
gravitational, 89, 177–178, 285
inertial, 188

Forcing functions, 187–188
Formation fluids, 37
Formation matrix, 21–22
Formation pressure gradient, 43–44
Forming line, 7–8
Fourier’s law, 301–302
Fracture check

for intermediate casing, 61–62
for production casing, 68
for surface casing, 54

Fracture closure pressure, 23
Fracture data, 22–24
Fracture fluid, 247
Fracture gradient curves, 23
Fracture margin, 26, 27f
Fracture pressure, 21–24, 366–367

depths setting using, 26–28
with fracture margin, 27f

Fracture propagation, 371f
Fracture stage, 248
Free index, 270, 289–290
Freeze point, 138–139
Freshwater protection, 25–26
Friction, 205–206. See also

Borehole friction
casing design and, 208
closed-form solutions for, 378–381
coefficient, 207
combined loads and, 99–100
Coulomb’s law of, 206
differential, 382–383
drag, 82–83, 216f
incremental, 383
in segmented body, 209f
static, 209f
torsion and, 216
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Friction factors, 207–208
common, 215–216
temperature and, 207

Friction load, 77–78, 87, 241–242
Frictional drag, 82–83, 216f
Frictional force, 206

G
Galled threads, 83–84
Gas, 340–343

constant, 341–343
equation, for methane, 73f
equation constants, 263t
equation for design, 384
ideal, 341

Gas kick, 44
intermediate casing burst loads and, 65–66
surface casing burst loads and, 59–60

Gauge pressure, 36
Geotectonic activity, 222–223
Gravitational forces, 89, 177–178, 285

hydrostatic, 88
Gravity, 177–178, 260–262

H
H2S. See Hydrogen sulfide
Handling, 127–128

on location, 128
Hanging weight

maximum, 139–141
thermal effects on, 193–194

Hard rock environments, 30f
Hardening

combined, 308
index, 157–158, 158t
isotropic, 307, 308f
kinematic, 308, 308f
strain, 305–306, 307, 308f

Heat energy, 321
Hencky, Heinrich, 309–310
Highly deviated wells, 135–136
Hole curvature, 217–218
Hole size, 29
Hole washout, 139
Hook load, decreasing, 135f
Hooke’s law, 190–191, 192, 303
Horizontal wells

bending-stress magnification factor for, 234f
combined loading in, 234f
drag friction in, 216f

drilled cuttings and, 138
hydraulic fracturing in, 245–250
tangential stress in, 370f

Huber, M. T., 309–310
Hydraulic fracturing, 245–250
Hydrogen sulfide (H2S), 12–13
Hydrostatic calculations, oil-field, 350–358
Hydrostatic equations, 384

basic common, 384
basic differential, 384
basic integral, 384
gas equation for design, 384

Hydrostatic forces
on casing string, 355f
on couplings, 358f
gravitational, 88

Hydrostatic loads, 335
Hydrostatic pressure, 337–339

effect on yield, 316
salt flow and, 222–223
in wellbores, 350–354

Hydrostatic principles, 336–339
Hydrostatic-induced collapse, 160
Hydrostatics, formulation of, 339–343

I
Ideal gas constant, 341
Ideal gas law, 38, 341
IEU, 14
In situ stress field, 365f, 366–367, 369f
Inclination angle, 82
Inclined wells

borehole friction in, 241
buckling in, 185–186
casing design for, 238–245
casing weight in, 357
intermediate casing in, 238
production casing in, 238–239

Inclinometer, 204, 371
Incremental friction equation, 383
Index notation, 192, 268, 269–271
Inertial force analysis, 188
Inertial loads, 187–188
Inner products, 277–279, 285
Inside diameter, 10
Installation stage

axial plug-bump case, 109
axial running case, 108–109
burst loads, 42
casing, 20f
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cementing, 56–58
collapse loads, 39
plug bump, 58
pressure tests, 58

Integrity tests, 24, 64–65
Intermediate casing

alternate preliminary burst selection for, 108f
available, 105t
axial design load for, 110f
axial design margin factors, 112t
axial loads for, 108–109, 241f
axial strength for, 110f
burst design loads, 103–104, 105f
burst design margin factors, 111t
burst loads, 49, 67f
burst selection, 106, 106f
burst selection depths, 106–108
calculated tops of, for burst, 107t
cement check for, 61–62
cementing, 61
collapse design loads, 103, 104f
collapse design margin factors, 111t
collapse loads, 48–49, 62, 63f
collapse strength for, 111f
combined loads for, 109
data, 60
depth, 26
design factors, 103–112
design margin factors, 109–112
design summary, 112t
evacuation of, 48–49
gradients, 61
in inclined wells, 238
loading, 60–66
preliminary selection, 104–108
pressure loads, 48–49
section lengths, 240–241, 241t
thermal effects on, 195–196

Intermediate string
bending stress, 242
combined loading, 242
stress components, 243
tangential stress, 242, 243

Internal diameter, 32–33
Internal drift diameter, 32–33
Internal energy, 321
Internal pressure, 151f

collapse correction for, 393
in API method, for combined loads, 174, 175
bending and, 235

coupling performance with, 159
loading effects, 318f

Internal state variables, 308
Internal upset (IU), 14
Internal yield

Barlow formula, 390
Lamé, 390
pressure, 155

International Organization for Standardization (ISO), 6
11960, 11–12
collapse formula, 392–393

Interpolation
algorithm, 377–378
on borehole path, 373–378
general, 373
specific, 373–375

ISO. See International Organization for Standardization
ISO/TR 10400, 83, 156–157, 164, 165t, 176
Isotropic hardening, 307, 308f
Iterative technique, 120–121
IU. See Internal upset

J
Joint length, 10–11, 11t
Joint strength, 155
Jump-out, 15

K
Kick

gas, 44, 59–60, 65–66
margin, 26
oil, 59, 66
saltwater, 59
well, 44, 46–48

Kinematic equation, 328
Kinematic hardening, 308, 308f
Kinematics, 291–301.
Kinetic energy, 321
Kinetic equation, 323, 324, 327
Kinetics, 291–301

stress, 293–301
Kronecker delta, 276–277, 283

L
Lamé change, in axial stress, 388
Lamé elastic formulas, 150–151
Lamé equations

combined loading and, 237–238
general, 387

Lamé internal yield, 390
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Lamé solutions, 151–152, 388
Landing practices, 138–141
Lateral buckling

bifurcation points in, 139, 177–187, 179f
in boreholes, 179f
of casing, 183–186
effective axial load and, 79
equations, 388
neutral point, 182
in oilfield casing, 177–178
stability and, 178–183

Leak-off point, 23
Leakoff pressure, 23
Leakoff tests, 22
Levi-Civita tensor, 276
Linear density, 91
Linear elastic material, 151–152, 302–303
Liners, 50f

drilling, 51, 51f
pressure loads, 50–51
production, 51, 51f
setting, 135

Liquid
casing weight in, 354–357
columns, 350–354

Load curves, 50, 182, 302
Load factor, 77
Load uncertainty, 78
Loading cycle, 303f
Loading effects, internal pressure, 318f
Loads

anticipated, 2
buckling, 185
distributed, 221–222, 293–294
effective, 346
hydrostatic, 335
incremental, 325
yield strength compared to, 236–237

Long thread and coupling (LT&C), 15, 130
Lost circulation

evacuated, 40
intermediate casing collapse loads and, 62–63
partially evacuated, 40
surface casing collapse loads and, 55–56

LT&C. See Long thread and coupling
Lubinski’s bending-stress magnification factor,

226–227
Lubrication, 207
Lüder’s bands, 306
Ludwik power-law material, 157–158

M
Magnetic compass, 204, 371
Makeup mark, 16
Makeup torque, 83–84, 131–132,

215–216
Mandrels

casing hangers, 138–139
dimensions, 10t
drift, 10, 10t
retractable-type, 197–198

Mass, 260, 266
conservation of, 319–320

Material properties, 262–265
temperature and, 189–190

Mathematical operators, 252–253
Mathematical symbols, 252–253
Matrix multiplication, 289–290
Maximum load method, 49
Maxwell, James Clerc, 309–310
Mechanical energy, 321
Mechanical rock properties, 24
Metal volume, with wall thickness, 217f
Methane, 38, 73–74, 342

gas equation, 73f
Mill end, 14
Minifracture tests, 22–23, 22f, 365
Minimum cost, 82
Minimum curvature method, 205, 371–372,

372f, 378
for directional wells, 382

Minimum yield strength, 12–13, 147–148
Mole, 341
Moment, 327

axial second area, 327
in horizontal tube, 348–349
in inclined tube, 350
second area, 329–331

Momentum
angular, 320
conservation of, 320–321
linear, 320

Motion
downward, 379–380
Newton’s laws of, 320–321
rigid body, 291–292
upward, 379

Mud
gelled, 136
maximum density, 43–44, 59, 65
removal, 136–138
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N
Natural laws, 319–322
Necking-down, 306
Neutral point

buckling, 179–180
lateral buckling, 182

Newtonian mechanics, 259–260
Newton’s laws of motion, 320–321
Node number system, for borehole friction, 214f
Nominal casing weight, 94
Nominal diameter, 9
Nominal strain, 305–306
Nominal weight, 11–12
Nonlinear behavior, 302f
Notation

algebraic, 268, 269
conventions, 268–271
direct, 268, 272–273
index, 192, 268, 269–271
Voigt, 303–304

O
Offshore platforms, 46–47
Oil Country Tubular Goods (OCTG), 6
Oil kick, 59, 66
Oilfield calculations, 350–358
Oilfield casing, 6–17

lateral buckling in, 177–178
manufacture of, 6–9

Open product, 279
Orthogonal axes, 285–286
Orthogonal basis, 273
Orthonormal basis, 273
Outside diameter, 9–10, 9t, 10t
Overburden, 364
Over-pressure, 362–363
Over-pull margin, 97

P
Partial collapse, 160
Partial derivatives, 271
Partially collapsed casing, 160
Paslay and Cernocky bending stress

magnification factor, 230
Perforations, 222
Permeability, 361–362
Permutations, 277f

symbol, 276–277
Phenomenology, 318–319
Pin end, 14

Pin protectors, 130
Pipe body yield, 154, 390
Pipe measurements, 128–129
Pipe movement, 137
Pipe protectors, 218
Pipe tally, 128–129
Planar beam bending, 326
Planar bending, 153f

simple, 224–226, 225f, 327f, 330f
theory, 224–225

Plastic collapse formula, 161, 391
Plasticity, 304–309
Plug bump, 43

axial loads and, 92, 95, 109
installation stage, 58
intermediate casing burst loads and, 64
post, 96
production casing and, 117–118
production casing burst loads and, 71
surface casing burst loads and, 58

Plugged float, 42
Point contact, 229, 230
Point load, 293
Points, 252–255
Poisson’s ratio, 303–304
Polar vectors, 275
Pore pressure, 21, 361–364

depths setting using, 26–28
with fracture margin, 27f

Pore spaces, 21
Porosity, 361–362
Post-buckling, 159

helical, 184–185
Potential energy, 181–182
Pound-force, 260–262
Pressure, 336. See also External pressure, Hydrostatic

pressure, Internal pressure, Pore pressure
atmospheric, 36
buckle propagation, 160
cycling, 248–249
differential loading, 72
equations, 387
formation, 43–44
fracture closure, 23
gauge, 36
integrity test, 24
internal yield, 155
over, 362–363
source, 59
surface, 353f
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Pressure loads, 37–38
conductor casing, 46–47, 52–53
gas, 38
intermediate casing, 48–49
liners, 50–51
other types, 51–52
production casing, 49–50
sources of, 37–38
specific, 46–52
surface casing, 47–48, 53–60
tieback strings, 50–51
types of, 37

Pressure tests
BOP stack and, 43
completion fluids and, 71
installation stage, 43
intermediate casing burst loads and, 64–65
production stage, 44
surface casing burst loads and, 58

Principal stress components, 297–299, 313f
Principal stress space, 311
Probabilistic design, 147
Production casing, 66–74

alternate field design, 124t
available, 114t
axial design load for, 119f
axial design margin factors, 123t
axial loads, 114–118, 118f,

244, 244f
axial schematic for, 116f
burst design loads, 113f
burst design margin factors, 123t
burst loads, 50, 70, 74f
cement check for, 68
cementing, 67
collapse design loads, 113f
collapse design margin factors, 122t
collapse loads, 49, 68, 69f
combined loads for, 120–121, 245
cross-sectional areas, 116
data, 66–67
design factors, 112–123
design margin factors, 121–123
design summary, 123t
evacuated, 68, 69
gradients, 67
in inclined wells, 238–239
plug-bump case, 117–118
preliminary calculations, 116–117
preliminary selection, 115f, 116f

pressure loads, 49–50
running case, 117
section lengths, 244, 244t
section weights, 117

Production liners, 51, 51f
Production stage

burst loads, 44
collapse loads, 40

Production string
evacuation, 40
stress components, 245

Projection operator, 282–283, 283f
Proportional limit, 304–305
Proppant, 247
Proprietary threading, 16

Q
Quench and temper (QT), 8–9

R
Rack capacity, 128
Radial buckling, 159
Radial stress, 150–152, 167
Radius curvature, 381–382
Ramberg-Osgood material, 157–158
Range convention, 270
Rate-dependent materials, 302–303
Reaction, 302f
Readability, 4
Real numbers, 272
Reciprocation, 137
Regulations, 24

freshwater protection, 25–26
Resilient seals, 15
Rig floor, 130
Rigid body, 189

motion, 291–292
of weight, 208f

Rings, 15
Rock mechanics, 364–366
Rockwell hardness, 13
Roller process, 198
Rotary tables, 189
Rotational deflection, 388
Roundoff, 5, 94
Runge-Kutta method, 212–213
Running

cases, 83–84, 108–109, 117, 143
collapse loads and, 39
considerations, 134–135
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procedures, 130–136
speed, 134

S
Safety factor, 79. See also Design margin factor
Saint-Venant’s principle, 295, 326
Salt flow, 222–223
Saltwater

kick, 59
well kicks and, 44

Scalar triple product, 281, 281f
Scalar variables, 253–255
Scalars, 271–291
Screen-out, 247
Sealing

interference, 14–15
metal-to-metal, 15
resilient, 15

Seamless casing, 7
Second area moment, 329–331
Second law of thermodynamics, 321–322
Section lengths

intermediate casing, 240–241, 241t
production casing, 244, 244t

Section weight, 117
Segmented body, friction in, 209f
Shear, 327
Shear pins, 147
Shear stress, 152–153
Shock loads, 188–189
Shoe integrity test, 64–65
Short thread and coupling (ST&C), 15, 130
SI. See Système International d’Unités
Sign convention, 294f
Slotted liners, 216

borehole collapse and, 220
Soft string assumptions, 211
Soil compaction, 362f
Solid mechanics, 146

general, 389
symbols, 253–255
variables, 253–255

Solution methods, 331–332
Source pressure, 59
SPE Style Guide, 5
Specific gravity, 46, 344
Specific weight, 344, 351

buoyed, 212–213
Spherical stress, 337
Spiders, 133, 133f

Squeeze, 41, 45
production casing collapse loads and, 69–70

Stabbing process, 131
Stability

borehole, 22f, 24, 367–371, 368f
condition, 389
elastic, 180–181
lateral buckling and, 178–183
neutral, 389
Woods model of, 179–183, 180f

Stable equilibrium, 178
Standards, setting of, 6
ST&C. See Short thread and coupling
Steel

densities, 12
ductile, 304–305
properties, 262t
strain hardening, 307
test sample, 305f

Stimulations, 41, 45
production casing collapse loads and, 69–70

Straight sections, 376
Strain, 291–301

Cauchy infinitesimal, 292
deformation and, 291–293
engineering, 305–306
gauge, 305–306
hardening, 305–306, 307, 308f
nominal, 305–306
softening, 306
true, 306

Strength. See also Yield strength
axial, 110f
burst, 83
burst design, 155–159
casing, 17, 40
collapse, 83, 111f, 393
collapse design, 159–166
design, 83
design factors, 77
factor, 77
joint, 155
tensile design, 154–155
treatment of casing, 8–9
ultimate, 13, 305, 306
yield, 12–13, 147–148, 236–237

Stress, 291–301. See also specific stress types
axial bending, 330
Cauchy, 283, 284
deviatoric, 295–296, 299–300
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Stress (Continued)
directions, 300
engineering stress or nominal, 306
kinetics, 293–301
radial, 150–152, 167
shear, 152–153
sign convention, 294f
spherical, 337
tensors, 294
von Mises equivalent, 310

Stress components, 149, 149f
intermediate string, 243
principal, 297–299, 313f
production string, 245

Stress field, 326, 390. See also In situ stress field
Stress invariants, 295
Structural design, 146–148
Structural dynamics, 187–188
Structural failure, 147
Subscripts, 251–259
Summation convention, 270
Superscripts, 251–259
Surface casing, 84t

axial design loads, 97f
axial design margin factors, 103t
axial load, plug-bump case, 95
axial load comparison of, 94f
axial loads, post plug bump, 96
axial loads and, 92, 93–94, 96f
burst design loads, 80, 81f
burst design margin factors, 102
burst loads, 47–48, 56, 57f, 61f
cement check for, 54
cementing and, 53
collapse compared to burst in, 86f
collapse design loads, 80, 81f
collapse design margin factors, 102t
collapse loads, 47, 54, 55f, 56f
combined collapse and tension with,

100, 101
cross-sectional area of, 94–95
depth, 25–26
design factors, 102
design margin factors, 102, 102t
design summary, 103t
fracture check for, 54
H-40 grade, 142
load plots, 48
preliminary selection, 84–85
pressure loads, 47–48, 53–60

schematic, 93f
shoe track of, 141

Surface pressure, 353f
Swaging process, 197–198
Symbols, 253–255, 276–277
Système International d’Unités (SI), 259–260, 260t

API constants, 392

T
Tables, 175–176
Tagging bottom, 135
Tangential stress, 150–152, 167

fractional, 172
in horizontal well, 370f
intermediate string, 242, 243
in vertical well, 369f

Taylor method, 213
Taylor series, 212–213
Tectonic activity, 364
Temperature

changes, 190–196
cycling, 248–249
friction factor and, 207
material properties and, 189–190

Tensile design factor, 194–195
Tensile design strength, 154–155
Tensile failures, in tubing, 142
Tension

axial, 182–183
collapse combined with, 100, 101
collapse interpolation, 122f
in combined loads, 99
loading, 77–78
no contact and, 228–229
point contact and, 229
transition equations for, 232f
wrap contact and, 229

Tension/collapse adjustment, 169–170
Tensor operations, 283–285
Tensor product, 284

dyadic, 284
Tensors, 252–253, 271–291, 294

definition of, 282
inner products of, 285
Levi-Civita, 276
second-order, 253–255
stress, 294
transforming, 290–291
2-order, 282–283

Tests. See also Pressure tests, Uniaxial test



Index 419

crushing, 222
integrity, 24, 64–65
leakoff, 22
minifracture, 22–23, 22f, 24
pressure integrity, 24
shoe integrity, 64–65
steel samples, 305f

Thermal buckling, 195–196, 196f
Thermal effects, 189–196, 191f

on axial stress, 389
on compression, 192–193
on hanging weight, 193–194
on intermediate casing, 195–196
on unbuoyed casing string, 192–193

Thermal equations, 389
Thermal equilibrium, 190
Thermal expansion coefficient, 191
Thermodynamics, second law of, 321–322
Thermoelasticity, 192
Thermoset polymer, 132
Thread locking, 132–133
Threaded connections, 16
Threading

galled, 83–84
proprietary, 16
V-shaped, 235

3D shell theory, 155
Tieback strings, 12–13

pressure loads, 50–51
Torque

closed-form solution for, 380–381
equation, differential form, 383
equation, incremental form, 383

Torque-and-drag software, 218–220
Torsion, 152–153

equations, 388
friction and, 216

Torsional buckling, 177–178
Tortuosity, 215
Traction, 293–294
Traction vectors, 293–294, 336
Transforming vectors, 289–290
Transition collapse formula, 391
Transition equations, 232–233, 232f
Transition-decrement factors, 165t
Transport, 127–128

to location, 128
Transverse loading, non-uniform, 222f
Treatment pressures, high, 246–247
Triple cross product, 281–282

Tube elongation, 323
Tube selection, 2
Tubing, 6

bending equations, 387
coiled, 8
corrosion, 45
geometric equations for, 385
horizontal, 346–347, 346f, 348–349, 348f
inclined, 347–348, 347f, 350
mechanics of, 148–153
pressure equations, 387
suspended, 351f
tensile failures in, 142
vertical, 323f, 345–346, 345f

Tubing backup, 44–45
production casing burst loads and, 72

Tubing leak, 45
production casing burst loads and, 72–74

U
Ultimate strength value, 13, 305, 306
Unconsolidated rock environments, 31f
Under-compacted formation, 362–363
Uniaxial test, 13, 304f, 309

data, 317f
Unit vectors, 275
Units, 259–262

common oilfield, 262t
conversion of, 261t
systems of, 4–5, 260t

Unloading cycle, 303f
Upset, 10
Upward motion, closed-form solutions for, 379
USC system, 4, 259

API constants, 392
conversion factors, 46
conversion to SI, 261t
to English gravitational units, 261t

V
Vacuums, 339–343
Variables, 251

application-specific, 255–259
internal state, 308
scalar, 253–255
solid mechanics, 253–255

Vector space, 282
Vectors, 252–255, 271–291

addition, 277
axial, 275
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Vectors (Continued)
base, 269
coordinate transforms of, 290
magnitude, 274–275
operations, 276–282
polar, 275
rectangular components of, 274f
traction, 293–294, 336
transforming, 289–290
unit, 275

Vertical wells
buckling in, 185
tangential stress in, 369f

Voigt notation, 303–304
Volume, 266

metal, 217f
Von Mises ellipse, 171–172
Von Mises equivalent stress, 310
Von Mises yield criterion, 151–152, 155, 170,

309–310, 318–319, 389
combined loading and, 237–238
2D, 169f, 172, 315f

Von Mises yield surface, 172, 309–310, 311–312, 311f,
312f

V-shaped threading, 235

W
Wall thickness, 10

burst design strength and, 156
casing wear and, 217
metal volume and, 217f
reduced, 391
variation, 155

Wear, 159
Weight, 82. See also Casing weight, Specific weight

buoyed linear, 185–186
buoyed specific, 212–213
hanging, maximum, 139–141

hanging, thermal effects on, 193–194
nominal, 11–12
rigid body of, 208f
section, 117

Welded casing, 7–8
Well applications, 198–200
Well kick, 44, 46–48
Well schematic, 201f
Wellbores

curvature, 186
highly deviated, 135–136, 135f
hydrostatic pressures in, 350–354
inclined, 185–186
lateral buckling of casing in, 183–186
vertical, buckling in, 185

Wet buckle, 160
Woods stability model, 179–183, 180f
Worst case burst, 247
Wrap contact, 229

compression and, 230

Y
Yield collapse formula, 161, 391
Yield condition, 168
Yield criteria, 155, 309–319, 389
Yield measure, 311, 389, 390
Yield point, 304

elastic, 147–148
Yield strength, 147–148

joint strength and, 155
loads compared to, 236–237

Yield stress, 147–148, 151f
current, 310
in fixed-end casing, 152f
as limiting point, 168

Yield surface, 307, 309. See also Von Mises yield
surface

Young’s modulus, 188, 226–227
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