

Roll No.											
----------	--	--	--	--	--	--	--	--	--	--	--

PRESIDENCY UNIVERSITY

BENGALURU

Mid - Term Examinations – October 2025

Date: 29-10-2025

Time: 02.30pm to 04.00pm

School: SOCSE	Program: B.Tech(AIML)	
Course Code : CAI3402	Course Name: Optimization Techniques for Machine Learning	
Semester: VII	Max Marks: 50	Weightage: 25%

CO - Levels	C01	C02	C03	C04	C05
Marks	26	24	-	-	-

Instructions:

- (i) *Read all questions carefully and answer accordingly.*
- (ii) *Do not write anything on the question paper other than roll number.*

Part A

Answer ALL the Questions. Each question carries 2marks.

5Q x 2M=10M

1	Define bivariate optimization with one example.	2 Marks	L1	C01
2	What is meant by kernel in Support Vector Machines.	2 Marks	L1	C01
3	Mention any two limitations of logistic regression.	2 Marks	L1	C01
4	Define Learning Rate and explain its role in optimization	2 Marks	L1	C02
5	Why is momentum used in gradient-based optimization?	2 Marks	L1	C02

Part B

Answer the Questions.

Total Marks 40M

6.	a.	Explain the basics of optimization in bivariate and multivariate problems with examples.	10 Marks	L2	CO1
-----------	-----------	--	-----------------	-----------	------------

Or

7.	a.	Describe how Least-Square Classification differs from logistic regression for binary classification.	10 Marks	L2	CO1
-----------	-----------	--	-----------------	-----------	------------

8.	a.	Describe the optimization function for Support Vector Machines	10 Marks	L2	CO1
-----------	-----------	--	-----------------	-----------	------------

Or

9.	a.	Describe coordinate descent with a suitable diagram.	10 Marks	L2	CO1
-----------	-----------	--	-----------------	-----------	------------

10.	a.	Compare different optimization techniques used in machine learning such as Gradient Descent, Newton, and RMSProp.	10 Marks	L2	CO2
------------	-----------	---	-----------------	-----------	------------

Or

11.	a.	Discuss the Subgradient and Proximal Gradient Methods.	10 Marks	L2	CO2
------------	-----------	--	-----------------	-----------	------------

12.	a.	Describe Computationally Efficient Variations of the Newton Method	10 Marks	L2	CO2
------------	-----------	--	-----------------	-----------	------------

Or

13.	a.	Describe Momentum-Based Learning.	10 Marks	L2	CO2
------------	-----------	-----------------------------------	-----------------	-----------	------------