

PRESIDENCY UNIVERSITY

BENGALURU

Mid - Term Examinations – October 2025

Date: 28-10-2025

Time: 11.00am to 12.30pm

School: SOIS-PG	Program: MCA	
Course Code : CSA4201	Course Name: Data Structures and Algorithms	
Semester: I	Max Marks: 50	Weightage: 25%

CO - Levels	CO1	CO2	CO3	CO4	CO5
Marks	24	26	-	-	-

Instructions:

- (i) *Read all questions carefully and answer accordingly.*
- (ii) *Do not write anything on the question paper other than roll number.*

Part A

Answer ALL the Questions. Each question carries 2 marks.

5Q x 2M=10M

1	What is a priority queue? Give one example of where it can be used.	2 Marks	L1	CO1
2	In Dijkstra's algorithm, what is the purpose of maintaining a "distance" array?	2 Marks	L1	CO1
3	Define a hash function. Give one simple example.	2 Marks	L1	CO2
4	What is a dictionary in data structures?	2 Marks	L1	CO2
5	What is hashing and what is its main purpose?	2 Marks	L1	CO2

Part B

Answer the Questions.

Total Marks 40M

6.	a.	A browser maintains the history of visited web pages using a stack. The user visits pages in the order: Google → YouTube → Gmail → ChatGPT. <ul style="list-style-type: none">• Show the stack contents after visiting all pages.• If the user presses the "Back" button twice, what pages are visited and what remains in the stack?• Write an algorithm for push and pop operation	10 Marks	L2	CO1
----	----	--	----------	----	-----

Or

7.	a.	Explain the difference between simple queue, circular queue, Double ended queue and priority queue with diagrams.	10 Marks	L2	CO1
-----------	-----------	---	-----------------	-----------	------------

8.	a.	<p>A company wants to connect its 5 offices (A, B, C, D, E) with minimum cost network. The weighted edges (cost in) are:</p> <ul style="list-style-type: none"> • A-B: 2, A-C: 4, B-C: 1, B-D: 7, C-D: 3, D-E: 1, C-E: 5 • Draw the graph. • Use Prim's algorithm to find the Minimum Spanning Tree (MST). • Write Prim's algorithm 	10 Marks	L2	CO1
-----------	-----------	--	-----------------	-----------	------------

Or

9.	a.	<p>A city has 6 locations (1 to 6) connected as follows (distances in km):</p> <ul style="list-style-type: none"> • 1-2: 4, 1-3: 2, 2-3: 1, 2-4: 5, 3-4: 8, 3-5: 10, 4-6: 2, 5-6: 3 • Draw the graph • Use Dijkstra's algorithm to find the shortest distance from location 1 to all other locations. • Show step-by-step updates of the distance table. • Identify the shortest path from 1 to 6. 	10 Marks	L2	CO1
-----------	-----------	---	-----------------	-----------	------------

10.	a.	<p>A hash table uses linear probing with size 8. Insert keys: 8, 16, 24, 32, 40. Hash function: $h(k) = k \bmod 8$.</p> <ul style="list-style-type: none"> • Show the table after all insertions. • Explain the difference between linear and quadratic probing under open addressing. 	10 Marks	L3	CO2
------------	-----------	---	-----------------	-----------	------------

Or

11.	a.	<p>A hash table of size 10 uses quadratic probing. Hash function $h(k) = k \bmod 10$. Insert keys: 5, 15, 25, 35, 45</p> <ul style="list-style-type: none"> • Show the table after insertions. • Explain how quadratic probing resolves collisions. 	10 Marks	L3	CO2
------------	-----------	--	-----------------	-----------	------------

12.	a.	Explain separate chaining with a simple example.	10 Marks	L2	CO2
------------	-----------	---	-----------------	-----------	------------

Or

13.	a.	Describe the difference between primary clustering and secondary clustering in open addressing.	10 Marks	L2	CO2
------------	-----------	---	-----------------	-----------	------------